Dihydroartemisinin broke the tumor immunosuppressive microenvironment by inhibiting YAP1 expression to enhance anti‐PD‐1 efficacy
The efficacy of anti‐PD‐1 therapy is not as expected in hepatocellular carcinoma (HCC). YAP1 was overexpressed and activated in HCC. The mechanism of YAP1 in HCC immune escape is unclear. Anti‐PD‐1 treatment increased YAP1 expression in liver tumor cells, and exhausted CD4+ and CD8+ T cells in the b...
Saved in:
Published in | Phytotherapy research Vol. 37; no. 5; pp. 1740 - 1753 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Chichester, UK
John Wiley & Sons, Ltd
01.05.2023
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The efficacy of anti‐PD‐1 therapy is not as expected in hepatocellular carcinoma (HCC). YAP1 was overexpressed and activated in HCC. The mechanism of YAP1 in HCC immune escape is unclear. Anti‐PD‐1 treatment increased YAP1 expression in liver tumor cells, and exhausted CD4+ and CD8+ T cells in the blood and spleen of liver tumor mice. YAP1 knockdown suppressed PD‐L1 expression, which was involved in JAK1/STAT1, 3 pathways. Moreover, Yap1 knockout elevated CD4+ and CD8+ T cells in liver tumor niche. Consistently, verteporfin, YAP1 inhibitor, decreased TGF‐β and IFN‐γ in liver tumor niche and exhausted CD8+ T cell in the spleen. DHA suppressed YAP1 expression and break immune evasion in liver tumor niche, characterized by decreased PD‐L1 in liver tumor cells and increased CD8+ T cell infiltration. Furthermore, DHA combined with anti‐PD‐1 treatment promoted CD4+ T cell infiltration in the spleen and CD8+ T cell in tumor tissues of mice. In summary, YAP1 knockdown in liver tumor cells suppressed PD‐L1 expression and recruited cytotoxic T lymphocytes (CTLs), leading to break immune evasion in tumor niche. Mechanistically, YAP1 knockdown suppressed PD‐L1 expression, which was involved in JAK1/STAT1, 3 pathways. Finally, DHA inhibited YAP1 expression, which not only inhibited liver tumor proliferation but also break the immunosuppressive niche in liver tumor tissues and improve the effect of anti‐PD‐1 therapy. |
---|---|
AbstractList | The efficacy of anti‐PD‐1 therapy is not as expected in hepatocellular carcinoma (HCC). YAP1 was overexpressed and activated in HCC. The mechanism of YAP1 in HCC immune escape is unclear. Anti‐PD‐1 treatment increased YAP1 expression in liver tumor cells, and exhausted CD4+ and CD8+ T cells in the blood and spleen of liver tumor mice. YAP1 knockdown suppressed PD‐L1 expression, which was involved in JAK1/STAT1, 3 pathways. Moreover, Yap1 knockout elevated CD4+ and CD8+ T cells in liver tumor niche. Consistently, verteporfin, YAP1 inhibitor, decreased TGF‐β and IFN‐γ in liver tumor niche and exhausted CD8+ T cell in the spleen. DHA suppressed YAP1 expression and break immune evasion in liver tumor niche, characterized by decreased PD‐L1 in liver tumor cells and increased CD8+ T cell infiltration. Furthermore, DHA combined with anti‐PD‐1 treatment promoted CD4+ T cell infiltration in the spleen and CD8+ T cell in tumor tissues of mice. In summary, YAP1 knockdown in liver tumor cells suppressed PD‐L1 expression and recruited cytotoxic T lymphocytes (CTLs), leading to break immune evasion in tumor niche. Mechanistically, YAP1 knockdown suppressed PD‐L1 expression, which was involved in JAK1/STAT1, 3 pathways. Finally, DHA inhibited YAP1 expression, which not only inhibited liver tumor proliferation but also break the immunosuppressive niche in liver tumor tissues and improve the effect of anti‐PD‐1 therapy. The efficacy of anti-PD-1 therapy is not as expected in hepatocellular carcinoma (HCC). YAP1 was overexpressed and activated in HCC. The mechanism of YAP1 in HCC immune escape is unclear. Anti-PD-1 treatment increased YAP1 expression in liver tumor cells, and exhausted CD4 and CD8 T cells in the blood and spleen of liver tumor mice. YAP1 knockdown suppressed PD-L1 expression, which was involved in JAK1/STAT1, 3 pathways. Moreover, Yap1 knockout elevated CD4 and CD8 T cells in liver tumor niche. Consistently, verteporfin, YAP1 inhibitor, decreased TGF-β and IFN-γ in liver tumor niche and exhausted CD8 T cell in the spleen. DHA suppressed YAP1 expression and break immune evasion in liver tumor niche, characterized by decreased PD-L1 in liver tumor cells and increased CD8 T cell infiltration. Furthermore, DHA combined with anti-PD-1 treatment promoted CD4 T cell infiltration in the spleen and CD8 T cell in tumor tissues of mice. In summary, YAP1 knockdown in liver tumor cells suppressed PD-L1 expression and recruited cytotoxic T lymphocytes (CTLs), leading to break immune evasion in tumor niche. Mechanistically, YAP1 knockdown suppressed PD-L1 expression, which was involved in JAK1/STAT1, 3 pathways. Finally, DHA inhibited YAP1 expression, which not only inhibited liver tumor proliferation but also break the immunosuppressive niche in liver tumor tissues and improve the effect of anti-PD-1 therapy. Abstract The efficacy of anti‐PD‐1 therapy is not as expected in hepatocellular carcinoma (HCC). YAP1 was overexpressed and activated in HCC. The mechanism of YAP1 in HCC immune escape is unclear. Anti‐PD‐1 treatment increased YAP1 expression in liver tumor cells, and exhausted CD4 + and CD8 + T cells in the blood and spleen of liver tumor mice. YAP1 knockdown suppressed PD‐L1 expression, which was involved in JAK1/STAT1, 3 pathways. Moreover, Yap1 knockout elevated CD4 + and CD8 + T cells in liver tumor niche. Consistently, verteporfin, YAP1 inhibitor, decreased TGF‐β and IFN‐γ in liver tumor niche and exhausted CD8 + T cell in the spleen. DHA suppressed YAP1 expression and break immune evasion in liver tumor niche, characterized by decreased PD‐L1 in liver tumor cells and increased CD8 + T cell infiltration. Furthermore, DHA combined with anti‐PD‐1 treatment promoted CD4 + T cell infiltration in the spleen and CD8 + T cell in tumor tissues of mice. In summary, YAP1 knockdown in liver tumor cells suppressed PD‐L1 expression and recruited cytotoxic T lymphocytes (CTLs), leading to break immune evasion in tumor niche. Mechanistically, YAP1 knockdown suppressed PD‐L1 expression, which was involved in JAK1/STAT1, 3 pathways. Finally, DHA inhibited YAP1 expression, which not only inhibited liver tumor proliferation but also break the immunosuppressive niche in liver tumor tissues and improve the effect of anti‐PD‐1 therapy. |
Author | Guo, Yinglin Zhao, Yanmeng Liu, Yiwei Peng, Qing Li, Shenghao Xue, Yu Ji, Jingmin Shi, Xinli Hao, Liyuan Zhang, Zhiqin Li, Caige |
Author_xml | – sequence: 1 givenname: Qing orcidid: 0000-0002-2238-8400 surname: Peng fullname: Peng, Qing organization: Hebei University of Chinese Medicine – sequence: 2 givenname: Shenghao surname: Li fullname: Li, Shenghao organization: Hebei University of Chinese Medicine – sequence: 3 givenname: Xinli surname: Shi fullname: Shi, Xinli email: sxlsunshine@sina.com organization: Hebei University of Chinese Medicine – sequence: 4 givenname: Yinglin surname: Guo fullname: Guo, Yinglin organization: Hebei University of Chinese Medicine – sequence: 5 givenname: Liyuan orcidid: 0000-0001-9429-5134 surname: Hao fullname: Hao, Liyuan organization: Hebei University of Chinese Medicine – sequence: 6 givenname: Zhiqin surname: Zhang fullname: Zhang, Zhiqin organization: Hebei University of Chinese Medicine – sequence: 7 givenname: Jingmin surname: Ji fullname: Ji, Jingmin organization: Hebei University of Chinese Medicine – sequence: 8 givenname: Yanmeng surname: Zhao fullname: Zhao, Yanmeng organization: Hebei University of Chinese Medicine – sequence: 9 givenname: Caige surname: Li fullname: Li, Caige organization: Hebei University of Chinese Medicine – sequence: 10 givenname: Yu surname: Xue fullname: Xue, Yu organization: Hebei University of Chinese Medicine – sequence: 11 givenname: Yiwei surname: Liu fullname: Liu, Yiwei organization: Hebei University of Chinese Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36576358$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc9qFTEUh4O02Nsq-AQScONm2iQzSSbL0voPCr2UCroKmeRcb-qdZExmqrPrpnuf0Scx9dYKBRfnnM3Hxznnt492QgyA0AtKDikh7GgY06EUij9BC0qUqiiX9Q5aEMVp1dD20x7az_mKEKIYaZ6ivVpwKWreLtDtqV_PLkWTRuh99sEH3KX4FfC4LjX1MWHf91OIeRqGBDn7a8C9tylCuPYphh7CiLsZ-7D2nR99-II_Hy8phh9bPAY8RgxhbYIFbMLof938XJ6WVpjVyltj52dod2U2GZ7fzwP08e2by5P31dn5uw8nx2eVrRvFK8PA1EwSqZwg3PJaKiYcgHIdY040jjjFbAsGRNsB4Q1YsEY4qVojObf1AXq99Q4pfpsgj7rcbGGzMQHilDWTXJUviVYU9NUj9CpOKZTtNGspbWopeftPWP6Rc4KVHpLvTZo1JfouGl2i0XfRFPTlvXDqenAP4N8sClBtge9-A_N_RXp5efFH-BtVa56a |
CitedBy_id | crossref_primary_10_3389_fimmu_2023_1323581 crossref_primary_10_3389_fimmu_2024_1377722 crossref_primary_10_1007_s00210_024_03123_6 crossref_primary_10_1016_j_acthis_2024_152171 crossref_primary_10_1016_j_bcp_2024_116294 crossref_primary_10_1186_s13020_023_00785_x crossref_primary_10_3390_ijms242417322 |
Cites_doi | 10.1016/j.molcel.2007.12.022 10.3389/fonc.2020.595466 10.1016/j.celrep.2017.04.031 10.1002/ptr.6332 10.1080/2162402x.2018.1438106 10.1016/j.bbrc.2017.07.007 10.1097/cji.0000000000000187 10.1007/s00109-018-1717-7 10.1016/j.csbj.2019.03.006 10.3389/fimmu.2017.01597 10.1073/pnas.0810958105 10.1002/hep.28710 10.1016/j.jdermsci.2020.08.001 10.1080/14728222.2018.1471137 10.1186/s40425-019-0814-7 10.1016/j.cell.2015.10.044 10.3892/ol.2021.12914 10.3389/fgene.2019.00422 10.1172/jci126022 10.16288/j.yczz.17-064 10.1158/2159-8290.cd-15-0224 10.1371/journal.pbio.3000591 10.1186/s13046-019-1403-9 10.1177/0022034517712435 10.1101/gad.294348.116 10.1016/j.ccr.2009.12.048 10.1053/j.gastro.2016.05.006 10.1007/s11010-020-03861-0 10.1172/jci88486 10.1016/j.cell.2012.11.026 10.1158/2326-6066.Cir-17-0320 10.1158/1078-0432.ccr-20-3365 10.1007/s11418-022-01641-2 10.1007/s00262-017-2086-8 10.1038/s41590-018-0044-z 10.1159/000464380 10.7554/eLife.67312 10.18632/oncotarget.17520 10.1158/1535-7163.Mct-20-0024 |
ContentType | Journal Article |
Copyright | 2022 John Wiley & Sons Ltd. 2023 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2022 John Wiley & Sons Ltd. – notice: 2023 John Wiley & Sons, Ltd. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. P64 RC3 7X8 |
DOI | 10.1002/ptr.7695 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Genetics Abstracts MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Pharmacy, Therapeutics, & Pharmacology Botany |
EISSN | 1099-1573 |
EndPage | 1753 |
ExternalDocumentID | 10_1002_ptr_7695 36576358 PTR7695 |
Genre | article Journal Article Commentary Editorial |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 81873112 – fundername: National Natural Science Foundation of China grantid: 81873112 |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AASGY AAWTL AAXRX AAYOK AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EBD EBS ECGQY EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA GWYGA H.X HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6Q MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WOHZO WQJ WRC WUP WVDHM WWP WXI WXSBR XG1 XV2 YCJ ZZTAW ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QO 7QP 7QR 7TK 7TM 8FD FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3495-a2ea327079d605c537926dee9db22d64d0d92c8eae68be054ececa6d798a755c3 |
IEDL.DBID | DR2 |
ISSN | 0951-418X |
IngestDate | Thu Aug 15 23:35:32 EDT 2024 Thu Oct 10 22:03:26 EDT 2024 Fri Aug 23 03:36:36 EDT 2024 Sat Sep 28 08:14:32 EDT 2024 Sat Aug 24 00:54:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Dihydroartemisinin YAP1 PD-L1 immune microenvironment hepatocellular carcinoma |
Language | English |
License | 2022 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3495-a2ea327079d605c537926dee9db22d64d0d92c8eae68be054ececa6d798a755c3 |
Notes | Qing Peng and Shenghao Li contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-2238-8400 0000-0001-9429-5134 |
PMID | 36576358 |
PQID | 2811437758 |
PQPubID | 1036338 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2759000686 proquest_journals_2811437758 crossref_primary_10_1002_ptr_7695 pubmed_primary_36576358 wiley_primary_10_1002_ptr_7695_PTR7695 |
PublicationCentury | 2000 |
PublicationDate | May 2023 2023-May 2023-05-00 20230501 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationPlace | Chichester, UK |
PublicationPlace_xml | – name: Chichester, UK – name: England – name: Bognor Regis |
PublicationSubtitle | PTR |
PublicationTitle | Phytotherapy research |
PublicationTitleAlternate | Phytother Res |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley Subscription Services, Inc |
References | 2017; 40 2019; 7 2015; 163 2021; 27 2017; 41 2017; 8 2021; 22 2019; 97 2019; 33 2010; 17 2019; 10 2019; 17 2019; 38 2017; 491 2008; 105 2020; 99 2019; 129 2020; 10 2018; 67 2018; 22 2020; 19 2020; 18 2018; 7 2018; 6 2018; 19 2012; 151 2017; 31 2016; 6 2017; 96 2021; 10 2022 2017; 39 2008; 29 2016; 64 2017; 19 2020; 475 2017; 127 2016; 151 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 38 start-page: 397 issue: 1 year: 2019 article-title: IFN‐gamma‐induced PD‐L1 expression in melanoma depends on p53 expression publication-title: Journal of Experimental & Clinical Cancer Research – volume: 10 year: 2020 article-title: Eliminating radiation resistance of non‐small cell lung cancer by Dihydroartemisinin through abrogating immunity escaping and promoting radiation sensitivity by inhibiting PD‐L1 expression publication-title: Frontiers in Oncology – volume: 10 year: 2021 article-title: YAP and TAZ are transcriptional co‐activators of AP‐1 proteins and STAT3 during breast cellular transformation publication-title: eLife – year: 2022 article-title: Dihydroartemisinin inhibited the Warburg effect through YAP1/SLC2A1 pathway in hepatocellular carcinoma publication-title: Journal of Natural Medicines – volume: 8 start-page: 45981 issue: 28 year: 2017 end-page: 45993 article-title: Dihydroartemisinin induces autophagy‐dependent death in human tongue squamous cell carcinoma cells through DNA double‐strand break‐mediated oxidative stress publication-title: Oncotarget – volume: 33 start-page: 1413 issue: 5 year: 2019 end-page: 1425 article-title: Dihydroartemisinin, an antimalarial drug, induces absent in melanoma 2 inflammasome activation and autophagy in human hepatocellular carcinoma HepG2215 cells publication-title: Phytotherapy Research – volume: 6 start-page: 255 issue: 3 year: 2018 end-page: 266 article-title: YAP‐induced PD‐L1 expression drives immune evasion in BRAFi‐resistant melanoma publication-title: Cancer Immunology Research – volume: 19 start-page: 2175 issue: 10 year: 2020 end-page: 2185 article-title: Concurrent targeting of potential cancer stem cells regulating pathways sensitizes lung adenocarcinoma to standard chemotherapy publication-title: Molecular Cancer Therapeutics – volume: 17 start-page: 661 year: 2019 end-page: 674 article-title: Application of PD‐1 blockade in cancer immunotherapy publication-title: Computational and Structural Biotechnology Journal – volume: 19 start-page: 222 issue: 3 year: 2018 end-page: 232 article-title: The immunology of hepatocellular carcinoma publication-title: Nature Immunology – volume: 129 start-page: 3324 issue: 8 year: 2019 end-page: 3338 article-title: IL‐6/JAK1 pathway drives PD‐L1 Y112 phosphorylation to promote cancer immune evasion publication-title: The Journal of Clinical Investigation – volume: 39 start-page: 607 issue: 7 year: 2017 end-page: 616 article-title: Hippo signaling pathway in liver tissue homeostasis publication-title: Yi Chuan – volume: 17 start-page: 286 issue: 3 year: 2010 end-page: 297 article-title: Hepatocyte IKKbeta/NF‐kappaB inhibits tumor promotion and progression by preventing oxidative stress‐driven STAT3 activation publication-title: Cancer Cell – volume: 67 start-page: 271 issue: 2 year: 2018 end-page: 283 article-title: Cross‐talk between TNF‐α and IFN‐γ signaling in induction of B7‐H1 expression in hepatocellular carcinoma cells publication-title: Cancer Immunology, Immunotherapy – volume: 31 start-page: 247 issue: 3 year: 2017 end-page: 259 article-title: Single tumor‐initiating cells evade immune clearance by recruiting type II macrophages publication-title: Genes & Development – volume: 22 start-page: 547 issue: 6 year: 2018 end-page: 557 article-title: Dual inhibition of STAT1 and STAT3 activation downregulates expression of PD‐L1 in human breast cancer cells publication-title: Expert Opinion on Therapeutic Targets – volume: 8 year: 2017 article-title: PD‐1/PD‐L1 blockade: Have we found the key to unleash the antitumor immune response? publication-title: Frontiers in Immunology – volume: 40 start-page: 323 issue: 9 year: 2017 end-page: 333 article-title: Relationship between PD‐L1 expression and CD8+ T‐cell immune responses in hepatocellular carcinoma publication-title: Journal of Immunotherapy – volume: 64 start-page: 2038 issue: 6 year: 2016 end-page: 2046 article-title: Programmed death ligand 1 expression in hepatocellular carcinoma: Relationship with clinical and pathological features publication-title: Hepatology – volume: 151 start-page: 526 issue: 3 year: 2016 end-page: 539 article-title: YAP1 and TAZ control pancreatic cancer initiation in mice by direct up‐regulation of JAK‐STAT3 signaling publication-title: Gastroenterology – volume: 475 start-page: 79 issue: 1–2 year: 2020 end-page: 91 article-title: Cisplatin promotes the expression level of PD‐L1 in the microenvironment of hepatocellular carcinoma through YAP1 publication-title: Molecular and Cellular Biochemistry – volume: 22 start-page: 653 issue: 3 year: 2021 article-title: Anti‐malarial drug dihydroartemisinin downregulates the expression levels of CDK1 and CCNB1 in liver cancer publication-title: Oncology Letters – volume: 491 start-page: 493 issue: 2 year: 2017 end-page: 499 article-title: Hippo effector YAP directly regulates the expression of PD‐L1 transcripts in EGFR‐TKI‐resistant lung adenocarcinoma publication-title: Biochemical and Biophysical Research Communications – volume: 7 issue: 6 year: 2018 article-title: Melanoma response to anti‐PD‐L1 immunotherapy requires JAK1 signaling, but not JAK2 publication-title: Oncoimmunology – volume: 27 start-page: 3432 issue: 12 year: 2021 end-page: 3442 article-title: Mutations in the IFNγ‐JAK‐STAT pathway causing resistance to immune checkpoint inhibitors in melanoma increase sensitivity to oncolytic virus treatment publication-title: Clinical Cancer Research – volume: 105 start-page: 20852 issue: 52 year: 2008 end-page: 20857 article-title: Oncogenic kinase NPM/ALK induces through STAT3 expression of immunosuppressive protein CD274 (PD‐L1, B7‐H1) publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 127 start-page: 137 issue: 1 year: 2017 end-page: 152 article-title: Hippo signaling interactions with Wnt/β‐catenin and notch signaling repress liver tumorigenesis publication-title: The Journal of Clinical Investigation – volume: 97 start-page: 77 issue: 1 year: 2019 end-page: 88 article-title: Dichotomal functions of phosphorylated and unphosphorylated STAT1 in hepatocellular carcinoma publication-title: Journal of Molecular Medicine (Berlin, Germany) – volume: 6 start-page: 80 issue: 1 year: 2016 end-page: 95 article-title: Targeting YAP‐dependent MDSC infiltration impairs tumor progression publication-title: Cancer Discovery – volume: 18 issue: 1 year: 2020 article-title: Yap suppresses T‐cell function and infiltration in the tumor microenvironment publication-title: PLoS Biology – volume: 29 start-page: 350 issue: 3 year: 2008 end-page: 361 article-title: Yap1 phosphorylation by c‐Abl is a critical step in selective activation of proapoptotic genes in response to DNA damage publication-title: Molecular Cell – volume: 96 start-page: 1027 issue: 9 year: 2017 end-page: 1034 article-title: STAT3 induces immunosuppression by upregulating PD‐1/PD‐L1 in HNSCC publication-title: Journal of Dental Research – volume: 19 start-page: 1189 issue: 6 year: 2017 end-page: 1201 article-title: Interferon receptor signaling pathways regulating PD‐L1 and PD‐L2 expression publication-title: Cell Reports – volume: 163 start-page: 811 issue: 4 year: 2015 end-page: 828 article-title: Hippo pathway in organ size control, tissue homeostasis, and cancer publication-title: Cell – volume: 10 year: 2019 article-title: EZH2 regulates protein stability via recruiting USP7 to mediate neuronal gene expression in cancer cells publication-title: Frontiers in Genetics – volume: 151 start-page: 1457 issue: 7 year: 2012 end-page: 1473 article-title: β‐Catenin‐driven cancers require a YAP1 transcriptional complex for survival and tumorigenesis publication-title: Cell – volume: 99 start-page: 193 issue: 3 year: 2020 end-page: 202 article-title: Dihydroartemisinin inhibits melanoma by regulating CTL/Treg anti‐tumor immunity and STAT3‐mediated apoptosis via IL‐10 dependent manner publication-title: Journal of Dermatological Science – volume: 41 start-page: 1189 issue: 3 year: 2017 end-page: 1198 article-title: YAP‐1 promotes Tregs differentiation in hepatocellular carcinoma by enhancing TGFBR2 transcription publication-title: Cellular Physiology and Biochemistry – volume: 7 start-page: 19 issue: 1 year: 2019 end-page: 814 article-title: PD1(hi) CD8(+) T cells correlate with exhausted signature and poor clinical outcome in hepatocellular carcinoma publication-title: Journal for Immunotherapy of Cancer – ident: e_1_2_9_17_1 doi: 10.1016/j.molcel.2007.12.022 – ident: e_1_2_9_40_1 doi: 10.3389/fonc.2020.595466 – ident: e_1_2_9_6_1 doi: 10.1016/j.celrep.2017.04.031 – ident: e_1_2_9_31_1 doi: 10.1002/ptr.6332 – ident: e_1_2_9_21_1 doi: 10.1080/2162402x.2018.1438106 – ident: e_1_2_9_15_1 doi: 10.1016/j.bbrc.2017.07.007 – ident: e_1_2_9_12_1 doi: 10.1097/cji.0000000000000187 – ident: e_1_2_9_22_1 doi: 10.1007/s00109-018-1717-7 – ident: e_1_2_9_36_1 doi: 10.1016/j.csbj.2019.03.006 – ident: e_1_2_9_37_1 doi: 10.3389/fimmu.2017.01597 – ident: e_1_2_9_24_1 doi: 10.1073/pnas.0810958105 – ident: e_1_2_9_3_1 doi: 10.1002/hep.28710 – ident: e_1_2_9_39_1 doi: 10.1016/j.jdermsci.2020.08.001 – ident: e_1_2_9_29_1 doi: 10.1080/14728222.2018.1471137 – ident: e_1_2_9_23_1 doi: 10.1186/s40425-019-0814-7 – ident: e_1_2_9_38_1 doi: 10.1016/j.cell.2015.10.044 – ident: e_1_2_9_9_1 doi: 10.3892/ol.2021.12914 – ident: e_1_2_9_16_1 doi: 10.3389/fgene.2019.00422 – ident: e_1_2_9_4_1 doi: 10.1172/jci126022 – ident: e_1_2_9_20_1 doi: 10.16288/j.yczz.17-064 – ident: e_1_2_9_35_1 doi: 10.1158/2159-8290.cd-15-0224 – ident: e_1_2_9_33_1 doi: 10.1371/journal.pbio.3000591 – ident: e_1_2_9_34_1 doi: 10.1186/s13046-019-1403-9 – ident: e_1_2_9_2_1 doi: 10.1177/0022034517712435 – ident: e_1_2_9_8_1 doi: 10.1101/gad.294348.116 – ident: e_1_2_9_10_1 doi: 10.1016/j.ccr.2009.12.048 – ident: e_1_2_9_7_1 doi: 10.1053/j.gastro.2016.05.006 – ident: e_1_2_9_19_1 doi: 10.1007/s11010-020-03861-0 – ident: e_1_2_9_14_1 doi: 10.1172/jci88486 – ident: e_1_2_9_28_1 doi: 10.1016/j.cell.2012.11.026 – ident: e_1_2_9_13_1 doi: 10.1158/2326-6066.Cir-17-0320 – ident: e_1_2_9_25_1 doi: 10.1158/1078-0432.ccr-20-3365 – ident: e_1_2_9_26_1 doi: 10.1007/s11418-022-01641-2 – ident: e_1_2_9_18_1 doi: 10.1007/s00262-017-2086-8 – ident: e_1_2_9_27_1 doi: 10.1038/s41590-018-0044-z – ident: e_1_2_9_5_1 doi: 10.1159/000464380 – ident: e_1_2_9_11_1 doi: 10.7554/eLife.67312 – ident: e_1_2_9_30_1 doi: 10.18632/oncotarget.17520 – ident: e_1_2_9_32_1 doi: 10.1158/1535-7163.Mct-20-0024 |
SSID | ssj0009204 |
Score | 2.4858086 |
Snippet | The efficacy of anti‐PD‐1 therapy is not as expected in hepatocellular carcinoma (HCC). YAP1 was overexpressed and activated in HCC. The mechanism of YAP1 in... The efficacy of anti-PD-1 therapy is not as expected in hepatocellular carcinoma (HCC). YAP1 was overexpressed and activated in HCC. The mechanism of YAP1 in... Abstract The efficacy of anti‐PD‐1 therapy is not as expected in hepatocellular carcinoma (HCC). YAP1 was overexpressed and activated in HCC. The mechanism of... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1740 |
SubjectTerms | Adaptor Proteins, Signal Transducing - metabolism Animal tissues Animals B7-H1 Antigen Carcinoma, Hepatocellular - drug therapy Carcinoma, Hepatocellular - metabolism CD4 antigen CD8 antigen CD8-Positive T-Lymphocytes Cytotoxicity Dihydroartemisinin Effectiveness Hepatocellular carcinoma Hepatocytes immune microenvironment Immunosuppressive Agents Infiltration Janus kinase Liver Liver cancer Liver Neoplasms - drug therapy Liver Neoplasms - metabolism Lymphocytes Lymphocytes T Metastases Mice Microenvironments PD-L1 protein PD‐L1 Spleen Stat1 protein Transcription Factors - metabolism Tumor cells Tumor Microenvironment Tumors YAP1 Yes-associated protein |
Title | Dihydroartemisinin broke the tumor immunosuppressive microenvironment by inhibiting YAP1 expression to enhance anti‐PD‐1 efficacy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fptr.7695 https://www.ncbi.nlm.nih.gov/pubmed/36576358 https://www.proquest.com/docview/2811437758 https://search.proquest.com/docview/2759000686 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYlhNJLH9tX2rSoUPYUb2zJluxj2m0IhRQTNrClB2NJE9aE2IvXLnFOueSe39hf0pEfu01LofRiHyxbtjVjfWN98w0h70EYV5tAo6eduY4vgDvKhMZRGN_6OAPi3q7oHn8RR6f-53kw71mVNhem04dY_3CzntF-r62Dp2q1vxENXVblRIrI5pd7XFo21_RkoxwVsbZyYFtF3vfC-aA767L94cS7M9Ef8PIuWm2nm8NH5Ntwox3L5HxSV2qir37TcPy_J3lMHvYolB50ZvOE3IN8RLY_FIgUmxG5f9wvuI_IOO6krZs9Ottkaq326JjGG9Hr5im5mWaLxpSFpYii6diyE1SVxTlQRJi0qi-KkmY2F6VY1cuOfPsd6IWlA_6Sa0dVQ7N8kanMsrHp14PYo3DZc3VzWhUU8oW1U4oGkf24vo2nuME2VggD7_IZOT38NPt45PQlHhzNMTRzUgYpZ1alz2BcpQMuIyYMQGQUY0b4xjUR0yGkIEIFCC9Bg06FkVGYyiDQ_DnZyoscXhLKPe3z1DWAEZIfRp7SUkkT-alEEKeV2CHvhuFOlp2SR9JpNrMERyCxI7BDdgc7SHpfXiUsxJiRSwys8BLrw_gq7dJKmkNRYxvZVl8VIXbzorOfdSdcBFb1D88et1bw196TeHZi96_-teFr8oAh5ur4l7tkqypreIMYqVJvW2_4Caa_EzE |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VgoBLgaWFlgJGQntqtlk7cRJxKizVAt0qqrbSIiFF8QNtVDVZZRNEOHHhzm_klzDOY5eCkBCX-BA7duKZ-Bt75huA55orWypXoqZ9tC2Ha2YJ5StLoH3r4AqIpTnRnZzy8bnzdubONuBFFwvT8EOsNtyMZtT_a6PgZkP6cM0auijygccD9xpcR21nJm_D6GzNHRXQOndgnUfeGfqzjnnWpoddy6tr0R8A8yperRec4zvwoRtq42dyMSgLMZBffmNx_M93uQtbLRAlR43k3IMNnfbgxssMwWLVg5uT9sy9B_2wYbeuDsh0Hay1PCB9Eq55r6v78G2UzCuVZ8ZLFKXHZJ4gIs8uNEGQSYryMstJYsJRsmW5aPxvP2lyaTwCfwm3I6IiSTpPRGIcssn7o3BI9OfWXTclRUZ0OjeiSlAmkh9fv4cjvGAdw4WBo9yG8-PX01djq83yYEmG1pkVUx0zaoj6FJpW0mVeQLnSOlCCUsUdZauASl_HmvtCI8LUUsuYKy_wY891JduBzTRL9UMgbCgdFttKo5Hk-MFQSE94KnBiD3GcFHwXnnXzHS0aMo-ooW2mEc5AZGZgF_Y7QYhadV5G1EezkXloW-EjVrfxU5rTlTjVWYl1vDoBK_exmweNAK06Ydw1xH_Yul-LwV97j8LpmSn3_rXiU7g1nk5OopM3p-8ewW2KEKxxx9yHzSIv9WOETIV4UqvGT6fCF0k |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagoIoLj-VVKGAktKdmm3UcJzkWllV5tIqqrbSIQxTbU21UNVllE0Q4ceHOb-SXMI6TXQpCQlySQ-zYiWfib-LP3xDyAoR2lfYVetqZ63ABniN1qB2J8S3HGRDPZkX36FgcnvK3c3_esSrNXhirD7H-4WY8o_1eGwdf6rP9jWjosipHgYj8q-QaFwh8DSA62UhHRaxNHdimkefjcN4Lz7psv695eSr6A19ehqvtfDO9RT72PbU0k_NRXcmR-vKbiOP_PcptcrODofTA2s0dcgXyAbn-skCo2AzI9lG34j4gw9hqWzd7dLbZqrXao0Mab1Svm7vk2yRbNLosDEcUbcfknaCyLM6BIsSkVX1RlDQzm1GKVb207NtPQC8MH_CXzXZUNjTLF5nMDB2bfjiIxxQ-d2TdnFYFhXxhDJWiRWQ_vn6PJ3jAMkYJA3t5j5xOX89eHTpdjgdHeRibOSmD1GNGpk9jYKV8L4iY0ACRloxpwbWrI6ZCSEGEEhBfggKVCh1EYRr4vvLuk628yOEhod5YcS91NWCIxMNoLFUgAx3xNEAUp6TYIc_74U6WVsojsaLNLMERSMwI7JDd3g6SzplXCQsxaPQCjKzwFuvL-CrN2kqaQ1FjmaBNvypCbOaBtZ91I57wjewf1h62VvDX1pN4dmLOj_614DOyHU-myfs3x-8ekxsM8ZflYu6Sraqs4QnipUo-bR3jJ2R3Ffg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dihydroartemisinin+broke+the+tumor+immunosuppressive+microenvironment+by+inhibiting+YAP1+expression+to+enhance+anti%E2%80%90PD%E2%80%901+efficacy&rft.jtitle=Phytotherapy+research&rft.au=Peng%2C+Qing&rft.au=Li%2C+Shenghao&rft.au=Shi%2C+Xinli&rft.au=Guo%2C+Yinglin&rft.date=2023-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0951-418X&rft.eissn=1099-1573&rft.volume=37&rft.issue=5&rft.spage=1740&rft.epage=1753&rft_id=info:doi/10.1002%2Fptr.7695&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-418X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-418X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-418X&client=summon |