Spatially Resolved High Voltage Kelvin Probe Force Microscopy: A Novel Avenue for Examining Electrical Phenomena at Nanoscale

Kelvin probe force microscopy (KPFM) is a well‐established scanning probe technique, used to measure surface potential accurately; it has found extensive use in the study of a range of materials phenomena. In its conventional form, KPFM frustratingly precludes imaging samples or scenarios where larg...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Physics Research Vol. 3; no. 7
Main Authors McCluskey, Conor J., Sharma, Niyorjyoti, Maguire, Jesi R., Pauly, Serene, Rogers, Andrew, Lindsay, TJ, Holsgrove, Kristina M., Rodriguez, Brian J., Soin, Navneet, Gregg, John Marty, McQuaid, Raymond G. P., Kumar, Amit
Format Journal Article
LanguageEnglish
Published Edinburgh John Wiley & Sons, Inc 01.07.2024
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Kelvin probe force microscopy (KPFM) is a well‐established scanning probe technique, used to measure surface potential accurately; it has found extensive use in the study of a range of materials phenomena. In its conventional form, KPFM frustratingly precludes imaging samples or scenarios where large surface potential or surface potential gradients exist outside the typical ±10 V window. If the potential regime measurable via KPFM can be expanded, to enable precise and reliable metrology, through a high voltage KPFM (HV‐KPFM) adaptation, it can open up pathways toward a range of novel experiments, where the detection limit of regular KPFM has so far prevented the use of the technique. In this work, HV‐KPFM is realized and shown to be capable of measuring large surface potential and potential gradients with accuracy and precision. The technique is employed to study a range of materials (positive temperature coefficient of resistivity ceramics, charge storage fluoropolymers, and pyroelectrics) where accurate, spatially resolved mapping of surface potential within high voltage regime facilitates novel physical insight. The results demonstrate that HV‐KPFM can be used as an effective tool to fill in existing gaps in surface potential measurements while also opening routes for novel studies in materials physics. High voltage Kelvin probe force microscopy is realized and shown to be capable of measuring large surface potential and potential gradients with accuracy and precision. The technique is employed to study a range of materials where spatially resolved mapping of surface potential within high voltage regime facilitates novel physical insight, thus opening routes for novel studies in materials physics.
AbstractList Kelvin probe force microscopy (KPFM) is a well‐established scanning probe technique, used to measure surface potential accurately; it has found extensive use in the study of a range of materials phenomena. In its conventional form, KPFM frustratingly precludes imaging samples or scenarios where large surface potential or surface potential gradients exist outside the typical ±10 V window. If the potential regime measurable via KPFM can be expanded, to enable precise and reliable metrology, through a high voltage KPFM (HV‐KPFM) adaptation, it can open up pathways toward a range of novel experiments, where the detection limit of regular KPFM has so far prevented the use of the technique. In this work, HV‐KPFM is realized and shown to be capable of measuring large surface potential and potential gradients with accuracy and precision. The technique is employed to study a range of materials (positive temperature coefficient of resistivity ceramics, charge storage fluoropolymers, and pyroelectrics) where accurate, spatially resolved mapping of surface potential within high voltage regime facilitates novel physical insight. The results demonstrate that HV‐KPFM can be used as an effective tool to fill in existing gaps in surface potential measurements while also opening routes for novel studies in materials physics. High voltage Kelvin probe force microscopy is realized and shown to be capable of measuring large surface potential and potential gradients with accuracy and precision. The technique is employed to study a range of materials where spatially resolved mapping of surface potential within high voltage regime facilitates novel physical insight, thus opening routes for novel studies in materials physics.
Kelvin probe force microscopy (KPFM) is a well‐established scanning probe technique, used to measure surface potential accurately; it has found extensive use in the study of a range of materials phenomena. In its conventional form, KPFM frustratingly precludes imaging samples or scenarios where large surface potential or surface potential gradients exist outside the typical ±10 V window. If the potential regime measurable via KPFM can be expanded, to enable precise and reliable metrology, through a high voltage KPFM (HV‐KPFM) adaptation, it can open up pathways toward a range of novel experiments, where the detection limit of regular KPFM has so far prevented the use of the technique. In this work, HV‐KPFM is realized and shown to be capable of measuring large surface potential and potential gradients with accuracy and precision. The technique is employed to study a range of materials (positive temperature coefficient of resistivity ceramics, charge storage fluoropolymers, and pyroelectrics) where accurate, spatially resolved mapping of surface potential within high voltage regime facilitates novel physical insight. The results demonstrate that HV‐KPFM can be used as an effective tool to fill in existing gaps in surface potential measurements while also opening routes for novel studies in materials physics.
Abstract Kelvin probe force microscopy (KPFM) is a well‐established scanning probe technique, used to measure surface potential accurately; it has found extensive use in the study of a range of materials phenomena. In its conventional form, KPFM frustratingly precludes imaging samples or scenarios where large surface potential or surface potential gradients exist outside the typical ±10 V window. If the potential regime measurable via KPFM can be expanded, to enable precise and reliable metrology, through a high voltage KPFM (HV‐KPFM) adaptation, it can open up pathways toward a range of novel experiments, where the detection limit of regular KPFM has so far prevented the use of the technique. In this work, HV‐KPFM is realized and shown to be capable of measuring large surface potential and potential gradients with accuracy and precision. The technique is employed to study a range of materials (positive temperature coefficient of resistivity ceramics, charge storage fluoropolymers, and pyroelectrics) where accurate, spatially resolved mapping of surface potential within high voltage regime facilitates novel physical insight. The results demonstrate that HV‐KPFM can be used as an effective tool to fill in existing gaps in surface potential measurements while also opening routes for novel studies in materials physics.
Kelvin probe force microscopy (KPFM) is a well‐established scanning probe technique, used to measure surface potential accurately; it has found extensive use in the study of a range of materials phenomena. In its conventional form, KPFM frustratingly precludes imaging samples or scenarios where large surface potential or surface potential gradients exist outside the typical ±10 V window. If the potential regime measurable via KPFM can be expanded, to enable precise and reliable metrology, through a high voltage KPFM (HV‐KPFM) adaptation, it can open up pathways toward a range of novel experiments, where the detection limit of regular KPFM has so far prevented the use of the technique. In this work, HV‐KPFM is realized and shown to be capable of measuring large surface potential and potential gradients with accuracy and precision. The technique is employed to study a range of materials (positive temperature coefficient of resistivity ceramics, charge storage fluoropolymers, and pyroelectrics) where accurate, spatially resolved mapping of surface potential within high voltage regime facilitates novel physical insight. The results demonstrate that HV‐KPFM can be used as an effective tool to fill in existing gaps in surface potential measurements while also opening routes for novel studies in materials physics.
Author Lindsay, TJ
Soin, Navneet
Sharma, Niyorjyoti
Holsgrove, Kristina M.
Gregg, John Marty
Rodriguez, Brian J.
McQuaid, Raymond G. P.
Rogers, Andrew
Kumar, Amit
McCluskey, Conor J.
Pauly, Serene
Maguire, Jesi R.
Author_xml – sequence: 1
  givenname: Conor J.
  surname: McCluskey
  fullname: McCluskey, Conor J.
  organization: Queen's University Belfast
– sequence: 2
  givenname: Niyorjyoti
  surname: Sharma
  fullname: Sharma, Niyorjyoti
  organization: Queen's University Belfast
– sequence: 3
  givenname: Jesi R.
  surname: Maguire
  fullname: Maguire, Jesi R.
  organization: Queen's University Belfast
– sequence: 4
  givenname: Serene
  surname: Pauly
  fullname: Pauly, Serene
  organization: Queen's University Belfast
– sequence: 5
  givenname: Andrew
  surname: Rogers
  fullname: Rogers, Andrew
  organization: Queen's University Belfast
– sequence: 6
  givenname: TJ
  surname: Lindsay
  fullname: Lindsay, TJ
  organization: Queen's University Belfast
– sequence: 7
  givenname: Kristina M.
  surname: Holsgrove
  fullname: Holsgrove, Kristina M.
  organization: Queen's University Belfast
– sequence: 8
  givenname: Brian J.
  surname: Rodriguez
  fullname: Rodriguez, Brian J.
  organization: University College Dublin
– sequence: 9
  givenname: Navneet
  surname: Soin
  fullname: Soin, Navneet
  organization: Swinburne University of Technology
– sequence: 10
  givenname: John Marty
  surname: Gregg
  fullname: Gregg, John Marty
  organization: Queen's University Belfast
– sequence: 11
  givenname: Raymond G. P.
  surname: McQuaid
  fullname: McQuaid, Raymond G. P.
  organization: Queen's University Belfast
– sequence: 12
  givenname: Amit
  orcidid: 0000-0002-1194-5531
  surname: Kumar
  fullname: Kumar, Amit
  email: a.kumar@qub.ac.uk
  organization: Queen's University Belfast
BookMark eNqFkc1rGzEQxZeSQtM0154FPdsdfXl3ezPBaULS1KQf9CbG2pEjI0tb7dqJD_3fu65LKIHQ0wzD-70Z5r0ujmKKVBRvOYw5gHiP7UMeCxAKADh_URyLUvMRFwBH__SvitOuWw0SUdVcKn5c_PrSYu8xhB27pS6FLTXswi_v2PcUelwSu6Kw9ZHNc1oQO0_ZEvvkbU6dTe3uA5uym7SlwKZbihtiLmU2e8C1jz4u2SyQ7bO3GNj8jmJaU0SGPbvBOPAY6E3x0mHo6PRvPSm-nc--nl2Mrj9_vDybXo-sVLUeae1AlTBRUpPithQaqZK25KSFUhKkEqUjLCu3cKRqtMpB1UhAaxvlJihPisuDb5NwZdrs15h3JqE3fwYpLw3m3ttApgaUjQVZTahWpdRVRTDYLZTCuoEFDF7vDl5tTj831PVmlTY5DucbyWshBJ9wOajGB9X-VV0m97iVg9knZvaJmcfEBkA9Aazvh2hS7DP68DymD9i9D7T7zxIznf-45YLXWv4GP8Or8g
CitedBy_id crossref_primary_10_1016_j_jcis_2024_08_181
crossref_primary_10_1021_acs_analchem_4c06787
Cites_doi 10.1016/j.nanoen.2019.104291
10.1002/adma.202203028
10.1021/acsnano.3c06488
10.1021/acs.nanolett.3c02966
10.1073/pnas.1806074116
10.1063/5.0013847
10.1063/1.4989396
10.1103/PhysRevB.82.054112
10.1021/acsaelm.1c00569
10.1002/smll.202102495
10.1021/acsami.7b18442
10.1002/pssa.2211420146
10.1021/acs.jpcc.7b12579
10.1063/1.1703164
10.1016/j.surfrep.2010.10.001
10.1021/nn505176a
10.1002/aelm.202101384
10.1016/j.elstat.2004.05.005
10.1021/acs.nanolett.8b02742
10.1088/0957-4484/17/15/019
10.1021/acsnano.8b08390
10.1038/srep02597
10.1063/1.105227
10.1038/ncomms13764
10.1021/acsami.2c06315
10.1023/A:1025647806757
10.1021/acsomega.2c04774
10.1088/0034-4885/61/9/002
10.1063/1.4944884
10.1063/1.4870710
10.1007/BF00614817
10.1103/PhysRevMaterials.6.125605
10.1016/S0921-5107(03)00020-5
ContentType Journal Article
Copyright 2024 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
M2P
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1002/apxr.202400011
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2751-1200
EndPage n/a
ExternalDocumentID oai_doaj_org_article_90a3dc0386e9473588e04f0b44a9d0b0
10_1002_apxr_202400011
APXR12195
Genre article
GrantInformation_xml – fundername: Department of Education and Learning NI
  funderid: USI‐205
– fundername: UK Research and Innovation
  funderid: MR/043172/1
– fundername: Science Foundation Ireland
  funderid: SFI/21/UUS/3765
– fundername: Engineering and Physical Sciences Research Council
  funderid: EP/S037179/1; EP/P02453X/1
GroupedDBID 0R~
24P
88I
ABJCF
ABUWG
ACCMX
AEUYN
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
KB.
M2P
PCBAR
PDBOC
PIMPY
AAFWJ
AAYXX
AFPKN
CITATION
M~E
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ARCSS
D1I
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
WIN
PUEGO
ID FETCH-LOGICAL-c3495-55f04706435e41c725ae83c71e5244303427fea78fbfe49ac4f08d30accd4f6a3
IEDL.DBID BENPR
ISSN 2751-1200
IngestDate Wed Aug 27 01:19:28 EDT 2025
Wed Aug 13 11:28:20 EDT 2025
Thu Apr 24 23:08:26 EDT 2025
Tue Jul 01 02:33:00 EDT 2025
Wed Jan 22 17:17:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3495-55f04706435e41c725ae83c71e5244303427fea78fbfe49ac4f08d30accd4f6a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1194-5531
OpenAccessLink https://www.proquest.com/docview/3192221613?pq-origsite=%requestingapplication%
PQID 3192221613
PQPubID 6852862
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_90a3dc0386e9473588e04f0b44a9d0b0
proquest_journals_3192221613
crossref_primary_10_1002_apxr_202400011
crossref_citationtrail_10_1002_apxr_202400011
wiley_primary_10_1002_apxr_202400011_APXR12195
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
20240701
2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationPlace Edinburgh
PublicationPlace_xml – name: Edinburgh
PublicationTitle Advanced Physics Research
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2017; 5
2018; 122
2013; 3
2004; 62
1991; 58
2021; 3
1966; 37
2023; 17
2012
2019; 13
2006; 17
2020; 128
1998; 61
2014; 115
2003; 10
2010; 82
2018; 18
2016; 7
2023; 23
2016; 119
2022; 6
2022; 7
2022; 8
2021; 17
1994; 142
2022; 34
2019; 116
2011; 66
2022; 14
2020; 67
2014; 8
2003; 102
2018; 10
1985; 37
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
Newnham R. E. (e_1_2_8_33_1) 2012
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_30_1
References_xml – volume: 14
  year: 2022
  publication-title: ACS Appl. Mater. Interfaces
– volume: 17
  year: 2023
  publication-title: ACS Nano
– volume: 18
  start-page: 6381
  year: 2018
  publication-title: Nano Lett.
– volume: 10
  start-page: 117
  year: 2003
  publication-title: J. Electroceram.
– volume: 23
  year: 2023
  publication-title: Nano Lett.
– volume: 5
  year: 2017
  publication-title: APL Mater.
– volume: 67
  year: 2020
  publication-title: Nano Energy
– volume: 3
  start-page: 2597
  year: 2013
  publication-title: Sci. Rep.
– volume: 10
  start-page: 5880
  year: 2018
  publication-title: ACS Appl. Mater. Interfaces
– volume: 58
  start-page: 2921
  year: 1991
  publication-title: Appl. Phys. Lett.
– volume: 8
  year: 2022
  publication-title: Adv. Electron. Mater.
– volume: 119
  year: 2016
  publication-title: J. Appl. Phys.
– volume: 6
  year: 2022
  publication-title: Phys. Rev. Mater.
– volume: 17
  year: 2021
  publication-title: Small
– volume: 66
  start-page: 1
  year: 2011
  publication-title: Surf. Sci. Rep.
– volume: 115
  year: 2014
  publication-title: J. Appl. Phys.
– volume: 82
  year: 2010
  publication-title: Phys. Rev. B
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– year: 2012
– volume: 8
  year: 2014
  publication-title: ACS Nano
– volume: 3
  start-page: 4409
  year: 2021
  publication-title: ACS Appl. Electron Mater.
– volume: 7
  year: 2022
  publication-title: ACS Omega
– volume: 13
  start-page: 2812
  year: 2019
  publication-title: ACS Nano
– volume: 122
  year: 2018
  publication-title: J. Phys. Chem. C
– volume: 37
  start-page: 3071
  year: 1966
  publication-title: J. Appl. Phys.
– volume: 142
  start-page: K55
  year: 1994
  publication-title: Phys. Status Solidi A
– volume: 61
  start-page: 1267
  year: 1998
  publication-title: Rep. Prog. Phys.
– volume: 62
  start-page: 277
  year: 2004
  publication-title: J. Electrostat.
– volume: 7
  year: 2016
  publication-title: Nat. Comm.
– volume: 37
  start-page: 191
  year: 1985
  publication-title: Appl. Phys. A
– volume: 102
  start-page: 138
  year: 2003
  publication-title: J. Mater. Sci. Eng. B
– volume: 116
  start-page: 2413
  year: 2019
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 128
  year: 2020
  publication-title: J. Appl. Phys.
– volume: 17
  start-page: 3728
  year: 2006
  publication-title: Nanotechnology
– ident: e_1_2_8_26_1
  doi: 10.1016/j.nanoen.2019.104291
– ident: e_1_2_8_19_1
  doi: 10.1002/adma.202203028
– ident: e_1_2_8_9_1
  doi: 10.1021/acsnano.3c06488
– ident: e_1_2_8_22_1
  doi: 10.1021/acs.nanolett.3c02966
– ident: e_1_2_8_18_1
  doi: 10.1073/pnas.1806074116
– ident: e_1_2_8_13_1
  doi: 10.1063/5.0013847
– ident: e_1_2_8_20_1
  doi: 10.1063/1.4989396
– ident: e_1_2_8_30_1
  doi: 10.1103/PhysRevB.82.054112
– ident: e_1_2_8_12_1
  doi: 10.1021/acsaelm.1c00569
– ident: e_1_2_8_15_1
  doi: 10.1002/smll.202102495
– ident: e_1_2_8_27_1
  doi: 10.1021/acsami.7b18442
– ident: e_1_2_8_34_1
  doi: 10.1002/pssa.2211420146
– ident: e_1_2_8_6_1
  doi: 10.1021/acs.jpcc.7b12579
– ident: e_1_2_8_31_1
  doi: 10.1063/1.1703164
– ident: e_1_2_8_2_1
  doi: 10.1016/j.surfrep.2010.10.001
– ident: e_1_2_8_5_1
  doi: 10.1021/nn505176a
– ident: e_1_2_8_10_1
  doi: 10.1002/aelm.202101384
– ident: e_1_2_8_24_1
  doi: 10.1016/j.elstat.2004.05.005
– ident: e_1_2_8_21_1
  doi: 10.1021/acs.nanolett.8b02742
– ident: e_1_2_8_16_1
  doi: 10.1088/0957-4484/17/15/019
– ident: e_1_2_8_4_1
  doi: 10.1021/acsnano.8b08390
– ident: e_1_2_8_8_1
  doi: 10.1038/srep02597
– ident: e_1_2_8_1_1
  doi: 10.1063/1.105227
– volume-title: Structure‐Property Relations
  year: 2012
  ident: e_1_2_8_33_1
– ident: e_1_2_8_11_1
  doi: 10.1038/ncomms13764
– ident: e_1_2_8_7_1
  doi: 10.1021/acsami.2c06315
– ident: e_1_2_8_23_1
  doi: 10.1023/A:1025647806757
– ident: e_1_2_8_25_1
  doi: 10.1021/acsomega.2c04774
– ident: e_1_2_8_29_1
  doi: 10.1088/0034-4885/61/9/002
– ident: e_1_2_8_14_1
  doi: 10.1063/1.4944884
– ident: e_1_2_8_17_1
  doi: 10.1063/1.4870710
– ident: e_1_2_8_32_1
  doi: 10.1007/BF00614817
– ident: e_1_2_8_28_1
  doi: 10.1103/PhysRevMaterials.6.125605
– ident: e_1_2_8_3_1
  doi: 10.1016/S0921-5107(03)00020-5
SSID ssj0002891341
Score 2.2816985
Snippet Kelvin probe force microscopy (KPFM) is a well‐established scanning probe technique, used to measure surface potential accurately; it has found extensive use...
Abstract Kelvin probe force microscopy (KPFM) is a well‐established scanning probe technique, used to measure surface potential accurately; it has found...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bias
Electrical phenomena
Electrodes
Ferroelectrics
Fluoropolymers
High voltage
High voltages
high‐voltage KPFM
Microscopy
Positive temperature coefficient
Potential gradient
potential mapping
pyroelectrics
Semiconductors
Topography
triboelectric
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BjtMwELXQnrggECAKC_IBiVNYJ7bjlFtBrVYgVhViUW_W2J4IUEhXS7faPfDvzDhp1T2gvXCNJpY1M5l5E4_fCPE6tA5KdKpoQqkLExMWwKfssaqwTCkCxNxtcVafnpuPK7s6GPXFPWEDPfCguJOpAp2i0k2NUx6T2zSoTKuCMTBNKuRqnXLeQTH1czg-Y6ayHUujqk7g4prpP7llUpXlrSyUyfpvIcxDnJoTzeKheDAiRDkbdvZI3MP-sfjDo4PJVbobyT_cuy0myS0a8tu621BIkJ-w2_7o5ZJv98jF-jKi_My9dnzr5OadnMmz9RZpVYptVygJqcr5NfzK0yHkPI_CYWvJ5XfsmZMBJGwkRV56nzLIE3G-mH_9cFqMkxOKqKniKaxtlXGMNiyaMrrKAjY6uhItpXPNtH-uRXBNG1o0U4ik0SZpBTEm09agn4qjft3jMyG1NS1gHQj6USlpXAMqGggh2doZqu0mothp0seRVpynW3R-IESuPGve7zU_EW_28hcDocY_Jd-zYfZSTISdH5B7-NE9_F3uMRHHO7P68ev87SnsECwirKsn4m029R1b8bPl6ktJwd0-_x-beiHu89JD1--xONpcXuFLwjab8Cq78V-C2PQ-
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVQuXBBIIpYKMgHpJ6iOrEdZ3tb0K4qUKtVRdHeorEzAaSQVNvtqj3w35lxsqF7QIirZVuJ58PP9swbId772kGKTiWFT3ViQoUJ8Ct7yDJMqyoAhBhtcZGfXZlPK7t6kMXf80OMF25sGdFfs4GDvzn5QxoK13fM58kxkIqTex9zfi0H9WVmOd6yZPwKF8tXZs6mSUo6sWNuVNnJ_hR7O1Mk8N9DnQ-xa9x8Fs_E0wE1ylkv5ufiEbYvxC8uJ0zq09xLvoRvtlhJDtuQX7tmQ25CfsZm-6OVS874kYtuHVCec_wdZ6Lcn8qZvOi2SLOSv7tFSehVzu_gZ6wYIeexPA5LUC6_Y8s8DSBhI8kb03jaVQ7F1WL-5eNZMlRTSIKmU1Biba2MYwRi0aTBZRaw0MGlaGmL10wF6GoEV9S-RjOFYGpVVFpBCJWpc9AvxUHbtfhKSG1NDZh7goN0vDSuABUMeF_Z3Bk6701EslvJMgxU41zxoil7kuSs5JUvx5WfiOOx_3VPsvHXnh9YMGMvJseODd36WznYWjlVoKugdJHjlCsrFwUq-hlvDEwr5dVEHO3EWg4We1OSKyKoRPhXT0Svd__4lHK2XF2m5PDt6_8d8EY84dY-6vdIHGzWt_iWsM3Gv4vq-xusa_EU
  priority: 102
  providerName: Wiley-Blackwell
Title Spatially Resolved High Voltage Kelvin Probe Force Microscopy: A Novel Avenue for Examining Electrical Phenomena at Nanoscale
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400011
https://www.proquest.com/docview/3192221613
https://doaj.org/article/90a3dc0386e9473588e04f0b44a9d0b0
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Bb9MwFLZYd-GCQIAojMoHJE5hdmzHLhfUoZQJtCqaGOotcpwXQApN6bpqO8Bv5z03LewAXHKIbCvxe37v-fn5-xh7UTXWS7AicZVUiQ41JJ5O2UOagqzr4H2I1Raz7PRCv5-beZ9wu-zLKnc2MRrquguUIz9GVUFXhvGJerP8nhBrFJ2u9hQaB-wQTbBzA3Z4ks-K832WJaVTuEhfmVojE4k6sUNuFOmxX14TJCiVUQopb3mmCOB_K-r8M3aNzmd6n93ro0Y-2Yr5AbsDi4fsB9EJo_q0N5yS8O0Gak5lG_xT167RTPAP0G6-LnhBN374tFsF4GdUf0c3UW5e8wmfdRvAUdHeXQHH6JXn1_5bZIzgeaTHIQny4gssCKfBc7_maI2xP3qVR-ximn98e5r0bApJULgLSoxphLYUgRjQMtjUeHAqWAkGXbwiKEDbgLeuqRrQYx90I1ythA-h1k3m1WM2WHQLeMK4MrrxkFUYDuL2UlvnRdC-qmqTWY37vSFLdjNZhh5qnBgv2nILkpyWNPPlfuaH7OW-_XILsvHXlickmH0rAseOL7rV57Jfa-VYeFUHoVwGY2JWdg4E_kyltR_XohJDdrQTa9mv2Mvyt34N2aso6v98Sjkp5ucSDb55-u_xnrG71Glb43vEBuvVFTzHSGZdjdhBqgt8uum7Ua-6o5gVwOfZz_wXjK7zaw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGeIAXBAJExwA_gHgKs2MnTichVKClo1tVoQ31LTjOBZBC0nVdWR_4SnxG7pymsAfgaa-Rc0ruzvfHvrsfY0-zwlgJRgRJJlWgXQ6BpVt2F4Yg89xZ63y1xTgenuj302i6xX62vTBUVtnaRG-o89rRGfkeqgq6MoxP1KvZaUCoUXS72kJoNGoxgtV3TNnOXh68Rfk-C8NB__jNMFijCgROYTYQRFEhtCFPHIGWzoSRhUQ5IyFCV6doJJ4pwJqkyArQXet0IZJcCetcrovYKqR7jV3XCj05daYP3m3OdEK68_NgmaGJZCBRA9s5kSLcs7MLGkBKRZtCykt-0MMFXIpx_4yUvasb3Ga31jEq7zVKdYdtQXWX_SDwYlTWcsXpyL9cQs6pSIR_rMsFGiU-gnL5teIT6i_ig3rugB9RtR_1vaz2eY-P6yUgVbSu58AxVub9C_vN41PwvgfjIX3hky9Q0VQIy-2Co-3H99GH3WMnV8Ll-2y7qit4wLiKdGEhzjD4xGRWm8QKp22W5VFsNGaXHRa0nEzderA54WuUaTOSOUyJ8-mG8x32fLN-1oz0-OvK1ySYzSoaxe0f1PPP6Xpnp11hVe6ESmLoEo5zkoDAn8m0tt1cZKLDdluxpmv7cJb-1uYOe-FF_Z9PSXuT6QeJ7iXa-Te9J-zG8PjoMD08GI8esptEoKku3mXbi_k5PMIYapE99orL2aer3im_AITBKls
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZQJyEuCASIwth8QOIUzYntOOVWtlaDQVUhOlVcLMd-GUghqUpXbQf-d95L0rAeEOIavViJ_X58tt_7HmOv88K4GIyIsjyWkfIBIke37D5JIA7BO-ebbItZer5QH5Z6eaeKv-WH6A_cyDIaf00GvgrFyR_SULe6IT5PyoEUVNx7oDE0iQE7GF8uvi76c5aE7uGaBpaJ0XEUo1bsuBtFcrI_yF5saij893DnXfTahJ_pI_aww4183C70Y3YPqifsFzUURgUqbzkdw5dbCJwSN_hlXW7QUfALKLffKz6nmh8-rdce-CfKwKNalNu3fMxn9RZwVPR418ARv_LJjfvR9Izgk6ZBDq0hn3-DipgaHHcbjv4Y38e48pQtppMvp-dR108h8hL3QZHWhVCGMIgGFXuTaAeZ9CYGjUFeEhmgKcCZrMgLUCPnVSGyIIXzPqgidfIZG1R1Bc8Zl1oVDtIcASFuMJXJnPDK5XnQqVG44xuyaDeT1ndk49TzorQtTXJiaeZtP_ND9qaXX7U0G3-VfEcL00sRPXbzoF5f2c7a7Eg4GbyQWQoj6q2cZSDwZ3Kl3CiIXAzZ4W5ZbWezPy06IwRLiIDlkLWa949PseP58nOMLl-_-N8Xjtn9-dnUfnw_u3jJHpBAmwJ8yAab9TW8QqCzyY86Xf4N2ir1bw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+Resolved+High+Voltage+Kelvin+Probe+Force+Microscopy%3A+A+Novel+Avenue+for+Examining+Electrical+Phenomena+at+Nanoscale&rft.jtitle=Advanced+Physics+Research&rft.au=McCluskey%2C+Conor+J&rft.au=Sharma%2C+Niyorjyoti&rft.au=Maguire%2C+Jesi+R&rft.au=Pauly%2C+Serene&rft.date=2024-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=3&rft.issue=7&rft_id=info:doi/10.1002%2Fapxr.202400011
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon