Spatially Resolved High Voltage Kelvin Probe Force Microscopy: A Novel Avenue for Examining Electrical Phenomena at Nanoscale
Kelvin probe force microscopy (KPFM) is a well‐established scanning probe technique, used to measure surface potential accurately; it has found extensive use in the study of a range of materials phenomena. In its conventional form, KPFM frustratingly precludes imaging samples or scenarios where larg...
Saved in:
Published in | Advanced Physics Research Vol. 3; no. 7 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Edinburgh
John Wiley & Sons, Inc
01.07.2024
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Kelvin probe force microscopy (KPFM) is a well‐established scanning probe technique, used to measure surface potential accurately; it has found extensive use in the study of a range of materials phenomena. In its conventional form, KPFM frustratingly precludes imaging samples or scenarios where large surface potential or surface potential gradients exist outside the typical ±10 V window. If the potential regime measurable via KPFM can be expanded, to enable precise and reliable metrology, through a high voltage KPFM (HV‐KPFM) adaptation, it can open up pathways toward a range of novel experiments, where the detection limit of regular KPFM has so far prevented the use of the technique. In this work, HV‐KPFM is realized and shown to be capable of measuring large surface potential and potential gradients with accuracy and precision. The technique is employed to study a range of materials (positive temperature coefficient of resistivity ceramics, charge storage fluoropolymers, and pyroelectrics) where accurate, spatially resolved mapping of surface potential within high voltage regime facilitates novel physical insight. The results demonstrate that HV‐KPFM can be used as an effective tool to fill in existing gaps in surface potential measurements while also opening routes for novel studies in materials physics.
High voltage Kelvin probe force microscopy is realized and shown to be capable of measuring large surface potential and potential gradients with accuracy and precision. The technique is employed to study a range of materials where spatially resolved mapping of surface potential within high voltage regime facilitates novel physical insight, thus opening routes for novel studies in materials physics. |
---|---|
AbstractList | Kelvin probe force microscopy (KPFM) is a well‐established scanning probe technique, used to measure surface potential accurately; it has found extensive use in the study of a range of materials phenomena. In its conventional form, KPFM frustratingly precludes imaging samples or scenarios where large surface potential or surface potential gradients exist outside the typical ±10 V window. If the potential regime measurable via KPFM can be expanded, to enable precise and reliable metrology, through a high voltage KPFM (HV‐KPFM) adaptation, it can open up pathways toward a range of novel experiments, where the detection limit of regular KPFM has so far prevented the use of the technique. In this work, HV‐KPFM is realized and shown to be capable of measuring large surface potential and potential gradients with accuracy and precision. The technique is employed to study a range of materials (positive temperature coefficient of resistivity ceramics, charge storage fluoropolymers, and pyroelectrics) where accurate, spatially resolved mapping of surface potential within high voltage regime facilitates novel physical insight. The results demonstrate that HV‐KPFM can be used as an effective tool to fill in existing gaps in surface potential measurements while also opening routes for novel studies in materials physics.
High voltage Kelvin probe force microscopy is realized and shown to be capable of measuring large surface potential and potential gradients with accuracy and precision. The technique is employed to study a range of materials where spatially resolved mapping of surface potential within high voltage regime facilitates novel physical insight, thus opening routes for novel studies in materials physics. Kelvin probe force microscopy (KPFM) is a well‐established scanning probe technique, used to measure surface potential accurately; it has found extensive use in the study of a range of materials phenomena. In its conventional form, KPFM frustratingly precludes imaging samples or scenarios where large surface potential or surface potential gradients exist outside the typical ±10 V window. If the potential regime measurable via KPFM can be expanded, to enable precise and reliable metrology, through a high voltage KPFM (HV‐KPFM) adaptation, it can open up pathways toward a range of novel experiments, where the detection limit of regular KPFM has so far prevented the use of the technique. In this work, HV‐KPFM is realized and shown to be capable of measuring large surface potential and potential gradients with accuracy and precision. The technique is employed to study a range of materials (positive temperature coefficient of resistivity ceramics, charge storage fluoropolymers, and pyroelectrics) where accurate, spatially resolved mapping of surface potential within high voltage regime facilitates novel physical insight. The results demonstrate that HV‐KPFM can be used as an effective tool to fill in existing gaps in surface potential measurements while also opening routes for novel studies in materials physics. Abstract Kelvin probe force microscopy (KPFM) is a well‐established scanning probe technique, used to measure surface potential accurately; it has found extensive use in the study of a range of materials phenomena. In its conventional form, KPFM frustratingly precludes imaging samples or scenarios where large surface potential or surface potential gradients exist outside the typical ±10 V window. If the potential regime measurable via KPFM can be expanded, to enable precise and reliable metrology, through a high voltage KPFM (HV‐KPFM) adaptation, it can open up pathways toward a range of novel experiments, where the detection limit of regular KPFM has so far prevented the use of the technique. In this work, HV‐KPFM is realized and shown to be capable of measuring large surface potential and potential gradients with accuracy and precision. The technique is employed to study a range of materials (positive temperature coefficient of resistivity ceramics, charge storage fluoropolymers, and pyroelectrics) where accurate, spatially resolved mapping of surface potential within high voltage regime facilitates novel physical insight. The results demonstrate that HV‐KPFM can be used as an effective tool to fill in existing gaps in surface potential measurements while also opening routes for novel studies in materials physics. Kelvin probe force microscopy (KPFM) is a well‐established scanning probe technique, used to measure surface potential accurately; it has found extensive use in the study of a range of materials phenomena. In its conventional form, KPFM frustratingly precludes imaging samples or scenarios where large surface potential or surface potential gradients exist outside the typical ±10 V window. If the potential regime measurable via KPFM can be expanded, to enable precise and reliable metrology, through a high voltage KPFM (HV‐KPFM) adaptation, it can open up pathways toward a range of novel experiments, where the detection limit of regular KPFM has so far prevented the use of the technique. In this work, HV‐KPFM is realized and shown to be capable of measuring large surface potential and potential gradients with accuracy and precision. The technique is employed to study a range of materials (positive temperature coefficient of resistivity ceramics, charge storage fluoropolymers, and pyroelectrics) where accurate, spatially resolved mapping of surface potential within high voltage regime facilitates novel physical insight. The results demonstrate that HV‐KPFM can be used as an effective tool to fill in existing gaps in surface potential measurements while also opening routes for novel studies in materials physics. |
Author | Lindsay, TJ Soin, Navneet Sharma, Niyorjyoti Holsgrove, Kristina M. Gregg, John Marty Rodriguez, Brian J. McQuaid, Raymond G. P. Rogers, Andrew Kumar, Amit McCluskey, Conor J. Pauly, Serene Maguire, Jesi R. |
Author_xml | – sequence: 1 givenname: Conor J. surname: McCluskey fullname: McCluskey, Conor J. organization: Queen's University Belfast – sequence: 2 givenname: Niyorjyoti surname: Sharma fullname: Sharma, Niyorjyoti organization: Queen's University Belfast – sequence: 3 givenname: Jesi R. surname: Maguire fullname: Maguire, Jesi R. organization: Queen's University Belfast – sequence: 4 givenname: Serene surname: Pauly fullname: Pauly, Serene organization: Queen's University Belfast – sequence: 5 givenname: Andrew surname: Rogers fullname: Rogers, Andrew organization: Queen's University Belfast – sequence: 6 givenname: TJ surname: Lindsay fullname: Lindsay, TJ organization: Queen's University Belfast – sequence: 7 givenname: Kristina M. surname: Holsgrove fullname: Holsgrove, Kristina M. organization: Queen's University Belfast – sequence: 8 givenname: Brian J. surname: Rodriguez fullname: Rodriguez, Brian J. organization: University College Dublin – sequence: 9 givenname: Navneet surname: Soin fullname: Soin, Navneet organization: Swinburne University of Technology – sequence: 10 givenname: John Marty surname: Gregg fullname: Gregg, John Marty organization: Queen's University Belfast – sequence: 11 givenname: Raymond G. P. surname: McQuaid fullname: McQuaid, Raymond G. P. organization: Queen's University Belfast – sequence: 12 givenname: Amit orcidid: 0000-0002-1194-5531 surname: Kumar fullname: Kumar, Amit email: a.kumar@qub.ac.uk organization: Queen's University Belfast |
BookMark | eNqFkc1rGzEQxZeSQtM0154FPdsdfXl3ezPBaULS1KQf9CbG2pEjI0tb7dqJD_3fu65LKIHQ0wzD-70Z5r0ujmKKVBRvOYw5gHiP7UMeCxAKADh_URyLUvMRFwBH__SvitOuWw0SUdVcKn5c_PrSYu8xhB27pS6FLTXswi_v2PcUelwSu6Kw9ZHNc1oQO0_ZEvvkbU6dTe3uA5uym7SlwKZbihtiLmU2e8C1jz4u2SyQ7bO3GNj8jmJaU0SGPbvBOPAY6E3x0mHo6PRvPSm-nc--nl2Mrj9_vDybXo-sVLUeae1AlTBRUpPithQaqZK25KSFUhKkEqUjLCu3cKRqtMpB1UhAaxvlJihPisuDb5NwZdrs15h3JqE3fwYpLw3m3ttApgaUjQVZTahWpdRVRTDYLZTCuoEFDF7vDl5tTj831PVmlTY5DucbyWshBJ9wOajGB9X-VV0m97iVg9knZvaJmcfEBkA9Aazvh2hS7DP68DymD9i9D7T7zxIznf-45YLXWv4GP8Or8g |
CitedBy_id | crossref_primary_10_1016_j_jcis_2024_08_181 crossref_primary_10_1021_acs_analchem_4c06787 |
Cites_doi | 10.1016/j.nanoen.2019.104291 10.1002/adma.202203028 10.1021/acsnano.3c06488 10.1021/acs.nanolett.3c02966 10.1073/pnas.1806074116 10.1063/5.0013847 10.1063/1.4989396 10.1103/PhysRevB.82.054112 10.1021/acsaelm.1c00569 10.1002/smll.202102495 10.1021/acsami.7b18442 10.1002/pssa.2211420146 10.1021/acs.jpcc.7b12579 10.1063/1.1703164 10.1016/j.surfrep.2010.10.001 10.1021/nn505176a 10.1002/aelm.202101384 10.1016/j.elstat.2004.05.005 10.1021/acs.nanolett.8b02742 10.1088/0957-4484/17/15/019 10.1021/acsnano.8b08390 10.1038/srep02597 10.1063/1.105227 10.1038/ncomms13764 10.1021/acsami.2c06315 10.1023/A:1025647806757 10.1021/acsomega.2c04774 10.1088/0034-4885/61/9/002 10.1063/1.4944884 10.1063/1.4870710 10.1007/BF00614817 10.1103/PhysRevMaterials.6.125605 10.1016/S0921-5107(03)00020-5 |
ContentType | Journal Article |
Copyright | 2024 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. M2P PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1002/apxr.202400011 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2751-1200 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_90a3dc0386e9473588e04f0b44a9d0b0 10_1002_apxr_202400011 APXR12195 |
Genre | article |
GrantInformation_xml | – fundername: Department of Education and Learning NI funderid: USI‐205 – fundername: UK Research and Innovation funderid: MR/043172/1 – fundername: Science Foundation Ireland funderid: SFI/21/UUS/3765 – fundername: Engineering and Physical Sciences Research Council funderid: EP/S037179/1; EP/P02453X/1 |
GroupedDBID | 0R~ 24P 88I ABJCF ABUWG ACCMX AEUYN AFKRA ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ KB. M2P PCBAR PDBOC PIMPY AAFWJ AAYXX AFPKN CITATION M~E PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY ARCSS D1I PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U WIN PUEGO |
ID | FETCH-LOGICAL-c3495-55f04706435e41c725ae83c71e5244303427fea78fbfe49ac4f08d30accd4f6a3 |
IEDL.DBID | BENPR |
ISSN | 2751-1200 |
IngestDate | Wed Aug 27 01:19:28 EDT 2025 Wed Aug 13 11:28:20 EDT 2025 Thu Apr 24 23:08:26 EDT 2025 Tue Jul 01 02:33:00 EDT 2025 Wed Jan 22 17:17:51 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3495-55f04706435e41c725ae83c71e5244303427fea78fbfe49ac4f08d30accd4f6a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1194-5531 |
OpenAccessLink | https://www.proquest.com/docview/3192221613?pq-origsite=%requestingapplication% |
PQID | 3192221613 |
PQPubID | 6852862 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_90a3dc0386e9473588e04f0b44a9d0b0 proquest_journals_3192221613 crossref_primary_10_1002_apxr_202400011 crossref_citationtrail_10_1002_apxr_202400011 wiley_primary_10_1002_apxr_202400011_APXR12195 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2024 2024-07-00 20240701 2024-07-01 |
PublicationDateYYYYMMDD | 2024-07-01 |
PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
PublicationDecade | 2020 |
PublicationPlace | Edinburgh |
PublicationPlace_xml | – name: Edinburgh |
PublicationTitle | Advanced Physics Research |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2017; 5 2018; 122 2013; 3 2004; 62 1991; 58 2021; 3 1966; 37 2023; 17 2012 2019; 13 2006; 17 2020; 128 1998; 61 2014; 115 2003; 10 2010; 82 2018; 18 2016; 7 2023; 23 2016; 119 2022; 6 2022; 7 2022; 8 2021; 17 1994; 142 2022; 34 2019; 116 2011; 66 2022; 14 2020; 67 2014; 8 2003; 102 2018; 10 1985; 37 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 Newnham R. E. (e_1_2_8_33_1) 2012 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_30_1 |
References_xml | – volume: 14 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 17 year: 2023 publication-title: ACS Nano – volume: 18 start-page: 6381 year: 2018 publication-title: Nano Lett. – volume: 10 start-page: 117 year: 2003 publication-title: J. Electroceram. – volume: 23 year: 2023 publication-title: Nano Lett. – volume: 5 year: 2017 publication-title: APL Mater. – volume: 67 year: 2020 publication-title: Nano Energy – volume: 3 start-page: 2597 year: 2013 publication-title: Sci. Rep. – volume: 10 start-page: 5880 year: 2018 publication-title: ACS Appl. Mater. Interfaces – volume: 58 start-page: 2921 year: 1991 publication-title: Appl. Phys. Lett. – volume: 8 year: 2022 publication-title: Adv. Electron. Mater. – volume: 119 year: 2016 publication-title: J. Appl. Phys. – volume: 6 year: 2022 publication-title: Phys. Rev. Mater. – volume: 17 year: 2021 publication-title: Small – volume: 66 start-page: 1 year: 2011 publication-title: Surf. Sci. Rep. – volume: 115 year: 2014 publication-title: J. Appl. Phys. – volume: 82 year: 2010 publication-title: Phys. Rev. B – volume: 34 year: 2022 publication-title: Adv. Mater. – year: 2012 – volume: 8 year: 2014 publication-title: ACS Nano – volume: 3 start-page: 4409 year: 2021 publication-title: ACS Appl. Electron Mater. – volume: 7 year: 2022 publication-title: ACS Omega – volume: 13 start-page: 2812 year: 2019 publication-title: ACS Nano – volume: 122 year: 2018 publication-title: J. Phys. Chem. C – volume: 37 start-page: 3071 year: 1966 publication-title: J. Appl. Phys. – volume: 142 start-page: K55 year: 1994 publication-title: Phys. Status Solidi A – volume: 61 start-page: 1267 year: 1998 publication-title: Rep. Prog. Phys. – volume: 62 start-page: 277 year: 2004 publication-title: J. Electrostat. – volume: 7 year: 2016 publication-title: Nat. Comm. – volume: 37 start-page: 191 year: 1985 publication-title: Appl. Phys. A – volume: 102 start-page: 138 year: 2003 publication-title: J. Mater. Sci. Eng. B – volume: 116 start-page: 2413 year: 2019 publication-title: Proc. Natl. Acad. Sci. U S A – volume: 128 year: 2020 publication-title: J. Appl. Phys. – volume: 17 start-page: 3728 year: 2006 publication-title: Nanotechnology – ident: e_1_2_8_26_1 doi: 10.1016/j.nanoen.2019.104291 – ident: e_1_2_8_19_1 doi: 10.1002/adma.202203028 – ident: e_1_2_8_9_1 doi: 10.1021/acsnano.3c06488 – ident: e_1_2_8_22_1 doi: 10.1021/acs.nanolett.3c02966 – ident: e_1_2_8_18_1 doi: 10.1073/pnas.1806074116 – ident: e_1_2_8_13_1 doi: 10.1063/5.0013847 – ident: e_1_2_8_20_1 doi: 10.1063/1.4989396 – ident: e_1_2_8_30_1 doi: 10.1103/PhysRevB.82.054112 – ident: e_1_2_8_12_1 doi: 10.1021/acsaelm.1c00569 – ident: e_1_2_8_15_1 doi: 10.1002/smll.202102495 – ident: e_1_2_8_27_1 doi: 10.1021/acsami.7b18442 – ident: e_1_2_8_34_1 doi: 10.1002/pssa.2211420146 – ident: e_1_2_8_6_1 doi: 10.1021/acs.jpcc.7b12579 – ident: e_1_2_8_31_1 doi: 10.1063/1.1703164 – ident: e_1_2_8_2_1 doi: 10.1016/j.surfrep.2010.10.001 – ident: e_1_2_8_5_1 doi: 10.1021/nn505176a – ident: e_1_2_8_10_1 doi: 10.1002/aelm.202101384 – ident: e_1_2_8_24_1 doi: 10.1016/j.elstat.2004.05.005 – ident: e_1_2_8_21_1 doi: 10.1021/acs.nanolett.8b02742 – ident: e_1_2_8_16_1 doi: 10.1088/0957-4484/17/15/019 – ident: e_1_2_8_4_1 doi: 10.1021/acsnano.8b08390 – ident: e_1_2_8_8_1 doi: 10.1038/srep02597 – ident: e_1_2_8_1_1 doi: 10.1063/1.105227 – volume-title: Structure‐Property Relations year: 2012 ident: e_1_2_8_33_1 – ident: e_1_2_8_11_1 doi: 10.1038/ncomms13764 – ident: e_1_2_8_7_1 doi: 10.1021/acsami.2c06315 – ident: e_1_2_8_23_1 doi: 10.1023/A:1025647806757 – ident: e_1_2_8_25_1 doi: 10.1021/acsomega.2c04774 – ident: e_1_2_8_29_1 doi: 10.1088/0034-4885/61/9/002 – ident: e_1_2_8_14_1 doi: 10.1063/1.4944884 – ident: e_1_2_8_17_1 doi: 10.1063/1.4870710 – ident: e_1_2_8_32_1 doi: 10.1007/BF00614817 – ident: e_1_2_8_28_1 doi: 10.1103/PhysRevMaterials.6.125605 – ident: e_1_2_8_3_1 doi: 10.1016/S0921-5107(03)00020-5 |
SSID | ssj0002891341 |
Score | 2.2816985 |
Snippet | Kelvin probe force microscopy (KPFM) is a well‐established scanning probe technique, used to measure surface potential accurately; it has found extensive use... Abstract Kelvin probe force microscopy (KPFM) is a well‐established scanning probe technique, used to measure surface potential accurately; it has found... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bias Electrical phenomena Electrodes Ferroelectrics Fluoropolymers High voltage High voltages high‐voltage KPFM Microscopy Positive temperature coefficient Potential gradient potential mapping pyroelectrics Semiconductors Topography triboelectric |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BjtMwELXQnrggECAKC_IBiVNYJ7bjlFtBrVYgVhViUW_W2J4IUEhXS7faPfDvzDhp1T2gvXCNJpY1M5l5E4_fCPE6tA5KdKpoQqkLExMWwKfssaqwTCkCxNxtcVafnpuPK7s6GPXFPWEDPfCguJOpAp2i0k2NUx6T2zSoTKuCMTBNKuRqnXLeQTH1czg-Y6ayHUujqk7g4prpP7llUpXlrSyUyfpvIcxDnJoTzeKheDAiRDkbdvZI3MP-sfjDo4PJVbobyT_cuy0myS0a8tu621BIkJ-w2_7o5ZJv98jF-jKi_My9dnzr5OadnMmz9RZpVYptVygJqcr5NfzK0yHkPI_CYWvJ5XfsmZMBJGwkRV56nzLIE3G-mH_9cFqMkxOKqKniKaxtlXGMNiyaMrrKAjY6uhItpXPNtH-uRXBNG1o0U4ik0SZpBTEm09agn4qjft3jMyG1NS1gHQj6USlpXAMqGggh2doZqu0mothp0seRVpynW3R-IESuPGve7zU_EW_28hcDocY_Jd-zYfZSTISdH5B7-NE9_F3uMRHHO7P68ev87SnsECwirKsn4m029R1b8bPl6ktJwd0-_x-beiHu89JD1--xONpcXuFLwjab8Cq78V-C2PQ- priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVQuXBBIIpYKMgHpJ6iOrEdZ3tb0K4qUKtVRdHeorEzAaSQVNvtqj3w35lxsqF7QIirZVuJ58PP9swbId772kGKTiWFT3ViQoUJ8Ct7yDJMqyoAhBhtcZGfXZlPK7t6kMXf80OMF25sGdFfs4GDvzn5QxoK13fM58kxkIqTex9zfi0H9WVmOd6yZPwKF8tXZs6mSUo6sWNuVNnJ_hR7O1Mk8N9DnQ-xa9x8Fs_E0wE1ylkv5ufiEbYvxC8uJ0zq09xLvoRvtlhJDtuQX7tmQ25CfsZm-6OVS874kYtuHVCec_wdZ6Lcn8qZvOi2SLOSv7tFSehVzu_gZ6wYIeexPA5LUC6_Y8s8DSBhI8kb03jaVQ7F1WL-5eNZMlRTSIKmU1Biba2MYwRi0aTBZRaw0MGlaGmL10wF6GoEV9S-RjOFYGpVVFpBCJWpc9AvxUHbtfhKSG1NDZh7goN0vDSuABUMeF_Z3Bk6701EslvJMgxU41zxoil7kuSs5JUvx5WfiOOx_3VPsvHXnh9YMGMvJseODd36WznYWjlVoKugdJHjlCsrFwUq-hlvDEwr5dVEHO3EWg4We1OSKyKoRPhXT0Svd__4lHK2XF2m5PDt6_8d8EY84dY-6vdIHGzWt_iWsM3Gv4vq-xusa_EU priority: 102 providerName: Wiley-Blackwell |
Title | Spatially Resolved High Voltage Kelvin Probe Force Microscopy: A Novel Avenue for Examining Electrical Phenomena at Nanoscale |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400011 https://www.proquest.com/docview/3192221613 https://doaj.org/article/90a3dc0386e9473588e04f0b44a9d0b0 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Bb9MwFLZYd-GCQIAojMoHJE5hdmzHLhfUoZQJtCqaGOotcpwXQApN6bpqO8Bv5z03LewAXHKIbCvxe37v-fn5-xh7UTXWS7AicZVUiQ41JJ5O2UOagqzr4H2I1Raz7PRCv5-beZ9wu-zLKnc2MRrquguUIz9GVUFXhvGJerP8nhBrFJ2u9hQaB-wQTbBzA3Z4ks-K832WJaVTuEhfmVojE4k6sUNuFOmxX14TJCiVUQopb3mmCOB_K-r8M3aNzmd6n93ro0Y-2Yr5AbsDi4fsB9EJo_q0N5yS8O0Gak5lG_xT167RTPAP0G6-LnhBN374tFsF4GdUf0c3UW5e8wmfdRvAUdHeXQHH6JXn1_5bZIzgeaTHIQny4gssCKfBc7_maI2xP3qVR-ximn98e5r0bApJULgLSoxphLYUgRjQMtjUeHAqWAkGXbwiKEDbgLeuqRrQYx90I1ythA-h1k3m1WM2WHQLeMK4MrrxkFUYDuL2UlvnRdC-qmqTWY37vSFLdjNZhh5qnBgv2nILkpyWNPPlfuaH7OW-_XILsvHXlickmH0rAseOL7rV57Jfa-VYeFUHoVwGY2JWdg4E_kyltR_XohJDdrQTa9mv2Mvyt34N2aso6v98Sjkp5ucSDb55-u_xnrG71Glb43vEBuvVFTzHSGZdjdhBqgt8uum7Ua-6o5gVwOfZz_wXjK7zaw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwELfGeIAXBAJExwA_gHgKs2MnTichVKClo1tVoQ31LTjOBZBC0nVdWR_4SnxG7pymsAfgaa-Rc0ruzvfHvrsfY0-zwlgJRgRJJlWgXQ6BpVt2F4Yg89xZ63y1xTgenuj302i6xX62vTBUVtnaRG-o89rRGfkeqgq6MoxP1KvZaUCoUXS72kJoNGoxgtV3TNnOXh68Rfk-C8NB__jNMFijCgROYTYQRFEhtCFPHIGWzoSRhUQ5IyFCV6doJJ4pwJqkyArQXet0IZJcCetcrovYKqR7jV3XCj05daYP3m3OdEK68_NgmaGJZCBRA9s5kSLcs7MLGkBKRZtCykt-0MMFXIpx_4yUvasb3Ga31jEq7zVKdYdtQXWX_SDwYlTWcsXpyL9cQs6pSIR_rMsFGiU-gnL5teIT6i_ig3rugB9RtR_1vaz2eY-P6yUgVbSu58AxVub9C_vN41PwvgfjIX3hky9Q0VQIy-2Co-3H99GH3WMnV8Ll-2y7qit4wLiKdGEhzjD4xGRWm8QKp22W5VFsNGaXHRa0nEzderA54WuUaTOSOUyJ8-mG8x32fLN-1oz0-OvK1ySYzSoaxe0f1PPP6Xpnp11hVe6ESmLoEo5zkoDAn8m0tt1cZKLDdluxpmv7cJb-1uYOe-FF_Z9PSXuT6QeJ7iXa-Te9J-zG8PjoMD08GI8esptEoKku3mXbi_k5PMIYapE99orL2aer3im_AITBKls |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZQJyEuCASIwth8QOIUzYntOOVWtlaDQVUhOlVcLMd-GUghqUpXbQf-d95L0rAeEOIavViJ_X58tt_7HmOv88K4GIyIsjyWkfIBIke37D5JIA7BO-ebbItZer5QH5Z6eaeKv-WH6A_cyDIaf00GvgrFyR_SULe6IT5PyoEUVNx7oDE0iQE7GF8uvi76c5aE7uGaBpaJ0XEUo1bsuBtFcrI_yF5saij893DnXfTahJ_pI_aww4183C70Y3YPqifsFzUURgUqbzkdw5dbCJwSN_hlXW7QUfALKLffKz6nmh8-rdce-CfKwKNalNu3fMxn9RZwVPR418ARv_LJjfvR9Izgk6ZBDq0hn3-DipgaHHcbjv4Y38e48pQtppMvp-dR108h8hL3QZHWhVCGMIgGFXuTaAeZ9CYGjUFeEhmgKcCZrMgLUCPnVSGyIIXzPqgidfIZG1R1Bc8Zl1oVDtIcASFuMJXJnPDK5XnQqVG44xuyaDeT1ndk49TzorQtTXJiaeZtP_ND9qaXX7U0G3-VfEcL00sRPXbzoF5f2c7a7Eg4GbyQWQoj6q2cZSDwZ3Kl3CiIXAzZ4W5ZbWezPy06IwRLiIDlkLWa949PseP58nOMLl-_-N8Xjtn9-dnUfnw_u3jJHpBAmwJ8yAab9TW8QqCzyY86Xf4N2ir1bw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatially+Resolved+High+Voltage+Kelvin+Probe+Force+Microscopy%3A+A+Novel+Avenue+for+Examining+Electrical+Phenomena+at+Nanoscale&rft.jtitle=Advanced+Physics+Research&rft.au=McCluskey%2C+Conor+J&rft.au=Sharma%2C+Niyorjyoti&rft.au=Maguire%2C+Jesi+R&rft.au=Pauly%2C+Serene&rft.date=2024-07-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=3&rft.issue=7&rft_id=info:doi/10.1002%2Fapxr.202400011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon |