Dynamic thresholds and a summary ROC curve: Assessing prognostic accuracy of longitudinal markers
Cancer patients, chronic kidney disease patients, and subjects infected with HIV are routinely monitored over time using biomarkers that represent key health status indicators. Furthermore, biomarkers are frequently used to guide initiation of new treatments or to inform changes in intervention stra...
Saved in:
Published in | Statistics in medicine Vol. 37; no. 18; pp. 2700 - 2714 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
15.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cancer patients, chronic kidney disease patients, and subjects infected with HIV are routinely monitored over time using biomarkers that represent key health status indicators. Furthermore, biomarkers are frequently used to guide initiation of new treatments or to inform changes in intervention strategies. Since key medical decisions can be made on the basis of a longitudinal biomarker, it is important to evaluate the potential accuracy associated with longitudinal monitoring. To characterize the overall accuracy of a time‐dependent marker, we introduce a summary ROC curve that displays the overall sensitivity associated with a time‐dependent threshold that controls time‐varying specificity. The proposed statistical methods are similar to concepts considered in disease screening, yet our methods are novel in choosing a potentially time‐dependent threshold to define a positive test, and our methods allow time‐specific control of the false‐positive rate. The proposed summary ROC curve is a natural averaging of time‐dependent incident/dynamic ROC curves and therefore provides a single summary of net error rates that can be achieved in the longitudinal setting. |
---|---|
AbstractList | Cancer patients, chronic kidney disease patients, and subjects infected with HIV are routinely monitored over time using biomarkers that represent key health status indicators. Furthermore, biomarkers are frequently used to guide initiation of new treatments or to inform changes in intervention strategies. Since key medical decisions can be made on the basis of a longitudinal biomarker, it is important to evaluate the potential accuracy associated with longitudinal monitoring. To characterize the overall accuracy of a time‐dependent marker, we introduce a summary ROC curve that displays the overall sensitivity associated with a time‐dependent threshold that controls time‐varying specificity. The proposed statistical methods are similar to concepts considered in disease screening, yet our methods are novel in choosing a potentially time‐dependent threshold to define a positive test, and our methods allow time‐specific control of the false‐positive rate. The proposed summary ROC curve is a natural averaging of time‐dependent incident/dynamic ROC curves and therefore provides a single summary of net error rates that can be achieved in the longitudinal setting. Cancer patients, chronic kidney disease patients, and subjects infected with HIV are routinely monitored over time using biomarkers that represent key health status indicators. Furthermore, biomarkers are frequently used to guide initiation of new treatments or to inform changes in intervention strategies. Since key medical decisions can be made on the basis of a longitudinal biomarker, it is important to evaluate the potential accuracy associated with longitudinal monitoring. To characterize the overall accuracy of a time-dependent marker, we introduce a summary ROC curve that displays the overall sensitivity associated with a time-dependent threshold that controls time-varying specificity. The proposed statistical methods are similar to concepts considered in disease screening, yet our methods are novel in choosing a potentially time-dependent threshold to define a positive test, and our methods allow time-specific control of the false-positive rate. The proposed summary ROC curve is a natural averaging of time-dependent incident/dynamic ROC curves and therefore provides a single summary of net error rates that can be achieved in the longitudinal setting.Cancer patients, chronic kidney disease patients, and subjects infected with HIV are routinely monitored over time using biomarkers that represent key health status indicators. Furthermore, biomarkers are frequently used to guide initiation of new treatments or to inform changes in intervention strategies. Since key medical decisions can be made on the basis of a longitudinal biomarker, it is important to evaluate the potential accuracy associated with longitudinal monitoring. To characterize the overall accuracy of a time-dependent marker, we introduce a summary ROC curve that displays the overall sensitivity associated with a time-dependent threshold that controls time-varying specificity. The proposed statistical methods are similar to concepts considered in disease screening, yet our methods are novel in choosing a potentially time-dependent threshold to define a positive test, and our methods allow time-specific control of the false-positive rate. The proposed summary ROC curve is a natural averaging of time-dependent incident/dynamic ROC curves and therefore provides a single summary of net error rates that can be achieved in the longitudinal setting. |
Author | Saha‐Chaudhuri, P. Heagerty, P. J. |
Author_xml | – sequence: 1 givenname: P. orcidid: 0000-0003-1987-320X surname: Saha‐Chaudhuri fullname: Saha‐Chaudhuri, P. email: paramita.sahachaudhuri.work@gmail.com organization: McGill University – sequence: 2 givenname: P. J. surname: Heagerty fullname: Heagerty, P. J. organization: University of Washington |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29671890$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kVtv1DAQhS1URLcFiV-ALPHCSxZfYifhrVoKVCqqxOU5mjrjrUtiF08C2n9fLy0gVfA00sx3ZkbnHLGDmCIy9lyKtRRCvaYwrRvbmEdsJUXXVEKZ9oCthGqayjbSHLIjomshpDSqecIOVVe6bSdWDN7uIkzB8fkqI12lcSAOceDAaZkmyDv-6WLD3ZJ_4Bt-QoREIW75TU7bmGguQnBlCm7Hk-djitswL0OIMPKi_oaZnrLHHkbCZ_f1mH19d_pl86E6v3h_tjk5r5yuO1NJ5Z2tPdQaO62d8GBta8GikRqE19orbwe81NCpFsCAF7VD68FpgRJrfcxe3e0tv31fkOZ-CuRwHCFiWqhXxQ3Tdk2jCvryAXqdllx-3lNWm9ZYqQv14p5aLicc-psc9ob0v837e9HlRJTR_0Gk6Pe59CWXfp9LQdcPUBdmmEOKc4Yw_ktQ3Ql-hhF3_13cfz77-Iu_BcQCnlU |
CitedBy_id | crossref_primary_10_1177_2054358120924305 crossref_primary_10_33805_2641_8991_114 crossref_primary_10_1111_biom_13177 crossref_primary_10_1186_s41512_024_00175_3 crossref_primary_10_1186_s12920_020_00750_9 crossref_primary_10_1166_jno_2024_3553 |
Cites_doi | 10.1111/j.1541-0420.2007.00889.x 10.1111/j.0006-341X.2000.00337.x 10.1111/j.0006-341X.2005.030814.x 10.1002/sim.3142 10.1002/(SICI)1097-0258(19981130)17:22<2563::AID-SIM952>3.0.CO;2-O 10.1093/biomet/asp002 10.1002/bimj.200610301 10.1111/j.0006-341X.2000.00249.x 10.1002/(SICI)1097-0258(20000229)19:4<511::AID-SIM353>3.0.CO;2-3 10.1093/aje/126.2.310 10.1177/0272989X06295361 10.1093/biomet/80.1.153 10.1002/sim.1580 10.2307/2533281 10.1016/S0090-4295(03)00135-3 10.1111/j.0006-341X.2004.00200.x 10.1146/annurev.publhealth.20.1.145 10.1093/biostatistics/kxs021 10.1093/biomet/asm062 10.1093/biostatistics/4.3.341 10.1111/j.1541-0420.2010.01546.x 10.1002/sim.5647 10.1093/biostatistics/kxh013 10.1002/bimj.200810443 10.2307/2530966 10.3109/00365513.2010.493427 10.1093/eurjhf/hfq210 10.1111/j.1541-0420.2009.01375.x 10.1007/BF00128468 10.1111/j.1541-0420.2012.01812.x 10.1111/j.1541-0420.2005.00323.x 10.1111/j.1541-0420.2007.00983.x |
ContentType | Journal Article |
Copyright | Copyright © 2018 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2018 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1002/sim.7675 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 2714 |
ExternalDocumentID | 29671890 10_1002_sim_7675 SIM7675 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada (NSERC) funderid: RGPIN-2017-06100 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c3495-12fc64fa43e933c0fa6686a6e513a0f33f2f6deb3a928aa5af04ce6fac30e1e43 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Fri Jul 11 02:46:13 EDT 2025 Fri Aug 01 18:12:28 EDT 2025 Thu Apr 03 07:07:52 EDT 2025 Thu Apr 24 23:03:37 EDT 2025 Tue Jul 01 03:28:12 EDT 2025 Wed Jan 22 16:35:09 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | specificity time-dependent ROC sensitivity longitudinal marker AUC |
Language | English |
License | Copyright © 2018 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3495-12fc64fa43e933c0fa6686a6e513a0f33f2f6deb3a928aa5af04ce6fac30e1e43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1987-320X |
PMID | 29671890 |
PQID | 2063585613 |
PQPubID | 48361 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2027589772 proquest_journals_2063585613 pubmed_primary_29671890 crossref_primary_10_1002_sim_7675 crossref_citationtrail_10_1002_sim_7675 wiley_primary_10_1002_sim_7675_SIM7675 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 August 2018 |
PublicationDateYYYYMMDD | 2018-08-15 |
PublicationDate_xml | – month: 08 year: 2018 text: 15 August 2018 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1995; 51 2013; 69 2004; 60 2012 1987; 126 2006; 6 2004; 5 2011; 13 1999; 20 2007; 94 1985; 41 2005; 61 2008; 50 2007; 55 2010; 66 1998; 17 2009; 96 2013; 14 2000; 19 2013; 32 2000; 56 2006; 26 2003; 4 1993; 80 2011; 67 2008; 64 2010; 70 1996; 2 2003; 62 2007; 26 2003; 22 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 Vaart AW (e_1_2_8_35_1) 2007; 55 e_1_2_8_17_1 Houwelingen HC (e_1_2_8_18_1) 2012 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
References_xml | – volume: 94 start-page: 873 issue: 4 year: 2007 end-page: 892 article-title: A general approach to the predictability issue in survival analysis with application publication-title: Biometrika – volume: 96 start-page: 371 issue: 2 year: 2009 end-page: 382 article-title: Adjusting for covariate effects on classification accuracy using the covariate‐adjusted receiver operating characteristic curve publication-title: Biometrika – volume: 5 start-page: 615 year: 2004 end-page: 632 article-title: Semiparametric estimation of time‐dependent ROC curves for the longitudinal marker data publication-title: Biostatistics – volume: 56 start-page: 337 year: 2000 end-page: 344 article-title: Time‐dependent ROC curves for censored survival data and a diagnostic marker publication-title: Biometrics – volume: 4 start-page: 341 issue: 3 year: 2003 end-page: 351 article-title: Assessing the diagnostic accuracy of a sequence of tests publication-title: Biostatistics – volume: 61 start-page: 92 year: 2005 end-page: 105 article-title: Survival model predictive accuracy and ROC curves publication-title: Biometrics – volume: 70 start-page: 117 year: 2010 end-page: 123 article-title: Integrating biomarkers: The new frontier publication-title: Scand J Clin Lab Invest – volume: 80 start-page: 153 issue: 1 year: 1993 end-page: 164 article-title: A framework for consistent prediction rules based on markers publication-title: Biometrika – volume: 64 start-page: 603 year: 2008 end-page: 610 article-title: Quantifying the predictive performance of prognostic models for censored survival data with time‐dependent covariates publication-title: Biometrics – volume: 126 start-page: 310 issue: 2 year: 1987 end-page: 318 article-title: The multicenter AIDS cohort study: rationale, organization and selected characteristics of the participants publication-title: Am J Epidemiol – volume: 14 start-page: 42 issue: 1 year: 2013 end-page: 59 article-title: Non‐parametric estimation of time‐dependent predictive accuracy curve publication-title: Biostatistics – volume: 19 start-page: 511 year: 2000 end-page: 523 article-title: Comparison of diagnostic markers with repeated measurements: a non‐parametric ROC curve approach publication-title: Stat Med – year: 2012 – volume: 20 start-page: 145 year: 1999 end-page: 157 article-title: Time‐dependent covariates in the Cox proportional‐hazards regression model publication-title: Ann Rev Public Health – volume: 2 start-page: 15 year: 1996 end-page: 29 article-title: Marker process in survival analysis publication-title: Lifetime Data Anal – volume: 55 start-page: 234 year: 2007 end-page: 252 article-title: Empirical processes indexed by estimated functions, lecture notes–monograph series publication-title: Inst Math Stat – volume: 22 start-page: 3473 year: 2003 end-page: 3488 article-title: ROC methodology within a monitoring framework publication-title: Stat Med – volume: 62 start-page: 64 issue: 1 year: 2003 end-page: 69 article-title: Natural history of PSA increase with and without prostate cancer publication-title: Urology – volume: 60 start-page: 528 issue: 2 year: 2004 end-page: 535 article-title: The analysis of placement values for evaluating discriminatory measures publication-title: Biometrics – volume: 13 start-page: 37 issue: 1 year: 2011 end-page: 42 article-title: Serial changes in high‐sensitive troponin I predict outcome in patients with decompensated heart failure publication-title: Eur J Heart Fail – volume: 32 start-page: 2430 issue: 14 year: 2013 end-page: 2442 article-title: A unified inference procedure for a class of measures to assess improvement in risk prediction systems with survival data publication-title: Stat Med – volume: 41 start-page: 947 issue: 4 year: 1985 end-page: 958 article-title: Sensitivity and specificity of a monitoring test publication-title: Biometrics – volume: 51 start-page: 1514 issue: 4 year: 1995 end-page: 1522 article-title: ROC curves with multiple marker measurements publication-title: Biometrics – volume: 26 start-page: 565 issue: 6 year: 2006 end-page: 574 article-title: Decision curve analysis: a novel method for evaluating prediction models publication-title: Med Decis Making – volume: 64 start-page: 1238 issue: 4 year: 2008 end-page: 1246 article-title: Semiparametric modeling of longitudinal measurements and time‐to‐event data‐a two‐stage regression calibration approach publication-title: Biometrics – volume: 50 start-page: 457 issue: 4 year: 2008 end-page: 79 article-title: The performance of risk prediction models publication-title: Biometrical J – volume: 56 start-page: 249 year: 2000 end-page: 255 article-title: Predictive accuracy and explained variation in Cox regression publication-title: Biometrics – volume: 61 start-page: 379 issue: 2 year: 2005 end-page: 391 article-title: Partly conditional survival models for longitudinal data publication-title: Biometrics – volume: 26 start-page: 5411 issue: 30 year: 2007 end-page: 5421 article-title: Assessing surrogacy from the joint modelling of multivariate longitudinal data and survival: application to clinical trial data on chronic lymphocytic leukaemia publication-title: Stat Med – volume: 6 start-page: 1029 year: 2006 end-page: 1040 article-title: Consistent estimation of the expected brier score in general survival models with right‐censored event times publication-title: Biometrical J – volume: 17 start-page: 2563 year: 1998 end-page: 2578 article-title: Analysis of repeated markers used to predict progression of cancer publication-title: Stat Med – volume: 69 start-page: 197 issue: 1 year: 2013 end-page: 205 article-title: Exploration of lagged associations using longitudinal data publication-title: Biometrics – volume: 66 start-page: 999 issue: 4 year: 2010 end-page: 1011 article-title: Time‐dependent predictive accuracy in the presence of competing risks publication-title: Biometrics – volume: 67 start-page: 819 issue: 3 year: 2011 end-page: 829 article-title: Dynamic predictions and prospective accuracy in joint models for longitudinal and time‐to‐event data publication-title: Biometrics – ident: e_1_2_8_7_1 doi: 10.1111/j.1541-0420.2007.00889.x – ident: e_1_2_8_8_1 doi: 10.1111/j.0006-341X.2000.00337.x – ident: e_1_2_8_9_1 doi: 10.1111/j.0006-341X.2005.030814.x – ident: e_1_2_8_23_1 doi: 10.1002/sim.3142 – ident: e_1_2_8_29_1 doi: 10.1002/(SICI)1097-0258(19981130)17:22<2563::AID-SIM952>3.0.CO;2-O – ident: e_1_2_8_34_1 doi: 10.1093/biomet/asp002 – ident: e_1_2_8_6_1 doi: 10.1002/bimj.200610301 – ident: e_1_2_8_5_1 doi: 10.1111/j.0006-341X.2000.00249.x – ident: e_1_2_8_30_1 doi: 10.1002/(SICI)1097-0258(20000229)19:4<511::AID-SIM353>3.0.CO;2-3 – ident: e_1_2_8_32_1 doi: 10.1093/aje/126.2.310 – ident: e_1_2_8_11_1 doi: 10.1177/0272989X06295361 – ident: e_1_2_8_13_1 doi: 10.1093/biomet/80.1.153 – ident: e_1_2_8_27_1 doi: 10.1002/sim.1580 – ident: e_1_2_8_20_1 doi: 10.2307/2533281 – ident: e_1_2_8_21_1 doi: 10.1016/S0090-4295(03)00135-3 – ident: e_1_2_8_31_1 doi: 10.1111/j.0006-341X.2004.00200.x – ident: e_1_2_8_15_1 doi: 10.1146/annurev.publhealth.20.1.145 – ident: e_1_2_8_28_1 doi: 10.1093/biostatistics/kxs021 – ident: e_1_2_8_14_1 doi: 10.1093/biomet/asm062 – ident: e_1_2_8_19_1 doi: 10.1093/biostatistics/4.3.341 – ident: e_1_2_8_16_1 doi: 10.1111/j.1541-0420.2010.01546.x – ident: e_1_2_8_10_1 doi: 10.1002/sim.5647 – ident: e_1_2_8_22_1 doi: 10.1093/biostatistics/kxh013 – ident: e_1_2_8_4_1 doi: 10.1002/bimj.200810443 – ident: e_1_2_8_26_1 doi: 10.2307/2530966 – ident: e_1_2_8_3_1 doi: 10.3109/00365513.2010.493427 – ident: e_1_2_8_2_1 doi: 10.1093/eurjhf/hfq210 – volume-title: Dynamic Prediction in Clinical Survival Analysis year: 2012 ident: e_1_2_8_18_1 – ident: e_1_2_8_25_1 doi: 10.1111/j.1541-0420.2009.01375.x – ident: e_1_2_8_12_1 doi: 10.1007/BF00128468 – volume: 55 start-page: 234 year: 2007 ident: e_1_2_8_35_1 article-title: Empirical processes indexed by estimated functions, lecture notes–monograph series publication-title: Inst Math Stat – ident: e_1_2_8_33_1 doi: 10.1111/j.1541-0420.2012.01812.x – ident: e_1_2_8_17_1 doi: 10.1111/j.1541-0420.2005.00323.x – ident: e_1_2_8_24_1 doi: 10.1111/j.1541-0420.2007.00983.x |
SSID | ssj0011527 |
Score | 2.2939184 |
Snippet | Cancer patients, chronic kidney disease patients, and subjects infected with HIV are routinely monitored over time using biomarkers that represent key health... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2700 |
SubjectTerms | Accuracy AUC Biomarkers longitudinal marker sensitivity specificity time‐dependent ROC |
Title | Dynamic thresholds and a summary ROC curve: Assessing prognostic accuracy of longitudinal markers |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7675 https://www.ncbi.nlm.nih.gov/pubmed/29671890 https://www.proquest.com/docview/2063585613 https://www.proquest.com/docview/2027589772 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9UwFD7IHmQg6u78cXUbEUSfetcmaXrrm0zHNrgOpoOBD-U0TWC4tXJ7K-hf7zk3bWU6QXzqQ9KkTc5JvpNz8h2Al9rntCk6jBKdlJEuvYvIBCujzGvMaHWsfMXnHYsP5uhcn1ykF31UJd-FCfwQ44Eba8Z6vWYFx7Ld_0Ua2l5ez5iJhJZfDtViPHQ2MkclQ7ZW9lCaLEkH3tlY7g8v3tyJ_oCXN9Hqers5fACfhw8NUSZfZt2qnNkfv3E4_t-fPIT7PQoVb4PYbMEdV0_g7qL3s0_gXjjNE-GS0gQ2GZMGSudtwHchi71YkRy07L5qBdaVQNHfhBNnpwfCdstv7o0ITmXaHwVHgtUNtyHQUina76Lx4qrhjEldxdm5xDUHCy3bR3B--P7TwVHUZ2qIrCILK0qkt0Z71MrlStnYozFzg8alicLYK-WlNxXZ7ZjLOWKKPtbWGY9WxS5xWj2Gjbqp3VMQCvUcpcsMWqkrS6JEIC1Gk-clWUt5NoXXw6wVtqcx52waV0UgYJYFDWfBwzmFF2PNr4G645Y6O8PEF73ytoUk2EZWFAEdamIsJrVjXwrWrum4jiRLi8CznMKTIDBjJzIniZvn8RReraf9r70XH48X_Hz2rxWfwyYBNqYUj5J0BzZWy87tEihalXtr8f8J4ckJdQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkElxGOBslDASAhO2SaO42zghFqqLXSLVFqpB6Ro4tgSapugzQYJfj0z6ySoPCTEKQc7dmLP2N_M2N8APFcuo03RYhCpqAhU4WxAJlgRpE5hSqtj6Ur2d8wP9exEvTtNTtfgdX8XxvNDDA431ozVes0Kzg7p7Z-soc3niwlTkVyBq5zQm4nzd48G7qioz9fKMUqdRknPPBvK7f7Ny3vRbwDzMl5dbTh7t-BT_6n-nMnZpF0WE_P9FxbH__yX23CzA6LijZecO7BmqxFcm3eh9hHc8A494e8pjWCDYalndb4LuOsT2YsliULDEaxGYFUKFN1lOHH0YUeYdvHVvhI-rkxbpODDYFXNbQg0VIrmm6idOK85aVJbcoIuccHnhRbNPTjZe3u8Mwu6ZA2BicnICiLpjFYOVWyzODahQ62nGrVNohhDF8dOOl2S6Y6ZnCIm6EJlrHZo4tBGVsX3Yb2qK_sARIxqitKmGo1UpSFpIpwWos6yggymLB3Dy37actMxmXNCjfPcczDLnIYz5-Ecw7Oh5hfP3vGHOlv9zOed_ja5JORGhhRhHWpiKCbN43AKVrZuuY4kY4vwsxzDppeYoROZkchNs3AML1bz_tfe84_7c34-_NeKT-H67Hh-kB_sH75_BBuE35hhPIiSLVhfLlr7mDDSsniy0oUfaAoNkQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkapKiMfyWihgJASnbBPHcTbcUJdVC2xBhUqVOEQTx5aqtkm12SDBr2dmnQSVh4Q45WDHTuwZ-xvP-BuA58pltClaDCIVFYEqnA3IBCuC1ClMaXUsXcnnHYsDvXek3h4nx11UJd-F8fwQw4Eba8Z6vWYFvyjdzk_S0ObkfMJMJFfhmtJhxmkbZocDdVTUp2tlF6VOo6Qnng3lTv_m5a3oN3x5Ga6u95v5TfjSf6kPMzmdtKtiYr7_QuL4f79yC250MFS89nJzG67YagSbi87RPoLr_jhP-FtKI9hiUOo5ne8Aznwae7EiQWjYf9UIrEqBorsKJw4_7ArTLr_aV8J7lWmDFBwKVtXchkBDpWi-idqJs5pTJrUlp-cS5xwttGzuwtH8zefdvaBL1RCYmEysIJLOaOVQxTaLYxM61HqqUdskijF0ceyk0yUZ7pjJKWKCLlTGaocmDm1kVXwPNqq6sg9AxKimKG2q0UhVGpIlQmkh6iwryFzK0jG87GctNx2POafTOMs9A7PMaThzHs4xPBtqXnjujj_U2e4nPu-0t8kl4TYyowjpUBNDMekdO1OwsnXLdSSZWoSe5Rjue4EZOpEZSdw0C8fwYj3tf-09_7S_4OfDf634FDY_zub5-_2Dd49gi8Ab04sHUbING6tlax8TQFoVT9aa8AM86QxA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+thresholds+and+a+summary+ROC+curve%3A+Assessing+prognostic+accuracy+of+longitudinal+markers&rft.jtitle=Statistics+in+medicine&rft.au=Saha-Chaudhuri%2C+P&rft.au=Heagerty%2C+P+J&rft.date=2018-08-15&rft.issn=1097-0258&rft.eissn=1097-0258&rft.volume=37&rft.issue=18&rft.spage=2700&rft_id=info:doi/10.1002%2Fsim.7675&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |