Tackling dynamic prediction of death in patients with recurrent cardiovascular events

In the field of cardiovascular disease, recurrent events such as stroke or myocardial infarction (MI) are often encountered, leading to an increase in the risk of death. Accurately evaluating the prognosis of patients and dynamically predicting the risk of death by considering the historical recurre...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 42; no. 19; pp. 3487 - 3507
Main Authors Liang, Menglu, Li, Zheng, Li, Liang, Chinchilli, Vernon M., Zhang, Lijun, Wang, Ming
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 30.08.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.9815

Cover

Abstract In the field of cardiovascular disease, recurrent events such as stroke or myocardial infarction (MI) are often encountered, leading to an increase in the risk of death. Accurately evaluating the prognosis of patients and dynamically predicting the risk of death by considering the historical recurrent events can improve medical decisions and lead to better health care outcomes. Recently proposed joint modeling approaches within the Bayesian framework have inspired the development of a dynamic prediction tool, which can be applied for subject‐level prediction of death with implementation in software packages. The prediction model incorporates subject heterogeneity with subject‐level random effects that account for unobserved time‐invariant factors and an extra copula function capturing the part caused by unmeasured time‐dependent factors. Thereafter, given the prespecified landmark time t′$$ {t}^{\prime } $$, the survival probability for a prediction horizon time of interest t$$ t $$ can be estimated for each individual. The prediction accuracy is assessed by time‐dependent receiving operating characteristic curve and the area under the curve and the Brier score with calibration plots is compared to traditional joint frailty models. Finally, the tool is applied to patients with multiple attacks of stroke or MI in the Cardiovascular Health study and the Atherosclerosis Risk in Communities study for illustration.
AbstractList In the field of cardiovascular disease, recurrent events such as stroke or myocardial infarction (MI) are often encountered, leading to an increase in the risk of death. Accurately evaluating the prognosis of patients and dynamically predicting the risk of death by considering the historical recurrent events can improve medical decisions and lead to better health care outcomes. Recently proposed joint modeling approaches within the Bayesian framework have inspired the development of a dynamic prediction tool, which can be applied for subject-level prediction of death with implementation in software packages. The prediction model incorporates subject heterogeneity with subject-level random effects that account for unobserved time-invariant factors and an extra copula function capturing the part caused by unmeasured time-dependent factors. Thereafter, given the prespecified landmark time , the survival probability for a prediction horizon time of interest can be estimated for each individual. The prediction accuracy is assessed by time-dependent receiving operating characteristic curve and the area under the curve and the Brier score with calibration plots is compared to traditional joint frailty models. Finally, the tool is applied to patients with multiple attacks of stroke or MI in the Cardiovascular Health study and the Atherosclerosis Risk in Communities study for illustration.
In the field of cardiovascular disease, recurrent events such as stroke or myocardial infarction (MI) are often encountered, leading to an increase in the risk of death. Accurately evaluating the prognosis of patients and dynamically predicting the risk of death by considering the historical recurrent events can improve medical decisions and lead to better health care outcomes. Recently proposed joint modeling approaches within the Bayesian framework have inspired the development of a dynamic prediction tool, which can be applied for subject‐level prediction of death with implementation in software packages. The prediction model incorporates subject heterogeneity with subject‐level random effects that account for unobserved time‐invariant factors and an extra copula function capturing the part caused by unmeasured time‐dependent factors. Thereafter, given the prespecified landmark time t′$$ {t}^{\prime } $$, the survival probability for a prediction horizon time of interest t$$ t $$ can be estimated for each individual. The prediction accuracy is assessed by time‐dependent receiving operating characteristic curve and the area under the curve and the Brier score with calibration plots is compared to traditional joint frailty models. Finally, the tool is applied to patients with multiple attacks of stroke or MI in the Cardiovascular Health study and the Atherosclerosis Risk in Communities study for illustration.
In the field of cardiovascular disease, recurrent events such as stroke or myocardial infarction (MI) are often encountered, leading to an increase in the risk of death. Accurately evaluating the prognosis of patients and dynamically predicting the risk of death by considering the historical recurrent events can improve medical decisions and lead to better health care outcomes. Recently proposed joint modeling approaches within the Bayesian framework have inspired the development of a dynamic prediction tool, which can be applied for subject-level prediction of death with implementation in software packages. The prediction model incorporates subject heterogeneity with subject-level random effects that account for unobserved time-invariant factors and an extra copula function capturing the part caused by unmeasured time-dependent factors. Thereafter, given the prespecified landmark time t ' $$ {t}^{\prime } $$ , the survival probability for a prediction horizon time of interest t $$ t $$ can be estimated for each individual. The prediction accuracy is assessed by time-dependent receiving operating characteristic curve and the area under the curve and the Brier score with calibration plots is compared to traditional joint frailty models. Finally, the tool is applied to patients with multiple attacks of stroke or MI in the Cardiovascular Health study and the Atherosclerosis Risk in Communities study for illustration.In the field of cardiovascular disease, recurrent events such as stroke or myocardial infarction (MI) are often encountered, leading to an increase in the risk of death. Accurately evaluating the prognosis of patients and dynamically predicting the risk of death by considering the historical recurrent events can improve medical decisions and lead to better health care outcomes. Recently proposed joint modeling approaches within the Bayesian framework have inspired the development of a dynamic prediction tool, which can be applied for subject-level prediction of death with implementation in software packages. The prediction model incorporates subject heterogeneity with subject-level random effects that account for unobserved time-invariant factors and an extra copula function capturing the part caused by unmeasured time-dependent factors. Thereafter, given the prespecified landmark time t ' $$ {t}^{\prime } $$ , the survival probability for a prediction horizon time of interest t $$ t $$ can be estimated for each individual. The prediction accuracy is assessed by time-dependent receiving operating characteristic curve and the area under the curve and the Brier score with calibration plots is compared to traditional joint frailty models. Finally, the tool is applied to patients with multiple attacks of stroke or MI in the Cardiovascular Health study and the Atherosclerosis Risk in Communities study for illustration.
In the field of cardiovascular disease, recurrent events such as stroke or myocardial infarction (MI) are often encountered, leading to an increase in the risk of death. Accurately evaluating the prognosis of patients and dynamically predicting the risk of death by considering the historical recurrent events can improve medical decisions and lead to better health care outcomes. Recently proposed joint modeling approaches within the Bayesian framework have inspired the development of a dynamic prediction tool, which can be applied for subject‐level prediction of death with implementation in software packages. The prediction model incorporates subject heterogeneity with subject‐level random effects that account for unobserved time‐invariant factors and an extra copula function capturing the part caused by unmeasured time‐dependent factors. Thereafter, given the prespecified landmark time , the survival probability for a prediction horizon time of interest can be estimated for each individual. The prediction accuracy is assessed by time‐dependent receiving operating characteristic curve and the area under the curve and the Brier score with calibration plots is compared to traditional joint frailty models. Finally, the tool is applied to patients with multiple attacks of stroke or MI in the Cardiovascular Health study and the Atherosclerosis Risk in Communities study for illustration.
Author Zhang, Lijun
Li, Zheng
Li, Liang
Chinchilli, Vernon M.
Liang, Menglu
Wang, Ming
Author_xml – sequence: 1
  givenname: Menglu
  orcidid: 0000-0002-0185-8557
  surname: Liang
  fullname: Liang, Menglu
  organization: Penn State College of Medicine
– sequence: 2
  givenname: Zheng
  surname: Li
  fullname: Li, Zheng
  organization: Novartis Pharmaceuticals
– sequence: 3
  givenname: Liang
  orcidid: 0000-0001-5453-3839
  surname: Li
  fullname: Li, Liang
  organization: University of Texas MD Anderson Cancer Center
– sequence: 4
  givenname: Vernon M.
  surname: Chinchilli
  fullname: Chinchilli, Vernon M.
  organization: Penn State College of Medicine
– sequence: 5
  givenname: Lijun
  surname: Zhang
  fullname: Zhang, Lijun
  organization: Case Western Reserve University
– sequence: 6
  givenname: Ming
  orcidid: 0000-0002-9977-7041
  surname: Wang
  fullname: Wang, Ming
  email: mxw827@case.edu
  organization: Case Western Reserve University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37282984$$D View this record in MEDLINE/PubMed
BookMark eNp10UlLxDAUAOAgio4L-Ask4MVLx7xOlvYo4gaKB8dzSdNXjbbpmLQj8-9NXUH0FBK-t-S9bbLuOoeE7AObAmPpcbDtNM9ArJEJsFwlLBXZOpmwVKlEKhBbZDuEJ8YARKo2ydZMpVmaZ3xC7ufaPDfWPdBq5XRrDV14rKzpbedoV9MKdf9IraML3Vt0faCvNj54NIP38U6N9pXtljqYodGe4nJEu2Sj1k3Avc9zh8zPz-anl8n17cXV6cl1YmY8FwmkZV0qrWO7oKSSFc9EaepKaihzybnRIBGB87wCDqye5SiNRGGURGXUbIccfaRd-O5lwNAXrQ0Gm0Y77IZQxE-OdbiESA9_0adu8C42FxVnIHjGRVQHn2ooW6yKhbet9qvia14_FY3vQvBYfxNgxbiKIq6iGFcR6fQXNbbX41x7r23zV0DyEfBqG1z9m7i4u7p592-o4JlL
CitedBy_id crossref_primary_10_5691_jjb_45_189
Cites_doi 10.1198/016214508000000201
10.1111/j.1541-0420.2009.01266.x
10.1016/j.ijcard.2017.08.062
10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
10.1177/0962280217708681
10.1515/ijb-2018-0088
10.18637/jss.v081.i03
10.2307/2986138
10.1002/sim.5980
10.1002/sim.5717
10.1002/sim.2427
10.1080/01621459.2013.842488
10.1177/0962280215604510
10.1111/j.0006-341X.2004.00225.x
10.1111/rssc.12382
10.1111/j.1541-0420.2012.01823.x
10.1177/0962280210395521
10.2307/2533542
10.1002/bimj.201700326
10.1198/016214504000001033
10.1007/s00184-016-0577-9
10.1161/JAHA.115.002469
10.1007/s11222-008-9058-y
10.1177/0962280216688032
10.1111/j.1574-6941.2001.tb00841.x
10.1002/bimj.200610301
10.1161/JAHA.121.025646
10.1175/MWR2906.1
10.1111/biom.12470
10.1161/CIRCULATIONAHA.115.018610
10.1002/bimj.201200160
10.1111/j.0006-341X.2005.030814.x
10.1093/biostatistics/kxl043
ContentType Journal Article
Copyright 2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.9815
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE

ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 3507
ExternalDocumentID 37282984
10_1002_sim_9815
SIM9815
Genre article
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Center for Advancing Translational Sciences
  funderid: KL2 TR000126; TR002015
– fundername: NCATS NIH HHS
  grantid: KL2 TR000126
– fundername: NIDDK NIH HHS
  grantid: R01 DK118079
– fundername: NCATS NIH HHS
  grantid: TR002015
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c3495-12bfb7aa02517676d485bcfd6a1b9644ca16ee1449d1410f39e6c6e5c76e7c73
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 10:24:41 EDT 2025
Sun Jul 13 05:33:37 EDT 2025
Thu Apr 03 06:59:30 EDT 2025
Tue Jul 01 03:28:18 EDT 2025
Thu Apr 24 22:58:48 EDT 2025
Wed Jan 22 16:18:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Keywords mortality
Cardiovascular disease
dynamic risk prediction
recurrent events
Bayesian inference
Language English
License 2023 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3495-12bfb7aa02517676d485bcfd6a1b9644ca16ee1449d1410f39e6c6e5c76e7c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5453-3839
0000-0002-0185-8557
0000-0002-9977-7041
PMID 37282984
PQID 2840154845
PQPubID 48361
PageCount 21
ParticipantIDs proquest_miscellaneous_2823495461
proquest_journals_2840154845
pubmed_primary_37282984
crossref_primary_10_1002_sim_9815
crossref_citationtrail_10_1002_sim_9815
wiley_primary_10_1002_sim_9815_SIM9815
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 August 2023
PublicationDateYYYYMMDD 2023-08-30
PublicationDate_xml – month: 08
  year: 2023
  text: 30 August 2023
  day: 30
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2013; 69
2015; 4
2004; 60
2017; 81
2017; 26
2013; 22
2005; 133
2008
2020; 16
1997
1995
2016; 72
2008; 103
2005; 61
2018; 27
2016; 79
2005; 24
2004; 99
2010; 66
2018; 250
2014; 109
2019; 61
18
2013; 32
1999; 18
1995; 44
2006; 48
2007; 8
2016; 133
2020; 69
2020; 21
2022; 11
2014; 56
e_1_2_10_23_1
Berkes P (e_1_2_10_5_1) 2008
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_34_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Paulon G (e_1_2_10_13_1) 2020; 21
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 60
  start-page: 747
  year: 2004
  end-page: 756
  article-title: Shared frailty models for recurrent events and a terminal event
  publication-title: Biometrics
– volume: 18
  start-page: 2529
  issue: 17–18
  year: 1999
  end-page: 2545
  article-title: Assessment and comparison of prognostic classification schemes for survival data
  publication-title: Stat Med
– volume: 99
  start-page: 1153
  issue: 468
  year: 2004
  end-page: 1165
  article-title: Joint modeling and estimation for recurrent event processes and failure time data
  publication-title: J Am Stat Assoc
– volume: 81
  issue: 3
  year: 2017
  article-title: Tutorial in joint modeling and prediction: a statistical software for correlated longitudinal outcomes, recurrent events and a terminal event
  publication-title: J Stat Software
– volume: 69
  start-page: 151
  year: 2020
  end-page: 166
  article-title: A time‐varying Bayesian joint hierarchical copula model for analysing recurrent events and a terminal event: an application to the cardiovascular health study
  publication-title: J R Stat Soc Ser C
– volume: 56
  start-page: 183
  issue: 2
  year: 2014
  end-page: 197
  article-title: Joint model of recurrent events and a terminal event with time‐varying coefficients
  publication-title: Biom J
– volume: 24
  start-page: 3927
  issue: 24
  year: 2005
  end-page: 3944
  article-title: A time‐dependent discrimination index for survival data
  publication-title: Stat Med
– volume: 18
  start-page: 313
  end-page: 330
  article-title: Copula, marginal distributions and model selection: a Bayesian note
  publication-title: Stat Comput
– volume: 133
  start-page: 1155
  issue: 5
  year: 2005
  end-page: 1174
  article-title: Using Bayesian model averaging to calibrate forecast ensembles
  publication-title: Mon Weather Rev
– volume: 48
  start-page: 1029
  issue: 6
  year: 2006
  end-page: 1040
  article-title: Consistent estimation of the expected brier score in general survival models with right‐censored event times
  publication-title: Biom J
– volume: 4
  year: 2015
  article-title: Risk of recurrent stroke and death after first stroke in long‐distance ski race participants
  publication-title: J Am Heart Ass
– volume: 26
  start-page: 2649
  year: 2017
  end-page: 2666
  article-title: A joint frailty‐copula model between tumour progression and death for meta‐analysis
  publication-title: Stat Methods Med Res
– volume: 27
  start-page: 2842
  year: 2018
  end-page: 2858
  article-title: Personalized dynamic prediction of death according to tumour progression and high‐dimensional genetic factors: meta‐analysis with a joint model
  publication-title: Stat Methods Med Res
– volume: 69
  start-page: 206
  year: 2013
  end-page: 213
  article-title: Real‐time individual predictions of prostate cancer recurrence using joint models
  publication-title: Biometrics
– volume: 72
  start-page: 897
  issue: 3
  year: 2016
  end-page: 906
  article-title: Addressing issues associated with evaluating prediction models for survival endpoints based on the concordance statistic
  publication-title: Biometrics
– volume: 11
  issue: 16
  year: 2022
  article-title: Risk of dementia associated with atrial cardiopathy: the ARIC study
  publication-title: J Am Heart Assoc
– volume: 32
  start-page: 2629
  issue: 15
  year: 2013
  end-page: 2642
  article-title: Bayesian analysis of recurrent event with dependent termination: an application to a heart transplant study
  publication-title: Stat Med
– volume: 61
  start-page: 129
  year: 2019
  end-page: 136
  article-title: A Bayesian joint model of recurrent events and a terminal event
  publication-title: Biom J
– volume: 22
  start-page: 243
  issue: 3
  year: 2013
  end-page: 260
  article-title: Cure frailty models for survival data: application to recurrences for breast cancer and to hospital readmissions for colorectal cancer
  publication-title: Stat Methods Med Res
– volume: 32
  start-page: 5366
  year: 2013
  end-page: 5380
  article-title: Dynamic prediction of risk of death using history of cancer recurrences in joint frailty models
  publication-title: Stat Med
– volume: 103
  start-page: 866
  issue: 482
  year: 2008
  end-page: 878
  article-title: Current methods for recurrent events data with dependent termination: a Bayesian perspective
  publication-title: J Am Stat Assoc
– volume: 109
  start-page: 384
  issue: 505
  year: 2014
  end-page: 394
  article-title: Landmark estimation of survival and treatment effect in a randomized clinical trial
  publication-title: J Am Stat Assoc
– volume: 16
  issue: 1
  year: 2020
  article-title: Bayesian autoregressive frailty models for inference in recurrent events
  publication-title: The Int J Biostat
– volume: 250
  start-page: 247
  year: 2018
  end-page: 252
  article-title: Hs‐cTroponins for the prediction of recurrent cardiovascular events in patients with established CHD—a comparative analysis from the KAROLA study
  publication-title: Int J Card
– year: 2008
– volume: 44
  start-page: 455
  year: 1995
  end-page: 472
  article-title: Adaptive rejection metropolis sampling within Gibbs sampling
  publication-title: Appl Stat
– volume: 8
  start-page: 708
  issue: 4
  year: 2007
  end-page: 721
  article-title: Joint frailty models for recurring events and death using maximum penalized likelihood estimation: application on cancer events
  publication-title: Biostatistics
– volume: 26
  start-page: 2042
  issue: 5
  year: 2017
  end-page: 2054
  article-title: Landmark cure rate models with time‐dependent covariates
  publication-title: Stat Methods Med Res
– year: 1995
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  end-page: 14
  article-title: Joint modeling of recurrent events and survival: a Bayesian non‐parametric approach
  publication-title: Biostatistics
– volume: 66
  start-page: 39
  issue: 1
  year: 2010
  end-page: 49
  article-title: Semiparametric analysis for recurrent event data with time‐dependent covariates and informative censoring
  publication-title: Biometrics
– volume: 79
  start-page: 763
  issue: 7
  year: 2016
  end-page: 787
  article-title: A new joint model of recurrent event data with the additive hazards model for the terminal event time
  publication-title: Metrika
– start-page: 785
  year: 1997
  end-page: 793
  article-title: A dynamic frailty model for multivariate survival data
  publication-title: Biometrics
– volume: 61
  start-page: 92
  issue: 1
  year: 2005
  end-page: 105
  article-title: Survival model predictive accuracy and ROC curves
  publication-title: Biometrics
– volume: 133
  issue: 2
  year: 2016
  article-title: Study of cardiovascular health outcomes in the era of claims data the cardiovascular health study
  publication-title: Circulation
– ident: e_1_2_10_8_1
  doi: 10.1198/016214508000000201
– ident: e_1_2_10_9_1
  doi: 10.1111/j.1541-0420.2009.01266.x
– ident: e_1_2_10_4_1
  doi: 10.1016/j.ijcard.2017.08.062
– ident: e_1_2_10_27_1
  doi: 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2529::AID-SIM274>3.0.CO;2-5
– ident: e_1_2_10_21_1
  doi: 10.1177/0962280217708681
– ident: e_1_2_10_12_1
  doi: 10.1515/ijb-2018-0088
– ident: e_1_2_10_32_1
  doi: 10.18637/jss.v081.i03
– ident: e_1_2_10_25_1
  doi: 10.2307/2986138
– ident: e_1_2_10_31_1
  doi: 10.1002/sim.5980
– ident: e_1_2_10_10_1
  doi: 10.1002/sim.5717
– ident: e_1_2_10_29_1
  doi: 10.1002/sim.2427
– ident: e_1_2_10_19_1
  doi: 10.1080/01621459.2013.842488
– ident: e_1_2_10_15_1
  doi: 10.1177/0962280215604510
– ident: e_1_2_10_2_1
  doi: 10.1111/j.0006-341X.2004.00225.x
– ident: e_1_2_10_18_1
  doi: 10.1111/rssc.12382
– ident: e_1_2_10_20_1
  doi: 10.1111/j.1541-0420.2012.01823.x
– ident: e_1_2_10_22_1
  doi: 10.1177/0962280210395521
– ident: e_1_2_10_14_1
  doi: 10.2307/2533542
– ident: e_1_2_10_17_1
  doi: 10.1002/bimj.201700326
– ident: e_1_2_10_6_1
  doi: 10.1198/016214504000001033
– ident: e_1_2_10_23_1
  doi: 10.1007/s00184-016-0577-9
– ident: e_1_2_10_3_1
  doi: 10.1161/JAHA.115.002469
– ident: e_1_2_10_35_1
  doi: 10.1007/s11222-008-9058-y
– ident: e_1_2_10_16_1
  doi: 10.1177/0962280216688032
– ident: e_1_2_10_24_1
  doi: 10.1111/j.1574-6941.2001.tb00841.x
– ident: e_1_2_10_28_1
  doi: 10.1002/bimj.200610301
– ident: e_1_2_10_34_1
  doi: 10.1161/JAHA.121.025646
– ident: e_1_2_10_36_1
  doi: 10.1175/MWR2906.1
– ident: e_1_2_10_26_1
  doi: 10.1111/biom.12470
– volume-title: Characterizing Neural Dependencies with Copula Models
  year: 2008
  ident: e_1_2_10_5_1
– ident: e_1_2_10_33_1
  doi: 10.1161/CIRCULATIONAHA.115.018610
– ident: e_1_2_10_11_1
  doi: 10.1002/bimj.201200160
– ident: e_1_2_10_30_1
  doi: 10.1111/j.0006-341X.2005.030814.x
– volume: 21
  start-page: 1
  issue: 1
  year: 2020
  ident: e_1_2_10_13_1
  article-title: Joint modeling of recurrent events and survival: a Bayesian non‐parametric approach
  publication-title: Biostatistics
– ident: e_1_2_10_7_1
  doi: 10.1093/biostatistics/kxl043
SSID ssj0011527
Score 2.414513
Snippet In the field of cardiovascular disease, recurrent events such as stroke or myocardial infarction (MI) are often encountered, leading to an increase in the risk...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3487
SubjectTerms Bayes Theorem
Bayesian inference
Cardiovascular disease
dynamic risk prediction
Humans
Medical prognosis
mortality
Myocardial Infarction
Probability
Prognosis
recurrent events
Stroke
Title Tackling dynamic prediction of death in patients with recurrent cardiovascular events
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.9815
https://www.ncbi.nlm.nih.gov/pubmed/37282984
https://www.proquest.com/docview/2840154845
https://www.proquest.com/docview/2823495461
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8hHqZKiI8OWKFMRkLwlILzYSeP0zZUkMoDayUkHiLbsVG1La2a9mV__Xx2ElQ-pGlPecgljn13ufPd-XcAZ8ratCwxYaCsCAcxNVkgUkWDVPEI4aMkddWEozs2nMS3D8lDXVWJZ2E8PkQbcEPNcP9rVHAhq8tn0NBq-nuQpe58OY0YwuZ_u2-Ro2jTrRUzlIzTpMGdvQovmwfXLdEr93LdW3Xm5noHHpsP9VUmPwerpRyoPy8wHP9vJruwXXuh5IsXmz3Y0GUXPozqPHsXtnw0j_hDSl3ooE_qIZ0_wmQsFPZ5fyKFb2dP5gt8EllMZoYU6FWSaUlqzNaKYLCXLDCyj1hQRK3VwBKHIVXtw_j6-_jrMKi7MwQqsruqgIbSSC6EAz1jnBVxmkhlCiaozKyXpQRlWtv9WlZgLamJMs0U04niTHMrCQewWc5K_QlInApTUMNlJHTMBctSqdBspgWPFDVhDy4aRuWqRi7HBhq_co-5HOZ2BXNcwR6ctpRzj9bxBk2_4XVe62uV29Hc5i3GV7S3raZh-kSUerZCmhAnHjPag0MvI-0gEceMdBr34Nxx-t3R8x83I7we_SvhMXSww70LY1_1YXO5WOkT6wct5Wcn8X8Bjk8EDw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hkAAJFbrQdnm0RqrKKUudOHYiToiHlsdyoIvEASmyHbtCQBbt48KvxxMnQUtBQj3lECeOPTOZp78B-KmdTktjGwbasXDAqE0DmWgaJFpECB-laFlN2Lvg3St2eh1fz8BefRbG40M0ATeUjPJ_jQKOAendF9TQ0e1DJ03wgPkcc3YGel6Hlw12FK37tWKOkgsa18izv8Pd-slpXfSPgTltr5YK53gZbupP9XUmd53JWHX00ysUx_9cywp8qgxRsu855zPMmKIF870q1d6CJR_QI_6cUgsW0Sz1qM6rcNWXGlu9_yW572hPHof4JFKZDCzJ0bAktwWpYFtHBOO9ZIjBfYSDInqqDJaUMFKjNegfH_UPukHVoCHQkXOsAhoqq4SUJe4ZFzxnSay0zbmkKnWGlpaUG-NctjTHclIbpYZrbmItuBGOGb7AbDEozDcgLJE2p1aoSBomJE8TpVFzJrmINLVhG3ZqSmW6Ai_HHhr3mYddDjO3gxnuYBu2m5GPHrDjjTGbNbGzSmRHmZut9N8YvqK57YQNMyiyMIMJjglx4YzTNnz1TNJMEglMSiesDb9KUr87e_bnpIfX9Y8O_AEL3X7vPDs_uTjbgEVseO-DQJswOx5OzJYzi8bqe8n-z8oPCCU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hkBBSVWDb0uXpSlV7yi5OHDs5ImAFtIuqdpGQeohsx65Q2-xqHxd-PR47SbUtSBWnHOLEsWcm_jwz_gbgvXZrWp7aONJOhSNGbR7JTNMo0yJB-ihFfTbh8Jpf3LCr2_S2zqrEszCBH6J1uKFl-P81GviktP0_pKGzu9-9PMPz5WuMOyCBgOhrSx1Fm3KtGKLkgqYN8exx3G-eXF6K_sGXy3DVrzeDTfjefGlIM_nZW8xVT9__ReL4vKFswcsahpKToDfbsGKqDqwP60B7B14Edx4Jp5Q6sIGgNHA6v4KbkdRY6P0HKUM9ezKZ4pMoYzK2pERYSe4qUpO2zgh6e8kUXftIBkX0UhIs8SRSs9cwGpyPTi-iujxDpBO3rYporKwSUnrWMy54ybJUaVtySVXuYJaWlBvjNmx5icmkNskN19ykWnAjnCq8gdVqXJm3QFgmbUmtUIk0TEieZ0rjupmVItHUxl342Aiq0DV1OVbQ-FUE0uW4cDNY4Ax24V3bchLoOh5ps9_IuqgNdla43vzujeEr2tvO1DB-IiszXmCbGAfOOO3CTtCRtpNEYEg6Y1344CX9ZO_Ft8shXnf_t-ERrH85GxSfL68_7cEGVrv3Lu3jfVidTxfmwGGiuTr0yv8As1UG3Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tackling+dynamic+prediction+of+death+in+patients+with+recurrent+cardiovascular+events&rft.jtitle=Statistics+in+medicine&rft.au=Liang%2C+Menglu&rft.au=Li%2C+Zheng&rft.au=Li%2C+Liang&rft.au=Chinchilli%2C+Vernon+M&rft.date=2023-08-30&rft.eissn=1097-0258&rft.volume=42&rft.issue=19&rft.spage=3487&rft_id=info:doi/10.1002%2Fsim.9815&rft_id=info%3Apmid%2F37282984&rft.externalDocID=37282984
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon