1D Photonic Topological Insulators Composed of Split Ring Resonators: A Mini Review

In recent years, topological photonics inspired by electric topological insulators has promoted extensive research on robust electromagnetic (EM) wave manipulation and new wave‐functional devices. Optical resonators can significantly confine EM waves and are the basic building blocks for constructin...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Physics Research Vol. 3; no. 6
Main Authors Guo, Zhiwei, Wang, Yuqian, Ke, Shaolin, Su, Xiaoqiang, Ren, Jie, Chen, Hong
Format Journal Article
LanguageEnglish
Published Edinburgh John Wiley & Sons, Inc 01.06.2024
Wiley-VCH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In recent years, topological photonics inspired by electric topological insulators has promoted extensive research on robust electromagnetic (EM) wave manipulation and new wave‐functional devices. Optical resonators can significantly confine EM waves and are the basic building blocks for constructing diverse topological structures under a tight binding mechanism. As an artificial “magnetic atom,” the split‐ring‐resonator (SRR) is one of the most attractive optical resonators. SRRs provide an excellent and flexible platform for constructing various topological structures with complex coupling distributions, uncovering abundant topological properties, and innovating practical devices. Here, the realization and fundamental EM responses of the SRR are briefly introduced. Compared to conventional EM resonance elements, the coupling between SRRs depends not only on the coupling distance but also on the orientation angle of the slits. The recent achievements in various low‐dimensional photonic topological structures composed of SRRs are summarized. Furthermore, this review explains the underlying physical principles and discusses progress in topological devices with SRRs, including wireless power transfer, sensing, and switching. Finally, this review provides an overview of the future of SRR topological structures and their impact on the development of novel topological systems and devices. Compared to the disks or spheres, the coupling coefficients between split‐ring‐resonators are not only dependent on the separating distance, but also related to the relative rotation angle. Topological chains with split‐ring‐resonators provide a good platform to study complex topological models, and reveal important applications.
AbstractList In recent years, topological photonics inspired by electric topological insulators has promoted extensive research on robust electromagnetic (EM) wave manipulation and new wave‐functional devices. Optical resonators can significantly confine EM waves and are the basic building blocks for constructing diverse topological structures under a tight binding mechanism. As an artificial “magnetic atom,” the split‐ring‐resonator (SRR) is one of the most attractive optical resonators. SRRs provide an excellent and flexible platform for constructing various topological structures with complex coupling distributions, uncovering abundant topological properties, and innovating practical devices. Here, the realization and fundamental EM responses of the SRR are briefly introduced. Compared to conventional EM resonance elements, the coupling between SRRs depends not only on the coupling distance but also on the orientation angle of the slits. The recent achievements in various low‐dimensional photonic topological structures composed of SRRs are summarized. Furthermore, this review explains the underlying physical principles and discusses progress in topological devices with SRRs, including wireless power transfer, sensing, and switching. Finally, this review provides an overview of the future of SRR topological structures and their impact on the development of novel topological systems and devices. Compared to the disks or spheres, the coupling coefficients between split‐ring‐resonators are not only dependent on the separating distance, but also related to the relative rotation angle. Topological chains with split‐ring‐resonators provide a good platform to study complex topological models, and reveal important applications.
In recent years, topological photonics inspired by electric topological insulators has promoted extensive research on robust electromagnetic (EM) wave manipulation and new wave‐functional devices. Optical resonators can significantly confine EM waves and are the basic building blocks for constructing diverse topological structures under a tight binding mechanism. As an artificial “magnetic atom,” the split‐ring‐resonator (SRR) is one of the most attractive optical resonators. SRRs provide an excellent and flexible platform for constructing various topological structures with complex coupling distributions, uncovering abundant topological properties, and innovating practical devices. Here, the realization and fundamental EM responses of the SRR are briefly introduced. Compared to conventional EM resonance elements, the coupling between SRRs depends not only on the coupling distance but also on the orientation angle of the slits. The recent achievements in various low‐dimensional photonic topological structures composed of SRRs are summarized. Furthermore, this review explains the underlying physical principles and discusses progress in topological devices with SRRs, including wireless power transfer, sensing, and switching. Finally, this review provides an overview of the future of SRR topological structures and their impact on the development of novel topological systems and devices.
Abstract In recent years, topological photonics inspired by electric topological insulators has promoted extensive research on robust electromagnetic (EM) wave manipulation and new wave‐functional devices. Optical resonators can significantly confine EM waves and are the basic building blocks for constructing diverse topological structures under a tight binding mechanism. As an artificial “magnetic atom,” the split‐ring‐resonator (SRR) is one of the most attractive optical resonators. SRRs provide an excellent and flexible platform for constructing various topological structures with complex coupling distributions, uncovering abundant topological properties, and innovating practical devices. Here, the realization and fundamental EM responses of the SRR are briefly introduced. Compared to conventional EM resonance elements, the coupling between SRRs depends not only on the coupling distance but also on the orientation angle of the slits. The recent achievements in various low‐dimensional photonic topological structures composed of SRRs are summarized. Furthermore, this review explains the underlying physical principles and discusses progress in topological devices with SRRs, including wireless power transfer, sensing, and switching. Finally, this review provides an overview of the future of SRR topological structures and their impact on the development of novel topological systems and devices.
Author Guo, Zhiwei
Ren, Jie
Ke, Shaolin
Wang, Yuqian
Chen, Hong
Su, Xiaoqiang
Author_xml – sequence: 1
  givenname: Zhiwei
  orcidid: 0000-0002-8973-307X
  surname: Guo
  fullname: Guo, Zhiwei
  email: 2014guozhiwei@tongji.edu.cn
  organization: Tongji University
– sequence: 2
  givenname: Yuqian
  surname: Wang
  fullname: Wang, Yuqian
  organization: Tongji University
– sequence: 3
  givenname: Shaolin
  surname: Ke
  fullname: Ke, Shaolin
  organization: Wuhan Institute of Technology
– sequence: 4
  givenname: Xiaoqiang
  surname: Su
  fullname: Su, Xiaoqiang
  organization: Nanyang Technological University
– sequence: 5
  givenname: Jie
  surname: Ren
  fullname: Ren, Jie
  organization: Tongji University
– sequence: 6
  givenname: Hong
  surname: Chen
  fullname: Chen, Hong
  email: hongchen@tongji.edu.cn
  organization: Shanxi Datong University
BookMark eNqFkd1LKzEQxYMo6FVffQ7c59Z87-a-lXrVgqJUBd9CzGZryppZk63V_96tVRFBfMmE4fzODHP-oM0I0SN0QMmQEsIObfuchowwTghlcgPtsELSAWWEbH75b6P9nOekB0pNuaA76Ioe4ct76CAGh6-hhQZmwdkGT2JeNLaDlPEYHlrIvsJQ46u2CR2ehjjDU58hvin-4RE-DzH0rafgl3toq7ZN9vvvdRfdHP-_Hp8Ozi5OJuPR2cBxocVAEyVlyaWTXBXKKyIs8-Ku0JVzQjMnpGZUlaoiSmjrZV0xIkrOHJFFVfCC76LJ2rcCOzdtCg82vRiwwbw1IM2MTV1wjTe-qInWNe8fJ1RZllRUnN8JqaTzSpW919-1V5vgceFzZ-awSLFf33CqGWOUs9VEsVa5BDknXxsXOtsFiF2yoTGUmFUaZpWG-Uyjx4bfsI9lfwTkGliGxr_8ojajy9sp7U8l-CsJ35rU
CitedBy_id crossref_primary_10_1002_advs_202408460
crossref_primary_10_1021_acs_nanolett_3c05095
crossref_primary_10_1103_PhysRevA_109_063516
crossref_primary_10_1002_lpor_202401126
crossref_primary_10_1103_PhysRevA_110_052201
crossref_primary_10_1016_j_physleta_2024_130210
crossref_primary_10_1088_2040_8986_ad8dee
crossref_primary_10_1088_2040_8986_adba77
Cites_doi 10.1038/nature07247
10.1103/PhysRevLett.124.153903
10.1103/PhysRevLett.108.196802
10.1038/nphoton.2014.248
10.1088/1367-2630/ab3f6d
10.1002/lpor.201600042
10.1103/PhysRevLett.120.217401
10.1038/nphoton.2013.42
10.1002/mop.22344
10.1038/s41467-019-08881-z
10.1103/PhysRevResearch.2.022062
10.1049/iet-map:20050289
10.1515/nanoph-2020-0441
10.1038/s41467-023-38325-8
10.1515/nanoph-2019-0376
10.1117/1.AP.3.3.036001
10.1109/TIE.2011.2171176
10.1049/el:20020258
10.1364/PRJ.495638
10.1016/j.scib.2021.01.028
10.1364/OL.492336
10.1103/PhysRevLett.125.013903
10.1103/PhysRevLett.116.133903
10.1109/TAP.2003.817562
10.1038/s41598-017-08171-y
10.1103/PhysRevLett.116.093901
10.1103/PhysRevLett.125.033901
10.1038/ncomms16023
10.1126/science.aau7707
10.1038/srep45015
10.1038/s41467-021-26414-5
10.1103/PhysRevResearch.3.013122
10.1103/PhysRevLett.98.103901
10.1103/PhysRevLett.115.040402
10.1038/s41928-022-00732-y
10.1038/s41377-020-00354-z
10.1002/pssb.200844414
10.1063/5.0024077
10.1103/PhysRevLett.100.113903
10.1103/PhysRevLett.121.086807
10.1002/adma.201201482
10.1103/PhysRevB.14.2239
10.1002/smll.201603190
10.1038/s41563-019-0304-9
10.1016/j.ijmecsci.2022.107460
10.1038/s41586-018-0367-9
10.1103/PhysRevB.65.195104
10.1103/PhysRevE.106.L032102
10.1364/OPTICA.5.001396
10.1038/s41467-017-01515-2
10.1103/PhysRevResearch.1.023013
10.1038/nmat4807
10.1126/science.1105371
10.1126/science.aar7709
10.1109/TPEL.2021.3056538
10.1103/PhysRevLett.110.013903
10.1103/PhysRevB.99.064305
10.1103/PhysRevLett.104.063901
10.1088/2515-7647/ac4ee4
10.1103/PhysRevA.101.043811
10.1103/PhysRevLett.125.157401
10.1364/OE.27.013858
10.1088/0256-307X/38/2/024202
10.1103/PhysRevLett.95.226801
10.1073/pnas.1525502113
10.1103/PhysRevApplied.10.054069
10.1186/s43593-021-00002-y
10.1038/ncomms11619
10.1103/PhysRevLett.119.215304
10.1021/acsphotonics.1c00029
10.1103/PhysRevLett.122.136802
10.1088/1367-2630/ac71bd
10.1021/acs.nanolett.9b04813
10.1021/acsphotonics.0c00797
10.1021/acsphotonics.1c00017
10.1021/acsphotonics.1c00507
10.1103/PhysRevA.99.013833
10.1038/s41377-020-00371-y
10.1126/science.1133734
10.1049/el:20030138
10.1103/PhysRevB.93.075110
10.1515/nanoph-2020-0146
10.1103/PhysRevLett.120.113901
10.1038/nature25156
10.1103/PhysRevLett.120.063902
10.1103/PhysRevResearch.4.013113
10.1364/OL.430579
10.1038/s41467-022-29768-6
10.1070/PU1968v010n04ABEH003699
10.1088/1367-2630/aa7cb5
10.3788/COL202119.052602
10.1364/OL.30.003356
10.1002/lpor.202000001
10.1038/s41567-017-0041-4
10.1103/PhysRevLett.126.067401
10.1364/OL.43.005142
10.1103/PhysRevA.102.023505
10.1364/OL.44.003342
10.1063/5.0157868
10.1038/s41567-021-01275-3
10.1021/acsphotonics.0c00521
10.1364/OL.44.002530
10.1103/PhysRevA.103.023512
10.1103/PhysRevLett.127.043904
10.3788/COL202321.123601
10.1103/PhysRevResearch.1.033069
10.1103/PhysRevLett.115.253901
10.1002/lpor.201900087
10.1103/PhysRevLett.128.216403
10.1103/PhysRevLett.125.054301
10.1103/PhysRevLett.109.116404
10.1126/science.aaz8727
10.1063/5.0146831
10.1063/1.5142397
10.1103/PhysRevLett.122.195501
10.1038/s41928-018-0042-z
10.1103/PhysRevLett.118.245301
10.1088/1367-2630/18/11/113013
10.1038/nphys2790
10.1093/nsr/nwad172
10.1038/s41467-022-30276-w
10.1103/PhysRevLett.129.123901
10.1103/PhysRevB.105.L100102
10.1088/1361-6463/aa7619
10.1002/adma.202001034
10.1103/PhysRevLett.106.176802
10.1063/1.3056052
10.1103/PhysRevLett.110.203904
10.3390/opt3020013
10.1126/science.1222360
10.1364/OE.25.011132
10.1103/PhysRevB.98.094307
10.1039/C7TC03384B
10.1103/PhysRevLett.116.163901
10.1002/lpor.201800202
10.1038/s41578-022-00465-6
10.1103/PhysRevB.85.155415
10.1103/PhysRevLett.119.255901
10.1364/OL.40.003380
10.1038/s41467-018-05408-w
10.1038/nphys4304
10.1103/PhysRevLett.122.014301
10.1038/s41377-022-00931-4
10.1088/1367-2630/13/8/083029
10.1038/s41467-018-07084-2
10.1103/PhysRevLett.124.073603
10.1103/PhysRevLett.123.053902
10.1038/s41928-021-00658-x
10.1038/s41467-022-29777-5
10.1038/s41467-020-15825-5
10.1103/PhysRevLett.129.127401
10.1063/1.4940403
10.1038/s41928-020-0399-7
10.1038/nphys547
10.1038/nphoton.2006.49
10.1103/PhysRevLett.106.093903
10.1126/science.abj2232
10.1126/science.abd2033
10.1103/PhysRevApplied.10.044002
10.1103/PhysRevLett.126.113902
10.1038/nmat4573
10.1103/PhysRevLett.120.260501
10.1103/PhysRevB.103.155425
10.1038/nphys3867
10.1021/acs.nanolett.3c00474
10.1103/PhysRevB.104.045408
10.1002/advs.201902724
10.1002/adma.202202257
10.1038/nphoton.2013.274
10.1364/OL.471869
10.1038/s41467-018-07817-3
10.1038/s42254-021-00323-4
10.1002/lpor.201800242
10.1103/PhysRevB.94.195427
10.1063/1.1814428
10.1088/1367-2630/13/6/065028
10.1103/PhysRevLett.123.213901
10.1038/s41467-021-25716-y
10.1038/nphys2063
10.1002/adom.202001739
10.1038/s41467-018-05461-5
10.1103/PhysRevLett.120.087401
10.1038/s41377-022-00823-7
10.1038/srep03842
10.1103/PhysRevLett.113.113904
10.1103/PhysRevE.78.026607
10.1103/PhysRevB.91.125132
10.1103/PhysRevLett.127.184101
10.1063/5.0097129
10.1103/PhysRevB.89.075113
10.1049/ip-map:20050119
10.1002/lpor.202100300
10.1364/OL.460484
10.1103/PhysRevResearch.4.023047
10.1038/lsa.2016.94
10.1038/nphys3611
10.1038/ncomms1669
10.1103/PhysRevB.97.195307
10.1021/acs.nanolett.1c00449
10.1103/RevModPhys.82.1959
10.1038/nature22404
10.1103/PhysRevLett.100.096407
10.1126/science.aap9859
10.1126/sciadv.aaw4137
10.1103/PhysRevLett.126.206602
10.1364/OME.416835
10.1103/PhysRevLett.85.3966
10.1088/0370-1298/68/10/304
10.1002/adom.201800532
10.1109/TMTT.2005.845211
10.1103/PhysRevApplied.14.054028
10.1038/s41467-021-25305-z
10.1103/PhysRevLett.123.043201
10.1038/nature08293
10.1103/PhysRevLett.95.223902
10.1126/science.aaa9519
10.1103/PhysRevLett.129.090503
10.1038/lsa.2015.101
10.1038/nphys3999
10.1038/s41377-021-00614-6
10.1038/s41467-019-10086-3
10.1103/PhysRevLett.113.240403
10.1038/s41467-018-07030-2
10.1038/ncomms12435
10.1002/advs.202301128
10.1126/science.1234414
10.1038/s41467-017-00134-1
10.1364/OL.34.001633
10.1021/ph4000949
10.1016/j.chip.2022.100025
10.1103/PhysRevLett.122.153902
10.1126/science.1102896
10.1364/PRJ.413873
10.1103/PhysRevLett.128.093901
10.1038/s41586-018-0764-0
10.1103/PhysRevB.97.085148
10.1103/PhysRevLett.114.037402
10.1103/PhysRevApplied.20.024076
10.1103/PhysRevLett.126.215302
10.1103/RevModPhys.87.137
10.1103/PhysRevLett.111.103901
10.1103/PhysRevLett.128.013902
10.1103/PhysRevB.100.125108
10.1038/srep22270
10.1364/OE.27.025841
10.1103/PhysRevB.97.020102
10.1103/PhysRevLett.121.086803
10.1038/s41377-020-0331-y
10.1364/OE.470783
10.1103/PhysRevLett.128.157601
10.1002/adom.201900036
10.1103/PhysRevLett.112.096805
10.1103/PhysRevLett.100.013904
10.1103/PhysRevLett.118.166803
10.1038/s41566-020-0618-9
10.1109/T-ED.1976.18476
10.1038/srep11686
10.1103/PhysRevB.98.235125
10.1103/PhysRevLett.121.163901
10.1038/nmat3783
10.1103/PhysRevB.101.165427
10.1103/PhysRevApplied.9.034032
10.1103/PhysRevB.74.035419
10.1103/PhysRevB.95.161114
10.1515/nanoph-2022-0309
10.1126/science.aar4005
10.1364/OL.391764
10.1038/s41565-019-0584-x
10.1002/lpor.201800339
10.1038/s41565-024-01737-8
10.1126/science.aay1064
10.1103/PhysRevLett.129.086601
10.1103/RevModPhys.82.3045
10.1038/ncomms6782
10.1103/PhysRevB.103.245305
10.1103/PhysRevLett.114.223901
10.1364/OE.26.008634
10.1364/OPEX.13.010238
10.1038/nnano.2012.95
10.1103/PhysRevB.96.094106
10.1038/nphys3228
10.1038/nmat3520
10.1038/nature23281
10.1364/OME.416552
10.1103/PhysRevLett.115.200402
10.1002/pssb.200844125
10.1103/PhysRevLett.125.180403
10.1103/PhysRevLett.100.236801
10.1103/PhysRevApplied.18.014056
10.1063/1.5004073
10.1038/s41467-022-32909-6
10.1038/nature12066
10.1038/s41567-020-0807-y
10.1126/science.aax8156
10.1103/PhysRevB.101.205309
10.1038/s41377-022-00821-9
10.1103/PhysRevB.93.035422
10.1103/PhysRevB.96.041408
10.1038/d41586-021-02677-2
10.1515/nanoph-2019-0137
10.1038/ncomms13368
10.1063/1.4982620
10.1038/s41567-021-01493-9
10.1103/PhysRevLett.106.106802
10.1002/adpr.202100013
10.1103/PhysRevLett.121.023901
10.1088/2040-8986/ac2e15
10.1103/PhysRevLett.99.236809
10.3390/app8040596
10.1103/RevModPhys.91.015006
10.1038/s41467-018-03330-9
10.1103/PhysRevLett.122.117401
10.1103/PhysRevLett.112.107403
10.1038/s41586-020-03125-3
10.1038/s41565-018-0297-6
10.1038/srep21461
10.1103/PhysRevLett.129.043602
10.1038/s41467-023-42321-3
10.1038/s41566-019-0452-0
10.1103/PhysRevLett.125.143001
10.1038/nature05343
10.1038/s41467-019-12778-2
10.1063/5.0104358
10.1038/nature25777
10.1002/lpor.202200071
10.1038/s42005-020-00395-1
10.1038/nmat4811
10.1038/nphys3776
10.1103/PhysRevResearch.3.033106
10.1063/1.5128679
10.1364/OE.24.018580
10.1103/PhysRevApplied.15.014009
10.1016/0022-2364(82)90221-9
10.1002/adma.202202241
10.1126/science.aar4003
10.1364/OL.36.002513
10.1103/PhysRevB.99.094206
10.1063/5.0083989
10.1364/OE.398421
10.1103/PhysRevA.105.033512
10.1038/s41377-019-0237-8
10.1038/s41567-020-01082-2
10.1126/science.abc4975
10.1364/OE.26.024531
10.1038/s41566-017-0051-x
10.1103/PhysRevLett.95.146802
10.1038/nature14889
10.1364/OL.40.005259
10.1103/PhysRevB.95.174106
10.1038/nphoton.2016.253
10.1103/PhysRevLett.42.1698
10.1364/OE.26.000627
10.1103/PhysRevLett.123.165701
10.1038/nature18604
10.1364/OE.26.024307
10.1002/lpor.201900126
10.1103/PhysRevB.93.041415
10.1103/PhysRevLett.122.237601
10.1038/s41567-020-0796-x
10.1088/1367-2630/7/1/168
10.1364/PRJ.7.001075
10.1088/1361-6463/ac2e89
10.1063/1.2209031
10.1209/0295-5075/85/14005
10.1364/OPTICA.6.000839
10.1103/PhysRevB.96.184305
10.1103/PhysRevLett.122.233902
10.1103/PhysRevResearch.4.L032031
10.1063/5.0011719
10.1364/OE.439729
10.1103/PhysRevB.94.174307
10.1364/OL.41.001644
10.1038/s41467-021-25835-6
10.1126/science.aaq1221
10.1103/PhysRevLett.121.024301
10.1063/1.5055601
10.1103/PhysRevApplied.17.064008
10.1103/PhysRevResearch.5.L012012
10.1063/5.0051239
10.1038/s41377-021-00607-5
10.1126/science.1058847
10.1103/PhysRevLett.120.205501
10.1070/1063-7869/44/10S/S29
10.1002/lpor.201900159
10.1038/s41598-022-10189-w
10.1088/1367-2630/aa66f8
10.1364/OE.417887
10.1117/1.AP.4.4.046002
10.1103/PhysRevB.99.115410
10.1103/PhysRevLett.128.116802
10.1103/PhysRevLett.127.105901
10.1109/22.798002
10.1038/nphys4072
10.1126/science.abj5488
10.1103/PhysRevA.96.023864
10.1103/PhysRevLett.100.013905
10.1126/science.abf6873
10.1364/PRJ.451344
10.1038/s41467-018-03434-2
10.1002/adma.201805002
10.1038/s41566-022-00972-6
10.1038/srep24347
10.1038/s41586-018-0829-0
10.1038/nphys4323
10.1103/PhysRevLett.128.116803
10.1002/mop.21021
10.1038/s41566-019-0561-9
10.1088/1674-1056/ac3815
10.1364/OE.24.018059
10.1126/science.abi7803
10.1103/PhysRevA.105.033501
10.1364/OL.43.001986
10.1103/PhysRevB.98.024205
10.1103/PhysRevResearch.2.043233
10.1103/PhysRevLett.128.257401
10.1002/adom.201900900
10.1103/PhysRevB.97.054307
10.1103/PhysRevLett.122.233903
10.1039/C5NR00231A
10.1038/s41586-021-03833-4
10.1103/PhysRevLett.119.130501
10.1103/PhysRevB.93.155112
10.1063/5.0060007
10.1103/PhysRevLett.128.223903
10.1103/PhysRevLett.127.013901
10.1103/PhysRevLett.114.127401
10.1038/s41377-022-00972-9
10.1103/PhysRevLett.123.103901
10.1103/PhysRevLett.125.206402
10.1103/RevModPhys.83.1057
10.1080/02726340490457890
10.1364/AOP.418074
10.1007/s11433-021-1785-y
10.1038/srep32752
10.1103/PhysRevB.103.235110
10.1038/nphoton.2013.321
10.1038/nphoton.2012.302
10.1364/OE.432964
10.1016/j.revip.2022.100076
10.1103/PhysRevLett.121.124501
10.1038/nphoton.2012.236
10.1038/s41566-017-0048-5
10.1103/PhysRevB.76.073101
10.1103/PhysRevLett.110.076403
10.1103/PhysRevLett.129.053903
10.1103/PhysRevLett.114.123901
10.1103/PhysRevResearch.4.L032015
10.1038/s41566-017-0031-1
10.1038/s41467-017-01205-z
10.1103/PhysRevApplied.13.014047
10.1103/PhysRevB.91.064201
10.1038/s41586-019-1348-3
10.1103/PhysRevApplied.11.031004
10.1364/OE.25.023293
10.1126/sciadv.aap8802
10.1103/PhysRevLett.109.106402
10.1063/1.1136574
10.1103/PhysRevLett.115.177001
10.1364/OE.431038
10.1038/s41565-018-0324-7
10.1002/lpor.202100269
10.1038/nature23280
10.1103/PhysRevLett.121.213902
10.1103/PhysRevA.75.063813
10.1103/PhysRevLett.104.043903
10.1021/acsphotonics.1c01874
10.29026/oes.2022.220001
10.1364/OE.26.012891
10.1103/PhysRevLett.112.203901
10.1103/PhysRevLett.118.084303
10.1103/PhysRevLett.120.246601
10.1038/ncomms7710
10.1038/srep29202
10.1103/PhysRevMaterials.2.105201
ContentType Journal Article
Copyright 2023 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2023 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
M2P
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1002/apxr.202300125
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2751-1200
EndPage n/a
ExternalDocumentID oai_doaj_org_article_e7f099f3099c4688814d33b4565ce668
10_1002_apxr_202300125
APXR12164
Genre reviewArticle
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2021YFA1400602; 2023YFA1407600
– fundername: National Natural Science Foundation of China
  funderid: 12004284; 12374294
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 22120210579
– fundername: Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission
  funderid: 21CGA22
GroupedDBID 0R~
24P
88I
AAFWJ
AAMMB
ABJCF
ABUWG
ACCMX
AEFGJ
AEUYN
AFKRA
AFPKN
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
KB.
M2P
M~E
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
ARCSS
D1I
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
PUEGO
WIN
ID FETCH-LOGICAL-c3494-90655835c53676e604a2e4b79dcc492c45921686d0649ae5fd204832c057d7373
IEDL.DBID BENPR
ISSN 2751-1200
IngestDate Wed Aug 27 00:57:38 EDT 2025
Fri Jul 25 11:44:20 EDT 2025
Tue Jul 01 02:33:00 EDT 2025
Thu Apr 24 22:52:14 EDT 2025
Sun Jul 06 04:45:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3494-90655835c53676e604a2e4b79dcc492c45921686d0649ae5fd204832c057d7373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8973-307X
OpenAccessLink https://www.proquest.com/docview/3192221327?pq-origsite=%requestingapplication%
PQID 3192221327
PQPubID 6852862
PageCount 35
ParticipantIDs doaj_primary_oai_doaj_org_article_e7f099f3099c4688814d33b4565ce668
proquest_journals_3192221327
crossref_citationtrail_10_1002_apxr_202300125
crossref_primary_10_1002_apxr_202300125
wiley_primary_10_1002_apxr_202300125_APXR12164
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
20240601
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationPlace Edinburgh
PublicationPlace_xml – name: Edinburgh
PublicationTitle Advanced Physics Research
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2018; 560
2009; 85
2021; 64
2021; 66
2020; 20
2019; 11
2019; 10
2019; 13
2018; 564
2019; 14
1999; 47
2004; 24
2020; 16
2020; 15
2019; 18
2020; 14
2020; 13
2020; 11
2001; 44
2008; 100
2019; 21
2008; 25
2019; 27
2013; 111
2016; 41
2013; 60
2013; 110
2012; 24
2006; 444
2016; 10
2013; 340
2008; 245
2020; 32
2016; 18
2004; 306
2016; 15
2011; 7
2016; 12
2016; 5
2017; 50
2016; 6
2016; 7
2015; 115
2018; 359
2022; 3
2022; 4
2019; 44
2022; 5
2015; 114
2022; 7
2022; 9
2002; 65
2005; 95
2020; 28
2005; 7
2022; 1
2018; 98
2018; 97
2016; 24
2017; 119
2021; 126
2016; 108
2021; 127
2020; 127
2020; 368
2008; 78
2020; 367
2020; 124
2017; 110
2020; 125
2017; 118
2014; 1
2023; 20
2020; 7
2023; 21
2020; 6
2014; 5
2020; 3
2014; 4
2020; 2
2023; 23
2021; 597
2013; 12
2021; 598
2020; 370
2020; 9
2016; 113
2003; 5
2016; 116
2020; 45
2014; 8
2012; 336
1968; 10
2021; 9
2002; 38
2023; 10
2021; 8
2004; 85
2021; 6
2015; 6
2021; 4
2015; 5
2023; 14
2021; 3
2015; 4
2023; 11
2021; 2
2017; 25
2011
2021; 104
2021; 103
2021; 589
2006; 153
2020; 101
2004
2021; 1
2015; 7
2014; 89
2010; 82
2011; 106
2023
2017; 16
2017; 11
2017; 13
2018; 555
1980; 3
2020; 116
2020; 117
1962
2017; 19
2008; 455
1979; 42
1981; 52
2007; 49
2019; 91
2019; 99
2010; 104
2000; 85
2022; 24
2019; 565
2013; 7
2007; 75
2007; 76
2018; 43
2022; 28
2013; 9
2018; 6
2018; 9
2018; 8
2018; 2
2018; 5
2018; 4
2018; 1
2015; 87
2022; 34
2021; 272
2014; 13
2022; 30
2018; 30
2022; 31
2015; 91
2007; 3
2007; 1
2009; 246
2019; 8
2019; 7
2019; 9
2019; 6
2019; 1
2011; 83
2016; 94
2003; 39
2016; 93
2015; 525
2007; 98
2007; 99
1955; 68
2019; 100
2018; 26
2012; 108
2012; 109
2017; 548
1982; 47
2022; 12
2022; 13
2021; 373
2021; 372
2021; 130
2022; 10
2022; 11
2009; 461
2021; 374
2022; 227
2018; 10
2022; 106
2022; 16
2022; 17
2022; 105
2018; 14
2022; 102
2022; 18
2009; 105
2005; 13
2017; 546
2019; 571
2018; 120
2017; 7
2018; 121
2017; 8
2006; 74
2021; 21
2021; 23
1976; 23
2023; 5
2021; 29
2018; 123
2011; 13
2023; 2
2022; 65
2015; 348
2019; 122
2019; 123
2019; 365
2019; 363
2021; 36
2021; 35
2022; 120
2021; 38
2022; 121
2015; 40
2001; 292
2023; 133
2005; 30
2019; 114
2022; 128
2022; 129
2006; 99
2023; 123
2015; 11
2022; 47
2011; 36
2006; 314
2014; 112
2005; 46
2014; 113
2017; 95
2009; 34
2021; 13
2021; 16
2017; 96
2021; 15
2021; 10
1976; 14
2012; 3
2017; 93
2021; 12
2021; 11
2016; 537
2021; 17
2021; 19
2013; 496
2005; 53
2022; 55
2012; 6
2012; 7
2012; 85
e_1_2_8_241_1
e_1_2_8_287_1
e_1_2_8_264_1
e_1_2_8_309_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_471_1
e_1_2_8_494_1
e_1_2_8_407_1
e_1_2_8_132_1
e_1_2_8_155_1
e_1_2_8_178_1
e_1_2_8_385_1
Wang Z. (e_1_2_8_299_1) 2022; 106
e_1_2_8_9_1
e_1_2_8_362_1
e_1_2_8_230_1
e_1_2_8_276_1
e_1_2_8_253_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_482_1
e_1_2_8_419_1
e_1_2_8_120_1
e_1_2_8_143_1
e_1_2_8_166_1
e_1_2_8_189_1
e_1_2_8_91_1
e_1_2_8_429_1
e_1_2_8_374_1
e_1_2_8_397_1
e_1_2_8_351_1
e_1_2_8_470_1
e_1_2_8_242_1
e_1_2_8_265_1
e_1_2_8_48_1
e_1_2_8_493_1
e_1_2_8_408_1
e_1_2_8_288_1
e_1_2_8_133_1
e_1_2_8_179_1
e_1_2_8_110_1
e_1_2_8_386_1
e_1_2_8_363_1
e_1_2_8_340_1
e_1_2_8_156_1
e_1_2_8_481_1
e_1_2_8_231_1
e_1_2_8_254_1
e_1_2_8_14_1
e_1_2_8_37_1
e_1_2_8_277_1
e_1_2_8_428_1
e_1_2_8_144_1
e_1_2_8_90_1
e_1_2_8_121_1
e_1_2_8_375_1
e_1_2_8_352_1
e_1_2_8_398_1
e_1_2_8_167_1
e_1_2_8_28_1
e_1_2_8_492_1
e_1_2_8_243_1
Jia N. Y. (e_1_2_8_459_1) 2015; 5
e_1_2_8_220_1
e_1_2_8_409_1
e_1_2_8_266_1
e_1_2_8_289_1
e_1_2_8_81_1
e_1_2_8_439_1
e_1_2_8_111_1
e_1_2_8_7_1
e_1_2_8_341_1
e_1_2_8_364_1
e_1_2_8_387_1
e_1_2_8_134_1
e_1_2_8_157_1
e_1_2_8_17_1
e_1_2_8_480_1
e_1_2_8_232_1
Lai K. (e_1_2_8_73_1) 2016; 6
e_1_2_8_255_1
e_1_2_8_278_1
e_1_2_8_427_1
e_1_2_8_70_1
e_1_2_8_122_1
e_1_2_8_330_1
e_1_2_8_353_1
Grover F. W. (e_1_2_8_315_1) 1962
e_1_2_8_376_1
e_1_2_8_399_1
e_1_2_8_145_1
e_1_2_8_168_1
e_1_2_8_93_1
e_1_2_8_491_1
e_1_2_8_221_1
e_1_2_8_27_1
e_1_2_8_244_1
e_1_2_8_267_1
Xu H. S. (e_1_2_8_381_1) 2022; 4
e_1_2_8_438_1
e_1_2_8_80_1
e_1_2_8_342_1
e_1_2_8_8_1
e_1_2_8_365_1
e_1_2_8_112_1
e_1_2_8_158_1
e_1_2_8_388_1
e_1_2_8_135_1
e_1_2_8_39_1
e_1_2_8_210_1
e_1_2_8_16_1
e_1_2_8_233_1
e_1_2_8_256_1
e_1_2_8_279_1
e_1_2_8_426_1
e_1_2_8_449_1
e_1_2_8_92_1
Liu M. K. (e_1_2_8_369_1) 2018; 8
e_1_2_8_331_1
e_1_2_8_354_1
e_1_2_8_123_1
e_1_2_8_169_1
e_1_2_8_377_1
e_1_2_8_146_1
e_1_2_8_283_1
e_1_2_8_452_1
e_1_2_8_260_1
e_1_2_8_475_1
e_1_2_8_498_1
e_1_2_8_207_1
e_1_2_8_403_1
e_1_2_8_151_1
e_1_2_8_174_1
e_1_2_8_197_1
e_1_2_8_328_1
e_1_2_8_60_1
e_1_2_8_83_1
e_1_2_8_305_1
e_1_2_8_19_1
e_1_2_8_295_1
e_1_2_8_109_1
e_1_2_8_272_1
e_1_2_8_440_1
e_1_2_8_463_1
e_1_2_8_486_1
Wang Q. (e_1_2_8_212_1) 2017; 7
e_1_2_8_415_1
e_1_2_8_95_1
e_1_2_8_162_1
e_1_2_8_370_1
e_1_2_8_393_1
e_1_2_8_185_1
e_1_2_8_72_1
e_1_2_8_317_1
e_1_2_8_29_1
e_1_2_8_284_1
e_1_2_8_329_1
e_1_2_8_474_1
e_1_2_8_451_1
e_1_2_8_497_1
e_1_2_8_404_1
e_1_2_8_152_1
e_1_2_8_208_1
e_1_2_8_382_1
e_1_2_8_175_1
e_1_2_8_82_1
e_1_2_8_198_1
e_1_2_8_18_1
e_1_2_8_318_1
e_1_2_8_273_1
e_1_2_8_296_1
e_1_2_8_485_1
e_1_2_8_250_1
e_1_2_8_462_1
e_1_2_8_416_1
e_1_2_8_94_1
e_1_2_8_394_1
e_1_2_8_163_1
e_1_2_8_140_1
e_1_2_8_186_1
e_1_2_8_71_1
e_1_2_8_307_1
e_1_2_8_285_1
e_1_2_8_450_1
e_1_2_8_473_1
e_1_2_8_496_1
e_1_2_8_360_1
e_1_2_8_383_1
e_1_2_8_405_1
e_1_2_8_130_1
e_1_2_8_153_1
e_1_2_8_209_1
e_1_2_8_62_1
e_1_2_8_85_1
e_1_2_8_176_1
e_1_2_8_199_1
e_1_2_8_319_1
e_1_2_8_251_1
e_1_2_8_297_1
e_1_2_8_274_1
e_1_2_8_484_1
e_1_2_8_417_1
e_1_2_8_372_1
e_1_2_8_395_1
e_1_2_8_141_1
e_1_2_8_164_1
e_1_2_8_97_1
e_1_2_8_51_1
e_1_2_8_74_1
e_1_2_8_187_1
e_1_2_8_240_1
e_1_2_8_263_1
e_1_2_8_286_1
e_1_2_8_308_1
e_1_2_8_495_1
e_1_2_8_472_1
e_1_2_8_406_1
e_1_2_8_154_1
e_1_2_8_384_1
e_1_2_8_131_1
e_1_2_8_361_1
e_1_2_8_84_1
e_1_2_8_61_1
e_1_2_8_177_1
e_1_2_8_252_1
e_1_2_8_275_1
e_1_2_8_298_1
e_1_2_8_460_1
e_1_2_8_483_1
Guo Z. W. (e_1_2_8_57_1) 2023; 2
e_1_2_8_418_1
Eaton S. S. (e_1_2_8_306_1) 2004
Yang Y. T. (e_1_2_8_461_1) 2021; 64
e_1_2_8_165_1
e_1_2_8_373_1
e_1_2_8_96_1
e_1_2_8_142_1
e_1_2_8_396_1
Jiang H. W. (e_1_2_8_268_1) 2021; 4
e_1_2_8_50_1
e_1_2_8_188_1
Guo J. Y. (e_1_2_8_261_1) 2008; 25
e_1_2_8_203_1
e_1_2_8_249_1
e_1_2_8_433_1
e_1_2_8_456_1
e_1_2_8_479_1
e_1_2_8_226_1
e_1_2_8_117_1
e_1_2_8_170_1
e_1_2_8_193_1
e_1_2_8_290_1
e_1_2_8_324_1
e_1_2_8_64_1
e_1_2_8_87_1
e_1_2_8_301_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_347_1
Zhong H. (e_1_2_8_218_1) 2021; 35
e_1_2_8_291_1
e_1_2_8_238_1
e_1_2_8_421_1
e_1_2_8_467_1
e_1_2_8_444_1
e_1_2_8_215_1
e_1_2_8_411_1
e_1_2_8_99_1
e_1_2_8_105_1
e_1_2_8_128_1
e_1_2_8_181_1
e_1_2_8_53_1
e_1_2_8_76_1
e_1_2_8_313_1
e_1_2_8_30_1
e_1_2_8_336_1
e_1_2_8_359_1
Bandres M. A. (e_1_2_8_350_1) 2016; 6
e_1_2_8_280_1
e_1_2_8_432_1
e_1_2_8_478_1
e_1_2_8_455_1
e_1_2_8_227_1
e_1_2_8_204_1
e_1_2_8_2_1
e_1_2_8_400_1
e_1_2_8_171_1
e_1_2_8_302_1
e_1_2_8_86_1
e_1_2_8_118_1
e_1_2_8_194_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_348_1
Zhang X. J. (e_1_2_8_410_1) 2022; 7
Kawabata K. (e_1_2_8_425_1) 2018; 9
e_1_2_8_292_1
e_1_2_8_420_1
e_1_2_8_443_1
e_1_2_8_489_1
e_1_2_8_239_1
e_1_2_8_466_1
e_1_2_8_216_1
e_1_2_8_412_1
e_1_2_8_98_1
e_1_2_8_390_1
e_1_2_8_106_1
e_1_2_8_182_1
e_1_2_8_75_1
e_1_2_8_129_1
e_1_2_8_52_1
e_1_2_8_314_1
e_1_2_8_337_1
e_1_2_8_281_1
e_1_2_8_431_1
e_1_2_8_454_1
e_1_2_8_477_1
e_1_2_8_228_1
e_1_2_8_205_1
e_1_2_8_401_1
e_1_2_8_43_1
e_1_2_8_66_1
e_1_2_8_89_1
e_1_2_8_119_1
e_1_2_8_172_1
e_1_2_8_195_1
e_1_2_8_303_1
e_1_2_8_349_1
e_1_2_8_326_1
e_1_2_8_293_1
e_1_2_8_270_1
e_1_2_8_442_1
e_1_2_8_465_1
e_1_2_8_488_1
e_1_2_8_217_1
e_1_2_8_413_1
e_1_2_8_391_1
e_1_2_8_160_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_78_1
e_1_2_8_107_1
e_1_2_8_183_1
e_1_2_8_338_1
e_1_2_8_282_1
e_1_2_8_430_1
e_1_2_8_453_1
e_1_2_8_499_1
e_1_2_8_229_1
e_1_2_8_476_1
e_1_2_8_206_1
e_1_2_8_402_1
e_1_2_8_150_1
e_1_2_8_380_1
e_1_2_8_42_1
e_1_2_8_88_1
e_1_2_8_65_1
Kagami H. (e_1_2_8_126_1) 2022; 47
e_1_2_8_173_1
e_1_2_8_304_1
e_1_2_8_327_1
e_1_2_8_196_1
e_1_2_8_271_1
e_1_2_8_294_1
e_1_2_8_441_1
e_1_2_8_464_1
e_1_2_8_487_1
Paz M. B. (e_1_2_8_100_1) 2020; 3
e_1_2_8_414_1
Yun J. (e_1_2_8_25_1) 2022; 7
e_1_2_8_161_1
e_1_2_8_392_1
e_1_2_8_31_1
e_1_2_8_77_1
e_1_2_8_54_1
e_1_2_8_108_1
e_1_2_8_184_1
e_1_2_8_339_1
e_1_2_8_316_1
e_1_2_8_490_1
e_1_2_8_68_1
e_1_2_8_222_1
e_1_2_8_245_1
e_1_2_8_437_1
e_1_2_8_5_1
e_1_2_8_320_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_343_1
e_1_2_8_366_1
e_1_2_8_113_1
e_1_2_8_136_1
e_1_2_8_159_1
e_1_2_8_389_1
e_1_2_8_211_1
e_1_2_8_234_1
e_1_2_8_257_1
e_1_2_8_448_1
Aubry S. (e_1_2_8_355_1) 1980; 3
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_332_1
e_1_2_8_101_1
e_1_2_8_124_1
e_1_2_8_147_1
e_1_2_8_378_1
e_1_2_8_200_1
e_1_2_8_223_1
Marqués R. (e_1_2_8_323_1) 2002; 65
e_1_2_8_436_1
e_1_2_8_246_1
e_1_2_8_269_1
e_1_2_8_6_1
Qian K. (e_1_2_8_371_1) 2023; 5
Marqués R (e_1_2_8_325_1) 2011
e_1_2_8_21_1
e_1_2_8_67_1
e_1_2_8_321_1
e_1_2_8_367_1
e_1_2_8_44_1
e_1_2_8_344_1
e_1_2_8_137_1
e_1_2_8_114_1
e_1_2_8_79_1
e_1_2_8_447_1
e_1_2_8_235_1
e_1_2_8_258_1
Milicevi'c M. (e_1_2_8_219_1) 2019; 9
e_1_2_8_10_1
e_1_2_8_56_1
e_1_2_8_310_1
e_1_2_8_356_1
e_1_2_8_33_1
e_1_2_8_333_1
e_1_2_8_102_1
e_1_2_8_148_1
e_1_2_8_125_1
e_1_2_8_379_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_224_1
e_1_2_8_201_1
Gong Z. (e_1_2_8_424_1) 2018; 8
e_1_2_8_435_1
e_1_2_8_458_1
e_1_2_8_247_1
e_1_2_8_3_1
e_1_2_8_322_1
e_1_2_8_345_1
e_1_2_8_368_1
e_1_2_8_138_1
e_1_2_8_115_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_190_1
e_1_2_8_213_1
e_1_2_8_259_1
e_1_2_8_423_1
e_1_2_8_446_1
e_1_2_8_236_1
e_1_2_8_469_1
Xiao M. (e_1_2_8_262_1) 2014; 4
e_1_2_8_311_1
e_1_2_8_334_1
e_1_2_8_357_1
e_1_2_8_149_1
e_1_2_8_103_1
e_1_2_8_46_1
e_1_2_8_69_1
e_1_2_8_180_1
e_1_2_8_202_1
e_1_2_8_225_1
e_1_2_8_248_1
e_1_2_8_434_1
e_1_2_8_457_1
Liu J. W. (e_1_2_8_20_1) 2021; 6
e_1_2_8_4_1
e_1_2_8_192_1
e_1_2_8_300_1
e_1_2_8_116_1
e_1_2_8_346_1
e_1_2_8_23_1
e_1_2_8_139_1
e_1_2_8_35_1
e_1_2_8_58_1
e_1_2_8_191_1
e_1_2_8_214_1
e_1_2_8_237_1
e_1_2_8_422_1
e_1_2_8_445_1
e_1_2_8_468_1
e_1_2_8_127_1
e_1_2_8_335_1
e_1_2_8_12_1
e_1_2_8_312_1
e_1_2_8_104_1
e_1_2_8_358_1
References_xml – volume: 555
  start-page: 342
  year: 2018
  publication-title: Nature
– volume: 113
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 101
  year: 2020
  publication-title: Phys. Rev. A
– volume: 455
  start-page: 376
  year: 2008
  publication-title: Nature
– volume: 23
  year: 2021
  publication-title: J. Opt.
– volume: 359
  start-page: 1013
  year: 2018
  publication-title: Science
– volume: 1
  year: 2022
  publication-title: Opto‐Electron. Sci.
– volume: 20
  start-page: 1329
  year: 2020
  publication-title: Nano Lett.
– volume: 7
  start-page: 294
  year: 2013
  publication-title: Nat. Photon.
– volume: 370
  start-page: 600
  year: 2020
  publication-title: Science
– volume: 3
  start-page: 882
  year: 2012
  publication-title: Nat. Commun.
– volume: 7
  start-page: 2244
  year: 2020
  publication-title: ACS Photon.
– volume: 38
  year: 2021
  publication-title: Chin. Phys. Lett.
– volume: 44
  start-page: 3342
  year: 2019
  publication-title: Opt. Lett.
– volume: 1
  start-page: 2
  year: 2021
  publication-title: eLight
– volume: 7
  start-page: 974
  year: 2022
  publication-title: Nat. Rev. Mater.
– volume: 11
  start-page: 752
  year: 2017
  publication-title: Nat. Photon.
– volume: 246
  start-page: 1397
  year: 2009
  publication-title: Phys. Stat. Solidi B
– volume: 9
  year: 2018
  publication-title: Phys. Rev. X
– volume: 4
  start-page: 707
  year: 2021
  publication-title: Nat. Electron.
– volume: 106
  year: 2011
  publication-title: Phys. Rev. Lett.
– volume: 9
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 14
  start-page: 446
  year: 2020
  publication-title: Nat. Photonics
– volume: 87
  start-page: 137
  year: 2015
  publication-title: Rev. Mod. Phys.
– volume: 122
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 47
  start-page: 515
  year: 1982
  publication-title: J. Magn. Reson
– volume: 13
  start-page: 426
  year: 2021
  publication-title: Adv. Opt. Photon.
– volume: 127
  year: 2020
  publication-title: J. Appl. Phys.
– volume: 12
  start-page: 233
  year: 2013
  publication-title: Nat. Mater.
– volume: 65
  year: 2002
  publication-title: Phys. Rev. B
– volume: 7
  year: 2020
  publication-title: Appl. Phys. Rev.
– volume: 292
  start-page: 77
  year: 2001
  publication-title: Science
– volume: 16
  start-page: 433
  year: 2017
  publication-title: Nat. Mater.
– volume: 8
  start-page: 596
  year: 2018
  publication-title: Appl. Sci.
– volume: 6
  year: 2021
  publication-title: Adv. Phys. X.
– volume: 9
  start-page: 4598
  year: 2018
  publication-title: Nat. Commun.
– volume: 123
  year: 2019
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 1124
  year: 2016
  publication-title: Nat. Phys.
– volume: 9
  start-page: 3072
  year: 2018
  publication-title: Nat. Commun.
– volume: 6
  year: 2020
  publication-title: Sci. Adv.
– volume: 227
  year: 2022
  publication-title: Int. J. Mech. Sci.
– volume: 11
  start-page: 763
  year: 2017
  publication-title: Nat. Photon.
– volume: 40
  start-page: 5259
  year: 2015
  publication-title: Opt. Lett.
– volume: 82
  start-page: 1959
  year: 2010
  publication-title: Rev. Mod. Phys.
– volume: 10
  start-page: 1090
  year: 2022
  publication-title: Photon. Res.
– volume: 24
  year: 2016
  publication-title: Opt. Express
– volume: 314
  start-page: 1757
  year: 2006
  publication-title: Science
– volume: 125
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 13
  start-page: 369
  year: 2017
  publication-title: Nat. Phys.
– volume: 13
  start-page: 692
  year: 2019
  publication-title: Nat. Photon.
– volume: 65
  year: 2022
  publication-title: Sci. Chin. Phys. Mech. Astro.
– volume: 6
  start-page: 6710
  year: 2015
  publication-title: Nat. Commun.
– volume: 565
  start-page: 622
  year: 2019
  publication-title: Nature
– volume: 13
  start-page: 611
  year: 2017
  publication-title: Nat. Phys.
– volume: 9
  start-page: 130
  year: 2020
  publication-title: Light Sci. Appl.
– volume: 461
  start-page: 772
  year: 2009
  publication-title: Nature
– volume: 7
  start-page: 941
  year: 2013
  publication-title: Nat. Photon.
– volume: 65
  start-page: 4440
  year: 2002
  publication-title: Phys. Rev. B
– volume: 367
  start-page: 895
  year: 2020
  publication-title: Science
– volume: 13
  year: 2020
  publication-title: Phys. Rev. Appl.
– volume: 7
  start-page: 1075
  year: 2019
  publication-title: Photon. Res.
– volume: 112
  year: 2014
  publication-title: Phys. Rev. Lett.
– volume: 127
  year: 2021
  publication-title: Phys. Rev. Lett.
– volume: 597
  start-page: 655
  year: 2021
  publication-title: Nature
– volume: 47
  start-page: 2075
  year: 1999
  publication-title: IEEE Trans. Microw. Theory Tech.
– volume: 6
  year: 2016
  publication-title: Phys. Rev. X
– volume: 13
  start-page: 2123
  year: 2022
  publication-title: Nat. Commun.
– volume: 9
  start-page: 7
  year: 2020
  publication-title: Light: Sci. Appl.
– volume: 11
  start-page: 276
  year: 2022
  publication-title: Light Sci. Appl.
– volume: 12
  start-page: 5028
  year: 2021
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1143
  year: 2021
  publication-title: Opt. Mater. Express
– volume: 76
  year: 2007
  publication-title: Phys. Rev. B
– volume: 1
  start-page: 178
  year: 2018
  publication-title: Nat. Electron.
– volume: 10
  start-page: 509
  year: 1968
  publication-title: Sov. Phys. Uspekhi
– volume: 110
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 4347
  year: 2022
  publication-title: Nanophotonics
– volume: 29
  year: 2021
  publication-title: Opt. Express
– volume: 17
  year: 2022
  publication-title: Phys. Rev. Appl.
– volume: 589
  start-page: 381
  year: 2021
  publication-title: Nature
– volume: 104
  year: 2021
  publication-title: Phys. Rev. B
– volume: 116
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 13
  year: 2017
  publication-title: Small
– volume: 120
  year: 2022
  publication-title: Appl. Phys. Lett.
– volume: 598
  start-page: 29
  year: 2021
  publication-title: Nature
– volume: 4
  year: 2022
  publication-title: J. Phys. Photonics
– volume: 9
  start-page: 909
  year: 2018
  publication-title: Nat. Commun.
– volume: 11
  start-page: 240
  year: 2015
  publication-title: Nat. Phys.
– volume: 55
  year: 2022
  publication-title: J. Phys. D: Appl. Phys.
– year: 1962
– volume: 38
  start-page: 371
  year: 2002
  publication-title: Electron. Lett.
– volume: 30
  start-page: 3356
  year: 2005
  publication-title: Opt. Lett.
– volume: 5
  start-page: 157
  year: 2022
  publication-title: Nat. Electron.
– volume: 16
  year: 2022
  publication-title: Laser Photon. Rev.
– volume: 4
  year: 2022
  publication-title: Adv. Photon.
– volume: 23
  start-page: 3866
  year: 2023
  publication-title: Nano Lett.
– volume: 16
  start-page: 298
  year: 2017
  publication-title: Nat. Mater.
– volume: 10
  year: 2023
  publication-title: Adv. Sci.
– volume: 10
  start-page: 425
  year: 2021
  publication-title: Nanophotonics
– volume: 374
  start-page: 225
  year: 2021
  publication-title: Science
– volume: 7
  year: 2017
  publication-title: Sci. Rep.
– volume: 5
  year: 2015
  publication-title: Phys. Rev. X
– volume: 24
  year: 2022
  publication-title: New J. Phys.
– volume: 94
  year: 2016
  publication-title: Phys. Rev. B
– volume: 120
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 13
  year: 2011
  publication-title: New. J. Phys.
– volume: 99
  start-page: 509
  year: 2006
  publication-title: J. Appl. Phys.
– volume: 13
  start-page: 5404
  year: 2022
  publication-title: Nat. Commun.
– volume: 28
  year: 2020
  publication-title: Opt. Express
– volume: 106
  year: 2022
  publication-title: Phys. Rev. E
– volume: 6
  start-page: 839
  year: 2019
  publication-title: Optica
– volume: 47
  start-page: 4732
  year: 2022
  publication-title: Opt. Lett.
– volume: 8
  start-page: 1304
  year: 2018
  publication-title: Nat. Commun.
– volume: 16
  start-page: 462
  year: 2020
  publication-title: Nat. Phys.
– volume: 9
  start-page: 147
  year: 2020
  publication-title: Light Sci. Appl.
– volume: 21
  year: 2019
  publication-title: New J. Phys.
– volume: 363
  year: 2019
  publication-title: Science
– volume: 44
  start-page: 2530
  year: 2019
  publication-title: Opt. Lett.
– volume: 8
  start-page: 97
  year: 2017
  publication-title: Nat. Commun.
– volume: 17
  start-page: 995
  year: 2021
  publication-title: Nat. Phys.
– year: 2004
– volume: 31
  year: 2022
  publication-title: Chin. Phys. B
– volume: 13
  year: 2011
  publication-title: New J. Phys.
– volume: 113
  start-page: 4924
  year: 2016
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 9
  start-page: 547
  year: 2020
  publication-title: Nanophotonics
– volume: 10
  start-page: 2058
  year: 2019
  publication-title: Nat. Commun.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 168
  year: 2005
  publication-title: New J. Phys.
– volume: 85
  year: 2009
  publication-title: Europhys. Lett.
– volume: 100
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 9
  year: 2022
  publication-title: Rev. Phys.
– volume: 13
  year: 2005
  publication-title: Opt. Express
– volume: 8
  year: 2018
  publication-title: Phys. Rev. X
– volume: 2
  year: 2023
  publication-title: Adv. Photon. Nexus
– volume: 306
  start-page: 666
  year: 2004
  publication-title: Science
– volume: 15
  start-page: 67
  year: 2020
  publication-title: Nat. Nanotechnology
– volume: 13
  year: 2019
  publication-title: Laser Photon. Rev.
– volume: 4
  year: 2018
  publication-title: Sci. Adv.
– volume: 18
  year: 2022
  publication-title: Phys. Rev. Appl.
– volume: 19
  year: 2017
  publication-title: New J. Phys.
– volume: 12
  start-page: 5377
  year: 2021
  publication-title: Nat. Commun.
– volume: 4
  year: 2022
  publication-title: Adv. Mater.
– volume: 98
  year: 2018
  publication-title: Phys. Rev. B
– volume: 41
  start-page: 1644
  year: 2016
  publication-title: Opt. Lett.
– volume: 85
  start-page: 3966
  year: 2000
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 2805
  year: 2023
  publication-title: Opt. Lett.
– volume: 96
  year: 2017
  publication-title: Phys. Rev. A
– volume: 14
  year: 2020
  publication-title: Phys. Rev. Appl.
– volume: 6
  start-page: 8453
  year: 2016
  publication-title: Sci. Rep.
– volume: 14
  start-page: 126
  year: 2019
  publication-title: Nat. Nanotechnology
– volume: 9
  start-page: 981
  year: 2018
  publication-title: Nat. Commun.
– volume: 5
  year: 2023
  publication-title: Phys. Rev. Res.
– volume: 13
  start-page: 2973
  year: 2022
  publication-title: Nat. Commun.
– volume: 10
  start-page: 4780
  year: 2019
  publication-title: Nat. Commun.
– volume: 1
  start-page: 41
  year: 2007
  publication-title: Nat. Photon.
– volume: 525
  start-page: 354
  year: 2015
  publication-title: Nature
– volume: 16
  start-page: 3849
  year: 2021
  publication-title: Opt. Lett.
– volume: 3
  start-page: 130
  year: 2020
  publication-title: Commun. Phys.
– volume: 11
  start-page: 130
  year: 2017
  publication-title: Nat. Photonics
– volume: 14
  start-page: 31
  year: 2019
  publication-title: Nat. Nanotechnology
– volume: 2
  year: 2018
  publication-title: Phys. Rev. Mater.
– volume: 359
  start-page: 1009
  year: 2018
  publication-title: Science
– volume: 9
  start-page: 574
  year: 2021
  publication-title: Photon. Res.
– volume: 7
  start-page: 490
  year: 2012
  publication-title: Nat. Nanotechnol.
– volume: 10
  start-page: 872
  year: 2019
  publication-title: Nat. Commun.
– volume: 5
  start-page: 2572
  year: 2003
  publication-title: IEEE Trans. Antennas Propag.
– volume: 6
  year: 2016
  publication-title: Sci. Rep.
– volume: 26
  start-page: 627
  year: 2018
  publication-title: Opt. Express
– volume: 50
  year: 2017
  publication-title: J. Phys. D: Appl. Phys.
– volume: 4
  start-page: 328
  year: 2015
  publication-title: Light Sci. Appl.
– volume: 12
  start-page: 950
  year: 2016
  publication-title: Nat. Phys.
– volume: 9
  start-page: 5384
  year: 2018
  publication-title: Nat. Commun.
– volume: 13
  start-page: 57
  year: 2014
  publication-title: Nat. Mater.
– year: 2011
– volume: 9
  start-page: 3451
  year: 2020
  publication-title: Nanophotonics
– volume: 7
  start-page: 153
  year: 2013
  publication-title: Nat. photon.
– volume: 121
  year: 2018
  publication-title: Phys. Rev. Lett.
– volume: 3
  year: 2020
  publication-title: Adv. Quantum Tech.
– volume: 14
  start-page: 2239
  year: 1976
  publication-title: Phys. Rev. B
– volume: 23
  start-page: 724
  year: 1976
  publication-title: IEEE Trans. Electron Devices
– volume: 26
  year: 2018
  publication-title: Opt. Express
– volume: 40
  start-page: 3380
  year: 2015
  publication-title: Opt. Lett.
– volume: 2
  year: 2020
  publication-title: Phys. Rev. Res.
– volume: 95
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 97
  year: 2018
  publication-title: Phys. Rev. B
– volume: 8
  start-page: 1243
  year: 2017
  publication-title: Nat. Commun.
– volume: 4
  year: 2022
  publication-title: Phys. Rev. Res.
– volume: 11
  year: 2019
  publication-title: Phys. Rev. Appl.
– volume: 8
  start-page: 2095
  year: 2018
  publication-title: ACS Photonics
– volume: 11
  start-page: 243
  year: 2022
  publication-title: Light Sci. Appl.
– volume: 3
  year: 2021
  publication-title: Phys. Rev. Res.
– volume: 11
  start-page: 134
  year: 2022
  publication-title: Light Sci. Appl.
– volume: 108
  year: 2016
  publication-title: Appl. Phys. Lett.
– volume: 39
  start-page: 215
  year: 2003
  publication-title: Electron. Lett.
– year: 2023
  publication-title: Nat. Sci. Rev.
– volume: 4
  year: 2022
  publication-title: Phys. Rev. Research
– volume: 1
  start-page: 101
  year: 2014
  publication-title: ACS Photon.
– volume: 123
  year: 2018
  publication-title: J. Appl. Phys.
– volume: 93
  year: 2017
  publication-title: Phys. Rev. B
– volume: 108
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 68
  start-page: 874
  year: 1955
  publication-title: Proc. Phys. Soc. London A
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 340
  start-page: 167
  year: 2013
  publication-title: Science
– volume: 363
  start-page: 148
  year: 2019
  publication-title: Science
– volume: 85
  start-page: 4439
  year: 2004
  publication-title: Appl. Phys. Lett.
– volume: 99
  year: 2019
  publication-title: Phys. Rev. B
– volume: 9
  start-page: 4555
  year: 2018
  publication-title: Nat. Commun.
– volume: 564
  start-page: 229
  year: 2018
  publication-title: Nature
– volume: 44
  start-page: 131
  year: 2001
  publication-title: Physics‐Uspekhi
– volume: 245
  start-page: 1471
  year: 2008
  publication-title: Phys. Status Solidi
– volume: 98
  year: 2018
  publication-title: Phys.Rev. B
– volume: 34
  year: 2022
  publication-title: Adv. Mat.
– volume: 9
  start-page: 3029
  year: 2018
  publication-title: Nat. Commun.
– volume: 52
  start-page: 213
  year: 1981
  publication-title: Rev. Sci. Instrum.
– volume: 3
  start-page: 113
  year: 1980
  publication-title: Ann. Isr. Phys. Soc.
– volume: 14
  start-page: 3040
  year: 2023
  publication-title: Nat. Commun.
– volume: 82
  start-page: 3045
  year: 2010
  publication-title: Rev. Mod. Phys.
– volume: 102
  year: 2022
  publication-title: Phys. Rev. A
– volume: 8
  start-page: 1385
  year: 2021
  publication-title: ACS Photon
– volume: 365
  start-page: 1163
  year: 2019
  publication-title: Science
– volume: 3
  start-page: 107
  year: 2022
  publication-title: Optics
– volume: 18
  start-page: 450
  year: 2022
  publication-title: Nat. Phys.
– volume: 130
  year: 2021
  publication-title: J. Appl. Phys.
– volume: 1
  start-page: 80
  year: 2007
  publication-title: IET Proc. Microwaves Antennas Propag.
– volume: 12
  start-page: 7201
  year: 2021
  publication-title: Nat. Commun.
– volume: 99
  year: 2019
  publication-title: Phys. Rev. A
– volume: 116
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 20
  year: 2023
  publication-title: Phys. Rev. Appl.
– volume: 85
  year: 2012
  publication-title: Phys. Rev. B
– volume: 11
  start-page: 1820
  year: 2020
  publication-title: Nat. Commun.
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 30
  year: 2022
  publication-title: Opt. Express
– volume: 123
  year: 2023
  publication-title: Appl. Phys. Lett.
– volume: 7
  year: 2022
  publication-title: Adv. Phys. X
– volume: 10
  start-page: 656
  year: 2016
  publication-title: Laser Photonics Rev.
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 46
  start-page: 473
  year: 2005
  publication-title: Microwave Opt. Technol. Lett.
– volume: 7
  start-page: 907
  year: 2011
  publication-title: Nat. Phys.
– volume: 19
  year: 2021
  publication-title: Chin. Opt. Lett.
– volume: 5
  start-page: 1396
  year: 2018
  publication-title: Optica
– volume: 348
  start-page: 1448
  year: 2015
  publication-title: Science
– volume: 47
  start-page: 2951
  year: 2022
  publication-title: Opt. Lett.
– volume: 15
  start-page: 542
  year: 2016
  publication-title: Nat. Mater.
– volume: 1
  year: 2019
  publication-title: Phys. Rev. Res.
– volume: 66
  start-page: 974
  year: 2021
  publication-title: Sci. Bull.
– volume: 370
  start-page: 701
  year: 2020
  publication-title: Science
– volume: 99
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 1400
  year: 2021
  publication-title: ACS Photon.
– volume: 34
  start-page: 1633
  year: 2009
  publication-title: Opt. Lett.
– volume: 78
  year: 2008
  publication-title: Phys. Rev. E
– volume: 114
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 129
  year: 2022
  publication-title: Phys. Rev. Lett.
– volume: 5
  year: 2016
  publication-title: Light. Sci. Appl.
– volume: 45
  start-page: 2648
  year: 2020
  publication-title: Opt. Lett.
– volume: 49
  start-page: 1054
  year: 2007
  publication-title: Microwave Opt. Technol. Lett.
– volume: 105
  year: 2022
  publication-title: Phys. Rev. B
– volume: 306
  start-page: 1351
  year: 2004
  publication-title: Science
– volume: 114
  year: 2019
  publication-title: Appl. Phys. Lett.
– volume: 32
  year: 2020
  publication-title: Adv. Mater.
– volume: 12
  start-page: 337
  year: 2016
  publication-title: Nat. Phys.
– volume: 10
  start-page: 1613
  year: 2023
  publication-title: Photon. Res.
– volume: 15
  year: 2021
  publication-title: Phys. Rev. Appl.
– volume: 546
  start-page: 387
  year: 2017
  publication-title: Nature
– volume: 118
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 821
  year: 2014
  publication-title: Nat. Photon.
– volume: 8
  start-page: 1433
  year: 2019
  publication-title: Nanophotonics
– volume: 4
  start-page: 3842
  year: 2015
  publication-title: Sci. Rep.
– volume: 103
  year: 2021
  publication-title: Phys. Rev. B
– volume: 35
  year: 2021
  publication-title: Adv. Photon.
– volume: 571
  start-page: 45
  year: 2019
  publication-title: Nature
– volume: 109
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 36
  start-page: 8861
  year: 2021
  publication-title: IEEE Trans. Power Electron.
– volume: 128
  year: 2022
  publication-title: Phys. Rev. Lett.
– volume: 91
  year: 2015
  publication-title: Phys. Rev. B
– volume: 11
  start-page: 774
  year: 2017
  publication-title: Nat. Photon.
– volume: 24
  start-page: 5782
  year: 2012
  publication-title: Adv. Mater.
– volume: 89
  year: 2014
  publication-title: Phys. Rev. B
– volume: 18
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 43
  start-page: 5142
  year: 2018
  publication-title: Opt. Lett.
– volume: 444
  start-page: 597
  year: 2006
  publication-title: Nature
– volume: 3
  start-page: 202
  year: 2021
  publication-title: Nat. Rev. Phys.
– volume: 4
  year: 2014
  publication-title: Phys. Rev. X
– volume: 24
  start-page: 317
  year: 2004
  publication-title: Electromagnetics
– volume: 548
  start-page: 187
  year: 2017
  publication-title: Nature
– volume: 14
  start-page: 6633
  year: 2023
  publication-title: Nat. Commun.
– volume: 13
  start-page: 2586
  year: 2022
  publication-title: Nat. Commun.
– volume: 368
  start-page: 311
  year: 2020
  publication-title: Science
– volume: 6
  year: 2021
  publication-title: APL Photonics
– volume: 2
  year: 2021
  publication-title: Adv. Photon. Res.
– volume: 11
  start-page: 152
  year: 2022
  publication-title: Light. Sci. Appl.
– volume: 104
  year: 2010
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 273
  year: 2020
  publication-title: Nat. Electron.
– volume: 14
  start-page: 11
  year: 2018
  publication-title: Nat. Phys.
– volume: 133
  year: 2023
  publication-title: J. Appl. Phys.
– volume: 47
  start-page: 2190
  year: 2022
  publication-title: Opt. Express
– volume: 34
  year: 2022
  publication-title: Adv. Mater.
– volume: 7
  year: 2020
  publication-title: Adv. Sci.
– volume: 9
  start-page: 795
  year: 2013
  publication-title: Nat. Phys.
– volume: 10
  start-page: 164
  year: 2021
  publication-title: Light Sci. Appl.
– volume: 16
  start-page: 571
  year: 2020
  publication-title: Nat. Phys.
– volume: 64
  year: 2021
  publication-title: Sci. Chin. Phys. Mech. Astro.
– volume: 25
  year: 2017
  publication-title: Opt. Express
– volume: 14
  start-page: 461
  year: 2018
  publication-title: Nat. Phys.
– volume: 10
  start-page: 170
  year: 2021
  publication-title: Light Sci. Appl.
– volume: 25
  start-page: 2093
  year: 2008
  publication-title: Chin. Phys. B
– volume: 93
  year: 2016
  publication-title: Phys. Rev. B
– volume: 359
  year: 2018
  publication-title: Science
– volume: 100
  year: 2019
  publication-title: Phys. Rev. B
– volume: 83
  start-page: 1057
  year: 2011
  publication-title: Rev. Mod. Phys.
– volume: 110
  year: 2017
  publication-title: Appl. Phys. Lett.
– volume: 16
  start-page: 279
  year: 2022
  publication-title: Nat. Photonics
– volume: 21
  year: 2023
  publication-title: Chin. Opt. Lett.
– volume: 10
  year: 2018
  publication-title: Phys. Rev. Appl.
– volume: 74
  year: 2006
  publication-title: Phys. Rev. B
– volume: 7
  year: 2017
  publication-title: Phys. Rev. X
– volume: 101
  year: 2020
  publication-title: Phys. Rev. B
– volume: 560
  start-page: 61
  year: 2018
  publication-title: Narure
– volume: 537
  start-page: 80
  year: 2016
  publication-title: Nature
– volume: 12
  start-page: 6257
  year: 2022
  publication-title: Sci. Rep.
– volume: 153
  start-page: 111
  year: 2006
  publication-title: IEE Proc. Microwaves, Antennas Propag
– volume: 555
  start-page: 346
  year: 2018
  publication-title: Nature
– volume: 27
  year: 2019
  publication-title: Opt. Express
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– volume: 28
  year: 2022
  publication-title: Chip
– volume: 373
  start-page: 1514
  year: 2021
  publication-title: Science
– volume: 14
  start-page: 140
  year: 2018
  publication-title: Nat. Phys.
– volume: 105
  year: 2009
  publication-title: J. Appl. Phys.
– volume: 115
  year: 2015
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 2089
  year: 2020
  publication-title: ACS Photonics
– volume: 91
  year: 2019
  publication-title: Rev. Mod. Phys.
– volume: 98
  year: 2007
  publication-title: Phys. Rev. Lett.
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 18
  start-page: 783
  year: 2019
  publication-title: Nat. Mater.
– volume: 126
  year: 2021
  publication-title: Phys. Rev. Lett.
– volume: 105
  year: 2022
  publication-title: Phys. Rev. A
– volume: 111
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 172
  year: 2007
  publication-title: Nat. Phys.
– volume: 53
  start-page: 1451
  year: 2005
  publication-title: IEEE Trans. Microwave Theory Tech.
– volume: 14
  start-page: 89
  year: 2020
  publication-title: Nat. Photon.
– volume: 9
  year: 2019
  publication-title: Phys. Rev. X
– volume: 95
  year: 2017
  publication-title: Phys. Rev. B
– volume: 26
  start-page: 8634
  year: 2018
  publication-title: Opt. Express
– volume: 272
  start-page: 572
  year: 2021
  publication-title: Science
– volume: 42
  start-page: 1698
  year: 1979
  publication-title: Phys. Rev. Lett.
– volume: 60
  start-page: 261
  year: 2013
  publication-title: IEEE Trans. Ind. Electron.
– volume: 548
  start-page: 192
  year: 2017
  publication-title: Nature
– volume: 18
  year: 2016
  publication-title: New. J. Phys.
– volume: 29
  start-page: 7844
  year: 2021
  publication-title: Opt. Express
– volume: 496
  start-page: 196
  year: 2013
  publication-title: Nature
– volume: 119
  year: 2017
  publication-title: Phys. Rev. Lett.
– volume: 12
  start-page: 5468
  year: 2021
  publication-title: Nat. Commun.
– volume: 9
  start-page: 1483
  year: 2022
  publication-title: ACS Photonics
– volume: 103
  year: 2021
  publication-title: Phys. Rev. A
– volume: 9
  start-page: 128
  year: 2020
  publication-title: Light Sci. Appl.
– volume: 3
  year: 2021
  publication-title: Adv. Photon.
– volume: 43
  start-page: 1986
  year: 2018
  publication-title: Opt. Lett.
– volume: 336
  start-page: 1003
  year: 2012
  publication-title: Science
– volume: 75
  year: 2007
  publication-title: Phys. Rev. A
– volume: 11
  start-page: 629
  year: 2021
  publication-title: Opt. Mater. Express
– volume: 36
  start-page: 2513
  year: 2011
  publication-title: Opt. Lett.
– volume: 7
  start-page: 1001
  year: 2013
  publication-title: Nat. Photon.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  start-page: 7742
  year: 2017
  publication-title: Sci. Rep.
– volume: 6
  start-page: 2925
  year: 2018
  publication-title: J. Mater. Chem. C
– volume: 21
  start-page: 4592
  year: 2021
  publication-title: Nano Lett.
– volume: 4
  start-page: 1626
  year: 2021
  publication-title: Opt. Express
– year: 2023
– volume: 5
  start-page: 5782
  year: 2014
  publication-title: Nat. Commun.
– volume: 117
  year: 2020
  publication-title: Appl. Phys. Lett.
– volume: 6
  start-page: 782
  year: 2012
  publication-title: Nat. Photon.
– volume: 372
  start-page: 72
  year: 2021
  publication-title: Science
– volume: 124
  year: 2020
  publication-title: Phys. Rev. Lett.
– volume: 17
  start-page: 348
  year: 2021
  publication-title: Nat. Phys.
– volume: 121
  year: 2022
  publication-title: Appl. Phys. Lett.
– volume: 7
  year: 2015
  publication-title: Nanoscale
– volume: 9
  year: 2021
  publication-title: Adv. Opt. Mater.
– volume: 14
  year: 2020
  publication-title: Laser Photon. Rev.
– ident: e_1_2_8_322_1
  doi: 10.1038/nature07247
– ident: e_1_2_8_442_1
  doi: 10.1103/PhysRevLett.124.153903
– ident: e_1_2_8_186_1
  doi: 10.1103/PhysRevLett.108.196802
– ident: e_1_2_8_4_1
  doi: 10.1038/nphoton.2014.248
– ident: e_1_2_8_290_1
  doi: 10.1088/1367-2630/ab3f6d
– ident: e_1_2_8_278_1
  doi: 10.1002/lpor.201600042
– ident: e_1_2_8_102_1
  doi: 10.1103/PhysRevLett.120.217401
– ident: e_1_2_8_199_1
  doi: 10.1038/nphoton.2013.42
– ident: e_1_2_8_334_1
  doi: 10.1002/mop.22344
– ident: e_1_2_8_164_1
  doi: 10.1038/s41467-019-08881-z
– ident: e_1_2_8_283_1
  doi: 10.1103/PhysRevResearch.2.022062
– ident: e_1_2_8_335_1
  doi: 10.1049/iet-map:20050289
– ident: e_1_2_8_8_1
  doi: 10.1515/nanoph-2020-0441
– ident: e_1_2_8_490_1
  doi: 10.1038/s41467-023-38325-8
– ident: e_1_2_8_395_1
  doi: 10.1515/nanoph-2019-0376
– ident: e_1_2_8_417_1
  doi: 10.1117/1.AP.3.3.036001
– ident: e_1_2_8_380_1
  doi: 10.1109/TIE.2011.2171176
– ident: e_1_2_8_336_1
  doi: 10.1049/el:20020258
– ident: e_1_2_8_83_1
  doi: 10.1364/PRJ.495638
– ident: e_1_2_8_386_1
  doi: 10.1016/j.scib.2021.01.028
– ident: e_1_2_8_491_1
  doi: 10.1364/OL.492336
– ident: e_1_2_8_134_1
  doi: 10.1103/PhysRevLett.125.013903
– volume: 25
  start-page: 2093
  year: 2008
  ident: e_1_2_8_261_1
  publication-title: Chin. Phys. B
– ident: e_1_2_8_428_1
  doi: 10.1103/PhysRevLett.116.133903
– ident: e_1_2_8_326_1
  doi: 10.1109/TAP.2003.817562
– ident: e_1_2_8_50_1
  doi: 10.1038/s41598-017-08171-y
– ident: e_1_2_8_173_1
  doi: 10.1103/PhysRevLett.116.093901
– ident: e_1_2_8_93_1
  doi: 10.1103/PhysRevLett.125.033901
– ident: e_1_2_8_110_1
  doi: 10.1038/ncomms16023
– ident: e_1_2_8_208_1
  doi: 10.1126/science.aau7707
– ident: e_1_2_8_341_1
  doi: 10.1038/srep45015
– ident: e_1_2_8_462_1
  doi: 10.1038/s41467-021-26414-5
– ident: e_1_2_8_366_1
  doi: 10.1103/PhysRevResearch.3.013122
– ident: e_1_2_8_143_1
  doi: 10.1103/PhysRevLett.98.103901
– volume-title: Biomedical EPR‐Part B: Methodology, Instrumentation, and Dynamics
  year: 2004
  ident: e_1_2_8_306_1
– ident: e_1_2_8_243_1
  doi: 10.1103/PhysRevLett.115.040402
– ident: e_1_2_8_181_1
  doi: 10.1038/s41928-022-00732-y
– ident: e_1_2_8_351_1
  doi: 10.1038/s41377-020-00354-z
– ident: e_1_2_8_330_1
  doi: 10.1002/pssb.200844414
– ident: e_1_2_8_384_1
  doi: 10.1063/5.0024077
– ident: e_1_2_8_146_1
  doi: 10.1103/PhysRevLett.100.113903
– ident: e_1_2_8_397_1
  doi: 10.1103/PhysRevLett.121.086807
– ident: e_1_2_8_136_1
  doi: 10.1002/adma.201201482
– ident: e_1_2_8_368_1
  doi: 10.1103/PhysRevB.14.2239
– ident: e_1_2_8_279_1
  doi: 10.1002/smll.201603190
– ident: e_1_2_8_436_1
  doi: 10.1038/s41563-019-0304-9
– ident: e_1_2_8_180_1
  doi: 10.1016/j.ijmecsci.2022.107460
– ident: e_1_2_8_201_1
  doi: 10.1038/s41586-018-0367-9
– ident: e_1_2_8_316_1
  doi: 10.1103/PhysRevB.65.195104
– volume: 106
  year: 2022
  ident: e_1_2_8_299_1
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.106.L032102
– ident: e_1_2_8_23_1
  doi: 10.1364/OPTICA.5.001396
– ident: e_1_2_8_161_1
  doi: 10.1038/s41467-017-01515-2
– ident: e_1_2_8_415_1
  doi: 10.1103/PhysRevResearch.1.023013
– ident: e_1_2_8_187_1
  doi: 10.1038/nmat4807
– ident: e_1_2_8_317_1
  doi: 10.1126/science.1105371
– ident: e_1_2_8_437_1
  doi: 10.1126/science.aar7709
– ident: e_1_2_8_378_1
  doi: 10.1109/TPEL.2021.3056538
– ident: e_1_2_8_153_1
  doi: 10.1103/PhysRevLett.110.013903
– ident: e_1_2_8_112_1
  doi: 10.1103/PhysRevB.99.064305
– ident: e_1_2_8_148_1
  doi: 10.1103/PhysRevLett.104.063901
– ident: e_1_2_8_9_1
  doi: 10.1088/2515-7647/ac4ee4
– ident: e_1_2_8_267_1
  doi: 10.1103/PhysRevA.101.043811
– ident: e_1_2_8_122_1
  doi: 10.1103/PhysRevLett.125.157401
– ident: e_1_2_8_248_1
  doi: 10.1364/OE.27.013858
– ident: e_1_2_8_383_1
  doi: 10.1088/0256-307X/38/2/024202
– ident: e_1_2_8_46_1
  doi: 10.1103/PhysRevLett.95.226801
– volume: 7
  year: 2022
  ident: e_1_2_8_410_1
  publication-title: Adv. Phys. X
– ident: e_1_2_8_76_1
  doi: 10.1073/pnas.1525502113
– ident: e_1_2_8_340_1
  doi: 10.1103/PhysRevApplied.10.054069
– ident: e_1_2_8_7_1
  doi: 10.1186/s43593-021-00002-y
– ident: e_1_2_8_56_1
  doi: 10.1038/ncomms11619
– ident: e_1_2_8_349_1
  doi: 10.1103/PhysRevLett.119.215304
– ident: e_1_2_8_191_1
  doi: 10.1021/acsphotonics.1c00029
– ident: e_1_2_8_213_1
  doi: 10.1103/PhysRevLett.122.136802
– ident: e_1_2_8_345_1
  doi: 10.1088/1367-2630/ac71bd
– ident: e_1_2_8_493_1
  doi: 10.1021/acs.nanolett.9b04813
– ident: e_1_2_8_495_1
  doi: 10.1021/acsphotonics.0c00797
– ident: e_1_2_8_480_1
  doi: 10.1021/acsphotonics.1c00017
– ident: e_1_2_8_234_1
  doi: 10.1021/acsphotonics.1c00507
– ident: e_1_2_8_342_1
  doi: 10.1103/PhysRevA.99.013833
– ident: e_1_2_8_252_1
  doi: 10.1038/s41377-020-00371-y
– ident: e_1_2_8_47_1
  doi: 10.1126/science.1133734
– ident: e_1_2_8_331_1
  doi: 10.1049/el:20030138
– ident: e_1_2_8_49_1
  doi: 10.1103/PhysRevB.93.075110
– ident: e_1_2_8_125_1
  doi: 10.1515/nanoph-2020-0146
– volume: 9
  year: 2019
  ident: e_1_2_8_219_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_256_1
  doi: 10.1103/PhysRevLett.120.113901
– ident: e_1_2_8_392_1
  doi: 10.1038/nature25156
– ident: e_1_2_8_162_1
  doi: 10.1103/PhysRevLett.120.063902
– ident: e_1_2_8_458_1
  doi: 10.1103/PhysRevResearch.4.013113
– ident: e_1_2_8_497_1
  doi: 10.1364/OL.430579
– ident: e_1_2_8_471_1
  doi: 10.1038/s41467-022-29768-6
– ident: e_1_2_8_307_1
  doi: 10.1070/PU1968v010n04ABEH003699
– ident: e_1_2_8_54_1
  doi: 10.1088/1367-2630/aa7cb5
– ident: e_1_2_8_11_1
  doi: 10.3788/COL202119.052602
– ident: e_1_2_8_319_1
  doi: 10.1364/OL.30.003356
– ident: e_1_2_8_196_1
  doi: 10.1002/lpor.202000001
– ident: e_1_2_8_200_1
  doi: 10.1038/s41567-017-0041-4
– ident: e_1_2_8_35_1
  doi: 10.1103/PhysRevLett.126.067401
– ident: e_1_2_8_274_1
  doi: 10.1364/OL.43.005142
– ident: e_1_2_8_232_1
  doi: 10.1103/PhysRevA.102.023505
– ident: e_1_2_8_171_1
  doi: 10.1364/OL.44.003342
– ident: e_1_2_8_485_1
  doi: 10.1063/5.0157868
– ident: e_1_2_8_394_1
  doi: 10.1038/s41567-021-01275-3
– ident: e_1_2_8_195_1
  doi: 10.1021/acsphotonics.0c00521
– ident: e_1_2_8_226_1
  doi: 10.1364/OL.44.002530
– ident: e_1_2_8_172_1
  doi: 10.1103/PhysRevA.103.023512
– ident: e_1_2_8_190_1
  doi: 10.1103/PhysRevLett.127.043904
– ident: e_1_2_8_481_1
  doi: 10.3788/COL202321.123601
– ident: e_1_2_8_292_1
  doi: 10.1103/PhysRevResearch.1.033069
– ident: e_1_2_8_34_1
  doi: 10.1103/PhysRevLett.115.253901
– ident: e_1_2_8_170_1
  doi: 10.1002/lpor.201900087
– ident: e_1_2_8_182_1
  doi: 10.1103/PhysRevLett.128.216403
– ident: e_1_2_8_80_1
  doi: 10.1103/PhysRevLett.125.054301
– ident: e_1_2_8_356_1
  doi: 10.1103/PhysRevLett.109.116404
– ident: e_1_2_8_409_1
  doi: 10.1126/science.aaz8727
– ident: e_1_2_8_498_1
  doi: 10.1063/5.0146831
– ident: e_1_2_8_22_1
  doi: 10.1063/1.5142397
– ident: e_1_2_8_427_1
  doi: 10.1103/PhysRevLett.122.195501
– ident: e_1_2_8_254_1
  doi: 10.1038/s41928-018-0042-z
– ident: e_1_2_8_184_1
  doi: 10.1103/PhysRevLett.118.245301
– ident: e_1_2_8_99_1
  doi: 10.1088/1367-2630/18/11/113013
– ident: e_1_2_8_220_1
  doi: 10.1038/nphys2790
– ident: e_1_2_8_374_1
  doi: 10.1093/nsr/nwad172
– ident: e_1_2_8_474_1
  doi: 10.1038/s41467-022-30276-w
– ident: e_1_2_8_82_1
  doi: 10.1103/PhysRevLett.129.123901
– ident: e_1_2_8_413_1
  doi: 10.1103/PhysRevB.105.L100102
– ident: e_1_2_8_286_1
  doi: 10.1088/1361-6463/aa7619
– ident: e_1_2_8_464_1
  doi: 10.1002/adma.202001034
– ident: e_1_2_8_141_1
  doi: 10.1103/PhysRevLett.106.176802
– ident: e_1_2_8_314_1
  doi: 10.1063/1.3056052
– ident: e_1_2_8_52_1
  doi: 10.1103/PhysRevLett.110.203904
– ident: e_1_2_8_259_1
  doi: 10.3390/opt3020013
– ident: e_1_2_8_362_1
  doi: 10.1126/science.1222360
– ident: e_1_2_8_245_1
  doi: 10.1364/OE.25.011132
– ident: e_1_2_8_246_1
  doi: 10.1103/PhysRevB.98.094307
– ident: e_1_2_8_373_1
  doi: 10.1039/C7TC03384B
– ident: e_1_2_8_230_1
  doi: 10.1103/PhysRevLett.116.163901
– ident: e_1_2_8_236_1
  doi: 10.1002/lpor.201800202
– ident: e_1_2_8_476_1
  doi: 10.1038/s41578-022-00465-6
– ident: e_1_2_8_142_1
  doi: 10.1103/PhysRevB.85.155415
– ident: e_1_2_8_117_1
  doi: 10.1103/PhysRevLett.119.255901
– ident: e_1_2_8_152_1
  doi: 10.1364/OL.40.003380
– ident: e_1_2_8_188_1
  doi: 10.1038/s41467-018-05408-w
– ident: e_1_2_8_167_1
  doi: 10.1038/nphys4304
– ident: e_1_2_8_454_1
  doi: 10.1103/PhysRevLett.122.014301
– ident: e_1_2_8_466_1
  doi: 10.1038/s41377-022-00931-4
– ident: e_1_2_8_140_1
  doi: 10.1088/1367-2630/13/8/083029
– volume: 3
  start-page: 113
  year: 1980
  ident: e_1_2_8_355_1
  publication-title: Ann. Isr. Phys. Soc.
– ident: e_1_2_8_103_1
  doi: 10.1038/s41467-018-07084-2
– ident: e_1_2_8_91_1
  doi: 10.1103/PhysRevLett.124.073603
– ident: e_1_2_8_121_1
  doi: 10.1103/PhysRevLett.123.053902
– ident: e_1_2_8_375_1
  doi: 10.1038/s41928-021-00658-x
– volume: 3
  year: 2020
  ident: e_1_2_8_100_1
  publication-title: Adv. Quantum Tech.
– ident: e_1_2_8_443_1
  doi: 10.1038/s41467-022-29777-5
– ident: e_1_2_8_203_1
  doi: 10.1038/s41467-020-15825-5
– ident: e_1_2_8_441_1
  doi: 10.1103/PhysRevLett.129.127401
– ident: e_1_2_8_61_1
  doi: 10.1063/1.4940403
– ident: e_1_2_8_377_1
  doi: 10.1038/s41928-020-0399-7
– ident: e_1_2_8_137_1
  doi: 10.1038/nphys547
– ident: e_1_2_8_321_1
  doi: 10.1038/nphoton.2006.49
– ident: e_1_2_8_32_1
  doi: 10.1103/PhysRevLett.106.093903
– ident: e_1_2_8_132_1
  doi: 10.1126/science.abj2232
– ident: e_1_2_8_407_1
  doi: 10.1126/science.abd2033
– ident: e_1_2_8_192_1
  doi: 10.1103/PhysRevApplied.10.044002
– ident: e_1_2_8_482_1
  doi: 10.1103/PhysRevLett.126.113902
– ident: e_1_2_8_77_1
  doi: 10.1038/nmat4573
– ident: e_1_2_8_225_1
  doi: 10.1103/PhysRevLett.120.260501
– ident: e_1_2_8_343_1
  doi: 10.1103/PhysRevB.103.155425
– ident: e_1_2_8_116_1
  doi: 10.1038/nphys3867
– ident: e_1_2_8_492_1
  doi: 10.1021/acs.nanolett.3c00474
– ident: e_1_2_8_269_1
  doi: 10.1103/PhysRevB.104.045408
– ident: e_1_2_8_388_1
  doi: 10.1002/advs.201902724
– ident: e_1_2_8_296_1
  doi: 10.1002/adma.202202257
– ident: e_1_2_8_58_1
  doi: 10.1038/nphoton.2013.274
– ident: e_1_2_8_249_1
  doi: 10.1364/OL.471869
– ident: e_1_2_8_496_1
  doi: 10.1038/s41467-018-07817-3
– ident: e_1_2_8_18_1
  doi: 10.1038/s42254-021-00323-4
– ident: e_1_2_8_156_1
  doi: 10.1002/lpor.201800242
– ident: e_1_2_8_74_1
  doi: 10.1103/PhysRevB.94.195427
– ident: e_1_2_8_332_1
  doi: 10.1063/1.1814428
– ident: e_1_2_8_361_1
  doi: 10.1088/1367-2630/13/6/065028
– ident: e_1_2_8_448_1
  doi: 10.1103/PhysRevLett.123.213901
– ident: e_1_2_8_412_1
  doi: 10.1038/s41467-021-25716-y
– ident: e_1_2_8_51_1
  doi: 10.1038/nphys2063
– ident: e_1_2_8_15_1
  doi: 10.1002/adom.202001739
– ident: e_1_2_8_115_1
  doi: 10.1038/s41467-018-05461-5
– ident: e_1_2_8_423_1
  doi: 10.1103/PhysRevLett.120.087401
– ident: e_1_2_8_403_1
  doi: 10.1038/s41377-022-00823-7
– ident: e_1_2_8_263_1
  doi: 10.1038/srep03842
– ident: e_1_2_8_33_1
  doi: 10.1103/PhysRevLett.113.113904
– ident: e_1_2_8_260_1
  doi: 10.1103/PhysRevE.78.026607
– ident: e_1_2_8_347_1
  doi: 10.1103/PhysRevB.91.125132
– ident: e_1_2_8_405_1
  doi: 10.1103/PhysRevLett.127.184101
– ident: e_1_2_8_456_1
  doi: 10.1063/5.0097129
– ident: e_1_2_8_53_1
  doi: 10.1103/PhysRevB.89.075113
– ident: e_1_2_8_337_1
  doi: 10.1049/ip-map:20050119
– ident: e_1_2_8_28_1
  doi: 10.1002/lpor.202100300
– ident: e_1_2_8_432_1
  doi: 10.1364/OL.460484
– ident: e_1_2_8_215_1
  doi: 10.1103/PhysRevResearch.4.023047
– ident: e_1_2_8_155_1
  doi: 10.1038/lsa.2016.94
– ident: e_1_2_8_38_1
  doi: 10.1038/nphys3611
– ident: e_1_2_8_240_1
  doi: 10.1038/ncomms1669
– ident: e_1_2_8_109_1
  doi: 10.1103/PhysRevB.97.195307
– ident: e_1_2_8_401_1
  doi: 10.1021/acs.nanolett.1c00449
– ident: e_1_2_8_1_1
  doi: 10.1103/RevModPhys.82.1959
– ident: e_1_2_8_376_1
  doi: 10.1038/nature22404
– ident: e_1_2_8_360_1
  doi: 10.1103/PhysRevLett.100.096407
– ident: e_1_2_8_426_1
  doi: 10.1126/science.aap9859
– ident: e_1_2_8_123_1
  doi: 10.1126/sciadv.aaw4137
– ident: e_1_2_8_451_1
  doi: 10.1103/PhysRevLett.126.206602
– ident: e_1_2_8_12_1
  doi: 10.1364/OME.416835
– ident: e_1_2_8_309_1
  doi: 10.1103/PhysRevLett.85.3966
– volume-title: Inductance Calculations Working Formulas and Tables
  year: 1962
  ident: e_1_2_8_315_1
– ident: e_1_2_8_354_1
  doi: 10.1088/0370-1298/68/10/304
– ident: e_1_2_8_10_1
  doi: 10.1002/adom.201800532
– ident: e_1_2_8_327_1
  doi: 10.1109/TMTT.2005.845211
– ident: e_1_2_8_291_1
  doi: 10.1103/PhysRevApplied.14.054028
– ident: e_1_2_8_393_1
  doi: 10.1038/s41467-021-25305-z
– ident: e_1_2_8_66_1
  doi: 10.1103/PhysRevLett.123.043201
– ident: e_1_2_8_31_1
  doi: 10.1038/nature08293
– ident: e_1_2_8_318_1
  doi: 10.1103/PhysRevLett.95.223902
– ident: e_1_2_8_48_1
  doi: 10.1126/science.aaa9519
– ident: e_1_2_8_453_1
  doi: 10.1103/PhysRevLett.129.090503
– ident: e_1_2_8_86_1
  doi: 10.1038/lsa.2015.101
– ident: e_1_2_8_175_1
  doi: 10.1038/nphys3999
– ident: e_1_2_8_214_1
  doi: 10.1038/s41377-021-00614-6
– volume: 6
  year: 2016
  ident: e_1_2_8_350_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_463_1
  doi: 10.1038/s41467-019-10086-3
– ident: e_1_2_8_346_1
  doi: 10.1103/PhysRevLett.113.240403
– ident: e_1_2_8_189_1
  doi: 10.1038/s41467-018-07030-2
– ident: e_1_2_8_87_1
  doi: 10.1038/ncomms12435
– ident: e_1_2_8_499_1
  doi: 10.1002/advs.202301128
– ident: e_1_2_8_43_1
  doi: 10.1126/science.1234414
– ident: e_1_2_8_89_1
  doi: 10.1038/s41467-017-00134-1
– ident: e_1_2_8_301_1
  doi: 10.1002/adma.202202257
– ident: e_1_2_8_239_1
  doi: 10.1364/OL.34.001633
– ident: e_1_2_8_275_1
  doi: 10.1021/ph4000949
– ident: e_1_2_8_477_1
  doi: 10.1016/j.chip.2022.100025
– ident: e_1_2_8_447_1
  doi: 10.1103/PhysRevLett.122.153902
– ident: e_1_2_8_135_1
  doi: 10.1126/science.1102896
– ident: e_1_2_8_457_1
  doi: 10.1364/PRJ.413873
– ident: e_1_2_8_344_1
  doi: 10.1103/PhysRevLett.128.093901
– ident: e_1_2_8_119_1
  doi: 10.1038/s41586-018-0764-0
– ident: e_1_2_8_98_1
  doi: 10.1103/PhysRevB.97.085148
– ident: e_1_2_8_85_1
  doi: 10.1103/PhysRevLett.114.037402
– ident: e_1_2_8_465_1
  doi: 10.1103/PhysRevApplied.20.024076
– ident: e_1_2_8_281_1
  doi: 10.1103/PhysRevLett.126.215302
– volume: 7
  year: 2022
  ident: e_1_2_8_25_1
  publication-title: Adv. Phys. X
– ident: e_1_2_8_365_1
  doi: 10.1103/RevModPhys.87.137
– ident: e_1_2_8_158_1
  doi: 10.1103/PhysRevLett.111.103901
– ident: e_1_2_8_39_1
  doi: 10.1103/PhysRevLett.128.013902
– ident: e_1_2_8_489_1
  doi: 10.1103/PhysRevB.100.125108
– ident: e_1_2_8_75_1
  doi: 10.1038/srep22270
– ident: e_1_2_8_130_1
  doi: 10.1364/OE.27.025841
– ident: e_1_2_8_118_1
  doi: 10.1103/PhysRevB.97.020102
– ident: e_1_2_8_408_1
  doi: 10.1103/PhysRevLett.121.086803
– ident: e_1_2_8_17_1
  doi: 10.1038/s41377-020-0331-y
– ident: e_1_2_8_271_1
  doi: 10.1364/OE.470783
– ident: e_1_2_8_416_1
  doi: 10.1103/PhysRevLett.128.157601
– ident: e_1_2_8_169_1
  doi: 10.1002/adom.201900036
– ident: e_1_2_8_151_1
  doi: 10.1103/PhysRevLett.112.096805
– ident: e_1_2_8_29_1
  doi: 10.1103/PhysRevLett.100.013904
– ident: e_1_2_8_288_1
  doi: 10.1103/PhysRevLett.118.166803
– ident: e_1_2_8_198_1
  doi: 10.1038/s41566-020-0618-9
– ident: e_1_2_8_303_1
  doi: 10.1109/T-ED.1976.18476
– ident: e_1_2_8_363_1
  doi: 10.1038/srep11686
– ident: e_1_2_8_197_1
  doi: 10.1103/PhysRevB.98.235125
– ident: e_1_2_8_255_1
  doi: 10.1103/PhysRevLett.121.163901
– ident: e_1_2_8_159_1
  doi: 10.1038/nmat3783
– ident: e_1_2_8_227_1
  doi: 10.1103/PhysRevB.101.165427
– ident: e_1_2_8_193_1
  doi: 10.1103/PhysRevApplied.9.034032
– ident: e_1_2_8_313_1
  doi: 10.1103/PhysRevB.74.035419
– ident: e_1_2_8_222_1
  doi: 10.1103/PhysRevB.95.161114
– ident: e_1_2_8_26_1
  doi: 10.1515/nanoph-2022-0309
– ident: e_1_2_8_69_1
  doi: 10.1126/science.aar4005
– ident: e_1_2_8_194_1
  doi: 10.1364/OL.391764
– ident: e_1_2_8_133_1
  doi: 10.1038/s41565-019-0584-x
– ident: e_1_2_8_235_1
  doi: 10.1002/lpor.201800339
– ident: e_1_2_8_479_1
  doi: 10.1038/s41565-024-01737-8
– ident: e_1_2_8_420_1
  doi: 10.1126/science.aay1064
– ident: e_1_2_8_433_1
  doi: 10.1103/PhysRevLett.129.086601
– ident: e_1_2_8_2_1
  doi: 10.1103/RevModPhys.82.3045
– ident: e_1_2_8_71_1
  doi: 10.1038/ncomms6782
– ident: e_1_2_8_131_1
  doi: 10.1103/PhysRevB.103.245305
– ident: e_1_2_8_94_1
  doi: 10.1103/PhysRevLett.114.223901
– ident: e_1_2_8_265_1
  doi: 10.1364/OE.26.008634
– volume: 6
  start-page: 8453
  year: 2016
  ident: e_1_2_8_73_1
  publication-title: Sci. Rep.
– ident: e_1_2_8_328_1
  doi: 10.1364/OPEX.13.010238
– ident: e_1_2_8_157_1
  doi: 10.1038/nnano.2012.95
– ident: e_1_2_8_177_1
  doi: 10.1103/PhysRevB.96.094106
– volume: 8
  year: 2018
  ident: e_1_2_8_424_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_233_1
  doi: 10.1038/nphys3228
– ident: e_1_2_8_70_1
  doi: 10.1038/nmat3520
– ident: e_1_2_8_446_1
  doi: 10.1038/nature23281
– ident: e_1_2_8_21_1
  doi: 10.1364/OME.416552
– ident: e_1_2_8_229_1
  doi: 10.1103/PhysRevLett.115.200402
– ident: e_1_2_8_333_1
  doi: 10.1002/pssb.200844125
– ident: e_1_2_8_452_1
  doi: 10.1103/PhysRevLett.125.180403
– ident: e_1_2_8_139_1
  doi: 10.1103/PhysRevLett.100.236801
– ident: e_1_2_8_272_1
  doi: 10.1103/PhysRevApplied.18.014056
– ident: e_1_2_8_179_1
  doi: 10.1063/1.5004073
– volume: 35
  year: 2021
  ident: e_1_2_8_218_1
  publication-title: Adv. Photon.
– volume: 4
  year: 2014
  ident: e_1_2_8_262_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_486_1
  doi: 10.1038/s41467-022-32909-6
– ident: e_1_2_8_41_1
  doi: 10.1038/nature12066
– ident: e_1_2_8_440_1
  doi: 10.1038/s41567-020-0807-y
– ident: e_1_2_8_44_1
  doi: 10.1126/science.aax8156
– ident: e_1_2_8_348_1
  doi: 10.1103/PhysRevB.101.205309
– ident: e_1_2_8_216_1
  doi: 10.1038/s41377-022-00821-9
– ident: e_1_2_8_149_1
  doi: 10.1103/PhysRevB.93.035422
– ident: e_1_2_8_108_1
  doi: 10.1103/PhysRevB.96.041408
– ident: e_1_2_8_418_1
  doi: 10.1038/d41586-021-02677-2
– ident: e_1_2_8_166_1
  doi: 10.1515/nanoph-2019-0137
– ident: e_1_2_8_60_1
  doi: 10.1038/ncomms13368
– ident: e_1_2_8_55_1
  doi: 10.1063/1.4982620
– ident: e_1_2_8_300_1
  doi: 10.1038/s41567-021-01493-9
– ident: e_1_2_8_95_1
  doi: 10.1103/PhysRevLett.106.106802
– ident: e_1_2_8_27_1
  doi: 10.1002/adpr.202100013
– ident: e_1_2_8_64_1
  doi: 10.1103/PhysRevLett.121.023901
– volume: 7
  year: 2017
  ident: e_1_2_8_212_1
  publication-title: Phys. Rev. X
– volume: 5
  year: 2015
  ident: e_1_2_8_459_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_19_1
  doi: 10.1088/2040-8986/ac2e15
– ident: e_1_2_8_138_1
  doi: 10.1103/PhysRevLett.99.236809
– ident: e_1_2_8_370_1
  doi: 10.3390/app8040596
– volume: 64
  year: 2021
  ident: e_1_2_8_461_1
  publication-title: Sci. Chin. Phys. Mech. Astro.
– ident: e_1_2_8_6_1
  doi: 10.1103/RevModPhys.91.015006
– ident: e_1_2_8_104_1
  doi: 10.1038/s41467-018-03330-9
– ident: e_1_2_8_105_1
  doi: 10.1103/PhysRevLett.122.117401
– ident: e_1_2_8_284_1
  doi: 10.1103/PhysRevLett.112.107403
– ident: e_1_2_8_467_1
  doi: 10.1038/s41586-020-03125-3
– ident: e_1_2_8_163_1
  doi: 10.1038/s41565-018-0297-6
– ident: e_1_2_8_88_1
  doi: 10.1038/srep21461
– ident: e_1_2_8_210_1
  doi: 10.1103/PhysRevLett.129.043602
– ident: e_1_2_8_372_1
  doi: 10.1038/s41467-023-42321-3
– ident: e_1_2_8_65_1
  doi: 10.1038/s41566-019-0452-0
– ident: e_1_2_8_206_1
  doi: 10.1103/PhysRevLett.125.143001
– ident: e_1_2_8_320_1
  doi: 10.1038/nature05343
– ident: e_1_2_8_488_1
  doi: 10.1038/s41467-019-12778-2
– ident: e_1_2_8_419_1
  doi: 10.1063/5.0104358
– ident: e_1_2_8_391_1
  doi: 10.1038/nature25777
– volume: 2
  year: 2023
  ident: e_1_2_8_57_1
  publication-title: Adv. Photon. Nexus
– ident: e_1_2_8_127_1
  doi: 10.1002/lpor.202200071
– ident: e_1_2_8_266_1
  doi: 10.1038/s42005-020-00395-1
– ident: e_1_2_8_244_1
  doi: 10.1038/nmat4811
– ident: e_1_2_8_473_1
  doi: 10.1038/nphys3776
– volume: 4
  start-page: 1626
  year: 2021
  ident: e_1_2_8_268_1
  publication-title: Opt. Express
– ident: e_1_2_8_450_1
  doi: 10.1103/PhysRevResearch.3.033106
– ident: e_1_2_8_92_1
  doi: 10.1063/1.5128679
– ident: e_1_2_8_264_1
  doi: 10.1364/OE.24.018580
– ident: e_1_2_8_385_1
  doi: 10.1103/PhysRevApplied.15.014009
– ident: e_1_2_8_305_1
  doi: 10.1016/0022-2364(82)90221-9
– ident: e_1_2_8_298_1
  doi: 10.1002/adma.202202241
– ident: e_1_2_8_68_1
  doi: 10.1126/science.aar4003
– ident: e_1_2_8_147_1
  doi: 10.1364/OL.36.002513
– ident: e_1_2_8_209_1
  doi: 10.1103/PhysRevB.99.094206
– ident: e_1_2_8_78_1
  doi: 10.1063/5.0083989
– ident: e_1_2_8_128_1
  doi: 10.1364/OE.398421
– ident: e_1_2_8_289_1
  doi: 10.1103/PhysRevA.105.033512
– ident: e_1_2_8_228_1
  doi: 10.1038/s41377-019-0237-8
– ident: e_1_2_8_81_1
  doi: 10.1038/s41567-020-01082-2
– ident: e_1_2_8_120_1
  doi: 10.1126/science.abc4975
– ident: e_1_2_8_14_1
  doi: 10.1364/OE.26.024531
– ident: e_1_2_8_42_1
  doi: 10.1038/s41566-017-0051-x
– ident: e_1_2_8_45_1
  doi: 10.1103/PhysRevLett.95.146802
– ident: e_1_2_8_438_1
  doi: 10.1038/nature14889
– ident: e_1_2_8_221_1
  doi: 10.1364/OL.40.005259
– ident: e_1_2_8_174_1
  doi: 10.1103/PhysRevB.95.174106
– volume: 6
  year: 2021
  ident: e_1_2_8_20_1
  publication-title: Adv. Phys. X.
– ident: e_1_2_8_79_1
  doi: 10.1038/nphoton.2016.253
– ident: e_1_2_8_242_1
  doi: 10.1103/PhysRevLett.42.1698
– ident: e_1_2_8_302_1
  doi: 10.1364/OE.26.000627
– ident: e_1_2_8_247_1
  doi: 10.1103/PhysRevLett.123.165701
– volume: 47
  start-page: 2190
  year: 2022
  ident: e_1_2_8_126_1
  publication-title: Opt. Express
– ident: e_1_2_8_439_1
  doi: 10.1038/nature18604
– ident: e_1_2_8_63_1
  doi: 10.1364/OE.26.024307
– ident: e_1_2_8_165_1
  doi: 10.1002/lpor.201900126
– ident: e_1_2_8_223_1
  doi: 10.1103/PhysRevB.93.041415
– ident: e_1_2_8_431_1
  doi: 10.1103/PhysRevLett.122.237601
– ident: e_1_2_8_449_1
  doi: 10.1038/s41567-020-0796-x
– ident: e_1_2_8_312_1
  doi: 10.1088/1367-2630/7/1/168
– ident: e_1_2_8_475_1
  doi: 10.1364/PRJ.7.001075
– ident: e_1_2_8_84_1
  doi: 10.1088/1361-6463/ac2e89
– ident: e_1_2_8_338_1
  doi: 10.1063/1.2209031
– ident: e_1_2_8_150_1
  doi: 10.1209/0295-5075/85/14005
– ident: e_1_2_8_396_1
  doi: 10.1364/OPTICA.6.000839
– ident: e_1_2_8_176_1
  doi: 10.1103/PhysRevB.96.184305
– ident: e_1_2_8_389_1
  doi: 10.1103/PhysRevLett.122.233902
– ident: e_1_2_8_367_1
  doi: 10.1103/PhysRevResearch.4.L032031
– ident: e_1_2_8_287_1
  doi: 10.1063/5.0011719
– volume: 9
  year: 2018
  ident: e_1_2_8_425_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_295_1
  doi: 10.1364/OE.439729
– ident: e_1_2_8_285_1
  doi: 10.1103/PhysRevB.94.174307
– ident: e_1_2_8_270_1
  doi: 10.1364/OL.41.001644
– ident: e_1_2_8_483_1
  doi: 10.1038/s41467-021-25835-6
– ident: e_1_2_8_211_1
  doi: 10.1126/science.aaq1221
– ident: e_1_2_8_217_1
  doi: 10.1103/PhysRevLett.121.024301
– ident: e_1_2_8_106_1
  doi: 10.1063/1.5055601
– ident: e_1_2_8_124_1
  doi: 10.1103/PhysRevApplied.17.064008
– volume: 5
  year: 2023
  ident: e_1_2_8_371_1
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.5.L012012
– ident: e_1_2_8_494_1
  doi: 10.1063/5.0051239
– volume: 65
  start-page: 4440
  year: 2002
  ident: e_1_2_8_323_1
  publication-title: Phys. Rev. B
– ident: e_1_2_8_406_1
  doi: 10.1038/s41377-021-00607-5
– ident: e_1_2_8_310_1
  doi: 10.1126/science.1058847
– ident: e_1_2_8_339_1
  doi: 10.1103/PhysRevLett.120.205501
– ident: e_1_2_8_359_1
  doi: 10.1070/1063-7869/44/10S/S29
– ident: e_1_2_8_168_1
  doi: 10.1002/lpor.201900159
– ident: e_1_2_8_101_1
  doi: 10.1038/s41598-022-10189-w
– ident: e_1_2_8_111_1
  doi: 10.1088/1367-2630/aa66f8
– ident: e_1_2_8_258_1
  doi: 10.1364/OE.417887
– ident: e_1_2_8_478_1
  doi: 10.1117/1.AP.4.4.046002
– ident: e_1_2_8_460_1
  doi: 10.1103/PhysRevB.99.115410
– ident: e_1_2_8_469_1
  doi: 10.1103/PhysRevLett.128.116802
– ident: e_1_2_8_297_1
  doi: 10.1103/PhysRevLett.127.105901
– ident: e_1_2_8_308_1
  doi: 10.1109/22.798002
– ident: e_1_2_8_205_1
  doi: 10.1038/nphys4072
– ident: e_1_2_8_487_1
  doi: 10.1126/science.abj5488
– ident: e_1_2_8_250_1
  doi: 10.1103/PhysRevA.96.023864
– ident: e_1_2_8_30_1
  doi: 10.1103/PhysRevLett.100.013905
– ident: e_1_2_8_251_1
  doi: 10.1126/science.abf6873
– ident: e_1_2_8_484_1
  doi: 10.1364/PRJ.451344
– ident: e_1_2_8_257_1
  doi: 10.1038/s41467-018-03434-2
– ident: e_1_2_8_398_1
  doi: 10.1002/adma.201805002
– ident: e_1_2_8_472_1
  doi: 10.1038/s41566-022-00972-6
– ident: e_1_2_8_96_1
  doi: 10.1038/srep24347
– ident: e_1_2_8_202_1
  doi: 10.1038/s41586-018-0829-0
– ident: e_1_2_8_434_1
  doi: 10.1038/nphys4323
– ident: e_1_2_8_468_1
  doi: 10.1103/PhysRevLett.128.116803
– ident: e_1_2_8_311_1
  doi: 10.1002/mop.21021
– volume: 8
  year: 2018
  ident: e_1_2_8_369_1
  publication-title: Phys. Rev. X
– ident: e_1_2_8_387_1
  doi: 10.1038/s41566-019-0561-9
– ident: e_1_2_8_379_1
  doi: 10.1088/1674-1056/ac3815
– ident: e_1_2_8_97_1
  doi: 10.1364/OE.24.018059
– ident: e_1_2_8_204_1
  doi: 10.1126/science.abi7803
– ident: e_1_2_8_382_1
  doi: 10.1103/PhysRevA.105.033501
– ident: e_1_2_8_358_1
  doi: 10.1364/OL.43.001986
– ident: e_1_2_8_352_1
  doi: 10.1103/PhysRevB.98.024205
– ident: e_1_2_8_280_1
  doi: 10.1103/PhysRevResearch.2.043233
– ident: e_1_2_8_36_1
  doi: 10.1103/PhysRevLett.128.257401
– ident: e_1_2_8_90_1
  doi: 10.1002/adom.201900900
– ident: e_1_2_8_178_1
  doi: 10.1103/PhysRevB.97.054307
– ident: e_1_2_8_390_1
  doi: 10.1103/PhysRevLett.122.233903
– ident: e_1_2_8_277_1
  doi: 10.1039/C5NR00231A
– ident: e_1_2_8_429_1
  doi: 10.1038/s41586-021-03833-4
– ident: e_1_2_8_224_1
  doi: 10.1103/PhysRevLett.119.130501
– volume-title: Metamaterials with negative parameters: theory, design, and microwave applications
  year: 2011
  ident: e_1_2_8_325_1
– ident: e_1_2_8_253_1
  doi: 10.1103/PhysRevB.93.155112
– ident: e_1_2_8_455_1
  doi: 10.1063/5.0060007
– ident: e_1_2_8_411_1
  doi: 10.1103/PhysRevLett.128.223903
– ident: e_1_2_8_402_1
  doi: 10.1103/PhysRevLett.127.013901
– ident: e_1_2_8_72_1
  doi: 10.1103/PhysRevLett.114.127401
– ident: e_1_2_8_207_1
  doi: 10.1038/s41377-022-00972-9
– ident: e_1_2_8_400_1
  doi: 10.1103/PhysRevLett.123.103901
– ident: e_1_2_8_414_1
  doi: 10.1103/PhysRevLett.125.206402
– ident: e_1_2_8_3_1
  doi: 10.1103/RevModPhys.83.1057
– ident: e_1_2_8_324_1
  doi: 10.1080/02726340490457890
– ident: e_1_2_8_24_1
  doi: 10.1364/AOP.418074
– ident: e_1_2_8_430_1
  doi: 10.1007/s11433-021-1785-y
– ident: e_1_2_8_113_1
  doi: 10.1038/srep32752
– ident: e_1_2_8_422_1
  doi: 10.1103/PhysRevB.103.235110
– ident: e_1_2_8_59_1
  doi: 10.1038/nphoton.2013.321
– ident: e_1_2_8_154_1
  doi: 10.1038/nphoton.2012.302
– ident: e_1_2_8_129_1
  doi: 10.1364/OE.432964
– ident: e_1_2_8_16_1
  doi: 10.1016/j.revip.2022.100076
– ident: e_1_2_8_237_1
  doi: 10.1103/PhysRevLett.121.124501
– ident: e_1_2_8_40_1
  doi: 10.1038/nphoton.2012.236
– ident: e_1_2_8_5_1
  doi: 10.1038/s41566-017-0048-5
– ident: e_1_2_8_329_1
  doi: 10.1103/PhysRevB.76.073101
– ident: e_1_2_8_357_1
  doi: 10.1103/PhysRevLett.110.076403
– ident: e_1_2_8_421_1
  doi: 10.1103/PhysRevLett.129.053903
– ident: e_1_2_8_276_1
  doi: 10.1103/PhysRevLett.114.123901
– volume: 4
  year: 2022
  ident: e_1_2_8_381_1
  publication-title: Phys. Rev. Research
  doi: 10.1103/PhysRevResearch.4.L032015
– ident: e_1_2_8_435_1
  doi: 10.1038/s41566-017-0031-1
– ident: e_1_2_8_185_1
  doi: 10.1038/s41467-017-01205-z
– ident: e_1_2_8_282_1
  doi: 10.1103/PhysRevApplied.13.014047
– ident: e_1_2_8_353_1
  doi: 10.1103/PhysRevB.91.064201
– ident: e_1_2_8_470_1
  doi: 10.1038/s41586-019-1348-3
– ident: e_1_2_8_294_1
  doi: 10.1103/PhysRevApplied.11.031004
– ident: e_1_2_8_107_1
  doi: 10.1364/OE.25.023293
– ident: e_1_2_8_160_1
  doi: 10.1126/sciadv.aap8802
– ident: e_1_2_8_241_1
  doi: 10.1103/PhysRevLett.109.106402
– ident: e_1_2_8_304_1
  doi: 10.1063/1.1136574
– ident: e_1_2_8_364_1
  doi: 10.1103/PhysRevLett.115.177001
– ident: e_1_2_8_67_1
  doi: 10.1364/OE.431038
– ident: e_1_2_8_399_1
  doi: 10.1038/s41565-018-0324-7
– ident: e_1_2_8_404_1
  doi: 10.1002/lpor.202100269
– ident: e_1_2_8_445_1
  doi: 10.1038/nature23280
– ident: e_1_2_8_231_1
  doi: 10.1103/PhysRevLett.121.213902
– ident: e_1_2_8_144_1
  doi: 10.1103/PhysRevA.75.063813
– ident: e_1_2_8_145_1
  doi: 10.1103/PhysRevLett.104.043903
– ident: e_1_2_8_13_1
  doi: 10.1021/acsphotonics.1c01874
– ident: e_1_2_8_37_1
  doi: 10.29026/oes.2022.220001
– ident: e_1_2_8_238_1
  doi: 10.1364/OE.26.012891
– ident: e_1_2_8_444_1
  doi: 10.1103/PhysRevLett.112.203901
– ident: e_1_2_8_114_1
  doi: 10.1103/PhysRevLett.118.084303
– ident: e_1_2_8_183_1
  doi: 10.1103/PhysRevLett.120.246601
– ident: e_1_2_8_273_1
  doi: 10.1038/ncomms7710
– ident: e_1_2_8_293_1
  doi: 10.1038/srep29202
– ident: e_1_2_8_62_1
  doi: 10.1103/PhysRevMaterials.2.105201
SSID ssj0002891341
Score 2.3371677
Snippet In recent years, topological photonics inspired by electric topological insulators has promoted extensive research on robust electromagnetic (EM) wave...
Abstract In recent years, topological photonics inspired by electric topological insulators has promoted extensive research on robust electromagnetic (EM) wave...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Arrays
Coupling
Devices
edge state
Electromagnetism
Electrons
Graphene
Magnetic fields
metamaterials
Optical resonators
Photonics
Physics
Propagation
Slits
split‐ring‐resonator
Symmetry
Topological insulators
topological phase transition
Wireless power transmission
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy-iqBitsgfBU2yyrxhv9VGqoJQ-oLcl2WywIkmxFfz5zuympT2IFy85JENYvsnufJOd_YaQyyiyQtlSQpKT2FBwVwQgVZhHsBLalMNTVyD7qvoT8TyV041WX1gT5uWBPXAdm5RAYkoOFyMU5GuxKDjPkYgYq5Q75gsxbyOZevfbZ6hUtlJpjFgnm3-j_CcwbliS5VYUcmL9Wwxzk6e6QNPbJ3sNQ6RdP7IDsmOrQzKKH-jgrV6ikC0d-8YGCC99wlpyTJwXFKd2vbAFrUs6Am65pEOISxR_0FfO4pZ26cusmlG_IXBEJr3H8X0_bPohhAZFZABEJSUwJiNRZs2qSGTMijxJC2NEyoyQKYvVjSqAZqSZlWWBqrycGeBkRcITfkxaVV3ZE0IVZHFMJVGW5EKkZZ5CpoqShDHLWZwzHpBwhY82jVg49qz40F7mmGnEU6_xDMjV2n7uZTJ-tbxDuNdWKG_tboDTdeN0_ZfTA9JeOUs3c26hYTEBsgPZdRKQa-fAP4aiu4PpMAbIxOl_DOqM7MKrha8ja5PW8vPLngNjWeYX7uP8AZmK4C0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66XryIouLqKjkInoptntbb-lhWQVlWhb2FJk1VkHZxV_DnO5N2q3sQ8dJDOillkpl8k0y-IeQ4jr1QvpAQ5GgfCR6SAKSKbAye0Kcc3oYE2Xs1fBK3Ezn5cYu_5odoN9zQMoK_RgPP7Oz0mzQ0m34inydAaPCxcpWs4f1aZM9nYtTusjA8hQvlK5mWSZTAnFgwN8bsdPkTSytTIPBfQp0_sWtYfAabZKNBjbRfD_MWWfHlNnlIrujopZojuS19rIsdoMrpDeaXYzA9o2ju1czntCroA-DNOR3DWkVx074MEue0T-9ey1daHxLskKfB9ePlMGpqJEQOiWVAsUpKQFFOIvWaV7HImBdWp7lzImVOyJQl6kzlAD3SzMsiR6ZezhzgtFxzzXdJp6xKv0eogsiOKR1n2gqRFjaF6BVpChNmWWIZ75JooR_jGgJxrGPxZmrqY2ZQn6bVZ5ectPLTmjrjV8kLVHcrhZTXoaF6fzaNBRmvC0CzBYeHEwoC90TknFtEpM4rddYlvcVgmcYOZwYcDAAgiLh1l9Sz6Y9fMf3RZJyAysT-fzsckHVoFXUeWY905u8f_hAQy9wehUn5BQJt3Xw
  priority: 102
  providerName: Wiley-Blackwell
Title 1D Photonic Topological Insulators Composed of Split Ring Resonators: A Mini Review
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202300125
https://www.proquest.com/docview/3192221327
https://doaj.org/article/e7f099f3099c4688814d33b4565ce668
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9tAEB7yINBLSdOGuk3MHgI9qZH2afUSnNbOAxKMk4Bvi7VapYEiuZELPfW3Z2a1dptD28se5JEws7Mz38wO3wAcpamX2lcKkxzjEylCE4DSSZGiJ_S5wF9Dg-y1Pr-TlzM1iwW3NrZVrnxicNRl46hGfoymgqEMcydzsvie0NQoul2NIzQ2YRtd8ACTr-3T0fVkuq6ycLqFC-MruVFZkqFNrJgbU348X_wkSlBE4eim1bPIFAj8n6HOP7FrCD7jXXgZUSMbdtv8CjZ8vQc7oXvTta_hJvvCJl-bJdHcsttu7AEpn11Qpzml1S2jg9-0vmRNxW4QeS7ZFKMWo_J9HSQ-sSG7eqgfWHdd8AbuxqPbz-dJnJaQOKKYQRVrpRBPOUUkbF6ncs69LExeOidz7qTKeaYHukQQks-9qkri7BXcIWIrjTBiH7bqpvZvgWnM8bg26dwUUuZVkWMeS4SFGS94VnDRg2SlKesilThNtPhmOxJkbkmzdq3ZHnxYyy86Eo2_Sp6S4tdSRH4dHjSP9zaeJetNhbi2Erg4qTGFz2QpREHY1HmtBz04WG2bjSeytb_tpwcfw1b-56_Y4WQ2zVBl8t2_v_ceXuBLsusfO4Ct5eMPf4hIZVn0YZPLCa6D8Vk_mmY_ZP24Xv0aPQHR1OLO
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXVF5ioQUfQJxCEz-TSggtlGWXPlS1W2lvZuM4UAklS7MV8Kf4jcw4yUIPwKmXHBLLssbz-MaefAPwLI691L5UmOQYH0kRigCUjvIYPaHPBH4NBbKHenwqP8zUbA1-9v_CUFll7xODoy5qR2fk26gqGMowdzKvF18j6hpFt6t9C41WLfb8j2-YsjWvJru4v885H72bvh1HXVeByBEVCy5FK4W4wykiK_M6lnPuZW6ywjmZcSdVxhOd6gKDdTb3qiyI21Zwh8imMMIInPcaXJdCZGRR6ej96kyH051faJbJjUqiBDWw54mM-fZ88Z0ISBHzY1BQl-JgaBdwCeP-iZRDqBttwO0Oo7Jhq1R3YM1Xd-FGqBV1zT04SXbZ0ed6SaS6bNo2WaCtZhOqa6ckvmHkZurGF6wu2Qni3CU7xhjJ6LKgCiN22JAdnFVnrL2cuA-nVyLFB7Be1ZV_CExjRsm1iecmlzIr8wyzZqJHTHjOk5yLAUS9pKzriMupf8YX21Iuc0uStSvJDuDFavyipez468g3JPjVKKLaDi_q80-2s1zrTYkouhT4cFKnaZrIQoickLDzWqcD2Oy3zXb239jf2jqAl2Er_7MUOzyaHScoMvno3_M9hZvj6cG-3Z8c7j2GWziBbCvXNmF9eX7htxAjLfMnQTEZfLxqS_gFQ_oW9g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gngRRcVq1T0InkKTfRpv9VHqqxRtpXhZms1GC5IUW8Gf70ySRnsQ8ZJDMglhdmb2m93Zbwg59n0nlEskJDnaeYLnRQBSeZEPkdCFHJ7mBbJd1RmIm6Ec_jjFX_BDVAtu6Bl5vEYHn8RJ85s0dDT5RD5PgNAQY-UyWUGqPLDrldbT4HlQrbMw3IfLG1gyLQMvAKuYczf6rLn4kYW5KafwX8CdP9FrPv20N8h6iRtpqxjoTbLk0i3yGFzS3ms2Q3pb2i_aHaDS6TVWmGM6PaXo8NnUxTRL6CMgzhl9gNmK4rJ9mkuc0Ra9H6djWmwTbJNB-6p_0fHKLgmeRWoZUK2SEnCUlUi-5pQvRsyJSIextSJkVsiQBepUxQA-wpGTSYxcvZxZQGqx5prvkFqapW6XUAW5HVPaH-lIiDCJQshfkagwYBELIsbrxJvrx9iSQhw7WbyZgvyYGdSnqfRZJyeV_KQgz_hV8hzVXUkh6XV-I3t_MaUPGacTwLMJh4sVClL3QMScR4hJrVPqtE4a88EypSdODYQYgECQc-s6Kezpj18xrd7wIQCVib3_vnBEVnuXbXN33b3dJ2sgIIqisgapzd4_3AHAl1l0WFroFyBK4eA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1D+Photonic+Topological+Insulators+Composed+of+Split+Ring+Resonators%3A+A+Mini+Review&rft.jtitle=Advanced+Physics+Research&rft.au=Guo%2C+Zhiwei&rft.au=Wang%2C+Yuqian&rft.au=Ke%2C+Shaolin&rft.au=Su%2C+Xiaoqiang&rft.date=2024-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=3&rft.issue=6&rft_id=info:doi/10.1002%2Fapxr.202300125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon