1D Photonic Topological Insulators Composed of Split Ring Resonators: A Mini Review
In recent years, topological photonics inspired by electric topological insulators has promoted extensive research on robust electromagnetic (EM) wave manipulation and new wave‐functional devices. Optical resonators can significantly confine EM waves and are the basic building blocks for constructin...
Saved in:
Published in | Advanced Physics Research Vol. 3; no. 6 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Edinburgh
John Wiley & Sons, Inc
01.06.2024
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In recent years, topological photonics inspired by electric topological insulators has promoted extensive research on robust electromagnetic (EM) wave manipulation and new wave‐functional devices. Optical resonators can significantly confine EM waves and are the basic building blocks for constructing diverse topological structures under a tight binding mechanism. As an artificial “magnetic atom,” the split‐ring‐resonator (SRR) is one of the most attractive optical resonators. SRRs provide an excellent and flexible platform for constructing various topological structures with complex coupling distributions, uncovering abundant topological properties, and innovating practical devices. Here, the realization and fundamental EM responses of the SRR are briefly introduced. Compared to conventional EM resonance elements, the coupling between SRRs depends not only on the coupling distance but also on the orientation angle of the slits. The recent achievements in various low‐dimensional photonic topological structures composed of SRRs are summarized. Furthermore, this review explains the underlying physical principles and discusses progress in topological devices with SRRs, including wireless power transfer, sensing, and switching. Finally, this review provides an overview of the future of SRR topological structures and their impact on the development of novel topological systems and devices.
Compared to the disks or spheres, the coupling coefficients between split‐ring‐resonators are not only dependent on the separating distance, but also related to the relative rotation angle. Topological chains with split‐ring‐resonators provide a good platform to study complex topological models, and reveal important applications. |
---|---|
AbstractList | In recent years, topological photonics inspired by electric topological insulators has promoted extensive research on robust electromagnetic (EM) wave manipulation and new wave‐functional devices. Optical resonators can significantly confine EM waves and are the basic building blocks for constructing diverse topological structures under a tight binding mechanism. As an artificial “magnetic atom,” the split‐ring‐resonator (SRR) is one of the most attractive optical resonators. SRRs provide an excellent and flexible platform for constructing various topological structures with complex coupling distributions, uncovering abundant topological properties, and innovating practical devices. Here, the realization and fundamental EM responses of the SRR are briefly introduced. Compared to conventional EM resonance elements, the coupling between SRRs depends not only on the coupling distance but also on the orientation angle of the slits. The recent achievements in various low‐dimensional photonic topological structures composed of SRRs are summarized. Furthermore, this review explains the underlying physical principles and discusses progress in topological devices with SRRs, including wireless power transfer, sensing, and switching. Finally, this review provides an overview of the future of SRR topological structures and their impact on the development of novel topological systems and devices.
Compared to the disks or spheres, the coupling coefficients between split‐ring‐resonators are not only dependent on the separating distance, but also related to the relative rotation angle. Topological chains with split‐ring‐resonators provide a good platform to study complex topological models, and reveal important applications. In recent years, topological photonics inspired by electric topological insulators has promoted extensive research on robust electromagnetic (EM) wave manipulation and new wave‐functional devices. Optical resonators can significantly confine EM waves and are the basic building blocks for constructing diverse topological structures under a tight binding mechanism. As an artificial “magnetic atom,” the split‐ring‐resonator (SRR) is one of the most attractive optical resonators. SRRs provide an excellent and flexible platform for constructing various topological structures with complex coupling distributions, uncovering abundant topological properties, and innovating practical devices. Here, the realization and fundamental EM responses of the SRR are briefly introduced. Compared to conventional EM resonance elements, the coupling between SRRs depends not only on the coupling distance but also on the orientation angle of the slits. The recent achievements in various low‐dimensional photonic topological structures composed of SRRs are summarized. Furthermore, this review explains the underlying physical principles and discusses progress in topological devices with SRRs, including wireless power transfer, sensing, and switching. Finally, this review provides an overview of the future of SRR topological structures and their impact on the development of novel topological systems and devices. Abstract In recent years, topological photonics inspired by electric topological insulators has promoted extensive research on robust electromagnetic (EM) wave manipulation and new wave‐functional devices. Optical resonators can significantly confine EM waves and are the basic building blocks for constructing diverse topological structures under a tight binding mechanism. As an artificial “magnetic atom,” the split‐ring‐resonator (SRR) is one of the most attractive optical resonators. SRRs provide an excellent and flexible platform for constructing various topological structures with complex coupling distributions, uncovering abundant topological properties, and innovating practical devices. Here, the realization and fundamental EM responses of the SRR are briefly introduced. Compared to conventional EM resonance elements, the coupling between SRRs depends not only on the coupling distance but also on the orientation angle of the slits. The recent achievements in various low‐dimensional photonic topological structures composed of SRRs are summarized. Furthermore, this review explains the underlying physical principles and discusses progress in topological devices with SRRs, including wireless power transfer, sensing, and switching. Finally, this review provides an overview of the future of SRR topological structures and their impact on the development of novel topological systems and devices. |
Author | Guo, Zhiwei Ren, Jie Ke, Shaolin Wang, Yuqian Chen, Hong Su, Xiaoqiang |
Author_xml | – sequence: 1 givenname: Zhiwei orcidid: 0000-0002-8973-307X surname: Guo fullname: Guo, Zhiwei email: 2014guozhiwei@tongji.edu.cn organization: Tongji University – sequence: 2 givenname: Yuqian surname: Wang fullname: Wang, Yuqian organization: Tongji University – sequence: 3 givenname: Shaolin surname: Ke fullname: Ke, Shaolin organization: Wuhan Institute of Technology – sequence: 4 givenname: Xiaoqiang surname: Su fullname: Su, Xiaoqiang organization: Nanyang Technological University – sequence: 5 givenname: Jie surname: Ren fullname: Ren, Jie organization: Tongji University – sequence: 6 givenname: Hong surname: Chen fullname: Chen, Hong email: hongchen@tongji.edu.cn organization: Shanxi Datong University |
BookMark | eNqFkd1LKzEQxYMo6FVffQ7c59Z87-a-lXrVgqJUBd9CzGZryppZk63V_96tVRFBfMmE4fzODHP-oM0I0SN0QMmQEsIObfuchowwTghlcgPtsELSAWWEbH75b6P9nOekB0pNuaA76Ioe4ct76CAGh6-hhQZmwdkGT2JeNLaDlPEYHlrIvsJQ46u2CR2ehjjDU58hvin-4RE-DzH0rafgl3toq7ZN9vvvdRfdHP-_Hp8Ozi5OJuPR2cBxocVAEyVlyaWTXBXKKyIs8-Ku0JVzQjMnpGZUlaoiSmjrZV0xIkrOHJFFVfCC76LJ2rcCOzdtCg82vRiwwbw1IM2MTV1wjTe-qInWNe8fJ1RZllRUnN8JqaTzSpW919-1V5vgceFzZ-awSLFf33CqGWOUs9VEsVa5BDknXxsXOtsFiF2yoTGUmFUaZpWG-Uyjx4bfsI9lfwTkGliGxr_8ojajy9sp7U8l-CsJ35rU |
CitedBy_id | crossref_primary_10_1002_advs_202408460 crossref_primary_10_1021_acs_nanolett_3c05095 crossref_primary_10_1103_PhysRevA_109_063516 crossref_primary_10_1002_lpor_202401126 crossref_primary_10_1103_PhysRevA_110_052201 crossref_primary_10_1016_j_physleta_2024_130210 crossref_primary_10_1088_2040_8986_ad8dee crossref_primary_10_1088_2040_8986_adba77 |
Cites_doi | 10.1038/nature07247 10.1103/PhysRevLett.124.153903 10.1103/PhysRevLett.108.196802 10.1038/nphoton.2014.248 10.1088/1367-2630/ab3f6d 10.1002/lpor.201600042 10.1103/PhysRevLett.120.217401 10.1038/nphoton.2013.42 10.1002/mop.22344 10.1038/s41467-019-08881-z 10.1103/PhysRevResearch.2.022062 10.1049/iet-map:20050289 10.1515/nanoph-2020-0441 10.1038/s41467-023-38325-8 10.1515/nanoph-2019-0376 10.1117/1.AP.3.3.036001 10.1109/TIE.2011.2171176 10.1049/el:20020258 10.1364/PRJ.495638 10.1016/j.scib.2021.01.028 10.1364/OL.492336 10.1103/PhysRevLett.125.013903 10.1103/PhysRevLett.116.133903 10.1109/TAP.2003.817562 10.1038/s41598-017-08171-y 10.1103/PhysRevLett.116.093901 10.1103/PhysRevLett.125.033901 10.1038/ncomms16023 10.1126/science.aau7707 10.1038/srep45015 10.1038/s41467-021-26414-5 10.1103/PhysRevResearch.3.013122 10.1103/PhysRevLett.98.103901 10.1103/PhysRevLett.115.040402 10.1038/s41928-022-00732-y 10.1038/s41377-020-00354-z 10.1002/pssb.200844414 10.1063/5.0024077 10.1103/PhysRevLett.100.113903 10.1103/PhysRevLett.121.086807 10.1002/adma.201201482 10.1103/PhysRevB.14.2239 10.1002/smll.201603190 10.1038/s41563-019-0304-9 10.1016/j.ijmecsci.2022.107460 10.1038/s41586-018-0367-9 10.1103/PhysRevB.65.195104 10.1103/PhysRevE.106.L032102 10.1364/OPTICA.5.001396 10.1038/s41467-017-01515-2 10.1103/PhysRevResearch.1.023013 10.1038/nmat4807 10.1126/science.1105371 10.1126/science.aar7709 10.1109/TPEL.2021.3056538 10.1103/PhysRevLett.110.013903 10.1103/PhysRevB.99.064305 10.1103/PhysRevLett.104.063901 10.1088/2515-7647/ac4ee4 10.1103/PhysRevA.101.043811 10.1103/PhysRevLett.125.157401 10.1364/OE.27.013858 10.1088/0256-307X/38/2/024202 10.1103/PhysRevLett.95.226801 10.1073/pnas.1525502113 10.1103/PhysRevApplied.10.054069 10.1186/s43593-021-00002-y 10.1038/ncomms11619 10.1103/PhysRevLett.119.215304 10.1021/acsphotonics.1c00029 10.1103/PhysRevLett.122.136802 10.1088/1367-2630/ac71bd 10.1021/acs.nanolett.9b04813 10.1021/acsphotonics.0c00797 10.1021/acsphotonics.1c00017 10.1021/acsphotonics.1c00507 10.1103/PhysRevA.99.013833 10.1038/s41377-020-00371-y 10.1126/science.1133734 10.1049/el:20030138 10.1103/PhysRevB.93.075110 10.1515/nanoph-2020-0146 10.1103/PhysRevLett.120.113901 10.1038/nature25156 10.1103/PhysRevLett.120.063902 10.1103/PhysRevResearch.4.013113 10.1364/OL.430579 10.1038/s41467-022-29768-6 10.1070/PU1968v010n04ABEH003699 10.1088/1367-2630/aa7cb5 10.3788/COL202119.052602 10.1364/OL.30.003356 10.1002/lpor.202000001 10.1038/s41567-017-0041-4 10.1103/PhysRevLett.126.067401 10.1364/OL.43.005142 10.1103/PhysRevA.102.023505 10.1364/OL.44.003342 10.1063/5.0157868 10.1038/s41567-021-01275-3 10.1021/acsphotonics.0c00521 10.1364/OL.44.002530 10.1103/PhysRevA.103.023512 10.1103/PhysRevLett.127.043904 10.3788/COL202321.123601 10.1103/PhysRevResearch.1.033069 10.1103/PhysRevLett.115.253901 10.1002/lpor.201900087 10.1103/PhysRevLett.128.216403 10.1103/PhysRevLett.125.054301 10.1103/PhysRevLett.109.116404 10.1126/science.aaz8727 10.1063/5.0146831 10.1063/1.5142397 10.1103/PhysRevLett.122.195501 10.1038/s41928-018-0042-z 10.1103/PhysRevLett.118.245301 10.1088/1367-2630/18/11/113013 10.1038/nphys2790 10.1093/nsr/nwad172 10.1038/s41467-022-30276-w 10.1103/PhysRevLett.129.123901 10.1103/PhysRevB.105.L100102 10.1088/1361-6463/aa7619 10.1002/adma.202001034 10.1103/PhysRevLett.106.176802 10.1063/1.3056052 10.1103/PhysRevLett.110.203904 10.3390/opt3020013 10.1126/science.1222360 10.1364/OE.25.011132 10.1103/PhysRevB.98.094307 10.1039/C7TC03384B 10.1103/PhysRevLett.116.163901 10.1002/lpor.201800202 10.1038/s41578-022-00465-6 10.1103/PhysRevB.85.155415 10.1103/PhysRevLett.119.255901 10.1364/OL.40.003380 10.1038/s41467-018-05408-w 10.1038/nphys4304 10.1103/PhysRevLett.122.014301 10.1038/s41377-022-00931-4 10.1088/1367-2630/13/8/083029 10.1038/s41467-018-07084-2 10.1103/PhysRevLett.124.073603 10.1103/PhysRevLett.123.053902 10.1038/s41928-021-00658-x 10.1038/s41467-022-29777-5 10.1038/s41467-020-15825-5 10.1103/PhysRevLett.129.127401 10.1063/1.4940403 10.1038/s41928-020-0399-7 10.1038/nphys547 10.1038/nphoton.2006.49 10.1103/PhysRevLett.106.093903 10.1126/science.abj2232 10.1126/science.abd2033 10.1103/PhysRevApplied.10.044002 10.1103/PhysRevLett.126.113902 10.1038/nmat4573 10.1103/PhysRevLett.120.260501 10.1103/PhysRevB.103.155425 10.1038/nphys3867 10.1021/acs.nanolett.3c00474 10.1103/PhysRevB.104.045408 10.1002/advs.201902724 10.1002/adma.202202257 10.1038/nphoton.2013.274 10.1364/OL.471869 10.1038/s41467-018-07817-3 10.1038/s42254-021-00323-4 10.1002/lpor.201800242 10.1103/PhysRevB.94.195427 10.1063/1.1814428 10.1088/1367-2630/13/6/065028 10.1103/PhysRevLett.123.213901 10.1038/s41467-021-25716-y 10.1038/nphys2063 10.1002/adom.202001739 10.1038/s41467-018-05461-5 10.1103/PhysRevLett.120.087401 10.1038/s41377-022-00823-7 10.1038/srep03842 10.1103/PhysRevLett.113.113904 10.1103/PhysRevE.78.026607 10.1103/PhysRevB.91.125132 10.1103/PhysRevLett.127.184101 10.1063/5.0097129 10.1103/PhysRevB.89.075113 10.1049/ip-map:20050119 10.1002/lpor.202100300 10.1364/OL.460484 10.1103/PhysRevResearch.4.023047 10.1038/lsa.2016.94 10.1038/nphys3611 10.1038/ncomms1669 10.1103/PhysRevB.97.195307 10.1021/acs.nanolett.1c00449 10.1103/RevModPhys.82.1959 10.1038/nature22404 10.1103/PhysRevLett.100.096407 10.1126/science.aap9859 10.1126/sciadv.aaw4137 10.1103/PhysRevLett.126.206602 10.1364/OME.416835 10.1103/PhysRevLett.85.3966 10.1088/0370-1298/68/10/304 10.1002/adom.201800532 10.1109/TMTT.2005.845211 10.1103/PhysRevApplied.14.054028 10.1038/s41467-021-25305-z 10.1103/PhysRevLett.123.043201 10.1038/nature08293 10.1103/PhysRevLett.95.223902 10.1126/science.aaa9519 10.1103/PhysRevLett.129.090503 10.1038/lsa.2015.101 10.1038/nphys3999 10.1038/s41377-021-00614-6 10.1038/s41467-019-10086-3 10.1103/PhysRevLett.113.240403 10.1038/s41467-018-07030-2 10.1038/ncomms12435 10.1002/advs.202301128 10.1126/science.1234414 10.1038/s41467-017-00134-1 10.1364/OL.34.001633 10.1021/ph4000949 10.1016/j.chip.2022.100025 10.1103/PhysRevLett.122.153902 10.1126/science.1102896 10.1364/PRJ.413873 10.1103/PhysRevLett.128.093901 10.1038/s41586-018-0764-0 10.1103/PhysRevB.97.085148 10.1103/PhysRevLett.114.037402 10.1103/PhysRevApplied.20.024076 10.1103/PhysRevLett.126.215302 10.1103/RevModPhys.87.137 10.1103/PhysRevLett.111.103901 10.1103/PhysRevLett.128.013902 10.1103/PhysRevB.100.125108 10.1038/srep22270 10.1364/OE.27.025841 10.1103/PhysRevB.97.020102 10.1103/PhysRevLett.121.086803 10.1038/s41377-020-0331-y 10.1364/OE.470783 10.1103/PhysRevLett.128.157601 10.1002/adom.201900036 10.1103/PhysRevLett.112.096805 10.1103/PhysRevLett.100.013904 10.1103/PhysRevLett.118.166803 10.1038/s41566-020-0618-9 10.1109/T-ED.1976.18476 10.1038/srep11686 10.1103/PhysRevB.98.235125 10.1103/PhysRevLett.121.163901 10.1038/nmat3783 10.1103/PhysRevB.101.165427 10.1103/PhysRevApplied.9.034032 10.1103/PhysRevB.74.035419 10.1103/PhysRevB.95.161114 10.1515/nanoph-2022-0309 10.1126/science.aar4005 10.1364/OL.391764 10.1038/s41565-019-0584-x 10.1002/lpor.201800339 10.1038/s41565-024-01737-8 10.1126/science.aay1064 10.1103/PhysRevLett.129.086601 10.1103/RevModPhys.82.3045 10.1038/ncomms6782 10.1103/PhysRevB.103.245305 10.1103/PhysRevLett.114.223901 10.1364/OE.26.008634 10.1364/OPEX.13.010238 10.1038/nnano.2012.95 10.1103/PhysRevB.96.094106 10.1038/nphys3228 10.1038/nmat3520 10.1038/nature23281 10.1364/OME.416552 10.1103/PhysRevLett.115.200402 10.1002/pssb.200844125 10.1103/PhysRevLett.125.180403 10.1103/PhysRevLett.100.236801 10.1103/PhysRevApplied.18.014056 10.1063/1.5004073 10.1038/s41467-022-32909-6 10.1038/nature12066 10.1038/s41567-020-0807-y 10.1126/science.aax8156 10.1103/PhysRevB.101.205309 10.1038/s41377-022-00821-9 10.1103/PhysRevB.93.035422 10.1103/PhysRevB.96.041408 10.1038/d41586-021-02677-2 10.1515/nanoph-2019-0137 10.1038/ncomms13368 10.1063/1.4982620 10.1038/s41567-021-01493-9 10.1103/PhysRevLett.106.106802 10.1002/adpr.202100013 10.1103/PhysRevLett.121.023901 10.1088/2040-8986/ac2e15 10.1103/PhysRevLett.99.236809 10.3390/app8040596 10.1103/RevModPhys.91.015006 10.1038/s41467-018-03330-9 10.1103/PhysRevLett.122.117401 10.1103/PhysRevLett.112.107403 10.1038/s41586-020-03125-3 10.1038/s41565-018-0297-6 10.1038/srep21461 10.1103/PhysRevLett.129.043602 10.1038/s41467-023-42321-3 10.1038/s41566-019-0452-0 10.1103/PhysRevLett.125.143001 10.1038/nature05343 10.1038/s41467-019-12778-2 10.1063/5.0104358 10.1038/nature25777 10.1002/lpor.202200071 10.1038/s42005-020-00395-1 10.1038/nmat4811 10.1038/nphys3776 10.1103/PhysRevResearch.3.033106 10.1063/1.5128679 10.1364/OE.24.018580 10.1103/PhysRevApplied.15.014009 10.1016/0022-2364(82)90221-9 10.1002/adma.202202241 10.1126/science.aar4003 10.1364/OL.36.002513 10.1103/PhysRevB.99.094206 10.1063/5.0083989 10.1364/OE.398421 10.1103/PhysRevA.105.033512 10.1038/s41377-019-0237-8 10.1038/s41567-020-01082-2 10.1126/science.abc4975 10.1364/OE.26.024531 10.1038/s41566-017-0051-x 10.1103/PhysRevLett.95.146802 10.1038/nature14889 10.1364/OL.40.005259 10.1103/PhysRevB.95.174106 10.1038/nphoton.2016.253 10.1103/PhysRevLett.42.1698 10.1364/OE.26.000627 10.1103/PhysRevLett.123.165701 10.1038/nature18604 10.1364/OE.26.024307 10.1002/lpor.201900126 10.1103/PhysRevB.93.041415 10.1103/PhysRevLett.122.237601 10.1038/s41567-020-0796-x 10.1088/1367-2630/7/1/168 10.1364/PRJ.7.001075 10.1088/1361-6463/ac2e89 10.1063/1.2209031 10.1209/0295-5075/85/14005 10.1364/OPTICA.6.000839 10.1103/PhysRevB.96.184305 10.1103/PhysRevLett.122.233902 10.1103/PhysRevResearch.4.L032031 10.1063/5.0011719 10.1364/OE.439729 10.1103/PhysRevB.94.174307 10.1364/OL.41.001644 10.1038/s41467-021-25835-6 10.1126/science.aaq1221 10.1103/PhysRevLett.121.024301 10.1063/1.5055601 10.1103/PhysRevApplied.17.064008 10.1103/PhysRevResearch.5.L012012 10.1063/5.0051239 10.1038/s41377-021-00607-5 10.1126/science.1058847 10.1103/PhysRevLett.120.205501 10.1070/1063-7869/44/10S/S29 10.1002/lpor.201900159 10.1038/s41598-022-10189-w 10.1088/1367-2630/aa66f8 10.1364/OE.417887 10.1117/1.AP.4.4.046002 10.1103/PhysRevB.99.115410 10.1103/PhysRevLett.128.116802 10.1103/PhysRevLett.127.105901 10.1109/22.798002 10.1038/nphys4072 10.1126/science.abj5488 10.1103/PhysRevA.96.023864 10.1103/PhysRevLett.100.013905 10.1126/science.abf6873 10.1364/PRJ.451344 10.1038/s41467-018-03434-2 10.1002/adma.201805002 10.1038/s41566-022-00972-6 10.1038/srep24347 10.1038/s41586-018-0829-0 10.1038/nphys4323 10.1103/PhysRevLett.128.116803 10.1002/mop.21021 10.1038/s41566-019-0561-9 10.1088/1674-1056/ac3815 10.1364/OE.24.018059 10.1126/science.abi7803 10.1103/PhysRevA.105.033501 10.1364/OL.43.001986 10.1103/PhysRevB.98.024205 10.1103/PhysRevResearch.2.043233 10.1103/PhysRevLett.128.257401 10.1002/adom.201900900 10.1103/PhysRevB.97.054307 10.1103/PhysRevLett.122.233903 10.1039/C5NR00231A 10.1038/s41586-021-03833-4 10.1103/PhysRevLett.119.130501 10.1103/PhysRevB.93.155112 10.1063/5.0060007 10.1103/PhysRevLett.128.223903 10.1103/PhysRevLett.127.013901 10.1103/PhysRevLett.114.127401 10.1038/s41377-022-00972-9 10.1103/PhysRevLett.123.103901 10.1103/PhysRevLett.125.206402 10.1103/RevModPhys.83.1057 10.1080/02726340490457890 10.1364/AOP.418074 10.1007/s11433-021-1785-y 10.1038/srep32752 10.1103/PhysRevB.103.235110 10.1038/nphoton.2013.321 10.1038/nphoton.2012.302 10.1364/OE.432964 10.1016/j.revip.2022.100076 10.1103/PhysRevLett.121.124501 10.1038/nphoton.2012.236 10.1038/s41566-017-0048-5 10.1103/PhysRevB.76.073101 10.1103/PhysRevLett.110.076403 10.1103/PhysRevLett.129.053903 10.1103/PhysRevLett.114.123901 10.1103/PhysRevResearch.4.L032015 10.1038/s41566-017-0031-1 10.1038/s41467-017-01205-z 10.1103/PhysRevApplied.13.014047 10.1103/PhysRevB.91.064201 10.1038/s41586-019-1348-3 10.1103/PhysRevApplied.11.031004 10.1364/OE.25.023293 10.1126/sciadv.aap8802 10.1103/PhysRevLett.109.106402 10.1063/1.1136574 10.1103/PhysRevLett.115.177001 10.1364/OE.431038 10.1038/s41565-018-0324-7 10.1002/lpor.202100269 10.1038/nature23280 10.1103/PhysRevLett.121.213902 10.1103/PhysRevA.75.063813 10.1103/PhysRevLett.104.043903 10.1021/acsphotonics.1c01874 10.29026/oes.2022.220001 10.1364/OE.26.012891 10.1103/PhysRevLett.112.203901 10.1103/PhysRevLett.118.084303 10.1103/PhysRevLett.120.246601 10.1038/ncomms7710 10.1038/srep29202 10.1103/PhysRevMaterials.2.105201 |
ContentType | Journal Article |
Copyright | 2023 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2023 The Authors. Advanced Physics Research published by Wiley‐VCH GmbH – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. M2P PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1002/apxr.202300125 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2751-1200 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_e7f099f3099c4688814d33b4565ce668 10_1002_apxr_202300125 APXR12164 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2021YFA1400602; 2023YFA1407600 – fundername: National Natural Science Foundation of China funderid: 12004284; 12374294 – fundername: Fundamental Research Funds for the Central Universities funderid: 22120210579 – fundername: Chenguang Program of Shanghai Education Development Foundation and Shanghai Municipal Education Commission funderid: 21CGA22 |
GroupedDBID | 0R~ 24P 88I AAFWJ AAMMB ABJCF ABUWG ACCMX AEFGJ AEUYN AFKRA AFPKN AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ KB. M2P M~E PCBAR PDBOC PHGZM PHGZT PIMPY AAYXX CITATION 3V. 7XB 8FE 8FG 8FK ARCSS D1I PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U PUEGO WIN |
ID | FETCH-LOGICAL-c3494-90655835c53676e604a2e4b79dcc492c45921686d0649ae5fd204832c057d7373 |
IEDL.DBID | BENPR |
ISSN | 2751-1200 |
IngestDate | Wed Aug 27 00:57:38 EDT 2025 Fri Jul 25 11:44:20 EDT 2025 Tue Jul 01 02:33:00 EDT 2025 Thu Apr 24 22:52:14 EDT 2025 Sun Jul 06 04:45:20 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3494-90655835c53676e604a2e4b79dcc492c45921686d0649ae5fd204832c057d7373 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8973-307X |
OpenAccessLink | https://www.proquest.com/docview/3192221327?pq-origsite=%requestingapplication% |
PQID | 3192221327 |
PQPubID | 6852862 |
PageCount | 35 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e7f099f3099c4688814d33b4565ce668 proquest_journals_3192221327 crossref_citationtrail_10_1002_apxr_202300125 crossref_primary_10_1002_apxr_202300125 wiley_primary_10_1002_apxr_202300125_APXR12164 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 20240601 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationPlace | Edinburgh |
PublicationPlace_xml | – name: Edinburgh |
PublicationTitle | Advanced Physics Research |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2018; 560 2009; 85 2021; 64 2021; 66 2020; 20 2019; 11 2019; 10 2019; 13 2018; 564 2019; 14 1999; 47 2004; 24 2020; 16 2020; 15 2019; 18 2020; 14 2020; 13 2020; 11 2001; 44 2008; 100 2019; 21 2008; 25 2019; 27 2013; 111 2016; 41 2013; 60 2013; 110 2012; 24 2006; 444 2016; 10 2013; 340 2008; 245 2020; 32 2016; 18 2004; 306 2016; 15 2011; 7 2016; 12 2016; 5 2017; 50 2016; 6 2016; 7 2015; 115 2018; 359 2022; 3 2022; 4 2019; 44 2022; 5 2015; 114 2022; 7 2022; 9 2002; 65 2005; 95 2020; 28 2005; 7 2022; 1 2018; 98 2018; 97 2016; 24 2017; 119 2021; 126 2016; 108 2021; 127 2020; 127 2020; 368 2008; 78 2020; 367 2020; 124 2017; 110 2020; 125 2017; 118 2014; 1 2023; 20 2020; 7 2023; 21 2020; 6 2014; 5 2020; 3 2014; 4 2020; 2 2023; 23 2021; 597 2013; 12 2021; 598 2020; 370 2020; 9 2016; 113 2003; 5 2016; 116 2020; 45 2014; 8 2012; 336 1968; 10 2021; 9 2002; 38 2023; 10 2021; 8 2004; 85 2021; 6 2015; 6 2021; 4 2015; 5 2023; 14 2021; 3 2015; 4 2023; 11 2021; 2 2017; 25 2011 2021; 104 2021; 103 2021; 589 2006; 153 2020; 101 2004 2021; 1 2015; 7 2014; 89 2010; 82 2011; 106 2023 2017; 16 2017; 11 2017; 13 2018; 555 1980; 3 2020; 116 2020; 117 1962 2017; 19 2008; 455 1979; 42 1981; 52 2007; 49 2019; 91 2019; 99 2010; 104 2000; 85 2022; 24 2019; 565 2013; 7 2007; 75 2007; 76 2018; 43 2022; 28 2013; 9 2018; 6 2018; 9 2018; 8 2018; 2 2018; 5 2018; 4 2018; 1 2015; 87 2022; 34 2021; 272 2014; 13 2022; 30 2018; 30 2022; 31 2015; 91 2007; 3 2007; 1 2009; 246 2019; 8 2019; 7 2019; 9 2019; 6 2019; 1 2011; 83 2016; 94 2003; 39 2016; 93 2015; 525 2007; 98 2007; 99 1955; 68 2019; 100 2018; 26 2012; 108 2012; 109 2017; 548 1982; 47 2022; 12 2022; 13 2021; 373 2021; 372 2021; 130 2022; 10 2022; 11 2009; 461 2021; 374 2022; 227 2018; 10 2022; 106 2022; 16 2022; 17 2022; 105 2018; 14 2022; 102 2022; 18 2009; 105 2005; 13 2017; 546 2019; 571 2018; 120 2017; 7 2018; 121 2017; 8 2006; 74 2021; 21 2021; 23 1976; 23 2023; 5 2021; 29 2018; 123 2011; 13 2023; 2 2022; 65 2015; 348 2019; 122 2019; 123 2019; 365 2019; 363 2021; 36 2021; 35 2022; 120 2021; 38 2022; 121 2015; 40 2001; 292 2023; 133 2005; 30 2019; 114 2022; 128 2022; 129 2006; 99 2023; 123 2015; 11 2022; 47 2011; 36 2006; 314 2014; 112 2005; 46 2014; 113 2017; 95 2009; 34 2021; 13 2021; 16 2017; 96 2021; 15 2021; 10 1976; 14 2012; 3 2017; 93 2021; 12 2021; 11 2016; 537 2021; 17 2021; 19 2013; 496 2005; 53 2022; 55 2012; 6 2012; 7 2012; 85 e_1_2_8_241_1 e_1_2_8_287_1 e_1_2_8_264_1 e_1_2_8_309_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_471_1 e_1_2_8_494_1 e_1_2_8_407_1 e_1_2_8_132_1 e_1_2_8_155_1 e_1_2_8_178_1 e_1_2_8_385_1 Wang Z. (e_1_2_8_299_1) 2022; 106 e_1_2_8_9_1 e_1_2_8_362_1 e_1_2_8_230_1 e_1_2_8_276_1 e_1_2_8_253_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_482_1 e_1_2_8_419_1 e_1_2_8_120_1 e_1_2_8_143_1 e_1_2_8_166_1 e_1_2_8_189_1 e_1_2_8_91_1 e_1_2_8_429_1 e_1_2_8_374_1 e_1_2_8_397_1 e_1_2_8_351_1 e_1_2_8_470_1 e_1_2_8_242_1 e_1_2_8_265_1 e_1_2_8_48_1 e_1_2_8_493_1 e_1_2_8_408_1 e_1_2_8_288_1 e_1_2_8_133_1 e_1_2_8_179_1 e_1_2_8_110_1 e_1_2_8_386_1 e_1_2_8_363_1 e_1_2_8_340_1 e_1_2_8_156_1 e_1_2_8_481_1 e_1_2_8_231_1 e_1_2_8_254_1 e_1_2_8_14_1 e_1_2_8_37_1 e_1_2_8_277_1 e_1_2_8_428_1 e_1_2_8_144_1 e_1_2_8_90_1 e_1_2_8_121_1 e_1_2_8_375_1 e_1_2_8_352_1 e_1_2_8_398_1 e_1_2_8_167_1 e_1_2_8_28_1 e_1_2_8_492_1 e_1_2_8_243_1 Jia N. Y. (e_1_2_8_459_1) 2015; 5 e_1_2_8_220_1 e_1_2_8_409_1 e_1_2_8_266_1 e_1_2_8_289_1 e_1_2_8_81_1 e_1_2_8_439_1 e_1_2_8_111_1 e_1_2_8_7_1 e_1_2_8_341_1 e_1_2_8_364_1 e_1_2_8_387_1 e_1_2_8_134_1 e_1_2_8_157_1 e_1_2_8_17_1 e_1_2_8_480_1 e_1_2_8_232_1 Lai K. (e_1_2_8_73_1) 2016; 6 e_1_2_8_255_1 e_1_2_8_278_1 e_1_2_8_427_1 e_1_2_8_70_1 e_1_2_8_122_1 e_1_2_8_330_1 e_1_2_8_353_1 Grover F. W. (e_1_2_8_315_1) 1962 e_1_2_8_376_1 e_1_2_8_399_1 e_1_2_8_145_1 e_1_2_8_168_1 e_1_2_8_93_1 e_1_2_8_491_1 e_1_2_8_221_1 e_1_2_8_27_1 e_1_2_8_244_1 e_1_2_8_267_1 Xu H. S. (e_1_2_8_381_1) 2022; 4 e_1_2_8_438_1 e_1_2_8_80_1 e_1_2_8_342_1 e_1_2_8_8_1 e_1_2_8_365_1 e_1_2_8_112_1 e_1_2_8_158_1 e_1_2_8_388_1 e_1_2_8_135_1 e_1_2_8_39_1 e_1_2_8_210_1 e_1_2_8_16_1 e_1_2_8_233_1 e_1_2_8_256_1 e_1_2_8_279_1 e_1_2_8_426_1 e_1_2_8_449_1 e_1_2_8_92_1 Liu M. K. (e_1_2_8_369_1) 2018; 8 e_1_2_8_331_1 e_1_2_8_354_1 e_1_2_8_123_1 e_1_2_8_169_1 e_1_2_8_377_1 e_1_2_8_146_1 e_1_2_8_283_1 e_1_2_8_452_1 e_1_2_8_260_1 e_1_2_8_475_1 e_1_2_8_498_1 e_1_2_8_207_1 e_1_2_8_403_1 e_1_2_8_151_1 e_1_2_8_174_1 e_1_2_8_197_1 e_1_2_8_328_1 e_1_2_8_60_1 e_1_2_8_83_1 e_1_2_8_305_1 e_1_2_8_19_1 e_1_2_8_295_1 e_1_2_8_109_1 e_1_2_8_272_1 e_1_2_8_440_1 e_1_2_8_463_1 e_1_2_8_486_1 Wang Q. (e_1_2_8_212_1) 2017; 7 e_1_2_8_415_1 e_1_2_8_95_1 e_1_2_8_162_1 e_1_2_8_370_1 e_1_2_8_393_1 e_1_2_8_185_1 e_1_2_8_72_1 e_1_2_8_317_1 e_1_2_8_29_1 e_1_2_8_284_1 e_1_2_8_329_1 e_1_2_8_474_1 e_1_2_8_451_1 e_1_2_8_497_1 e_1_2_8_404_1 e_1_2_8_152_1 e_1_2_8_208_1 e_1_2_8_382_1 e_1_2_8_175_1 e_1_2_8_82_1 e_1_2_8_198_1 e_1_2_8_18_1 e_1_2_8_318_1 e_1_2_8_273_1 e_1_2_8_296_1 e_1_2_8_485_1 e_1_2_8_250_1 e_1_2_8_462_1 e_1_2_8_416_1 e_1_2_8_94_1 e_1_2_8_394_1 e_1_2_8_163_1 e_1_2_8_140_1 e_1_2_8_186_1 e_1_2_8_71_1 e_1_2_8_307_1 e_1_2_8_285_1 e_1_2_8_450_1 e_1_2_8_473_1 e_1_2_8_496_1 e_1_2_8_360_1 e_1_2_8_383_1 e_1_2_8_405_1 e_1_2_8_130_1 e_1_2_8_153_1 e_1_2_8_209_1 e_1_2_8_62_1 e_1_2_8_85_1 e_1_2_8_176_1 e_1_2_8_199_1 e_1_2_8_319_1 e_1_2_8_251_1 e_1_2_8_297_1 e_1_2_8_274_1 e_1_2_8_484_1 e_1_2_8_417_1 e_1_2_8_372_1 e_1_2_8_395_1 e_1_2_8_141_1 e_1_2_8_164_1 e_1_2_8_97_1 e_1_2_8_51_1 e_1_2_8_74_1 e_1_2_8_187_1 e_1_2_8_240_1 e_1_2_8_263_1 e_1_2_8_286_1 e_1_2_8_308_1 e_1_2_8_495_1 e_1_2_8_472_1 e_1_2_8_406_1 e_1_2_8_154_1 e_1_2_8_384_1 e_1_2_8_131_1 e_1_2_8_361_1 e_1_2_8_84_1 e_1_2_8_61_1 e_1_2_8_177_1 e_1_2_8_252_1 e_1_2_8_275_1 e_1_2_8_298_1 e_1_2_8_460_1 e_1_2_8_483_1 Guo Z. W. (e_1_2_8_57_1) 2023; 2 e_1_2_8_418_1 Eaton S. S. (e_1_2_8_306_1) 2004 Yang Y. T. (e_1_2_8_461_1) 2021; 64 e_1_2_8_165_1 e_1_2_8_373_1 e_1_2_8_96_1 e_1_2_8_142_1 e_1_2_8_396_1 Jiang H. W. (e_1_2_8_268_1) 2021; 4 e_1_2_8_50_1 e_1_2_8_188_1 Guo J. Y. (e_1_2_8_261_1) 2008; 25 e_1_2_8_203_1 e_1_2_8_249_1 e_1_2_8_433_1 e_1_2_8_456_1 e_1_2_8_479_1 e_1_2_8_226_1 e_1_2_8_117_1 e_1_2_8_170_1 e_1_2_8_193_1 e_1_2_8_290_1 e_1_2_8_324_1 e_1_2_8_64_1 e_1_2_8_87_1 e_1_2_8_301_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_347_1 Zhong H. (e_1_2_8_218_1) 2021; 35 e_1_2_8_291_1 e_1_2_8_238_1 e_1_2_8_421_1 e_1_2_8_467_1 e_1_2_8_444_1 e_1_2_8_215_1 e_1_2_8_411_1 e_1_2_8_99_1 e_1_2_8_105_1 e_1_2_8_128_1 e_1_2_8_181_1 e_1_2_8_53_1 e_1_2_8_76_1 e_1_2_8_313_1 e_1_2_8_30_1 e_1_2_8_336_1 e_1_2_8_359_1 Bandres M. A. (e_1_2_8_350_1) 2016; 6 e_1_2_8_280_1 e_1_2_8_432_1 e_1_2_8_478_1 e_1_2_8_455_1 e_1_2_8_227_1 e_1_2_8_204_1 e_1_2_8_2_1 e_1_2_8_400_1 e_1_2_8_171_1 e_1_2_8_302_1 e_1_2_8_86_1 e_1_2_8_118_1 e_1_2_8_194_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_348_1 Zhang X. J. (e_1_2_8_410_1) 2022; 7 Kawabata K. (e_1_2_8_425_1) 2018; 9 e_1_2_8_292_1 e_1_2_8_420_1 e_1_2_8_443_1 e_1_2_8_489_1 e_1_2_8_239_1 e_1_2_8_466_1 e_1_2_8_216_1 e_1_2_8_412_1 e_1_2_8_98_1 e_1_2_8_390_1 e_1_2_8_106_1 e_1_2_8_182_1 e_1_2_8_75_1 e_1_2_8_129_1 e_1_2_8_52_1 e_1_2_8_314_1 e_1_2_8_337_1 e_1_2_8_281_1 e_1_2_8_431_1 e_1_2_8_454_1 e_1_2_8_477_1 e_1_2_8_228_1 e_1_2_8_205_1 e_1_2_8_401_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_89_1 e_1_2_8_119_1 e_1_2_8_172_1 e_1_2_8_195_1 e_1_2_8_303_1 e_1_2_8_349_1 e_1_2_8_326_1 e_1_2_8_293_1 e_1_2_8_270_1 e_1_2_8_442_1 e_1_2_8_465_1 e_1_2_8_488_1 e_1_2_8_217_1 e_1_2_8_413_1 e_1_2_8_391_1 e_1_2_8_160_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_78_1 e_1_2_8_107_1 e_1_2_8_183_1 e_1_2_8_338_1 e_1_2_8_282_1 e_1_2_8_430_1 e_1_2_8_453_1 e_1_2_8_499_1 e_1_2_8_229_1 e_1_2_8_476_1 e_1_2_8_206_1 e_1_2_8_402_1 e_1_2_8_150_1 e_1_2_8_380_1 e_1_2_8_42_1 e_1_2_8_88_1 e_1_2_8_65_1 Kagami H. (e_1_2_8_126_1) 2022; 47 e_1_2_8_173_1 e_1_2_8_304_1 e_1_2_8_327_1 e_1_2_8_196_1 e_1_2_8_271_1 e_1_2_8_294_1 e_1_2_8_441_1 e_1_2_8_464_1 e_1_2_8_487_1 Paz M. B. (e_1_2_8_100_1) 2020; 3 e_1_2_8_414_1 Yun J. (e_1_2_8_25_1) 2022; 7 e_1_2_8_161_1 e_1_2_8_392_1 e_1_2_8_31_1 e_1_2_8_77_1 e_1_2_8_54_1 e_1_2_8_108_1 e_1_2_8_184_1 e_1_2_8_339_1 e_1_2_8_316_1 e_1_2_8_490_1 e_1_2_8_68_1 e_1_2_8_222_1 e_1_2_8_245_1 e_1_2_8_437_1 e_1_2_8_5_1 e_1_2_8_320_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_343_1 e_1_2_8_366_1 e_1_2_8_113_1 e_1_2_8_136_1 e_1_2_8_159_1 e_1_2_8_389_1 e_1_2_8_211_1 e_1_2_8_234_1 e_1_2_8_257_1 e_1_2_8_448_1 Aubry S. (e_1_2_8_355_1) 1980; 3 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_332_1 e_1_2_8_101_1 e_1_2_8_124_1 e_1_2_8_147_1 e_1_2_8_378_1 e_1_2_8_200_1 e_1_2_8_223_1 Marqués R. (e_1_2_8_323_1) 2002; 65 e_1_2_8_436_1 e_1_2_8_246_1 e_1_2_8_269_1 e_1_2_8_6_1 Qian K. (e_1_2_8_371_1) 2023; 5 Marqués R (e_1_2_8_325_1) 2011 e_1_2_8_21_1 e_1_2_8_67_1 e_1_2_8_321_1 e_1_2_8_367_1 e_1_2_8_44_1 e_1_2_8_344_1 e_1_2_8_137_1 e_1_2_8_114_1 e_1_2_8_79_1 e_1_2_8_447_1 e_1_2_8_235_1 e_1_2_8_258_1 Milicevi'c M. (e_1_2_8_219_1) 2019; 9 e_1_2_8_10_1 e_1_2_8_56_1 e_1_2_8_310_1 e_1_2_8_356_1 e_1_2_8_33_1 e_1_2_8_333_1 e_1_2_8_102_1 e_1_2_8_148_1 e_1_2_8_125_1 e_1_2_8_379_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_224_1 e_1_2_8_201_1 Gong Z. (e_1_2_8_424_1) 2018; 8 e_1_2_8_435_1 e_1_2_8_458_1 e_1_2_8_247_1 e_1_2_8_3_1 e_1_2_8_322_1 e_1_2_8_345_1 e_1_2_8_368_1 e_1_2_8_138_1 e_1_2_8_115_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_190_1 e_1_2_8_213_1 e_1_2_8_259_1 e_1_2_8_423_1 e_1_2_8_446_1 e_1_2_8_236_1 e_1_2_8_469_1 Xiao M. (e_1_2_8_262_1) 2014; 4 e_1_2_8_311_1 e_1_2_8_334_1 e_1_2_8_357_1 e_1_2_8_149_1 e_1_2_8_103_1 e_1_2_8_46_1 e_1_2_8_69_1 e_1_2_8_180_1 e_1_2_8_202_1 e_1_2_8_225_1 e_1_2_8_248_1 e_1_2_8_434_1 e_1_2_8_457_1 Liu J. W. (e_1_2_8_20_1) 2021; 6 e_1_2_8_4_1 e_1_2_8_192_1 e_1_2_8_300_1 e_1_2_8_116_1 e_1_2_8_346_1 e_1_2_8_23_1 e_1_2_8_139_1 e_1_2_8_35_1 e_1_2_8_58_1 e_1_2_8_191_1 e_1_2_8_214_1 e_1_2_8_237_1 e_1_2_8_422_1 e_1_2_8_445_1 e_1_2_8_468_1 e_1_2_8_127_1 e_1_2_8_335_1 e_1_2_8_12_1 e_1_2_8_312_1 e_1_2_8_104_1 e_1_2_8_358_1 |
References_xml | – volume: 555 start-page: 342 year: 2018 publication-title: Nature – volume: 113 year: 2014 publication-title: Phys. Rev. Lett. – volume: 101 year: 2020 publication-title: Phys. Rev. A – volume: 455 start-page: 376 year: 2008 publication-title: Nature – volume: 23 year: 2021 publication-title: J. Opt. – volume: 359 start-page: 1013 year: 2018 publication-title: Science – volume: 1 year: 2022 publication-title: Opto‐Electron. Sci. – volume: 20 start-page: 1329 year: 2020 publication-title: Nano Lett. – volume: 7 start-page: 294 year: 2013 publication-title: Nat. Photon. – volume: 370 start-page: 600 year: 2020 publication-title: Science – volume: 3 start-page: 882 year: 2012 publication-title: Nat. Commun. – volume: 7 start-page: 2244 year: 2020 publication-title: ACS Photon. – volume: 38 year: 2021 publication-title: Chin. Phys. Lett. – volume: 44 start-page: 3342 year: 2019 publication-title: Opt. Lett. – volume: 1 start-page: 2 year: 2021 publication-title: eLight – volume: 7 start-page: 974 year: 2022 publication-title: Nat. Rev. Mater. – volume: 11 start-page: 752 year: 2017 publication-title: Nat. Photon. – volume: 246 start-page: 1397 year: 2009 publication-title: Phys. Stat. Solidi B – volume: 9 year: 2018 publication-title: Phys. Rev. X – volume: 4 start-page: 707 year: 2021 publication-title: Nat. Electron. – volume: 106 year: 2011 publication-title: Phys. Rev. Lett. – volume: 9 year: 2018 publication-title: Phys. Rev. Appl. – volume: 14 start-page: 446 year: 2020 publication-title: Nat. Photonics – volume: 87 start-page: 137 year: 2015 publication-title: Rev. Mod. Phys. – volume: 122 year: 2019 publication-title: Phys. Rev. Lett. – volume: 47 start-page: 515 year: 1982 publication-title: J. Magn. Reson – volume: 13 start-page: 426 year: 2021 publication-title: Adv. Opt. Photon. – volume: 127 year: 2020 publication-title: J. Appl. Phys. – volume: 12 start-page: 233 year: 2013 publication-title: Nat. Mater. – volume: 65 year: 2002 publication-title: Phys. Rev. B – volume: 7 year: 2020 publication-title: Appl. Phys. Rev. – volume: 292 start-page: 77 year: 2001 publication-title: Science – volume: 16 start-page: 433 year: 2017 publication-title: Nat. Mater. – volume: 8 start-page: 596 year: 2018 publication-title: Appl. Sci. – volume: 6 year: 2021 publication-title: Adv. Phys. X. – volume: 9 start-page: 4598 year: 2018 publication-title: Nat. Commun. – volume: 123 year: 2019 publication-title: Phys. Rev. Lett. – volume: 12 start-page: 1124 year: 2016 publication-title: Nat. Phys. – volume: 9 start-page: 3072 year: 2018 publication-title: Nat. Commun. – volume: 6 year: 2020 publication-title: Sci. Adv. – volume: 227 year: 2022 publication-title: Int. J. Mech. Sci. – volume: 11 start-page: 763 year: 2017 publication-title: Nat. Photon. – volume: 40 start-page: 5259 year: 2015 publication-title: Opt. Lett. – volume: 82 start-page: 1959 year: 2010 publication-title: Rev. Mod. Phys. – volume: 10 start-page: 1090 year: 2022 publication-title: Photon. Res. – volume: 24 year: 2016 publication-title: Opt. Express – volume: 314 start-page: 1757 year: 2006 publication-title: Science – volume: 125 year: 2020 publication-title: Phys. Rev. Lett. – volume: 13 start-page: 369 year: 2017 publication-title: Nat. Phys. – volume: 13 start-page: 692 year: 2019 publication-title: Nat. Photon. – volume: 65 year: 2022 publication-title: Sci. Chin. Phys. Mech. Astro. – volume: 6 start-page: 6710 year: 2015 publication-title: Nat. Commun. – volume: 565 start-page: 622 year: 2019 publication-title: Nature – volume: 13 start-page: 611 year: 2017 publication-title: Nat. Phys. – volume: 9 start-page: 130 year: 2020 publication-title: Light Sci. Appl. – volume: 461 start-page: 772 year: 2009 publication-title: Nature – volume: 7 start-page: 941 year: 2013 publication-title: Nat. Photon. – volume: 65 start-page: 4440 year: 2002 publication-title: Phys. Rev. B – volume: 367 start-page: 895 year: 2020 publication-title: Science – volume: 13 year: 2020 publication-title: Phys. Rev. Appl. – volume: 7 start-page: 1075 year: 2019 publication-title: Photon. Res. – volume: 112 year: 2014 publication-title: Phys. Rev. Lett. – volume: 127 year: 2021 publication-title: Phys. Rev. Lett. – volume: 597 start-page: 655 year: 2021 publication-title: Nature – volume: 47 start-page: 2075 year: 1999 publication-title: IEEE Trans. Microw. Theory Tech. – volume: 6 year: 2016 publication-title: Phys. Rev. X – volume: 13 start-page: 2123 year: 2022 publication-title: Nat. Commun. – volume: 9 start-page: 7 year: 2020 publication-title: Light: Sci. Appl. – volume: 11 start-page: 276 year: 2022 publication-title: Light Sci. Appl. – volume: 12 start-page: 5028 year: 2021 publication-title: Nat. Commun. – volume: 11 start-page: 1143 year: 2021 publication-title: Opt. Mater. Express – volume: 76 year: 2007 publication-title: Phys. Rev. B – volume: 1 start-page: 178 year: 2018 publication-title: Nat. Electron. – volume: 10 start-page: 509 year: 1968 publication-title: Sov. Phys. Uspekhi – volume: 110 year: 2013 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 4347 year: 2022 publication-title: Nanophotonics – volume: 29 year: 2021 publication-title: Opt. Express – volume: 17 year: 2022 publication-title: Phys. Rev. Appl. – volume: 589 start-page: 381 year: 2021 publication-title: Nature – volume: 104 year: 2021 publication-title: Phys. Rev. B – volume: 116 year: 2016 publication-title: Phys. Rev. Lett. – volume: 13 year: 2017 publication-title: Small – volume: 120 year: 2022 publication-title: Appl. Phys. Lett. – volume: 598 start-page: 29 year: 2021 publication-title: Nature – volume: 4 year: 2022 publication-title: J. Phys. Photonics – volume: 9 start-page: 909 year: 2018 publication-title: Nat. Commun. – volume: 11 start-page: 240 year: 2015 publication-title: Nat. Phys. – volume: 55 year: 2022 publication-title: J. Phys. D: Appl. Phys. – year: 1962 – volume: 38 start-page: 371 year: 2002 publication-title: Electron. Lett. – volume: 30 start-page: 3356 year: 2005 publication-title: Opt. Lett. – volume: 5 start-page: 157 year: 2022 publication-title: Nat. Electron. – volume: 16 year: 2022 publication-title: Laser Photon. Rev. – volume: 4 year: 2022 publication-title: Adv. Photon. – volume: 23 start-page: 3866 year: 2023 publication-title: Nano Lett. – volume: 16 start-page: 298 year: 2017 publication-title: Nat. Mater. – volume: 10 year: 2023 publication-title: Adv. Sci. – volume: 10 start-page: 425 year: 2021 publication-title: Nanophotonics – volume: 374 start-page: 225 year: 2021 publication-title: Science – volume: 7 year: 2017 publication-title: Sci. Rep. – volume: 5 year: 2015 publication-title: Phys. Rev. X – volume: 24 year: 2022 publication-title: New J. Phys. – volume: 94 year: 2016 publication-title: Phys. Rev. B – volume: 120 year: 2018 publication-title: Phys. Rev. Lett. – volume: 13 year: 2011 publication-title: New. J. Phys. – volume: 99 start-page: 509 year: 2006 publication-title: J. Appl. Phys. – volume: 13 start-page: 5404 year: 2022 publication-title: Nat. Commun. – volume: 28 year: 2020 publication-title: Opt. Express – volume: 106 year: 2022 publication-title: Phys. Rev. E – volume: 6 start-page: 839 year: 2019 publication-title: Optica – volume: 47 start-page: 4732 year: 2022 publication-title: Opt. Lett. – volume: 8 start-page: 1304 year: 2018 publication-title: Nat. Commun. – volume: 16 start-page: 462 year: 2020 publication-title: Nat. Phys. – volume: 9 start-page: 147 year: 2020 publication-title: Light Sci. Appl. – volume: 21 year: 2019 publication-title: New J. Phys. – volume: 363 year: 2019 publication-title: Science – volume: 44 start-page: 2530 year: 2019 publication-title: Opt. Lett. – volume: 8 start-page: 97 year: 2017 publication-title: Nat. Commun. – volume: 17 start-page: 995 year: 2021 publication-title: Nat. Phys. – year: 2004 – volume: 31 year: 2022 publication-title: Chin. Phys. B – volume: 13 year: 2011 publication-title: New J. Phys. – volume: 113 start-page: 4924 year: 2016 publication-title: Proc. Natl. Acad. Sci. USA – volume: 9 start-page: 547 year: 2020 publication-title: Nanophotonics – volume: 10 start-page: 2058 year: 2019 publication-title: Nat. Commun. – volume: 96 year: 2017 publication-title: Phys. Rev. B – volume: 7 start-page: 168 year: 2005 publication-title: New J. Phys. – volume: 85 year: 2009 publication-title: Europhys. Lett. – volume: 100 year: 2008 publication-title: Phys. Rev. Lett. – volume: 9 year: 2022 publication-title: Rev. Phys. – volume: 13 year: 2005 publication-title: Opt. Express – volume: 8 year: 2018 publication-title: Phys. Rev. X – volume: 2 year: 2023 publication-title: Adv. Photon. Nexus – volume: 306 start-page: 666 year: 2004 publication-title: Science – volume: 15 start-page: 67 year: 2020 publication-title: Nat. Nanotechnology – volume: 13 year: 2019 publication-title: Laser Photon. Rev. – volume: 4 year: 2018 publication-title: Sci. Adv. – volume: 18 year: 2022 publication-title: Phys. Rev. Appl. – volume: 19 year: 2017 publication-title: New J. Phys. – volume: 12 start-page: 5377 year: 2021 publication-title: Nat. Commun. – volume: 4 year: 2022 publication-title: Adv. Mater. – volume: 98 year: 2018 publication-title: Phys. Rev. B – volume: 41 start-page: 1644 year: 2016 publication-title: Opt. Lett. – volume: 85 start-page: 3966 year: 2000 publication-title: Phys. Rev. Lett. – volume: 11 start-page: 2805 year: 2023 publication-title: Opt. Lett. – volume: 96 year: 2017 publication-title: Phys. Rev. A – volume: 14 year: 2020 publication-title: Phys. Rev. Appl. – volume: 6 start-page: 8453 year: 2016 publication-title: Sci. Rep. – volume: 14 start-page: 126 year: 2019 publication-title: Nat. Nanotechnology – volume: 9 start-page: 981 year: 2018 publication-title: Nat. Commun. – volume: 5 year: 2023 publication-title: Phys. Rev. Res. – volume: 13 start-page: 2973 year: 2022 publication-title: Nat. Commun. – volume: 10 start-page: 4780 year: 2019 publication-title: Nat. Commun. – volume: 1 start-page: 41 year: 2007 publication-title: Nat. Photon. – volume: 525 start-page: 354 year: 2015 publication-title: Nature – volume: 16 start-page: 3849 year: 2021 publication-title: Opt. Lett. – volume: 3 start-page: 130 year: 2020 publication-title: Commun. Phys. – volume: 11 start-page: 130 year: 2017 publication-title: Nat. Photonics – volume: 14 start-page: 31 year: 2019 publication-title: Nat. Nanotechnology – volume: 2 year: 2018 publication-title: Phys. Rev. Mater. – volume: 359 start-page: 1009 year: 2018 publication-title: Science – volume: 9 start-page: 574 year: 2021 publication-title: Photon. Res. – volume: 7 start-page: 490 year: 2012 publication-title: Nat. Nanotechnol. – volume: 10 start-page: 872 year: 2019 publication-title: Nat. Commun. – volume: 5 start-page: 2572 year: 2003 publication-title: IEEE Trans. Antennas Propag. – volume: 6 year: 2016 publication-title: Sci. Rep. – volume: 26 start-page: 627 year: 2018 publication-title: Opt. Express – volume: 50 year: 2017 publication-title: J. Phys. D: Appl. Phys. – volume: 4 start-page: 328 year: 2015 publication-title: Light Sci. Appl. – volume: 12 start-page: 950 year: 2016 publication-title: Nat. Phys. – volume: 9 start-page: 5384 year: 2018 publication-title: Nat. Commun. – volume: 13 start-page: 57 year: 2014 publication-title: Nat. Mater. – year: 2011 – volume: 9 start-page: 3451 year: 2020 publication-title: Nanophotonics – volume: 7 start-page: 153 year: 2013 publication-title: Nat. photon. – volume: 121 year: 2018 publication-title: Phys. Rev. Lett. – volume: 3 year: 2020 publication-title: Adv. Quantum Tech. – volume: 14 start-page: 2239 year: 1976 publication-title: Phys. Rev. B – volume: 23 start-page: 724 year: 1976 publication-title: IEEE Trans. Electron Devices – volume: 26 year: 2018 publication-title: Opt. Express – volume: 40 start-page: 3380 year: 2015 publication-title: Opt. Lett. – volume: 2 year: 2020 publication-title: Phys. Rev. Res. – volume: 95 year: 2005 publication-title: Phys. Rev. Lett. – volume: 97 year: 2018 publication-title: Phys. Rev. B – volume: 8 start-page: 1243 year: 2017 publication-title: Nat. Commun. – volume: 4 year: 2022 publication-title: Phys. Rev. Res. – volume: 11 year: 2019 publication-title: Phys. Rev. Appl. – volume: 8 start-page: 2095 year: 2018 publication-title: ACS Photonics – volume: 11 start-page: 243 year: 2022 publication-title: Light Sci. Appl. – volume: 3 year: 2021 publication-title: Phys. Rev. Res. – volume: 11 start-page: 134 year: 2022 publication-title: Light Sci. Appl. – volume: 108 year: 2016 publication-title: Appl. Phys. Lett. – volume: 39 start-page: 215 year: 2003 publication-title: Electron. Lett. – year: 2023 publication-title: Nat. Sci. Rev. – volume: 4 year: 2022 publication-title: Phys. Rev. Research – volume: 1 start-page: 101 year: 2014 publication-title: ACS Photon. – volume: 123 year: 2018 publication-title: J. Appl. Phys. – volume: 93 year: 2017 publication-title: Phys. Rev. B – volume: 108 year: 2012 publication-title: Phys. Rev. Lett. – volume: 68 start-page: 874 year: 1955 publication-title: Proc. Phys. Soc. London A – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 340 start-page: 167 year: 2013 publication-title: Science – volume: 363 start-page: 148 year: 2019 publication-title: Science – volume: 85 start-page: 4439 year: 2004 publication-title: Appl. Phys. Lett. – volume: 99 year: 2019 publication-title: Phys. Rev. B – volume: 9 start-page: 4555 year: 2018 publication-title: Nat. Commun. – volume: 564 start-page: 229 year: 2018 publication-title: Nature – volume: 44 start-page: 131 year: 2001 publication-title: Physics‐Uspekhi – volume: 245 start-page: 1471 year: 2008 publication-title: Phys. Status Solidi – volume: 98 year: 2018 publication-title: Phys.Rev. B – volume: 34 year: 2022 publication-title: Adv. Mat. – volume: 9 start-page: 3029 year: 2018 publication-title: Nat. Commun. – volume: 52 start-page: 213 year: 1981 publication-title: Rev. Sci. Instrum. – volume: 3 start-page: 113 year: 1980 publication-title: Ann. Isr. Phys. Soc. – volume: 14 start-page: 3040 year: 2023 publication-title: Nat. Commun. – volume: 82 start-page: 3045 year: 2010 publication-title: Rev. Mod. Phys. – volume: 102 year: 2022 publication-title: Phys. Rev. A – volume: 8 start-page: 1385 year: 2021 publication-title: ACS Photon – volume: 365 start-page: 1163 year: 2019 publication-title: Science – volume: 3 start-page: 107 year: 2022 publication-title: Optics – volume: 18 start-page: 450 year: 2022 publication-title: Nat. Phys. – volume: 130 year: 2021 publication-title: J. Appl. Phys. – volume: 1 start-page: 80 year: 2007 publication-title: IET Proc. Microwaves Antennas Propag. – volume: 12 start-page: 7201 year: 2021 publication-title: Nat. Commun. – volume: 99 year: 2019 publication-title: Phys. Rev. A – volume: 116 year: 2020 publication-title: Appl. Phys. Lett. – volume: 20 year: 2023 publication-title: Phys. Rev. Appl. – volume: 85 year: 2012 publication-title: Phys. Rev. B – volume: 11 start-page: 1820 year: 2020 publication-title: Nat. Commun. – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 30 year: 2022 publication-title: Opt. Express – volume: 123 year: 2023 publication-title: Appl. Phys. Lett. – volume: 7 year: 2022 publication-title: Adv. Phys. X – volume: 10 start-page: 656 year: 2016 publication-title: Laser Photonics Rev. – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 46 start-page: 473 year: 2005 publication-title: Microwave Opt. Technol. Lett. – volume: 7 start-page: 907 year: 2011 publication-title: Nat. Phys. – volume: 19 year: 2021 publication-title: Chin. Opt. Lett. – volume: 5 start-page: 1396 year: 2018 publication-title: Optica – volume: 348 start-page: 1448 year: 2015 publication-title: Science – volume: 47 start-page: 2951 year: 2022 publication-title: Opt. Lett. – volume: 15 start-page: 542 year: 2016 publication-title: Nat. Mater. – volume: 1 year: 2019 publication-title: Phys. Rev. Res. – volume: 66 start-page: 974 year: 2021 publication-title: Sci. Bull. – volume: 370 start-page: 701 year: 2020 publication-title: Science – volume: 99 year: 2007 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 1400 year: 2021 publication-title: ACS Photon. – volume: 34 start-page: 1633 year: 2009 publication-title: Opt. Lett. – volume: 78 year: 2008 publication-title: Phys. Rev. E – volume: 114 year: 2015 publication-title: Phys. Rev. Lett. – volume: 129 year: 2022 publication-title: Phys. Rev. Lett. – volume: 5 year: 2016 publication-title: Light. Sci. Appl. – volume: 45 start-page: 2648 year: 2020 publication-title: Opt. Lett. – volume: 49 start-page: 1054 year: 2007 publication-title: Microwave Opt. Technol. Lett. – volume: 105 year: 2022 publication-title: Phys. Rev. B – volume: 306 start-page: 1351 year: 2004 publication-title: Science – volume: 114 year: 2019 publication-title: Appl. Phys. Lett. – volume: 32 year: 2020 publication-title: Adv. Mater. – volume: 12 start-page: 337 year: 2016 publication-title: Nat. Phys. – volume: 10 start-page: 1613 year: 2023 publication-title: Photon. Res. – volume: 15 year: 2021 publication-title: Phys. Rev. Appl. – volume: 546 start-page: 387 year: 2017 publication-title: Nature – volume: 118 year: 2017 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 821 year: 2014 publication-title: Nat. Photon. – volume: 8 start-page: 1433 year: 2019 publication-title: Nanophotonics – volume: 4 start-page: 3842 year: 2015 publication-title: Sci. Rep. – volume: 103 year: 2021 publication-title: Phys. Rev. B – volume: 35 year: 2021 publication-title: Adv. Photon. – volume: 571 start-page: 45 year: 2019 publication-title: Nature – volume: 109 year: 2012 publication-title: Phys. Rev. Lett. – volume: 36 start-page: 8861 year: 2021 publication-title: IEEE Trans. Power Electron. – volume: 128 year: 2022 publication-title: Phys. Rev. Lett. – volume: 91 year: 2015 publication-title: Phys. Rev. B – volume: 11 start-page: 774 year: 2017 publication-title: Nat. Photon. – volume: 24 start-page: 5782 year: 2012 publication-title: Adv. Mater. – volume: 89 year: 2014 publication-title: Phys. Rev. B – volume: 18 year: 2019 publication-title: Adv. Opt. Mater. – volume: 43 start-page: 5142 year: 2018 publication-title: Opt. Lett. – volume: 444 start-page: 597 year: 2006 publication-title: Nature – volume: 3 start-page: 202 year: 2021 publication-title: Nat. Rev. Phys. – volume: 4 year: 2014 publication-title: Phys. Rev. X – volume: 24 start-page: 317 year: 2004 publication-title: Electromagnetics – volume: 548 start-page: 187 year: 2017 publication-title: Nature – volume: 14 start-page: 6633 year: 2023 publication-title: Nat. Commun. – volume: 13 start-page: 2586 year: 2022 publication-title: Nat. Commun. – volume: 368 start-page: 311 year: 2020 publication-title: Science – volume: 6 year: 2021 publication-title: APL Photonics – volume: 2 year: 2021 publication-title: Adv. Photon. Res. – volume: 11 start-page: 152 year: 2022 publication-title: Light. Sci. Appl. – volume: 104 year: 2010 publication-title: Phys. Rev. Lett. – volume: 3 start-page: 273 year: 2020 publication-title: Nat. Electron. – volume: 14 start-page: 11 year: 2018 publication-title: Nat. Phys. – volume: 133 year: 2023 publication-title: J. Appl. Phys. – volume: 47 start-page: 2190 year: 2022 publication-title: Opt. Express – volume: 34 year: 2022 publication-title: Adv. Mater. – volume: 7 year: 2020 publication-title: Adv. Sci. – volume: 9 start-page: 795 year: 2013 publication-title: Nat. Phys. – volume: 10 start-page: 164 year: 2021 publication-title: Light Sci. Appl. – volume: 16 start-page: 571 year: 2020 publication-title: Nat. Phys. – volume: 64 year: 2021 publication-title: Sci. Chin. Phys. Mech. Astro. – volume: 25 year: 2017 publication-title: Opt. Express – volume: 14 start-page: 461 year: 2018 publication-title: Nat. Phys. – volume: 10 start-page: 170 year: 2021 publication-title: Light Sci. Appl. – volume: 25 start-page: 2093 year: 2008 publication-title: Chin. Phys. B – volume: 93 year: 2016 publication-title: Phys. Rev. B – volume: 359 year: 2018 publication-title: Science – volume: 100 year: 2019 publication-title: Phys. Rev. B – volume: 83 start-page: 1057 year: 2011 publication-title: Rev. Mod. Phys. – volume: 110 year: 2017 publication-title: Appl. Phys. Lett. – volume: 16 start-page: 279 year: 2022 publication-title: Nat. Photonics – volume: 21 year: 2023 publication-title: Chin. Opt. Lett. – volume: 10 year: 2018 publication-title: Phys. Rev. Appl. – volume: 74 year: 2006 publication-title: Phys. Rev. B – volume: 7 year: 2017 publication-title: Phys. Rev. X – volume: 101 year: 2020 publication-title: Phys. Rev. B – volume: 560 start-page: 61 year: 2018 publication-title: Narure – volume: 537 start-page: 80 year: 2016 publication-title: Nature – volume: 12 start-page: 6257 year: 2022 publication-title: Sci. Rep. – volume: 153 start-page: 111 year: 2006 publication-title: IEE Proc. Microwaves, Antennas Propag – volume: 555 start-page: 346 year: 2018 publication-title: Nature – volume: 27 year: 2019 publication-title: Opt. Express – volume: 7 year: 2019 publication-title: Adv. Opt. Mater. – volume: 28 year: 2022 publication-title: Chip – volume: 373 start-page: 1514 year: 2021 publication-title: Science – volume: 14 start-page: 140 year: 2018 publication-title: Nat. Phys. – volume: 105 year: 2009 publication-title: J. Appl. Phys. – volume: 115 year: 2015 publication-title: Phys. Rev. Lett. – volume: 7 start-page: 2089 year: 2020 publication-title: ACS Photonics – volume: 91 year: 2019 publication-title: Rev. Mod. Phys. – volume: 98 year: 2007 publication-title: Phys. Rev. Lett. – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 18 start-page: 783 year: 2019 publication-title: Nat. Mater. – volume: 126 year: 2021 publication-title: Phys. Rev. Lett. – volume: 105 year: 2022 publication-title: Phys. Rev. A – volume: 111 year: 2013 publication-title: Phys. Rev. Lett. – volume: 3 start-page: 172 year: 2007 publication-title: Nat. Phys. – volume: 53 start-page: 1451 year: 2005 publication-title: IEEE Trans. Microwave Theory Tech. – volume: 14 start-page: 89 year: 2020 publication-title: Nat. Photon. – volume: 9 year: 2019 publication-title: Phys. Rev. X – volume: 95 year: 2017 publication-title: Phys. Rev. B – volume: 26 start-page: 8634 year: 2018 publication-title: Opt. Express – volume: 272 start-page: 572 year: 2021 publication-title: Science – volume: 42 start-page: 1698 year: 1979 publication-title: Phys. Rev. Lett. – volume: 60 start-page: 261 year: 2013 publication-title: IEEE Trans. Ind. Electron. – volume: 548 start-page: 192 year: 2017 publication-title: Nature – volume: 18 year: 2016 publication-title: New. J. Phys. – volume: 29 start-page: 7844 year: 2021 publication-title: Opt. Express – volume: 496 start-page: 196 year: 2013 publication-title: Nature – volume: 119 year: 2017 publication-title: Phys. Rev. Lett. – volume: 12 start-page: 5468 year: 2021 publication-title: Nat. Commun. – volume: 9 start-page: 1483 year: 2022 publication-title: ACS Photonics – volume: 103 year: 2021 publication-title: Phys. Rev. A – volume: 9 start-page: 128 year: 2020 publication-title: Light Sci. Appl. – volume: 3 year: 2021 publication-title: Adv. Photon. – volume: 43 start-page: 1986 year: 2018 publication-title: Opt. Lett. – volume: 336 start-page: 1003 year: 2012 publication-title: Science – volume: 75 year: 2007 publication-title: Phys. Rev. A – volume: 11 start-page: 629 year: 2021 publication-title: Opt. Mater. Express – volume: 36 start-page: 2513 year: 2011 publication-title: Opt. Lett. – volume: 7 start-page: 1001 year: 2013 publication-title: Nat. Photon. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 start-page: 7742 year: 2017 publication-title: Sci. Rep. – volume: 6 start-page: 2925 year: 2018 publication-title: J. Mater. Chem. C – volume: 21 start-page: 4592 year: 2021 publication-title: Nano Lett. – volume: 4 start-page: 1626 year: 2021 publication-title: Opt. Express – year: 2023 – volume: 5 start-page: 5782 year: 2014 publication-title: Nat. Commun. – volume: 117 year: 2020 publication-title: Appl. Phys. Lett. – volume: 6 start-page: 782 year: 2012 publication-title: Nat. Photon. – volume: 372 start-page: 72 year: 2021 publication-title: Science – volume: 124 year: 2020 publication-title: Phys. Rev. Lett. – volume: 17 start-page: 348 year: 2021 publication-title: Nat. Phys. – volume: 121 year: 2022 publication-title: Appl. Phys. Lett. – volume: 7 year: 2015 publication-title: Nanoscale – volume: 9 year: 2021 publication-title: Adv. Opt. Mater. – volume: 14 year: 2020 publication-title: Laser Photon. Rev. – ident: e_1_2_8_322_1 doi: 10.1038/nature07247 – ident: e_1_2_8_442_1 doi: 10.1103/PhysRevLett.124.153903 – ident: e_1_2_8_186_1 doi: 10.1103/PhysRevLett.108.196802 – ident: e_1_2_8_4_1 doi: 10.1038/nphoton.2014.248 – ident: e_1_2_8_290_1 doi: 10.1088/1367-2630/ab3f6d – ident: e_1_2_8_278_1 doi: 10.1002/lpor.201600042 – ident: e_1_2_8_102_1 doi: 10.1103/PhysRevLett.120.217401 – ident: e_1_2_8_199_1 doi: 10.1038/nphoton.2013.42 – ident: e_1_2_8_334_1 doi: 10.1002/mop.22344 – ident: e_1_2_8_164_1 doi: 10.1038/s41467-019-08881-z – ident: e_1_2_8_283_1 doi: 10.1103/PhysRevResearch.2.022062 – ident: e_1_2_8_335_1 doi: 10.1049/iet-map:20050289 – ident: e_1_2_8_8_1 doi: 10.1515/nanoph-2020-0441 – ident: e_1_2_8_490_1 doi: 10.1038/s41467-023-38325-8 – ident: e_1_2_8_395_1 doi: 10.1515/nanoph-2019-0376 – ident: e_1_2_8_417_1 doi: 10.1117/1.AP.3.3.036001 – ident: e_1_2_8_380_1 doi: 10.1109/TIE.2011.2171176 – ident: e_1_2_8_336_1 doi: 10.1049/el:20020258 – ident: e_1_2_8_83_1 doi: 10.1364/PRJ.495638 – ident: e_1_2_8_386_1 doi: 10.1016/j.scib.2021.01.028 – ident: e_1_2_8_491_1 doi: 10.1364/OL.492336 – ident: e_1_2_8_134_1 doi: 10.1103/PhysRevLett.125.013903 – volume: 25 start-page: 2093 year: 2008 ident: e_1_2_8_261_1 publication-title: Chin. Phys. B – ident: e_1_2_8_428_1 doi: 10.1103/PhysRevLett.116.133903 – ident: e_1_2_8_326_1 doi: 10.1109/TAP.2003.817562 – ident: e_1_2_8_50_1 doi: 10.1038/s41598-017-08171-y – ident: e_1_2_8_173_1 doi: 10.1103/PhysRevLett.116.093901 – ident: e_1_2_8_93_1 doi: 10.1103/PhysRevLett.125.033901 – ident: e_1_2_8_110_1 doi: 10.1038/ncomms16023 – ident: e_1_2_8_208_1 doi: 10.1126/science.aau7707 – ident: e_1_2_8_341_1 doi: 10.1038/srep45015 – ident: e_1_2_8_462_1 doi: 10.1038/s41467-021-26414-5 – ident: e_1_2_8_366_1 doi: 10.1103/PhysRevResearch.3.013122 – ident: e_1_2_8_143_1 doi: 10.1103/PhysRevLett.98.103901 – volume-title: Biomedical EPR‐Part B: Methodology, Instrumentation, and Dynamics year: 2004 ident: e_1_2_8_306_1 – ident: e_1_2_8_243_1 doi: 10.1103/PhysRevLett.115.040402 – ident: e_1_2_8_181_1 doi: 10.1038/s41928-022-00732-y – ident: e_1_2_8_351_1 doi: 10.1038/s41377-020-00354-z – ident: e_1_2_8_330_1 doi: 10.1002/pssb.200844414 – ident: e_1_2_8_384_1 doi: 10.1063/5.0024077 – ident: e_1_2_8_146_1 doi: 10.1103/PhysRevLett.100.113903 – ident: e_1_2_8_397_1 doi: 10.1103/PhysRevLett.121.086807 – ident: e_1_2_8_136_1 doi: 10.1002/adma.201201482 – ident: e_1_2_8_368_1 doi: 10.1103/PhysRevB.14.2239 – ident: e_1_2_8_279_1 doi: 10.1002/smll.201603190 – ident: e_1_2_8_436_1 doi: 10.1038/s41563-019-0304-9 – ident: e_1_2_8_180_1 doi: 10.1016/j.ijmecsci.2022.107460 – ident: e_1_2_8_201_1 doi: 10.1038/s41586-018-0367-9 – ident: e_1_2_8_316_1 doi: 10.1103/PhysRevB.65.195104 – volume: 106 year: 2022 ident: e_1_2_8_299_1 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.106.L032102 – ident: e_1_2_8_23_1 doi: 10.1364/OPTICA.5.001396 – ident: e_1_2_8_161_1 doi: 10.1038/s41467-017-01515-2 – ident: e_1_2_8_415_1 doi: 10.1103/PhysRevResearch.1.023013 – ident: e_1_2_8_187_1 doi: 10.1038/nmat4807 – ident: e_1_2_8_317_1 doi: 10.1126/science.1105371 – ident: e_1_2_8_437_1 doi: 10.1126/science.aar7709 – ident: e_1_2_8_378_1 doi: 10.1109/TPEL.2021.3056538 – ident: e_1_2_8_153_1 doi: 10.1103/PhysRevLett.110.013903 – ident: e_1_2_8_112_1 doi: 10.1103/PhysRevB.99.064305 – ident: e_1_2_8_148_1 doi: 10.1103/PhysRevLett.104.063901 – ident: e_1_2_8_9_1 doi: 10.1088/2515-7647/ac4ee4 – ident: e_1_2_8_267_1 doi: 10.1103/PhysRevA.101.043811 – ident: e_1_2_8_122_1 doi: 10.1103/PhysRevLett.125.157401 – ident: e_1_2_8_248_1 doi: 10.1364/OE.27.013858 – ident: e_1_2_8_383_1 doi: 10.1088/0256-307X/38/2/024202 – ident: e_1_2_8_46_1 doi: 10.1103/PhysRevLett.95.226801 – volume: 7 year: 2022 ident: e_1_2_8_410_1 publication-title: Adv. Phys. X – ident: e_1_2_8_76_1 doi: 10.1073/pnas.1525502113 – ident: e_1_2_8_340_1 doi: 10.1103/PhysRevApplied.10.054069 – ident: e_1_2_8_7_1 doi: 10.1186/s43593-021-00002-y – ident: e_1_2_8_56_1 doi: 10.1038/ncomms11619 – ident: e_1_2_8_349_1 doi: 10.1103/PhysRevLett.119.215304 – ident: e_1_2_8_191_1 doi: 10.1021/acsphotonics.1c00029 – ident: e_1_2_8_213_1 doi: 10.1103/PhysRevLett.122.136802 – ident: e_1_2_8_345_1 doi: 10.1088/1367-2630/ac71bd – ident: e_1_2_8_493_1 doi: 10.1021/acs.nanolett.9b04813 – ident: e_1_2_8_495_1 doi: 10.1021/acsphotonics.0c00797 – ident: e_1_2_8_480_1 doi: 10.1021/acsphotonics.1c00017 – ident: e_1_2_8_234_1 doi: 10.1021/acsphotonics.1c00507 – ident: e_1_2_8_342_1 doi: 10.1103/PhysRevA.99.013833 – ident: e_1_2_8_252_1 doi: 10.1038/s41377-020-00371-y – ident: e_1_2_8_47_1 doi: 10.1126/science.1133734 – ident: e_1_2_8_331_1 doi: 10.1049/el:20030138 – ident: e_1_2_8_49_1 doi: 10.1103/PhysRevB.93.075110 – ident: e_1_2_8_125_1 doi: 10.1515/nanoph-2020-0146 – volume: 9 year: 2019 ident: e_1_2_8_219_1 publication-title: Phys. Rev. X – ident: e_1_2_8_256_1 doi: 10.1103/PhysRevLett.120.113901 – ident: e_1_2_8_392_1 doi: 10.1038/nature25156 – ident: e_1_2_8_162_1 doi: 10.1103/PhysRevLett.120.063902 – ident: e_1_2_8_458_1 doi: 10.1103/PhysRevResearch.4.013113 – ident: e_1_2_8_497_1 doi: 10.1364/OL.430579 – ident: e_1_2_8_471_1 doi: 10.1038/s41467-022-29768-6 – ident: e_1_2_8_307_1 doi: 10.1070/PU1968v010n04ABEH003699 – ident: e_1_2_8_54_1 doi: 10.1088/1367-2630/aa7cb5 – ident: e_1_2_8_11_1 doi: 10.3788/COL202119.052602 – ident: e_1_2_8_319_1 doi: 10.1364/OL.30.003356 – ident: e_1_2_8_196_1 doi: 10.1002/lpor.202000001 – ident: e_1_2_8_200_1 doi: 10.1038/s41567-017-0041-4 – ident: e_1_2_8_35_1 doi: 10.1103/PhysRevLett.126.067401 – ident: e_1_2_8_274_1 doi: 10.1364/OL.43.005142 – ident: e_1_2_8_232_1 doi: 10.1103/PhysRevA.102.023505 – ident: e_1_2_8_171_1 doi: 10.1364/OL.44.003342 – ident: e_1_2_8_485_1 doi: 10.1063/5.0157868 – ident: e_1_2_8_394_1 doi: 10.1038/s41567-021-01275-3 – ident: e_1_2_8_195_1 doi: 10.1021/acsphotonics.0c00521 – ident: e_1_2_8_226_1 doi: 10.1364/OL.44.002530 – ident: e_1_2_8_172_1 doi: 10.1103/PhysRevA.103.023512 – ident: e_1_2_8_190_1 doi: 10.1103/PhysRevLett.127.043904 – ident: e_1_2_8_481_1 doi: 10.3788/COL202321.123601 – ident: e_1_2_8_292_1 doi: 10.1103/PhysRevResearch.1.033069 – ident: e_1_2_8_34_1 doi: 10.1103/PhysRevLett.115.253901 – ident: e_1_2_8_170_1 doi: 10.1002/lpor.201900087 – ident: e_1_2_8_182_1 doi: 10.1103/PhysRevLett.128.216403 – ident: e_1_2_8_80_1 doi: 10.1103/PhysRevLett.125.054301 – ident: e_1_2_8_356_1 doi: 10.1103/PhysRevLett.109.116404 – ident: e_1_2_8_409_1 doi: 10.1126/science.aaz8727 – ident: e_1_2_8_498_1 doi: 10.1063/5.0146831 – ident: e_1_2_8_22_1 doi: 10.1063/1.5142397 – ident: e_1_2_8_427_1 doi: 10.1103/PhysRevLett.122.195501 – ident: e_1_2_8_254_1 doi: 10.1038/s41928-018-0042-z – ident: e_1_2_8_184_1 doi: 10.1103/PhysRevLett.118.245301 – ident: e_1_2_8_99_1 doi: 10.1088/1367-2630/18/11/113013 – ident: e_1_2_8_220_1 doi: 10.1038/nphys2790 – ident: e_1_2_8_374_1 doi: 10.1093/nsr/nwad172 – ident: e_1_2_8_474_1 doi: 10.1038/s41467-022-30276-w – ident: e_1_2_8_82_1 doi: 10.1103/PhysRevLett.129.123901 – ident: e_1_2_8_413_1 doi: 10.1103/PhysRevB.105.L100102 – ident: e_1_2_8_286_1 doi: 10.1088/1361-6463/aa7619 – ident: e_1_2_8_464_1 doi: 10.1002/adma.202001034 – ident: e_1_2_8_141_1 doi: 10.1103/PhysRevLett.106.176802 – ident: e_1_2_8_314_1 doi: 10.1063/1.3056052 – ident: e_1_2_8_52_1 doi: 10.1103/PhysRevLett.110.203904 – ident: e_1_2_8_259_1 doi: 10.3390/opt3020013 – ident: e_1_2_8_362_1 doi: 10.1126/science.1222360 – ident: e_1_2_8_245_1 doi: 10.1364/OE.25.011132 – ident: e_1_2_8_246_1 doi: 10.1103/PhysRevB.98.094307 – ident: e_1_2_8_373_1 doi: 10.1039/C7TC03384B – ident: e_1_2_8_230_1 doi: 10.1103/PhysRevLett.116.163901 – ident: e_1_2_8_236_1 doi: 10.1002/lpor.201800202 – ident: e_1_2_8_476_1 doi: 10.1038/s41578-022-00465-6 – ident: e_1_2_8_142_1 doi: 10.1103/PhysRevB.85.155415 – ident: e_1_2_8_117_1 doi: 10.1103/PhysRevLett.119.255901 – ident: e_1_2_8_152_1 doi: 10.1364/OL.40.003380 – ident: e_1_2_8_188_1 doi: 10.1038/s41467-018-05408-w – ident: e_1_2_8_167_1 doi: 10.1038/nphys4304 – ident: e_1_2_8_454_1 doi: 10.1103/PhysRevLett.122.014301 – ident: e_1_2_8_466_1 doi: 10.1038/s41377-022-00931-4 – ident: e_1_2_8_140_1 doi: 10.1088/1367-2630/13/8/083029 – volume: 3 start-page: 113 year: 1980 ident: e_1_2_8_355_1 publication-title: Ann. Isr. Phys. Soc. – ident: e_1_2_8_103_1 doi: 10.1038/s41467-018-07084-2 – ident: e_1_2_8_91_1 doi: 10.1103/PhysRevLett.124.073603 – ident: e_1_2_8_121_1 doi: 10.1103/PhysRevLett.123.053902 – ident: e_1_2_8_375_1 doi: 10.1038/s41928-021-00658-x – volume: 3 year: 2020 ident: e_1_2_8_100_1 publication-title: Adv. Quantum Tech. – ident: e_1_2_8_443_1 doi: 10.1038/s41467-022-29777-5 – ident: e_1_2_8_203_1 doi: 10.1038/s41467-020-15825-5 – ident: e_1_2_8_441_1 doi: 10.1103/PhysRevLett.129.127401 – ident: e_1_2_8_61_1 doi: 10.1063/1.4940403 – ident: e_1_2_8_377_1 doi: 10.1038/s41928-020-0399-7 – ident: e_1_2_8_137_1 doi: 10.1038/nphys547 – ident: e_1_2_8_321_1 doi: 10.1038/nphoton.2006.49 – ident: e_1_2_8_32_1 doi: 10.1103/PhysRevLett.106.093903 – ident: e_1_2_8_132_1 doi: 10.1126/science.abj2232 – ident: e_1_2_8_407_1 doi: 10.1126/science.abd2033 – ident: e_1_2_8_192_1 doi: 10.1103/PhysRevApplied.10.044002 – ident: e_1_2_8_482_1 doi: 10.1103/PhysRevLett.126.113902 – ident: e_1_2_8_77_1 doi: 10.1038/nmat4573 – ident: e_1_2_8_225_1 doi: 10.1103/PhysRevLett.120.260501 – ident: e_1_2_8_343_1 doi: 10.1103/PhysRevB.103.155425 – ident: e_1_2_8_116_1 doi: 10.1038/nphys3867 – ident: e_1_2_8_492_1 doi: 10.1021/acs.nanolett.3c00474 – ident: e_1_2_8_269_1 doi: 10.1103/PhysRevB.104.045408 – ident: e_1_2_8_388_1 doi: 10.1002/advs.201902724 – ident: e_1_2_8_296_1 doi: 10.1002/adma.202202257 – ident: e_1_2_8_58_1 doi: 10.1038/nphoton.2013.274 – ident: e_1_2_8_249_1 doi: 10.1364/OL.471869 – ident: e_1_2_8_496_1 doi: 10.1038/s41467-018-07817-3 – ident: e_1_2_8_18_1 doi: 10.1038/s42254-021-00323-4 – ident: e_1_2_8_156_1 doi: 10.1002/lpor.201800242 – ident: e_1_2_8_74_1 doi: 10.1103/PhysRevB.94.195427 – ident: e_1_2_8_332_1 doi: 10.1063/1.1814428 – ident: e_1_2_8_361_1 doi: 10.1088/1367-2630/13/6/065028 – ident: e_1_2_8_448_1 doi: 10.1103/PhysRevLett.123.213901 – ident: e_1_2_8_412_1 doi: 10.1038/s41467-021-25716-y – ident: e_1_2_8_51_1 doi: 10.1038/nphys2063 – ident: e_1_2_8_15_1 doi: 10.1002/adom.202001739 – ident: e_1_2_8_115_1 doi: 10.1038/s41467-018-05461-5 – ident: e_1_2_8_423_1 doi: 10.1103/PhysRevLett.120.087401 – ident: e_1_2_8_403_1 doi: 10.1038/s41377-022-00823-7 – ident: e_1_2_8_263_1 doi: 10.1038/srep03842 – ident: e_1_2_8_33_1 doi: 10.1103/PhysRevLett.113.113904 – ident: e_1_2_8_260_1 doi: 10.1103/PhysRevE.78.026607 – ident: e_1_2_8_347_1 doi: 10.1103/PhysRevB.91.125132 – ident: e_1_2_8_405_1 doi: 10.1103/PhysRevLett.127.184101 – ident: e_1_2_8_456_1 doi: 10.1063/5.0097129 – ident: e_1_2_8_53_1 doi: 10.1103/PhysRevB.89.075113 – ident: e_1_2_8_337_1 doi: 10.1049/ip-map:20050119 – ident: e_1_2_8_28_1 doi: 10.1002/lpor.202100300 – ident: e_1_2_8_432_1 doi: 10.1364/OL.460484 – ident: e_1_2_8_215_1 doi: 10.1103/PhysRevResearch.4.023047 – ident: e_1_2_8_155_1 doi: 10.1038/lsa.2016.94 – ident: e_1_2_8_38_1 doi: 10.1038/nphys3611 – ident: e_1_2_8_240_1 doi: 10.1038/ncomms1669 – ident: e_1_2_8_109_1 doi: 10.1103/PhysRevB.97.195307 – ident: e_1_2_8_401_1 doi: 10.1021/acs.nanolett.1c00449 – ident: e_1_2_8_1_1 doi: 10.1103/RevModPhys.82.1959 – ident: e_1_2_8_376_1 doi: 10.1038/nature22404 – ident: e_1_2_8_360_1 doi: 10.1103/PhysRevLett.100.096407 – ident: e_1_2_8_426_1 doi: 10.1126/science.aap9859 – ident: e_1_2_8_123_1 doi: 10.1126/sciadv.aaw4137 – ident: e_1_2_8_451_1 doi: 10.1103/PhysRevLett.126.206602 – ident: e_1_2_8_12_1 doi: 10.1364/OME.416835 – ident: e_1_2_8_309_1 doi: 10.1103/PhysRevLett.85.3966 – volume-title: Inductance Calculations Working Formulas and Tables year: 1962 ident: e_1_2_8_315_1 – ident: e_1_2_8_354_1 doi: 10.1088/0370-1298/68/10/304 – ident: e_1_2_8_10_1 doi: 10.1002/adom.201800532 – ident: e_1_2_8_327_1 doi: 10.1109/TMTT.2005.845211 – ident: e_1_2_8_291_1 doi: 10.1103/PhysRevApplied.14.054028 – ident: e_1_2_8_393_1 doi: 10.1038/s41467-021-25305-z – ident: e_1_2_8_66_1 doi: 10.1103/PhysRevLett.123.043201 – ident: e_1_2_8_31_1 doi: 10.1038/nature08293 – ident: e_1_2_8_318_1 doi: 10.1103/PhysRevLett.95.223902 – ident: e_1_2_8_48_1 doi: 10.1126/science.aaa9519 – ident: e_1_2_8_453_1 doi: 10.1103/PhysRevLett.129.090503 – ident: e_1_2_8_86_1 doi: 10.1038/lsa.2015.101 – ident: e_1_2_8_175_1 doi: 10.1038/nphys3999 – ident: e_1_2_8_214_1 doi: 10.1038/s41377-021-00614-6 – volume: 6 year: 2016 ident: e_1_2_8_350_1 publication-title: Phys. Rev. X – ident: e_1_2_8_463_1 doi: 10.1038/s41467-019-10086-3 – ident: e_1_2_8_346_1 doi: 10.1103/PhysRevLett.113.240403 – ident: e_1_2_8_189_1 doi: 10.1038/s41467-018-07030-2 – ident: e_1_2_8_87_1 doi: 10.1038/ncomms12435 – ident: e_1_2_8_499_1 doi: 10.1002/advs.202301128 – ident: e_1_2_8_43_1 doi: 10.1126/science.1234414 – ident: e_1_2_8_89_1 doi: 10.1038/s41467-017-00134-1 – ident: e_1_2_8_301_1 doi: 10.1002/adma.202202257 – ident: e_1_2_8_239_1 doi: 10.1364/OL.34.001633 – ident: e_1_2_8_275_1 doi: 10.1021/ph4000949 – ident: e_1_2_8_477_1 doi: 10.1016/j.chip.2022.100025 – ident: e_1_2_8_447_1 doi: 10.1103/PhysRevLett.122.153902 – ident: e_1_2_8_135_1 doi: 10.1126/science.1102896 – ident: e_1_2_8_457_1 doi: 10.1364/PRJ.413873 – ident: e_1_2_8_344_1 doi: 10.1103/PhysRevLett.128.093901 – ident: e_1_2_8_119_1 doi: 10.1038/s41586-018-0764-0 – ident: e_1_2_8_98_1 doi: 10.1103/PhysRevB.97.085148 – ident: e_1_2_8_85_1 doi: 10.1103/PhysRevLett.114.037402 – ident: e_1_2_8_465_1 doi: 10.1103/PhysRevApplied.20.024076 – ident: e_1_2_8_281_1 doi: 10.1103/PhysRevLett.126.215302 – volume: 7 year: 2022 ident: e_1_2_8_25_1 publication-title: Adv. Phys. X – ident: e_1_2_8_365_1 doi: 10.1103/RevModPhys.87.137 – ident: e_1_2_8_158_1 doi: 10.1103/PhysRevLett.111.103901 – ident: e_1_2_8_39_1 doi: 10.1103/PhysRevLett.128.013902 – ident: e_1_2_8_489_1 doi: 10.1103/PhysRevB.100.125108 – ident: e_1_2_8_75_1 doi: 10.1038/srep22270 – ident: e_1_2_8_130_1 doi: 10.1364/OE.27.025841 – ident: e_1_2_8_118_1 doi: 10.1103/PhysRevB.97.020102 – ident: e_1_2_8_408_1 doi: 10.1103/PhysRevLett.121.086803 – ident: e_1_2_8_17_1 doi: 10.1038/s41377-020-0331-y – ident: e_1_2_8_271_1 doi: 10.1364/OE.470783 – ident: e_1_2_8_416_1 doi: 10.1103/PhysRevLett.128.157601 – ident: e_1_2_8_169_1 doi: 10.1002/adom.201900036 – ident: e_1_2_8_151_1 doi: 10.1103/PhysRevLett.112.096805 – ident: e_1_2_8_29_1 doi: 10.1103/PhysRevLett.100.013904 – ident: e_1_2_8_288_1 doi: 10.1103/PhysRevLett.118.166803 – ident: e_1_2_8_198_1 doi: 10.1038/s41566-020-0618-9 – ident: e_1_2_8_303_1 doi: 10.1109/T-ED.1976.18476 – ident: e_1_2_8_363_1 doi: 10.1038/srep11686 – ident: e_1_2_8_197_1 doi: 10.1103/PhysRevB.98.235125 – ident: e_1_2_8_255_1 doi: 10.1103/PhysRevLett.121.163901 – ident: e_1_2_8_159_1 doi: 10.1038/nmat3783 – ident: e_1_2_8_227_1 doi: 10.1103/PhysRevB.101.165427 – ident: e_1_2_8_193_1 doi: 10.1103/PhysRevApplied.9.034032 – ident: e_1_2_8_313_1 doi: 10.1103/PhysRevB.74.035419 – ident: e_1_2_8_222_1 doi: 10.1103/PhysRevB.95.161114 – ident: e_1_2_8_26_1 doi: 10.1515/nanoph-2022-0309 – ident: e_1_2_8_69_1 doi: 10.1126/science.aar4005 – ident: e_1_2_8_194_1 doi: 10.1364/OL.391764 – ident: e_1_2_8_133_1 doi: 10.1038/s41565-019-0584-x – ident: e_1_2_8_235_1 doi: 10.1002/lpor.201800339 – ident: e_1_2_8_479_1 doi: 10.1038/s41565-024-01737-8 – ident: e_1_2_8_420_1 doi: 10.1126/science.aay1064 – ident: e_1_2_8_433_1 doi: 10.1103/PhysRevLett.129.086601 – ident: e_1_2_8_2_1 doi: 10.1103/RevModPhys.82.3045 – ident: e_1_2_8_71_1 doi: 10.1038/ncomms6782 – ident: e_1_2_8_131_1 doi: 10.1103/PhysRevB.103.245305 – ident: e_1_2_8_94_1 doi: 10.1103/PhysRevLett.114.223901 – ident: e_1_2_8_265_1 doi: 10.1364/OE.26.008634 – volume: 6 start-page: 8453 year: 2016 ident: e_1_2_8_73_1 publication-title: Sci. Rep. – ident: e_1_2_8_328_1 doi: 10.1364/OPEX.13.010238 – ident: e_1_2_8_157_1 doi: 10.1038/nnano.2012.95 – ident: e_1_2_8_177_1 doi: 10.1103/PhysRevB.96.094106 – volume: 8 year: 2018 ident: e_1_2_8_424_1 publication-title: Phys. Rev. X – ident: e_1_2_8_233_1 doi: 10.1038/nphys3228 – ident: e_1_2_8_70_1 doi: 10.1038/nmat3520 – ident: e_1_2_8_446_1 doi: 10.1038/nature23281 – ident: e_1_2_8_21_1 doi: 10.1364/OME.416552 – ident: e_1_2_8_229_1 doi: 10.1103/PhysRevLett.115.200402 – ident: e_1_2_8_333_1 doi: 10.1002/pssb.200844125 – ident: e_1_2_8_452_1 doi: 10.1103/PhysRevLett.125.180403 – ident: e_1_2_8_139_1 doi: 10.1103/PhysRevLett.100.236801 – ident: e_1_2_8_272_1 doi: 10.1103/PhysRevApplied.18.014056 – ident: e_1_2_8_179_1 doi: 10.1063/1.5004073 – volume: 35 year: 2021 ident: e_1_2_8_218_1 publication-title: Adv. Photon. – volume: 4 year: 2014 ident: e_1_2_8_262_1 publication-title: Phys. Rev. X – ident: e_1_2_8_486_1 doi: 10.1038/s41467-022-32909-6 – ident: e_1_2_8_41_1 doi: 10.1038/nature12066 – ident: e_1_2_8_440_1 doi: 10.1038/s41567-020-0807-y – ident: e_1_2_8_44_1 doi: 10.1126/science.aax8156 – ident: e_1_2_8_348_1 doi: 10.1103/PhysRevB.101.205309 – ident: e_1_2_8_216_1 doi: 10.1038/s41377-022-00821-9 – ident: e_1_2_8_149_1 doi: 10.1103/PhysRevB.93.035422 – ident: e_1_2_8_108_1 doi: 10.1103/PhysRevB.96.041408 – ident: e_1_2_8_418_1 doi: 10.1038/d41586-021-02677-2 – ident: e_1_2_8_166_1 doi: 10.1515/nanoph-2019-0137 – ident: e_1_2_8_60_1 doi: 10.1038/ncomms13368 – ident: e_1_2_8_55_1 doi: 10.1063/1.4982620 – ident: e_1_2_8_300_1 doi: 10.1038/s41567-021-01493-9 – ident: e_1_2_8_95_1 doi: 10.1103/PhysRevLett.106.106802 – ident: e_1_2_8_27_1 doi: 10.1002/adpr.202100013 – ident: e_1_2_8_64_1 doi: 10.1103/PhysRevLett.121.023901 – volume: 7 year: 2017 ident: e_1_2_8_212_1 publication-title: Phys. Rev. X – volume: 5 year: 2015 ident: e_1_2_8_459_1 publication-title: Phys. Rev. X – ident: e_1_2_8_19_1 doi: 10.1088/2040-8986/ac2e15 – ident: e_1_2_8_138_1 doi: 10.1103/PhysRevLett.99.236809 – ident: e_1_2_8_370_1 doi: 10.3390/app8040596 – volume: 64 year: 2021 ident: e_1_2_8_461_1 publication-title: Sci. Chin. Phys. Mech. Astro. – ident: e_1_2_8_6_1 doi: 10.1103/RevModPhys.91.015006 – ident: e_1_2_8_104_1 doi: 10.1038/s41467-018-03330-9 – ident: e_1_2_8_105_1 doi: 10.1103/PhysRevLett.122.117401 – ident: e_1_2_8_284_1 doi: 10.1103/PhysRevLett.112.107403 – ident: e_1_2_8_467_1 doi: 10.1038/s41586-020-03125-3 – ident: e_1_2_8_163_1 doi: 10.1038/s41565-018-0297-6 – ident: e_1_2_8_88_1 doi: 10.1038/srep21461 – ident: e_1_2_8_210_1 doi: 10.1103/PhysRevLett.129.043602 – ident: e_1_2_8_372_1 doi: 10.1038/s41467-023-42321-3 – ident: e_1_2_8_65_1 doi: 10.1038/s41566-019-0452-0 – ident: e_1_2_8_206_1 doi: 10.1103/PhysRevLett.125.143001 – ident: e_1_2_8_320_1 doi: 10.1038/nature05343 – ident: e_1_2_8_488_1 doi: 10.1038/s41467-019-12778-2 – ident: e_1_2_8_419_1 doi: 10.1063/5.0104358 – ident: e_1_2_8_391_1 doi: 10.1038/nature25777 – volume: 2 year: 2023 ident: e_1_2_8_57_1 publication-title: Adv. Photon. Nexus – ident: e_1_2_8_127_1 doi: 10.1002/lpor.202200071 – ident: e_1_2_8_266_1 doi: 10.1038/s42005-020-00395-1 – ident: e_1_2_8_244_1 doi: 10.1038/nmat4811 – ident: e_1_2_8_473_1 doi: 10.1038/nphys3776 – volume: 4 start-page: 1626 year: 2021 ident: e_1_2_8_268_1 publication-title: Opt. Express – ident: e_1_2_8_450_1 doi: 10.1103/PhysRevResearch.3.033106 – ident: e_1_2_8_92_1 doi: 10.1063/1.5128679 – ident: e_1_2_8_264_1 doi: 10.1364/OE.24.018580 – ident: e_1_2_8_385_1 doi: 10.1103/PhysRevApplied.15.014009 – ident: e_1_2_8_305_1 doi: 10.1016/0022-2364(82)90221-9 – ident: e_1_2_8_298_1 doi: 10.1002/adma.202202241 – ident: e_1_2_8_68_1 doi: 10.1126/science.aar4003 – ident: e_1_2_8_147_1 doi: 10.1364/OL.36.002513 – ident: e_1_2_8_209_1 doi: 10.1103/PhysRevB.99.094206 – ident: e_1_2_8_78_1 doi: 10.1063/5.0083989 – ident: e_1_2_8_128_1 doi: 10.1364/OE.398421 – ident: e_1_2_8_289_1 doi: 10.1103/PhysRevA.105.033512 – ident: e_1_2_8_228_1 doi: 10.1038/s41377-019-0237-8 – ident: e_1_2_8_81_1 doi: 10.1038/s41567-020-01082-2 – ident: e_1_2_8_120_1 doi: 10.1126/science.abc4975 – ident: e_1_2_8_14_1 doi: 10.1364/OE.26.024531 – ident: e_1_2_8_42_1 doi: 10.1038/s41566-017-0051-x – ident: e_1_2_8_45_1 doi: 10.1103/PhysRevLett.95.146802 – ident: e_1_2_8_438_1 doi: 10.1038/nature14889 – ident: e_1_2_8_221_1 doi: 10.1364/OL.40.005259 – ident: e_1_2_8_174_1 doi: 10.1103/PhysRevB.95.174106 – volume: 6 year: 2021 ident: e_1_2_8_20_1 publication-title: Adv. Phys. X. – ident: e_1_2_8_79_1 doi: 10.1038/nphoton.2016.253 – ident: e_1_2_8_242_1 doi: 10.1103/PhysRevLett.42.1698 – ident: e_1_2_8_302_1 doi: 10.1364/OE.26.000627 – ident: e_1_2_8_247_1 doi: 10.1103/PhysRevLett.123.165701 – volume: 47 start-page: 2190 year: 2022 ident: e_1_2_8_126_1 publication-title: Opt. Express – ident: e_1_2_8_439_1 doi: 10.1038/nature18604 – ident: e_1_2_8_63_1 doi: 10.1364/OE.26.024307 – ident: e_1_2_8_165_1 doi: 10.1002/lpor.201900126 – ident: e_1_2_8_223_1 doi: 10.1103/PhysRevB.93.041415 – ident: e_1_2_8_431_1 doi: 10.1103/PhysRevLett.122.237601 – ident: e_1_2_8_449_1 doi: 10.1038/s41567-020-0796-x – ident: e_1_2_8_312_1 doi: 10.1088/1367-2630/7/1/168 – ident: e_1_2_8_475_1 doi: 10.1364/PRJ.7.001075 – ident: e_1_2_8_84_1 doi: 10.1088/1361-6463/ac2e89 – ident: e_1_2_8_338_1 doi: 10.1063/1.2209031 – ident: e_1_2_8_150_1 doi: 10.1209/0295-5075/85/14005 – ident: e_1_2_8_396_1 doi: 10.1364/OPTICA.6.000839 – ident: e_1_2_8_176_1 doi: 10.1103/PhysRevB.96.184305 – ident: e_1_2_8_389_1 doi: 10.1103/PhysRevLett.122.233902 – ident: e_1_2_8_367_1 doi: 10.1103/PhysRevResearch.4.L032031 – ident: e_1_2_8_287_1 doi: 10.1063/5.0011719 – volume: 9 year: 2018 ident: e_1_2_8_425_1 publication-title: Phys. Rev. X – ident: e_1_2_8_295_1 doi: 10.1364/OE.439729 – ident: e_1_2_8_285_1 doi: 10.1103/PhysRevB.94.174307 – ident: e_1_2_8_270_1 doi: 10.1364/OL.41.001644 – ident: e_1_2_8_483_1 doi: 10.1038/s41467-021-25835-6 – ident: e_1_2_8_211_1 doi: 10.1126/science.aaq1221 – ident: e_1_2_8_217_1 doi: 10.1103/PhysRevLett.121.024301 – ident: e_1_2_8_106_1 doi: 10.1063/1.5055601 – ident: e_1_2_8_124_1 doi: 10.1103/PhysRevApplied.17.064008 – volume: 5 year: 2023 ident: e_1_2_8_371_1 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.5.L012012 – ident: e_1_2_8_494_1 doi: 10.1063/5.0051239 – volume: 65 start-page: 4440 year: 2002 ident: e_1_2_8_323_1 publication-title: Phys. Rev. B – ident: e_1_2_8_406_1 doi: 10.1038/s41377-021-00607-5 – ident: e_1_2_8_310_1 doi: 10.1126/science.1058847 – ident: e_1_2_8_339_1 doi: 10.1103/PhysRevLett.120.205501 – ident: e_1_2_8_359_1 doi: 10.1070/1063-7869/44/10S/S29 – ident: e_1_2_8_168_1 doi: 10.1002/lpor.201900159 – ident: e_1_2_8_101_1 doi: 10.1038/s41598-022-10189-w – ident: e_1_2_8_111_1 doi: 10.1088/1367-2630/aa66f8 – ident: e_1_2_8_258_1 doi: 10.1364/OE.417887 – ident: e_1_2_8_478_1 doi: 10.1117/1.AP.4.4.046002 – ident: e_1_2_8_460_1 doi: 10.1103/PhysRevB.99.115410 – ident: e_1_2_8_469_1 doi: 10.1103/PhysRevLett.128.116802 – ident: e_1_2_8_297_1 doi: 10.1103/PhysRevLett.127.105901 – ident: e_1_2_8_308_1 doi: 10.1109/22.798002 – ident: e_1_2_8_205_1 doi: 10.1038/nphys4072 – ident: e_1_2_8_487_1 doi: 10.1126/science.abj5488 – ident: e_1_2_8_250_1 doi: 10.1103/PhysRevA.96.023864 – ident: e_1_2_8_30_1 doi: 10.1103/PhysRevLett.100.013905 – ident: e_1_2_8_251_1 doi: 10.1126/science.abf6873 – ident: e_1_2_8_484_1 doi: 10.1364/PRJ.451344 – ident: e_1_2_8_257_1 doi: 10.1038/s41467-018-03434-2 – ident: e_1_2_8_398_1 doi: 10.1002/adma.201805002 – ident: e_1_2_8_472_1 doi: 10.1038/s41566-022-00972-6 – ident: e_1_2_8_96_1 doi: 10.1038/srep24347 – ident: e_1_2_8_202_1 doi: 10.1038/s41586-018-0829-0 – ident: e_1_2_8_434_1 doi: 10.1038/nphys4323 – ident: e_1_2_8_468_1 doi: 10.1103/PhysRevLett.128.116803 – ident: e_1_2_8_311_1 doi: 10.1002/mop.21021 – volume: 8 year: 2018 ident: e_1_2_8_369_1 publication-title: Phys. Rev. X – ident: e_1_2_8_387_1 doi: 10.1038/s41566-019-0561-9 – ident: e_1_2_8_379_1 doi: 10.1088/1674-1056/ac3815 – ident: e_1_2_8_97_1 doi: 10.1364/OE.24.018059 – ident: e_1_2_8_204_1 doi: 10.1126/science.abi7803 – ident: e_1_2_8_382_1 doi: 10.1103/PhysRevA.105.033501 – ident: e_1_2_8_358_1 doi: 10.1364/OL.43.001986 – ident: e_1_2_8_352_1 doi: 10.1103/PhysRevB.98.024205 – ident: e_1_2_8_280_1 doi: 10.1103/PhysRevResearch.2.043233 – ident: e_1_2_8_36_1 doi: 10.1103/PhysRevLett.128.257401 – ident: e_1_2_8_90_1 doi: 10.1002/adom.201900900 – ident: e_1_2_8_178_1 doi: 10.1103/PhysRevB.97.054307 – ident: e_1_2_8_390_1 doi: 10.1103/PhysRevLett.122.233903 – ident: e_1_2_8_277_1 doi: 10.1039/C5NR00231A – ident: e_1_2_8_429_1 doi: 10.1038/s41586-021-03833-4 – ident: e_1_2_8_224_1 doi: 10.1103/PhysRevLett.119.130501 – volume-title: Metamaterials with negative parameters: theory, design, and microwave applications year: 2011 ident: e_1_2_8_325_1 – ident: e_1_2_8_253_1 doi: 10.1103/PhysRevB.93.155112 – ident: e_1_2_8_455_1 doi: 10.1063/5.0060007 – ident: e_1_2_8_411_1 doi: 10.1103/PhysRevLett.128.223903 – ident: e_1_2_8_402_1 doi: 10.1103/PhysRevLett.127.013901 – ident: e_1_2_8_72_1 doi: 10.1103/PhysRevLett.114.127401 – ident: e_1_2_8_207_1 doi: 10.1038/s41377-022-00972-9 – ident: e_1_2_8_400_1 doi: 10.1103/PhysRevLett.123.103901 – ident: e_1_2_8_414_1 doi: 10.1103/PhysRevLett.125.206402 – ident: e_1_2_8_3_1 doi: 10.1103/RevModPhys.83.1057 – ident: e_1_2_8_324_1 doi: 10.1080/02726340490457890 – ident: e_1_2_8_24_1 doi: 10.1364/AOP.418074 – ident: e_1_2_8_430_1 doi: 10.1007/s11433-021-1785-y – ident: e_1_2_8_113_1 doi: 10.1038/srep32752 – ident: e_1_2_8_422_1 doi: 10.1103/PhysRevB.103.235110 – ident: e_1_2_8_59_1 doi: 10.1038/nphoton.2013.321 – ident: e_1_2_8_154_1 doi: 10.1038/nphoton.2012.302 – ident: e_1_2_8_129_1 doi: 10.1364/OE.432964 – ident: e_1_2_8_16_1 doi: 10.1016/j.revip.2022.100076 – ident: e_1_2_8_237_1 doi: 10.1103/PhysRevLett.121.124501 – ident: e_1_2_8_40_1 doi: 10.1038/nphoton.2012.236 – ident: e_1_2_8_5_1 doi: 10.1038/s41566-017-0048-5 – ident: e_1_2_8_329_1 doi: 10.1103/PhysRevB.76.073101 – ident: e_1_2_8_357_1 doi: 10.1103/PhysRevLett.110.076403 – ident: e_1_2_8_421_1 doi: 10.1103/PhysRevLett.129.053903 – ident: e_1_2_8_276_1 doi: 10.1103/PhysRevLett.114.123901 – volume: 4 year: 2022 ident: e_1_2_8_381_1 publication-title: Phys. Rev. Research doi: 10.1103/PhysRevResearch.4.L032015 – ident: e_1_2_8_435_1 doi: 10.1038/s41566-017-0031-1 – ident: e_1_2_8_185_1 doi: 10.1038/s41467-017-01205-z – ident: e_1_2_8_282_1 doi: 10.1103/PhysRevApplied.13.014047 – ident: e_1_2_8_353_1 doi: 10.1103/PhysRevB.91.064201 – ident: e_1_2_8_470_1 doi: 10.1038/s41586-019-1348-3 – ident: e_1_2_8_294_1 doi: 10.1103/PhysRevApplied.11.031004 – ident: e_1_2_8_107_1 doi: 10.1364/OE.25.023293 – ident: e_1_2_8_160_1 doi: 10.1126/sciadv.aap8802 – ident: e_1_2_8_241_1 doi: 10.1103/PhysRevLett.109.106402 – ident: e_1_2_8_304_1 doi: 10.1063/1.1136574 – ident: e_1_2_8_364_1 doi: 10.1103/PhysRevLett.115.177001 – ident: e_1_2_8_67_1 doi: 10.1364/OE.431038 – ident: e_1_2_8_399_1 doi: 10.1038/s41565-018-0324-7 – ident: e_1_2_8_404_1 doi: 10.1002/lpor.202100269 – ident: e_1_2_8_445_1 doi: 10.1038/nature23280 – ident: e_1_2_8_231_1 doi: 10.1103/PhysRevLett.121.213902 – ident: e_1_2_8_144_1 doi: 10.1103/PhysRevA.75.063813 – ident: e_1_2_8_145_1 doi: 10.1103/PhysRevLett.104.043903 – ident: e_1_2_8_13_1 doi: 10.1021/acsphotonics.1c01874 – ident: e_1_2_8_37_1 doi: 10.29026/oes.2022.220001 – ident: e_1_2_8_238_1 doi: 10.1364/OE.26.012891 – ident: e_1_2_8_444_1 doi: 10.1103/PhysRevLett.112.203901 – ident: e_1_2_8_114_1 doi: 10.1103/PhysRevLett.118.084303 – ident: e_1_2_8_183_1 doi: 10.1103/PhysRevLett.120.246601 – ident: e_1_2_8_273_1 doi: 10.1038/ncomms7710 – ident: e_1_2_8_293_1 doi: 10.1038/srep29202 – ident: e_1_2_8_62_1 doi: 10.1103/PhysRevMaterials.2.105201 |
SSID | ssj0002891341 |
Score | 2.3371677 |
Snippet | In recent years, topological photonics inspired by electric topological insulators has promoted extensive research on robust electromagnetic (EM) wave... Abstract In recent years, topological photonics inspired by electric topological insulators has promoted extensive research on robust electromagnetic (EM) wave... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Arrays Coupling Devices edge state Electromagnetism Electrons Graphene Magnetic fields metamaterials Optical resonators Photonics Physics Propagation Slits split‐ring‐resonator Symmetry Topological insulators topological phase transition Wireless power transmission |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kJy-iqBitsgfBU2yyrxhv9VGqoJQ-oLcl2WywIkmxFfz5zuympT2IFy85JENYvsnufJOd_YaQyyiyQtlSQpKT2FBwVwQgVZhHsBLalMNTVyD7qvoT8TyV041WX1gT5uWBPXAdm5RAYkoOFyMU5GuxKDjPkYgYq5Q75gsxbyOZevfbZ6hUtlJpjFgnm3-j_CcwbliS5VYUcmL9Wwxzk6e6QNPbJ3sNQ6RdP7IDsmOrQzKKH-jgrV6ikC0d-8YGCC99wlpyTJwXFKd2vbAFrUs6Am65pEOISxR_0FfO4pZ26cusmlG_IXBEJr3H8X0_bPohhAZFZABEJSUwJiNRZs2qSGTMijxJC2NEyoyQKYvVjSqAZqSZlWWBqrycGeBkRcITfkxaVV3ZE0IVZHFMJVGW5EKkZZ5CpoqShDHLWZwzHpBwhY82jVg49qz40F7mmGnEU6_xDMjV2n7uZTJ-tbxDuNdWKG_tboDTdeN0_ZfTA9JeOUs3c26hYTEBsgPZdRKQa-fAP4aiu4PpMAbIxOl_DOqM7MKrha8ja5PW8vPLngNjWeYX7uP8AZmK4C0 priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66XryIouLqKjkInoptntbb-lhWQVlWhb2FJk1VkHZxV_DnO5N2q3sQ8dJDOillkpl8k0y-IeQ4jr1QvpAQ5GgfCR6SAKSKbAye0Kcc3oYE2Xs1fBK3Ezn5cYu_5odoN9zQMoK_RgPP7Oz0mzQ0m34inydAaPCxcpWs4f1aZM9nYtTusjA8hQvlK5mWSZTAnFgwN8bsdPkTSytTIPBfQp0_sWtYfAabZKNBjbRfD_MWWfHlNnlIrujopZojuS19rIsdoMrpDeaXYzA9o2ju1czntCroA-DNOR3DWkVx074MEue0T-9ey1daHxLskKfB9ePlMGpqJEQOiWVAsUpKQFFOIvWaV7HImBdWp7lzImVOyJQl6kzlAD3SzMsiR6ZezhzgtFxzzXdJp6xKv0eogsiOKR1n2gqRFjaF6BVpChNmWWIZ75JooR_jGgJxrGPxZmrqY2ZQn6bVZ5ectPLTmjrjV8kLVHcrhZTXoaF6fzaNBRmvC0CzBYeHEwoC90TknFtEpM4rddYlvcVgmcYOZwYcDAAgiLh1l9Sz6Y9fMf3RZJyAysT-fzsckHVoFXUeWY905u8f_hAQy9wehUn5BQJt3Xw priority: 102 providerName: Wiley-Blackwell |
Title | 1D Photonic Topological Insulators Composed of Split Ring Resonators: A Mini Review |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202300125 https://www.proquest.com/docview/3192221327 https://doaj.org/article/e7f099f3099c4688814d33b4565ce668 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La9tAEB7yINBLSdOGuk3MHgI9qZH2afUSnNbOAxKMk4Bvi7VapYEiuZELPfW3Z2a1dptD28se5JEws7Mz38wO3wAcpamX2lcKkxzjEylCE4DSSZGiJ_S5wF9Dg-y1Pr-TlzM1iwW3NrZVrnxicNRl46hGfoymgqEMcydzsvie0NQoul2NIzQ2YRtd8ACTr-3T0fVkuq6ycLqFC-MruVFZkqFNrJgbU348X_wkSlBE4eim1bPIFAj8n6HOP7FrCD7jXXgZUSMbdtv8CjZ8vQc7oXvTta_hJvvCJl-bJdHcsttu7AEpn11Qpzml1S2jg9-0vmRNxW4QeS7ZFKMWo_J9HSQ-sSG7eqgfWHdd8AbuxqPbz-dJnJaQOKKYQRVrpRBPOUUkbF6ncs69LExeOidz7qTKeaYHukQQks-9qkri7BXcIWIrjTBiH7bqpvZvgWnM8bg26dwUUuZVkWMeS4SFGS94VnDRg2SlKesilThNtPhmOxJkbkmzdq3ZHnxYyy86Eo2_Sp6S4tdSRH4dHjSP9zaeJetNhbi2Erg4qTGFz2QpREHY1HmtBz04WG2bjSeytb_tpwcfw1b-56_Y4WQ2zVBl8t2_v_ceXuBLsusfO4Ct5eMPf4hIZVn0YZPLCa6D8Vk_mmY_ZP24Xv0aPQHR1OLO |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXVF5ioQUfQJxCEz-TSggtlGWXPlS1W2lvZuM4UAklS7MV8Kf4jcw4yUIPwKmXHBLLssbz-MaefAPwLI691L5UmOQYH0kRigCUjvIYPaHPBH4NBbKHenwqP8zUbA1-9v_CUFll7xODoy5qR2fk26gqGMowdzKvF18j6hpFt6t9C41WLfb8j2-YsjWvJru4v885H72bvh1HXVeByBEVCy5FK4W4wykiK_M6lnPuZW6ywjmZcSdVxhOd6gKDdTb3qiyI21Zwh8imMMIInPcaXJdCZGRR6ej96kyH051faJbJjUqiBDWw54mM-fZ88Z0ISBHzY1BQl-JgaBdwCeP-iZRDqBttwO0Oo7Jhq1R3YM1Xd-FGqBV1zT04SXbZ0ed6SaS6bNo2WaCtZhOqa6ckvmHkZurGF6wu2Qni3CU7xhjJ6LKgCiN22JAdnFVnrL2cuA-nVyLFB7Be1ZV_CExjRsm1iecmlzIr8wyzZqJHTHjOk5yLAUS9pKzriMupf8YX21Iuc0uStSvJDuDFavyipez468g3JPjVKKLaDi_q80-2s1zrTYkouhT4cFKnaZrIQoickLDzWqcD2Oy3zXb239jf2jqAl2Er_7MUOzyaHScoMvno3_M9hZvj6cG-3Z8c7j2GWziBbCvXNmF9eX7htxAjLfMnQTEZfLxqS_gFQ_oW9g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60gngRRcVq1T0InkKTfRpv9VHqqxRtpXhZms1GC5IUW8Gf70ySRnsQ8ZJDMglhdmb2m93Zbwg59n0nlEskJDnaeYLnRQBSeZEPkdCFHJ7mBbJd1RmIm6Ec_jjFX_BDVAtu6Bl5vEYHn8RJ85s0dDT5RD5PgNAQY-UyWUGqPLDrldbT4HlQrbMw3IfLG1gyLQMvAKuYczf6rLn4kYW5KafwX8CdP9FrPv20N8h6iRtpqxjoTbLk0i3yGFzS3ms2Q3pb2i_aHaDS6TVWmGM6PaXo8NnUxTRL6CMgzhl9gNmK4rJ9mkuc0Ra9H6djWmwTbJNB-6p_0fHKLgmeRWoZUK2SEnCUlUi-5pQvRsyJSIextSJkVsiQBepUxQA-wpGTSYxcvZxZQGqx5prvkFqapW6XUAW5HVPaH-lIiDCJQshfkagwYBELIsbrxJvrx9iSQhw7WbyZgvyYGdSnqfRZJyeV_KQgz_hV8hzVXUkh6XV-I3t_MaUPGacTwLMJh4sVClL3QMScR4hJrVPqtE4a88EypSdODYQYgECQc-s6Kezpj18xrd7wIQCVib3_vnBEVnuXbXN33b3dJ2sgIIqisgapzd4_3AHAl1l0WFroFyBK4eA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1D+Photonic+Topological+Insulators+Composed+of+Split+Ring+Resonators%3A+A+Mini+Review&rft.jtitle=Advanced+Physics+Research&rft.au=Guo%2C+Zhiwei&rft.au=Wang%2C+Yuqian&rft.au=Ke%2C+Shaolin&rft.au=Su%2C+Xiaoqiang&rft.date=2024-06-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=2751-1200&rft.eissn=2751-1200&rft.volume=3&rft.issue=6&rft_id=info:doi/10.1002%2Fapxr.202300125 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon |