Optimal design for high‐throughput screening via false discovery rate control
High‐throughput screening (HTS) is a large‐scale hierarchical process in which a large number of chemicals are tested in multiple stages. Conventional statistical analyses of HTS studies often suffer from high testing error rates and soaring costs in large‐scale settings. This article develops new m...
Saved in:
Published in | Statistics in medicine Vol. 38; no. 15; pp. 2816 - 2827 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
10.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High‐throughput screening (HTS) is a large‐scale hierarchical process in which a large number of chemicals are tested in multiple stages. Conventional statistical analyses of HTS studies often suffer from high testing error rates and soaring costs in large‐scale settings. This article develops new methodologies for false discovery rate control and optimal design in HTS studies. We propose a two‐stage procedure that determines the optimal numbers of replicates at different screening stages while simultaneously controlling the false discovery rate in the confirmatory stage subject to a constraint on the total budget. The merits of the proposed methods are illustrated using both simulated and real data. We show that, at the expense of a limited budget, the proposed screening procedure effectively controls the error rate and the design leads to improved detection power. |
---|---|
AbstractList | High‐throughput screening (HTS) is a large‐scale hierarchical process in which a large number of chemicals are tested in multiple stages. Conventional statistical analyses of HTS studies often suffer from high testing error rates and soaring costs in large‐scale settings. This article develops new methodologies for false discovery rate control and optimal design in HTS studies. We propose a two‐stage procedure that determines the optimal numbers of replicates at different screening stages while simultaneously controlling the false discovery rate in the confirmatory stage subject to a constraint on the total budget. The merits of the proposed methods are illustrated using both simulated and real data. We show that, at the expense of a limited budget, the proposed screening procedure effectively controls the error rate and the design leads to improved detection power. High-throughput screening (HTS) is a large-scale hierarchical process in which a large number of chemicals are tested in multiple stages. Conventional statistical analyses of HTS studies often suffer from high testing error rates and soaring costs in large-scale settings. This article develops new methodologies for false discovery rate control and optimal design in HTS studies. We propose a two-stage procedure that determines the optimal numbers of replicates at different screening stages while simultaneously controlling the false discovery rate in the confirmatory stage subject to a constraint on the total budget. The merits of the proposed methods are illustrated using both simulated and real data. We show that, at the expense of a limited budget, the proposed screening procedure effectively controls the error rate and the design leads to improved detection power.High-throughput screening (HTS) is a large-scale hierarchical process in which a large number of chemicals are tested in multiple stages. Conventional statistical analyses of HTS studies often suffer from high testing error rates and soaring costs in large-scale settings. This article develops new methodologies for false discovery rate control and optimal design in HTS studies. We propose a two-stage procedure that determines the optimal numbers of replicates at different screening stages while simultaneously controlling the false discovery rate in the confirmatory stage subject to a constraint on the total budget. The merits of the proposed methods are illustrated using both simulated and real data. We show that, at the expense of a limited budget, the proposed screening procedure effectively controls the error rate and the design leads to improved detection power. |
Author | Ku, Hsun Teresa Basu, Pallavi Mack, Wendy J. Sun, Wenguang Feng, Tao |
Author_xml | – sequence: 1 givenname: Tao surname: Feng fullname: Feng, Tao organization: Keck School of Medicine, University of Southern California – sequence: 2 givenname: Pallavi orcidid: 0000-0003-4242-1543 surname: Basu fullname: Basu, Pallavi email: pallavibasu@mail.tau.ac.il organization: School of Mathematical Sciences, Tel Aviv University – sequence: 3 givenname: Wenguang surname: Sun fullname: Sun, Wenguang organization: Marshall School of Business, University of Southern California – sequence: 4 givenname: Hsun Teresa surname: Ku fullname: Ku, Hsun Teresa organization: Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope – sequence: 5 givenname: Wendy J. surname: Mack fullname: Mack, Wendy J. organization: Keck School of Medicine, University of Southern California |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30924183$$D View this record in MEDLINE/PubMed |
BookMark | eNp10UlOwzAUBmALgaAMEidAltiwSfEQx84SISapqAtgbcXOS2uUxsVOQN1xBM7ISUhbBgnBygt_fvr9_l202fgGEDqkZEgJYafRzYaKpukGGlCSy4QwoTbRgDApk0xSsYN2Y3wkhFLB5Dba4SRnKVV8gMbjeetmRY1LiG7S4MoHPHWT6fvrWzsNvptM512Low0AjWsm-NkVuCrqCLh00fpnCAscihaw9U0bfL2PtlbXB5_nHnq4vLg_v05G46ub87NRYnmap4kgLKsgpTbLRQayMoYKw0VGiFBWZEbRUoDJLRfEMKCGV6oQpswBBGfG5nwPnaznzoN_6iC2etbngbouGvBd1IwRIiVVVPb0-Bd99F1o-nS94kJQlSnRq6NP1ZkZlHoe-rWEhf5aVQ-Ga2CDjzFApa1ri9Yt_124WlOil13ovgu97OIn4veDr5l_0GRNX1wNi3-dvru5XfkPUpaX_g |
CitedBy_id | crossref_primary_10_1093_database_baab009 |
Cites_doi | 10.1093/bioinformatics/btm140 10.1111/j.0006-341X.2004.00207.x 10.1198/016214507000000545 10.1002/sim.2716 10.1038/nbt1186 10.1016/j.csda.2009.05.006 10.1073/pnas.97.18.9834 10.1111/rssb.12171 10.1111/1467-9868.00095 10.1038/nrg1836 10.1038/nrm1860 10.1146/annurev.ps.46.020195.003021 10.1093/biostatistics/kxp062 10.1093/biomet/75.4.800 10.1002/sim.3300 10.1093/biostatistics/kxs026 10.1214/ss/1056397487 10.1038/nbt0803-859 10.1198/016214504000001646 10.1198/016214501753382129 10.1038/nature07042 10.1111/j.2517-6161.1995.tb02031.x 10.1111/1467-9868.00346 10.1093/bioinformatics/btm628 10.1074/jbc.M112.348037 10.1016/j.jspi.2005.08.031 10.1111/1467-9868.00347 10.1080/01621459.2013.835662 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1002/sim.8144 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 2827 |
ExternalDocumentID | 30924183 10_1002_sim_8144 SIM8144 |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013)/ERC funderid: 294519-PSARPS – fundername: NSF funderid: DMS-CAREER 1255406 – fundername: NIH funderid: R01DK099734 – fundername: NIH HHS grantid: R01DK099734 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c3494-5026fe41c6956e7fbb15b3560058c56b81d5eb9c350b2e1b3f8a5bd9ee532bc93 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Fri Jul 11 01:42:34 EDT 2025 Mon Jul 21 01:49:06 EDT 2025 Wed Feb 19 02:30:49 EST 2025 Thu Apr 24 22:51:14 EDT 2025 Tue Jul 01 03:28:14 EDT 2025 Wed Jan 22 16:41:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | experimental design drug discovery false discovery rate control two-stage design high-throughput screening |
Language | English |
License | 2019 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3494-5026fe41c6956e7fbb15b3560058c56b81d5eb9c350b2e1b3f8a5bd9ee532bc93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4242-1543 |
PMID | 30924183 |
PQID | 2235518685 |
PQPubID | 48361 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2200771817 proquest_journals_2235518685 pubmed_primary_30924183 crossref_citationtrail_10_1002_sim_8144 crossref_primary_10_1002_sim_8144 wiley_primary_10_1002_sim_8144_SIM8144 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 July 2019 |
PublicationDateYYYYMMDD | 2019-07-10 |
PublicationDate_xml | – month: 07 year: 2019 text: 10 July 2019 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 11 2007; 102 2012; 287 2004; 60 2013; 108 1995; 57 2006; 7 1993 2003; 18 1988; 75 2012; 14 2006; 136 2004; 99 2009; 53 2006; 24 2002; 64 1995; 46 1997; 59 2008; 27 2017; 79 2000; 97 1979; 6 2017 2008; 24 2016 2013 2008; 453 2007; 23 2003; 21 2001; 96 2007; 26 e_1_2_6_32_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 Goktug AN (e_1_2_6_6_1) 2013 e_1_2_6_21_1 e_1_2_6_20_1 Westfall PH (e_1_2_6_7_1) 1993 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 Holm S (e_1_2_6_10_1) 1979; 6 Benjamini Y (e_1_2_6_12_1) 1995; 57 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
References_xml | – volume: 7 start-page: 373 issue: 5 year: 2006 end-page: 384 article-title: High‐throughput RNAi screening in cultured cells: a user's guide publication-title: Nat Rev Genet – volume: 24 start-page: 537 issue: 4 year: 2008 end-page: 544 article-title: Multiple testing on the directed acyclic graph of gene ontology publication-title: Bioinformatics – volume: 46 start-page: 561 issue: 1 year: 1995 end-page: 584 article-title: Multiple hypothesis testing publication-title: Annu Rev Psychol – volume: 11 start-page: 317 issue: 2 year: 2010 end-page: 336 article-title: Bayesian inference for finite mixtures of univariate and multivariate skew‐normal and skew‐t distributions publication-title: Biostatistics – volume: 453 start-page: 338 issue: 7193 year: 2008 end-page: 344 article-title: A chemical approach to stem‐cell biology and regenerative medicine publication-title: Nature – volume: 21 start-page: 859 issue: 8 year: 2003 end-page: 864 article-title: Screening for content—the evolution of high throughput publication-title: Nat Biotechnol – volume: 6 start-page: 65 issue: 2 year: 1979 end-page: 70 article-title: A simple sequentially rejective multiple test procedure publication-title: Scand J Stat – year: 2016 – volume: 26 start-page: 2465 issue: 12 year: 2007 end-page: 2478 article-title: Tree‐structured gatekeeping tests in clinical trials with hierarchically ordered multiple objectives publication-title: Stat Med – volume: 64 start-page: 479 issue: 3 year: 2002 end-page: 498 article-title: A direct approach to false discovery rates publication-title: J R Stat Soc Ser B Stat Methodol – volume: 97 start-page: 9834 issue: 18 year: 2000 end-page: 9839 article-title: Importance of replication in microarray gene expression studies: statistical methods and evidence from repetitive cDNA hybridizations publication-title: Proc Natl Acad Sci – volume: 59 start-page: 731 issue: 4 year: 1997 end-page: 792 article-title: On Bayesian analysis of mixtures with an unknown number of components (with discussion) publication-title: J R Stat Soc Ser B Stat Methodol – volume: 24 start-page: 167 issue: 2 year: 2006 end-page: 175 article-title: Statistical practice in high‐throughput screening data analysis publication-title: Nat Biotechnol – volume: 99 start-page: 990 issue: 468 year: 2004 end-page: 1001 article-title: Optimal sample size for multiple testing: the case of gene expression microarrays publication-title: J Am Stat Assoc – volume: 108 start-page: 1385 issue: 504 year: 2013 end-page: 1401 article-title: Multiple testing in a two‐stage adaptive design with combination tests controlling FDR publication-title: J Am Stat Assoc – volume: 18 start-page: 71 issue: 1 year: 2003 end-page: 103 article-title: Multiple hypothesis testing in microarray experiments publication-title: Stat Sci – volume: 53 start-page: 3932 issue: 12 year: 2009 end-page: 3947 article-title: A new R package for Bayesian estimation of multivariate normal mixtures allowing for selection of the number of components and interval‐censored data publication-title: Comput Stat Data Anal – volume: 75 start-page: 800 issue: 4 year: 1988 end-page: 802 article-title: A sharper Bonferroni procedure for multiple tests of significance publication-title: Biometrika – volume: 27 start-page: 4145 issue: 21 year: 2008 end-page: 4160 article-title: Optimized multi‐stage designs controlling the false discovery or the family‐wise error rate publication-title: Stat Med – volume: 14 start-page: 75 issue: 1 year: 2012 end-page: 86 article-title: Sequential stopping for high‐throughput experiments publication-title: Biostatistics – volume: 96 start-page: 1151 issue: 456 year: 2001 end-page: 1160 article-title: Empirical Bayes analysis of a microarray experiment publication-title: J Am Stat Assoc – volume: 7 start-page: 177 issue: 3 year: 2006 end-page: 187 article-title: Building mammalian signalling pathways with RNAi screens publication-title: Nat Rev Mol Cell Biol – volume: 60 start-page: 589 issue: 3 year: 2004 end-page: 597 article-title: Two‐stage designs for gene‐disease association studies with sample size constraints publication-title: Biometrics – volume: 136 start-page: 2144 issue: 7 year: 2006 end-page: 2162 article-title: An exploration of aspects of Bayesian multiple testing publication-title: J Stat Plan Inference – volume: 64 start-page: 499 issue: 3 year: 2002 end-page: 517 article-title: Operating characteristics and extensions of the false discovery rate procedure publication-title: J R Stat Soc Ser B Stat Methodol – volume: 23 start-page: 1519 issue: 12 year: 2007 end-page: 1526 article-title: Two‐stage designs applying methods differing in costs publication-title: Bioinformatics – volume: 79 start-page: 197 issue: 1 year: 2017 end-page: 223 article-title: Optimal screening and discovery of sparse signals with applications to multistage high throughput studies publication-title: J R Stat Soc Ser B – year: 2017 – volume: 102 start-page: 901 issue: 479 year: 2007 end-page: 912 article-title: Oracle and adaptive compound decision rules for false discovery rate control publication-title: J Am Stat Assoc – volume: 57 start-page: 289 issue: 1 year: 1995 end-page: 300 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J R Stat Soc Ser B Methodol – year: 1993 – volume: 287 start-page: 38992 issue: 46 year: 2012 end-page: 39000 article-title: A novel inhibitor of peptide aggregation: from high throughput screening to efficacy in an animal model for Alzheimer's disease publication-title: J Biol Chem – year: 2013 – ident: e_1_2_6_20_1 doi: 10.1093/bioinformatics/btm140 – ident: e_1_2_6_23_1 – ident: e_1_2_6_16_1 doi: 10.1111/j.0006-341X.2004.00207.x – ident: e_1_2_6_27_1 doi: 10.1198/016214507000000545 – ident: e_1_2_6_21_1 doi: 10.1002/sim.2716 – ident: e_1_2_6_2_1 doi: 10.1038/nbt1186 – volume-title: Resampling‐Based Multiple Testing year: 1993 ident: e_1_2_6_7_1 – ident: e_1_2_6_28_1 doi: 10.1016/j.csda.2009.05.006 – ident: e_1_2_6_29_1 doi: 10.1073/pnas.97.18.9834 – ident: e_1_2_6_31_1 doi: 10.1111/rssb.12171 – ident: e_1_2_6_33_1 doi: 10.1111/1467-9868.00095 – ident: e_1_2_6_5_1 doi: 10.1038/nrg1836 – ident: e_1_2_6_4_1 doi: 10.1038/nrm1860 – ident: e_1_2_6_9_1 doi: 10.1146/annurev.ps.46.020195.003021 – ident: e_1_2_6_32_1 doi: 10.1093/biostatistics/kxp062 – ident: e_1_2_6_11_1 doi: 10.1093/biomet/75.4.800 – volume-title: Data Analysis Approaches in High Throughput Screening year: 2013 ident: e_1_2_6_6_1 – ident: e_1_2_6_17_1 doi: 10.1002/sim.3300 – ident: e_1_2_6_19_1 doi: 10.1093/biostatistics/kxs026 – ident: e_1_2_6_8_1 doi: 10.1214/ss/1056397487 – ident: e_1_2_6_13_1 doi: 10.1038/nbt0803-859 – ident: e_1_2_6_18_1 doi: 10.1198/016214504000001646 – ident: e_1_2_6_24_1 doi: 10.1198/016214501753382129 – volume: 6 start-page: 65 issue: 2 year: 1979 ident: e_1_2_6_10_1 article-title: A simple sequentially rejective multiple test procedure publication-title: Scand J Stat – ident: e_1_2_6_3_1 doi: 10.1038/nature07042 – volume: 57 start-page: 289 issue: 1 year: 1995 ident: e_1_2_6_12_1 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J R Stat Soc Ser B Methodol doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_2_6_25_1 doi: 10.1111/1467-9868.00346 – ident: e_1_2_6_22_1 doi: 10.1093/bioinformatics/btm628 – ident: e_1_2_6_15_1 – ident: e_1_2_6_30_1 doi: 10.1074/jbc.M112.348037 – ident: e_1_2_6_34_1 doi: 10.1016/j.jspi.2005.08.031 – ident: e_1_2_6_26_1 doi: 10.1111/1467-9868.00347 – ident: e_1_2_6_14_1 doi: 10.1080/01621459.2013.835662 |
SSID | ssj0011527 |
Score | 2.2872717 |
Snippet | High‐throughput screening (HTS) is a large‐scale hierarchical process in which a large number of chemicals are tested in multiple stages. Conventional... High-throughput screening (HTS) is a large-scale hierarchical process in which a large number of chemicals are tested in multiple stages. Conventional... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2816 |
SubjectTerms | Bayesian analysis Design optimization drug discovery experimental design false discovery rate control high‐throughput screening Medical statistics Pharmaceuticals R&D Research & development two‐stage design |
Title | Optimal design for high‐throughput screening via false discovery rate control |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8144 https://www.ncbi.nlm.nih.gov/pubmed/30924183 https://www.proquest.com/docview/2235518685 https://www.proquest.com/docview/2200771817 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB7EgyyIj_W1ukoE0VPXtmnS9iiiqLAu-ADBQ2liCqLuLu6uoCd_gr_RX-JM01bWB4inHjrpI5mZfJPMfAHY0jF2vebcEcrTTuD7ykldnjqRDJTPQ67DnHi-fSqPLoOTK3FVZFVSLYzlh6gW3Mgycn9NBp6qwe4naejg9qEVYTiA7pdStQgPnVXMUV55WivtUMrQEyXvrOvvlg3HZ6Jv8HIcrebTzeEsXJcfarNM7lqjoWrply8cjv_7kzmYKVAo27NqMw8TpluHqXaxz16Habuax2yRUh1qhEktpfMCdDroZh6w-U2e_cEQ9jJiPX5_fStO_emPhgzdEYbIODGyp9uUZajlhlEJMKWMPjMiqGBFmvwiXB4eXOwfOcW5DI4mMhtHYNyWmcDTEoMrE2ZKeUJxgk4i0kIqhMDCqFhz4SrfeIpnUSrUTWyM4L7SMV-CyW6va1aAIdiQOjSRSNEviNhNRRZEsUDUybmRgWzATjlGiS5Iy-nsjPvE0i37CXZeQp3XgM1Ksm-JOn6QaZbDnBSmOkgQHxErnYwEPqK6jUZGOydp1_RGJEO0RwiGwgYsW_WoXsJdDGHRMTZgOx_kX9-enB-36br6V8E1qCE8oxoznCybMDl8HJl1hEBDtZEr-weZLAGE |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSuQwFD7oCCqIrqOr4-oaYdGrjm3TpC17JbIyrjMKroIXQmliCrI6Mzgzgl7tI-wz-iSe07SVcRVkr3rRpD_J-flOcvIdgG86xqHXnDtCedoJfF85qctTJ5KB8nnIdZgTz3eOZes8-HkhLibge3kWxvJDVAtupBm5vSYFpwXp3RfW0MH1bTPCeGASpqigdx5PnVbcUV5Zr5X2KGXoiZJ51vV3y57jvugfgDmOV3OHc7AAl-Wn2jyT383RUDX14ysWx__8l08wXwBRtmclZxEmTLcO051iq70Oc3ZBj9lzSnWYJVhqWZ2X4OQELc0tdr_KE0AYIl9GxMdPf_4WhX_6oyFDi4RRMvpGdn-dsgwF3TA6BUxZow-MOCpYkSm_DOcHP872W05RmsHRxGfjCAzdMhN4WmJ8ZcJMKU8oTuhJRFpIhShYGBVrLlzlG0_xLEqFuoqNEdxXOuafodbtdc0qMMQbUocmEimaBhG7qciCKBYIPDk3MpAN2CknKdEFbzmVz7hJLOOyn-DgJTR4DdiqWvYtV8cbbdbLeU4KbR0kCJGImE5GAh9R3UY9o82TtGt6I2pDzEeIh8IGrFj5qF7CXYxi0TY2YDuf5Xffnvw67NB17aMNN2GmddZpJ-3D46MvMItojY6coe9ch9rwbmQ2EBEN1ddc8p8BpQIFnw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB5SF0wgJI3Th1un2UBIT3IkrXYlHUMck7S1HdIaDD0I7XoFJvWD2C60p_6E_sb-ksxoJYX0AaUnHTSrx-7s7De7M98AHOkYu15z7gjlaSfwfeWkLk-dSAbK5yHXYU483-vLi2HwdiRGRVQl5cJYfohqw41mRm6vaYIvxtnJPWnocjJtR-gOPILHgXQj0ujOdUUd5ZXlWumIUoaeKIlnXf-kbPlwKfoNXz6Eq_l6092BT-WX2jCTm_Z6pdr62y8kjv_3K09gu4Ch7NTqzS5smFkD6r3ioL0BW3Y7j9kspQZsEii1nM57MBignZli83Ee_sEQ9zKiPf75_UdR9mexXjG0R-gj48rIvkxSlqGaG0Y5wBQz-pURQwUr4uSfwrB7_vHswikKMzia2GwcgY5bZgJPS_SuTJgp5QnFCTuJSAupEAMLo2LNhat84ymeRalQ49gYwX2lY_4MarP5zLwAhmhD6tBEIkXDIGI3FVkQxQJhJ-dGBrIJb8oxSnTBWk7FMz4nlm_ZT7DzEuq8JhxWkgvL1PEHmVY5zEkxV5cJAiSipZORwEdUt3GW0dFJOjPzNckQ7xGiobAJz616VC_hLvqwaBmbcJwP8l_fnny47NH15b8KHkD9qtNN3l_2372CTYRqlG-GC2cLaqvbtdlHOLRSr3O9vwOv2QRX |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+design+for+high%E2%80%90throughput+screening+via+false+discovery+rate+control&rft.jtitle=Statistics+in+medicine&rft.au=Feng%2C+Tao&rft.au=Basu%2C+Pallavi&rft.au=Sun%2C+Wenguang&rft.au=Ku%2C+Hsun+Teresa&rft.date=2019-07-10&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=38&rft.issue=15&rft.spage=2816&rft.epage=2827&rft_id=info:doi/10.1002%2Fsim.8144&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_8144 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |