Sensitivity of the Predictive Hypoglycemia Minimizer System to the Algorithm Aggressiveness Factor

Background: The Predictive Hypoglycemia Minimizer System (“Hypo Minimizer”), consisting of a zone model predictive controller (the “controller”) and a safety supervision module (the “safety module”), aims to mitigate hypoglycemia by preemptively modulating insulin delivery based on continuous glucos...

Full description

Saved in:
Bibliographic Details
Published inJournal of diabetes science and technology Vol. 10; no. 1; pp. 104 - 110
Main Authors Finan, Daniel A., Dassau, Eyal, Breton, Marc D., Patek, Stephen D., McCann, Thomas W., Kovatchev, Boris P., Doyle, Francis J., Levy, Brian L., Venugopalan, Ramakrishna
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.01.2016
Subjects
Online AccessGet full text
ISSN1932-2968
1932-3107
DOI10.1177/1932296815593292

Cover

Loading…
Abstract Background: The Predictive Hypoglycemia Minimizer System (“Hypo Minimizer”), consisting of a zone model predictive controller (the “controller”) and a safety supervision module (the “safety module”), aims to mitigate hypoglycemia by preemptively modulating insulin delivery based on continuous glucose monitor (CGM) measurements. The “aggressiveness factor,” a pivotal variable in the system, governs the speed and magnitude of the controller’s insulin dosing characteristics in response to changes in CGM levels. Methods: Twelve adults with type 1 diabetes were studied in closed-loop in a clinical research center for approximately 24 hours. This analysis focused primarily on the effect of the aggressiveness factor on the automated insulin-delivery characteristics of the controller, and secondarily on the glucose control results. Results: As aggressiveness increased from “conservative” to “medium” to “aggressive,” the controller recommended less insulin (–3.3% vs –14.4% vs –19.5% relative to basal) with a higher frequency (5.3% vs 14.4% vs 20.3%) during the critical times when the CGM was reading 90-120 mg/dl and decreasing. Blood glucose analyses indicated that the most aggressive setting resulted in the most desirable combination of the least time spent <70 mg/dl and the most time spent 70-180 mg/dl, particularly in the overnight period. Hyperglycemia, diabetic ketoacidosis, or severe hypoglycemia did not occur with any of the aggressiveness values. Conclusion: The Hypo Minimizer’s controller took preemptive action to prevent hypoglycemia based on predicted changes in CGM glucose levels. The most aggressive setting was quickest to take action to reduce insulin delivery below basal and achieved the best glucose metrics.
AbstractList Background: The Predictive Hypoglycemia Minimizer System (“Hypo Minimizer”), consisting of a zone model predictive controller (the “controller”) and a safety supervision module (the “safety module”), aims to mitigate hypoglycemia by preemptively modulating insulin delivery based on continuous glucose monitor (CGM) measurements. The “aggressiveness factor,” a pivotal variable in the system, governs the speed and magnitude of the controller’s insulin dosing characteristics in response to changes in CGM levels. Methods: Twelve adults with type 1 diabetes were studied in closed-loop in a clinical research center for approximately 24 hours. This analysis focused primarily on the effect of the aggressiveness factor on the automated insulin-delivery characteristics of the controller, and secondarily on the glucose control results. Results: As aggressiveness increased from “conservative” to “medium” to “aggressive,” the controller recommended less insulin (–3.3% vs –14.4% vs –19.5% relative to basal) with a higher frequency (5.3% vs 14.4% vs 20.3%) during the critical times when the CGM was reading 90-120 mg/dl and decreasing. Blood glucose analyses indicated that the most aggressive setting resulted in the most desirable combination of the least time spent <70 mg/dl and the most time spent 70-180 mg/dl, particularly in the overnight period. Hyperglycemia, diabetic ketoacidosis, or severe hypoglycemia did not occur with any of the aggressiveness values. Conclusion: The Hypo Minimizer’s controller took preemptive action to prevent hypoglycemia based on predicted changes in CGM glucose levels. The most aggressive setting was quickest to take action to reduce insulin delivery below basal and achieved the best glucose metrics.
The Predictive Hypoglycemia Minimizer System ("Hypo Minimizer"), consisting of a zone model predictive controller (the "controller") and a safety supervision module (the "safety module"), aims to mitigate hypoglycemia by preemptively modulating insulin delivery based on continuous glucose monitor (CGM) measurements. The "aggressiveness factor," a pivotal variable in the system, governs the speed and magnitude of the controller's insulin dosing characteristics in response to changes in CGM levels. Twelve adults with type 1 diabetes were studied in closed-loop in a clinical research center for approximately 24 hours. This analysis focused primarily on the effect of the aggressiveness factor on the automated insulin-delivery characteristics of the controller, and secondarily on the glucose control results. As aggressiveness increased from "conservative" to "medium" to "aggressive," the controller recommended less insulin (-3.3% vs -14.4% vs -19.5% relative to basal) with a higher frequency (5.3% vs 14.4% vs 20.3%) during the critical times when the CGM was reading 90-120 mg/dl and decreasing. Blood glucose analyses indicated that the most aggressive setting resulted in the most desirable combination of the least time spent <70 mg/dl and the most time spent 70-180 mg/dl, particularly in the overnight period. Hyperglycemia, diabetic ketoacidosis, or severe hypoglycemia did not occur with any of the aggressiveness values. The Hypo Minimizer's controller took preemptive action to prevent hypoglycemia based on predicted changes in CGM glucose levels. The most aggressive setting was quickest to take action to reduce insulin delivery below basal and achieved the best glucose metrics.
The Predictive Hypoglycemia Minimizer System ("Hypo Minimizer"), consisting of a zone model predictive controller (the "controller") and a safety supervision module (the "safety module"), aims to mitigate hypoglycemia by preemptively modulating insulin delivery based on continuous glucose monitor (CGM) measurements. The "aggressiveness factor," a pivotal variable in the system, governs the speed and magnitude of the controller's insulin dosing characteristics in response to changes in CGM levels.BACKGROUNDThe Predictive Hypoglycemia Minimizer System ("Hypo Minimizer"), consisting of a zone model predictive controller (the "controller") and a safety supervision module (the "safety module"), aims to mitigate hypoglycemia by preemptively modulating insulin delivery based on continuous glucose monitor (CGM) measurements. The "aggressiveness factor," a pivotal variable in the system, governs the speed and magnitude of the controller's insulin dosing characteristics in response to changes in CGM levels.Twelve adults with type 1 diabetes were studied in closed-loop in a clinical research center for approximately 24 hours. This analysis focused primarily on the effect of the aggressiveness factor on the automated insulin-delivery characteristics of the controller, and secondarily on the glucose control results.METHODSTwelve adults with type 1 diabetes were studied in closed-loop in a clinical research center for approximately 24 hours. This analysis focused primarily on the effect of the aggressiveness factor on the automated insulin-delivery characteristics of the controller, and secondarily on the glucose control results.As aggressiveness increased from "conservative" to "medium" to "aggressive," the controller recommended less insulin (-3.3% vs -14.4% vs -19.5% relative to basal) with a higher frequency (5.3% vs 14.4% vs 20.3%) during the critical times when the CGM was reading 90-120 mg/dl and decreasing. Blood glucose analyses indicated that the most aggressive setting resulted in the most desirable combination of the least time spent <70 mg/dl and the most time spent 70-180 mg/dl, particularly in the overnight period. Hyperglycemia, diabetic ketoacidosis, or severe hypoglycemia did not occur with any of the aggressiveness values.RESULTSAs aggressiveness increased from "conservative" to "medium" to "aggressive," the controller recommended less insulin (-3.3% vs -14.4% vs -19.5% relative to basal) with a higher frequency (5.3% vs 14.4% vs 20.3%) during the critical times when the CGM was reading 90-120 mg/dl and decreasing. Blood glucose analyses indicated that the most aggressive setting resulted in the most desirable combination of the least time spent <70 mg/dl and the most time spent 70-180 mg/dl, particularly in the overnight period. Hyperglycemia, diabetic ketoacidosis, or severe hypoglycemia did not occur with any of the aggressiveness values.The Hypo Minimizer's controller took preemptive action to prevent hypoglycemia based on predicted changes in CGM glucose levels. The most aggressive setting was quickest to take action to reduce insulin delivery below basal and achieved the best glucose metrics.CONCLUSIONThe Hypo Minimizer's controller took preemptive action to prevent hypoglycemia based on predicted changes in CGM glucose levels. The most aggressive setting was quickest to take action to reduce insulin delivery below basal and achieved the best glucose metrics.
Author Kovatchev, Boris P.
Dassau, Eyal
Breton, Marc D.
Patek, Stephen D.
Doyle, Francis J.
Levy, Brian L.
McCann, Thomas W.
Venugopalan, Ramakrishna
Finan, Daniel A.
AuthorAffiliation 2 University of California, Santa Barbara, Santa Barbara, CA, USA
3 Sansum Diabetes Research Institute, Santa Barbara, CA, USA
4 University of Virginia, Center for Diabetes Technology, Charlottesville, VA, USA
1 Animas Corporation, Chesterbrook, PA, USA
AuthorAffiliation_xml – name: 1 Animas Corporation, Chesterbrook, PA, USA
– name: 4 University of Virginia, Center for Diabetes Technology, Charlottesville, VA, USA
– name: 2 University of California, Santa Barbara, Santa Barbara, CA, USA
– name: 3 Sansum Diabetes Research Institute, Santa Barbara, CA, USA
Author_xml – sequence: 1
  givenname: Daniel A.
  surname: Finan
  fullname: Finan, Daniel A.
  email: dfinan@its.jnj.com
– sequence: 2
  givenname: Eyal
  surname: Dassau
  fullname: Dassau, Eyal
– sequence: 3
  givenname: Marc D.
  surname: Breton
  fullname: Breton, Marc D.
– sequence: 4
  givenname: Stephen D.
  surname: Patek
  fullname: Patek, Stephen D.
– sequence: 5
  givenname: Thomas W.
  surname: McCann
  fullname: McCann, Thomas W.
– sequence: 6
  givenname: Boris P.
  surname: Kovatchev
  fullname: Kovatchev, Boris P.
– sequence: 7
  givenname: Francis J.
  surname: Doyle
  fullname: Doyle, Francis J.
– sequence: 8
  givenname: Brian L.
  surname: Levy
  fullname: Levy, Brian L.
– sequence: 9
  givenname: Ramakrishna
  surname: Venugopalan
  fullname: Venugopalan, Ramakrishna
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26134834$$D View this record in MEDLINE/PubMed
BookMark eNp9kc2LFDEQxYOsuB969yR99NKar04mF2FYXFdYUVg9h3S60pOlOxmTzEL715txZkUX9FRF1fu9B1Xn6CTEAAi9JPgNIVK-JYpRqsSKdF3tFH2CzvajlhEsT479fn-KznO-w7jjKymfoVMqCOMrxs9Qfwsh--LvfVma6JqygeZLgsHbOoPmetnGcVoszN40n3zws_8BqbldcoG5KfGXfj2NMfmymZv1OCbIuZKhlubK2BLTc_TUmSnDi2O9QN-u3n-9vG5vPn_4eLm-aS3jirbOdL1gbuiFE5YaOnBuVK-oY8ZRjjvAQnVEEEk7p5h1YgDCOSg1GGYIEewCvTv4bnf9DIOFUJKZ9Db52aRFR-P135vgN3qM95pLtqKYVoPXR4MUv-8gFz37bGGaTIC4y5rIjmGCueRV-urPrN8hD4etAnEQ2BRzTuC09cUUH_fRftIE6_0H9eMPVhA_Ah-8_4O0BySbEfRd3KVQ7_xv_U_zdqta
CitedBy_id crossref_primary_10_1089_dia_2017_0035
crossref_primary_10_1016_j_jpeds_2017_02_055
crossref_primary_10_1080_17434440_2022_2150546
crossref_primary_10_17925_EE_2019_15_2_70
crossref_primary_10_1089_dia_2018_0278
crossref_primary_10_1111_dom_12999
Cites_doi 10.2337/dc13-2911
10.2337/dc12-1965
10.1177/193229680800200518
10.1089/dia.2009.0031
10.2337/dc13-1631
10.2337/dc12-0948
10.1177/193229681000400513
10.1056/NEJMoa1206881
10.1177/1932296814534589
10.1056/NEJMoa1314474
10.1109/TBME.2012.2192930
10.2337/db11-1445
10.2337/dc13-2644
10.2337/dc13-2076
10.1016/S2213-8587(14)70114-7
10.1136/bmjdrc-2014-000025.
10.1177/193229681300700515
10.1109/TBME.2014.2323248
10.2337/dc13-2108
10.1177/1932296813511730
10.2337/dc14-0147
10.1210/jc.2013-4151
ContentType Journal Article
Copyright 2015 Diabetes Technology Society
2015 Diabetes Technology Society.
2015 Diabetes Technology Society 2015 Diabetes Technology Society
Copyright_xml – notice: 2015 Diabetes Technology Society
– notice: 2015 Diabetes Technology Society.
– notice: 2015 Diabetes Technology Society 2015 Diabetes Technology Society
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1177/1932296815593292
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1932-3107
EndPage 110
ExternalDocumentID PMC4738202
26134834
10_1177_1932296815593292
10.1177_1932296815593292
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-TM
0R~
53G
54M
AABMB
AACMV
AACTG
AADCB
AADUE
AAEWN
AAGLT
AAGMC
AAJPV
AAKGS
AANEX
AAQXI
AARDL
AARIX
AATAA
AATBZ
AAUAS
ABAWP
ABCCA
ABCJG
ABEIX
ABFWQ
ABIDT
ABJIS
ABJNI
ABJZC
ABKRH
ABLUO
ABPNF
ABQXT
ABRHV
ABUJY
ABVFX
ACARO
ACDSZ
ACDXX
ACFEJ
ACGFO
ACGFS
ACGZU
ACJER
ACJTF
ACLFY
ACLZU
ACOFE
ACOXC
ACROE
ACSIQ
ACUAV
ACUIR
ACXKE
ACXMB
ADBBV
ADDVE
ADEBD
ADNON
ADRRZ
ADVBO
ADZZY
AECGH
AEDTQ
AEKYL
AEPTA
AEQLS
AERKM
AESZF
AEUHG
AEWDL
AEWHI
AEXNY
AFEET
AFKRG
AFMOU
AFQAA
AFUIA
AGHKR
AGKLV
AGNHF
AGPXR
AGWFA
AHDMH
AJUZI
AJXAJ
ALJHS
ALKWR
ALMA_UNASSIGNED_HOLDINGS
AMCVQ
ANDLU
AOIJS
ARTOV
AUTPY
AYAKG
B8M
BAWUL
BBRGL
BDDNI
BKIIM
BKSCU
BPACV
BSEHC
BWJAD
C45
CDWPY
CFDXU
DC-
DC.
DIK
DOPDO
DV7
E3Z
EBS
EJD
EMOBN
F5P
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
GX1
H13
HYE
J8X
K.F
O9-
OK1
OVD
P2P
P6G
ROL
RPM
SASJQ
SAUOL
SCNPE
SFC
SFH
SHG
SJN
SPQ
SPV
TEORI
TR2
ZONMY
ZPPRI
ZRKOI
ZSSAH
AAYXX
AJGYC
AJVBE
CITATION
ACTQU
AEUIJ
AIOMO
ALTZF
CGR
CUY
CVF
ECM
EIF
M4V
NPM
7X8
AAPII
AJHME
5PM
ID FETCH-LOGICAL-c3492-fa5b63fdb6f6c2a2d44a9b92f3af2405e0695161725f93cf6de144e99da3a1163
ISSN 1932-2968
IngestDate Thu Aug 21 18:21:25 EDT 2025
Thu Sep 04 20:44:45 EDT 2025
Wed Feb 19 01:57:59 EST 2025
Sun Jul 06 05:02:09 EDT 2025
Thu Apr 24 23:06:49 EDT 2025
Tue Jun 17 22:40:58 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords model predictive control
Aggressiveness factor
type 1 diabetes
closed-loop control
artificial pancreas
algorithm
Language English
License 2015 Diabetes Technology Society.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3492-fa5b63fdb6f6c2a2d44a9b92f3af2405e0695161725f93cf6de144e99da3a1163
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://journals.sagepub.com/doi/pdf/10.1177/1932296815593292
PMID 26134834
PQID 1753010474
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4738202
proquest_miscellaneous_1753010474
pubmed_primary_26134834
crossref_citationtrail_10_1177_1932296815593292
crossref_primary_10_1177_1932296815593292
sage_journals_10_1177_1932296815593292
PublicationCentury 2000
PublicationDate 2016-01-01
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: United States
– name: Sage CA: Los Angeles, CA
PublicationTitle Journal of diabetes science and technology
PublicationTitleAlternate J Diabetes Sci Technol
PublicationYear 2016
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Kovatchev, Renard, Cobelli 2013; 36
Doyle, Huyett, Lee 2014; 37
Leelarathna, Dellweg, Mader 2014; 37
Patek, Magni, Dassau 2012; 59
Phillip, Battelino, Atlas 2013; 368
Dassau, Zisser, Palerm 2008; 2
Barnard, Wysocki, Allen 2014; 2
Kowalski 2009; 11
Dassau, Zisser, Harvey 2013; 36
Schmidt, Boiroux, Duun-Henriksen 2013; 7
Thabit, Lubina-Solomon, Stadler 2014; 2
Kovatchev, Renard, Cobelli 2014; 37
Russell, El-Khatib, Sinha 2014; 371
Finan, McCann, Mackowiak 2014; 8
Hovorka, Elleri, Thabit 2014; 37
Jacobs, El Youssef, Castle 2014; 61
Finan, McCann, Rhein 2014; 8
Breton, Farret, Bruttomesso 2012; 61
Del Favero, Bruttomesso, Di Palma 2014; 37
Hughes, Patek, Breton, Kovatchev 2010; 4
El-Khatib, Russell, Magyar 2014; 99
Ly, Breton, Keith-Hynes 2014; 37
bibr22-1932296815593292
bibr14-1932296815593292
bibr19-1932296815593292
bibr16-1932296815593292
bibr6-1932296815593292
bibr8-1932296815593292
bibr13-1932296815593292
bibr20-1932296815593292
bibr11-1932296815593292
bibr2-1932296815593292
bibr4-1932296815593292
bibr15-1932296815593292
bibr9-1932296815593292
bibr21-1932296815593292
bibr17-1932296815593292
bibr18-1932296815593292
bibr12-1932296815593292
bibr1-1932296815593292
bibr7-1932296815593292
bibr5-1932296815593292
bibr10-1932296815593292
bibr3-1932296815593292
24483160 - J Clin Endocrinol Metab. 2014 May;99(5):1701-11
19885271 - J Diabetes Sci Technol. 2008 Sep;2(5):863-72
19621478 - Diabetes Technol Ther. 2009 Jun;11 Suppl 1:S113-9
24929429 - Diabetes Care. 2014 Jul;37(7):1789-96
24124952 - J Diabetes Sci Technol. 2013 Sep;7(5):1255-64
22481809 - IEEE Trans Biomed Eng. 2012 Nov;59(11):2986-99
23193210 - Diabetes Care. 2013 Apr;36(4):801-9
24757226 - Diabetes Care. 2014;37(5):1191-7
24876443 - J Diabetes Sci Technol. 2014 Jul;8(4):685-90
20920434 - J Diabetes Sci Technol. 2010 Sep;4(5):1146-55
24757227 - Diabetes Care. 2014;37(5):1204-11
24931572 - N Engl J Med. 2014 Jul 24;371(4):313-25
24963110 - Diabetes Care. 2014 Jul;37(7):1931-7
22688340 - Diabetes. 2012 Sep;61(9):2230-7
24835122 - IEEE Trans Biomed Eng. 2014 Oct;61(10):2569-81
23801798 - Diabetes Care. 2013 Jul;36(7):1851-8
24943065 - Lancet Diabetes Endocrinol. 2014 Sep;2(9):701-9
25452866 - BMJ Open Diabetes Res Care. 2014 Apr 16;2(1):e000025
24876535 - J Diabetes Sci Technol. 2014 Jan 1;8(1):35-42
24879841 - Diabetes Care. 2014 Aug;37(8):2310-6
24757228 - Diabetes Care. 2014;37(5):1212-5
23445093 - N Engl J Med. 2013 Feb 28;368(9):824-33
References_xml – volume: 37
  start-page: 1191
  issue: 5
  year: 2014
  end-page: 1197
  article-title: Closed-loop artificial pancreas systems: engineering the algorithms
  publication-title: Diabetes Care
– volume: 37
  start-page: 1789
  issue: 7
  year: 2014
  end-page: 1796
  article-title: Safety of outpatient closed-loop control: first randomized crossover trials of a wearable artificial pancreas
  publication-title: Diabetes Care
– volume: 36
  start-page: 1851
  issue: 7
  year: 2013
  end-page: 1858
  article-title: Feasibility of outpatient fully integrated closed-loop control: first studies of a wearable artificial pancreas
  publication-title: Diabetes Care
– volume: 4
  start-page: 1146
  issue: 5
  year: 2010
  end-page: 1155
  article-title: Hypoglycemia prevention via pump attenuation and red-yellow-green “traffic” lights using continuous glucose monitoring and insulin pump data
  publication-title: J Diabetes Sci Technol
– volume: 36
  start-page: 801
  issue: 4
  year: 2013
  end-page: 809
  article-title: Clinical evaluation of a personalized artificial pancreas
  publication-title: Diabetes Care
– volume: 2
  start-page: e000025
  issue: 1
  year: 2014
  article-title: Closing the loop overnight at home setting: psychosocial impact for adolescents with type 1 diabetes and their parents
  publication-title: BMJ Open Diabetes Res Care
– volume: 37
  start-page: 1204
  year: 2014
  end-page: 1211
  article-title: Overnight closed-loop insulin delivery in young people living with type 1 diabetes: a free-living, randomized clinical trial
  publication-title: Diabetes Care
– volume: 61
  start-page: 2230
  issue: 9
  year: 2012
  end-page: 2237
  article-title: Fully integrated artificial pancreas in type 1 diabetes: modular closed-loop glucose control maintains near normoglycemia
  publication-title: Diabetes
– volume: 11
  start-page: S113
  year: 2009
  end-page: S119
  article-title: Can we really close the loop and how soon? Accelerating the availability of an artificial pancreas: a roadmap to better diabetes outcomes
  publication-title: Diabetes Technol Ther
– volume: 7
  start-page: 1255
  issue: 5
  year: 2013
  end-page: 1264
  article-title: Model-based closed-loop glucose control in type 1 diabetes: the DiaCon experience
  publication-title: J Diabetes Sci Technol
– volume: 2
  start-page: 863
  issue: 5
  year: 2008
  end-page: 872
  article-title: Modular artificial beta-cell system: a proto-type for clinical research
  publication-title: J Diabetes Sci Technol
– volume: 37
  start-page: 1931
  year: 2014
  end-page: 1937
  article-title: Day and night home closed-loop insulin delivery in adults with type 1 diabetes: three-center randomized crossover study
  publication-title: Diabetes Care
– volume: 59
  start-page: 2986
  issue: 11
  year: 2012
  end-page: 2999
  article-title: Modular closed-loop control of diabetes
  publication-title: IEEE Trans Biomed Eng
– volume: 368
  start-page: 824
  issue: 9
  year: 2013
  end-page: 833
  article-title: Nocturnal glucose control with an artificial pancreas at a diabetes camp
  publication-title: N Engl J Med
– volume: 371
  start-page: 313
  issue: 4
  year: 2014
  end-page: 325
  article-title: Outpatient glycemic control with a bionic pancreas in type 1 diabetes
  publication-title: N Engl J Med
– volume: 8
  start-page: 35
  issue: 1
  year: 2014
  end-page: 42
  article-title: Closed-loop control performance of the Hypoglycemia-Hyperglycemia Minimizer (HHM) System in a feasibility study
  publication-title: J Diabetes Sci Technol
– volume: 99
  start-page: 1701
  issue: 5
  year: 2014
  end-page: 1711
  article-title: Autonomous and continuous adaptation of a bihormonal pancreas in adults and adolescents with type 1 diabetes
  publication-title: J Clin Endocrinol Metab
– volume: 37
  start-page: 2310
  year: 2014
  end-page: 2316
  article-title: Overnight glucose control with an automated, unified safety system in children and adolescents with type 1 diabetes at diabetes camp
  publication-title: Diabetes Care
– volume: 61
  start-page: 2569
  issue: 10
  year: 2014
  end-page: 2581
  article-title: Automated control of an adaptive bihormonal, dual-sensor artificial pancreas and evaluation during inpatient studies
  publication-title: IEEE Trans Biomed Eng
– volume: 8
  start-page: 685
  issue: 4
  year: 2014
  end-page: 690
  article-title: Effect of algorithm aggressiveness on the performance of the Hypoglycemia-Hyperglycemia Minimizer (HHM) System
  publication-title: J Diabetes Sci Technol
– volume: 2
  start-page: 701
  issue: 9
  year: 2014
  end-page: 709
  article-title: Home use of closed-loop insulin delivery for overnight glucose control in adults with type 1 diabetes: a 4-week, multicentre, randomised crossover study
  publication-title: Lancet Diabetes Endocrinol
– volume: 37
  start-page: 1212
  year: 2014
  end-page: 1215
  article-title: First use of model predictive control in outpatient wearable artificial pancreas
  publication-title: Diabetes Care
– ident: bibr6-1932296815593292
  doi: 10.2337/dc13-2911
– ident: bibr8-1932296815593292
  doi: 10.2337/dc12-1965
– ident: bibr18-1932296815593292
  doi: 10.1177/193229680800200518
– ident: bibr1-1932296815593292
  doi: 10.1089/dia.2009.0031
– ident: bibr4-1932296815593292
  doi: 10.2337/dc13-1631
– ident: bibr3-1932296815593292
  doi: 10.2337/dc12-0948
– ident: bibr20-1932296815593292
  doi: 10.1177/193229681000400513
– ident: bibr10-1932296815593292
  doi: 10.1056/NEJMoa1206881
– ident: bibr17-1932296815593292
  doi: 10.1177/1932296814534589
– ident: bibr14-1932296815593292
  doi: 10.1056/NEJMoa1314474
– ident: bibr21-1932296815593292
  doi: 10.1109/TBME.2012.2192930
– ident: bibr2-1932296815593292
  doi: 10.2337/db11-1445
– ident: bibr5-1932296815593292
  doi: 10.2337/dc13-2644
– ident: bibr9-1932296815593292
  doi: 10.2337/dc13-2076
– ident: bibr12-1932296815593292
  doi: 10.1016/S2213-8587(14)70114-7
– ident: bibr22-1932296815593292
  doi: 10.1136/bmjdrc-2014-000025.
– ident: bibr11-1932296815593292
  doi: 10.1177/193229681300700515
– ident: bibr15-1932296815593292
  doi: 10.1109/TBME.2014.2323248
– ident: bibr19-1932296815593292
  doi: 10.2337/dc13-2108
– ident: bibr16-1932296815593292
  doi: 10.1177/1932296813511730
– ident: bibr7-1932296815593292
  doi: 10.2337/dc14-0147
– ident: bibr13-1932296815593292
  doi: 10.1210/jc.2013-4151
– reference: 19621478 - Diabetes Technol Ther. 2009 Jun;11 Suppl 1:S113-9
– reference: 24757226 - Diabetes Care. 2014;37(5):1191-7
– reference: 22688340 - Diabetes. 2012 Sep;61(9):2230-7
– reference: 24879841 - Diabetes Care. 2014 Aug;37(8):2310-6
– reference: 24124952 - J Diabetes Sci Technol. 2013 Sep;7(5):1255-64
– reference: 23801798 - Diabetes Care. 2013 Jul;36(7):1851-8
– reference: 24876443 - J Diabetes Sci Technol. 2014 Jul;8(4):685-90
– reference: 23193210 - Diabetes Care. 2013 Apr;36(4):801-9
– reference: 25452866 - BMJ Open Diabetes Res Care. 2014 Apr 16;2(1):e000025
– reference: 24757228 - Diabetes Care. 2014;37(5):1212-5
– reference: 19885271 - J Diabetes Sci Technol. 2008 Sep;2(5):863-72
– reference: 24757227 - Diabetes Care. 2014;37(5):1204-11
– reference: 24876535 - J Diabetes Sci Technol. 2014 Jan 1;8(1):35-42
– reference: 24963110 - Diabetes Care. 2014 Jul;37(7):1931-7
– reference: 24929429 - Diabetes Care. 2014 Jul;37(7):1789-96
– reference: 24943065 - Lancet Diabetes Endocrinol. 2014 Sep;2(9):701-9
– reference: 24931572 - N Engl J Med. 2014 Jul 24;371(4):313-25
– reference: 24483160 - J Clin Endocrinol Metab. 2014 May;99(5):1701-11
– reference: 23445093 - N Engl J Med. 2013 Feb 28;368(9):824-33
– reference: 24835122 - IEEE Trans Biomed Eng. 2014 Oct;61(10):2569-81
– reference: 22481809 - IEEE Trans Biomed Eng. 2012 Nov;59(11):2986-99
– reference: 20920434 - J Diabetes Sci Technol. 2010 Sep;4(5):1146-55
SSID ssj0054877
Score 2.1053245
Snippet Background: The Predictive Hypoglycemia Minimizer System (“Hypo Minimizer”), consisting of a zone model predictive controller (the “controller”) and a safety...
The Predictive Hypoglycemia Minimizer System ("Hypo Minimizer"), consisting of a zone model predictive controller (the "controller") and a safety supervision...
SourceID pubmedcentral
proquest
pubmed
crossref
sage
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104
SubjectTerms Adult
Algorithms
Blood Glucose - analysis
Blood Glucose Self-Monitoring - methods
Diabetes Mellitus, Type 1 - blood
Diabetes Mellitus, Type 1 - drug therapy
Feasibility Studies
Female
Humans
Hypoglycemia - blood
Hypoglycemia - prevention & control
Hypoglycemic Agents - administration & dosage
Infusion Pumps, Implantable
Insulin - administration & dosage
Insulin Infusion Systems
Male
Middle Aged
Original
Pancreas, Artificial
Title Sensitivity of the Predictive Hypoglycemia Minimizer System to the Algorithm Aggressiveness Factor
URI https://journals.sagepub.com/doi/full/10.1177/1932296815593292
https://www.ncbi.nlm.nih.gov/pubmed/26134834
https://www.proquest.com/docview/1753010474
https://pubmed.ncbi.nlm.nih.gov/PMC4738202
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9tAEF7cFEpfSu-6F1sohWKUWCtp7X10j2AKKYEm4DexWq0cUVsKjvzg_JP-284eWslSU9K-GCGNZKP5PDvHtzMIvU8ZmDxKOcQm08QLmUw8nnLiCSEjGspIRFyzfL_T-Xn4bREtBoNfLdbStkoOxfUf95X8j1bhHOhV7ZL9B826h8IJOAb9widoGD5vpeMfin1uxz_YWv_pRlVeNB9ovrssl6udkOucj07yIl_n13Jje5TXPudstSw3eXWxHs2WOvSurd-xHsRzg-_qMrb1riDNw-xl6fXw32Yj-2h22CTG1eQVbYh33JE8Pm1kzeZXLQS-OPFT8Ih_tkhp9SWbrvC76QpTJ-tmJKUxvuBLwppgpuA66zzuodCYWju22K7avpHrLwi6JK2eTBidqhpsQMzwvU6bbSscd0XvoLsEIhA9FWTh2EMqzps0Ve-j7l37Xk4vdOkzcFs0Qu3ZnD1ED6xa8czg6xEayOIxundiSRdPUNKCGS4zDLDBDcxwG2bYwQwbmOGq1PIOZngfZtjA7Ck6P_569nnu2dEcnlDtLL2MRwkNMrWHkwrCSRqGnCWMZAHPwEeM5JiC66684yhjgchoKiFyl4ylPOA-xADP0EFRFvIFwjwlgnKZ8nHqhxwWvVSmU0ZIEsKRL9gQHdWvMha2b70an7KKfduqvvvyh-iju-PS9Gz5i-y7WjsxGFZVLeOFLLdXsWphq5tXhUP03GjLPY2AE6yy8EM02dOjE1BN2_evFPmFbt4eTgJwuuF7PyiNx9aaXN34A1_eVvAVut_8316jg2qzlW_AYa6Stxq6vwEyWb7X
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sensitivity+of+the+Predictive+Hypoglycemia+Minimizer+System+to+the+Algorithm+Aggressiveness+Factor&rft.jtitle=Journal+of+diabetes+science+and+technology&rft.au=Finan%2C+Daniel+A.&rft.au=Dassau%2C+Eyal&rft.au=Breton%2C+Marc+D.&rft.au=Patek%2C+Stephen+D.&rft.date=2016-01-01&rft.pub=SAGE+Publications&rft.eissn=1932-3107&rft.volume=10&rft.issue=1&rft.spage=104&rft.epage=110&rft_id=info:doi/10.1177%2F1932296815593292&rft.externalDocID=10.1177_1932296815593292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-2968&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-2968&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-2968&client=summon