Engineering Epsilon‐Near‐Zero Media with Waveguides

Epsilon‐Near‐Zero (ENZ) media have attracted widespread interest due to their unique electromagnetic properties, which have brought distinctive characteristics and phenomena, such as spatiotemporal decoupling, supercoupling and tunneling, constant phase transmission, near‐field enhancement, and so o...

Full description

Saved in:
Bibliographic Details
Published inAdvanced Physics Research Vol. 3; no. 9
Main Authors Li, Peihang, Yan, Wendi, Wang, Shuyu, Fu, Pengyu, Zhang, Yongjian, Li, Yue
Format Journal Article
LanguageEnglish
Published Edinburgh John Wiley & Sons, Inc 01.09.2024
Wiley-VCH
Subjects
Online AccessGet full text
ISSN2751-1200
2751-1200
DOI10.1002/apxr.202400070

Cover

Loading…
Abstract Epsilon‐Near‐Zero (ENZ) media have attracted widespread interest due to their unique electromagnetic properties, which have brought distinctive characteristics and phenomena, such as spatiotemporal decoupling, supercoupling and tunneling, constant phase transmission, near‐field enhancement, and so on. However, these ENZ characteristics are existed in natural plasmonic materials at their intrinsic plasma frequencies and accompanied by significant losses, thus limiting their applications in engineering. Different from the effect ENZ media with artificially periodic structures, the waveguide ENZ media offers a promising platform with non‐periodic architectures. Unlike the natural plasmonic materials and the periodic‐structured ENZ media, the waveguide ENZ media utilizes waveguide dispersion to achieve effective ENZ characteristics and phenomena with lower loss and smaller dimensions. This review begins with an exploration of the fundamental properties of the waveguide ENZ media and then introduces the design principles of different ENZ‐based electromagnetic devices. Finally, the review concludes with the challenges and potential development directions encountered by the ENZ media in the realm of electromagnetic applications. Waveguide Epsilon‐Near‐Zero (ENZ) media provide a promising platform characterized by non‐periodic architectures with lower loss and smaller dimensions. This review begins by exploring the fundamental properties of waveguide ENZ dielectrics. Following this, the design principles of various ENZ‐based electromagnetic devices are discussed. Finally, the review presents a range of engineering applications of waveguide ENZ media, categorized into three distinct classifications.
AbstractList Epsilon‐Near‐Zero (ENZ) media have attracted widespread interest due to their unique electromagnetic properties, which have brought distinctive characteristics and phenomena, such as spatiotemporal decoupling, supercoupling and tunneling, constant phase transmission, near‐field enhancement, and so on. However, these ENZ characteristics are existed in natural plasmonic materials at their intrinsic plasma frequencies and accompanied by significant losses, thus limiting their applications in engineering. Different from the effect ENZ media with artificially periodic structures, the waveguide ENZ media offers a promising platform with non‐periodic architectures. Unlike the natural plasmonic materials and the periodic‐structured ENZ media, the waveguide ENZ media utilizes waveguide dispersion to achieve effective ENZ characteristics and phenomena with lower loss and smaller dimensions. This review begins with an exploration of the fundamental properties of the waveguide ENZ media and then introduces the design principles of different ENZ‐based electromagnetic devices. Finally, the review concludes with the challenges and potential development directions encountered by the ENZ media in the realm of electromagnetic applications.
Epsilon‐Near‐Zero (ENZ) media have attracted widespread interest due to their unique electromagnetic properties, which have brought distinctive characteristics and phenomena, such as spatiotemporal decoupling, supercoupling and tunneling, constant phase transmission, near‐field enhancement, and so on. However, these ENZ characteristics are existed in natural plasmonic materials at their intrinsic plasma frequencies and accompanied by significant losses, thus limiting their applications in engineering. Different from the effect ENZ media with artificially periodic structures, the waveguide ENZ media offers a promising platform with non‐periodic architectures. Unlike the natural plasmonic materials and the periodic‐structured ENZ media, the waveguide ENZ media utilizes waveguide dispersion to achieve effective ENZ characteristics and phenomena with lower loss and smaller dimensions. This review begins with an exploration of the fundamental properties of the waveguide ENZ media and then introduces the design principles of different ENZ‐based electromagnetic devices. Finally, the review concludes with the challenges and potential development directions encountered by the ENZ media in the realm of electromagnetic applications. Waveguide Epsilon‐Near‐Zero (ENZ) media provide a promising platform characterized by non‐periodic architectures with lower loss and smaller dimensions. This review begins by exploring the fundamental properties of waveguide ENZ dielectrics. Following this, the design principles of various ENZ‐based electromagnetic devices are discussed. Finally, the review presents a range of engineering applications of waveguide ENZ media, categorized into three distinct classifications.
Abstract Epsilon‐Near‐Zero (ENZ) media have attracted widespread interest due to their unique electromagnetic properties, which have brought distinctive characteristics and phenomena, such as spatiotemporal decoupling, supercoupling and tunneling, constant phase transmission, near‐field enhancement, and so on. However, these ENZ characteristics are existed in natural plasmonic materials at their intrinsic plasma frequencies and accompanied by significant losses, thus limiting their applications in engineering. Different from the effect ENZ media with artificially periodic structures, the waveguide ENZ media offers a promising platform with non‐periodic architectures. Unlike the natural plasmonic materials and the periodic‐structured ENZ media, the waveguide ENZ media utilizes waveguide dispersion to achieve effective ENZ characteristics and phenomena with lower loss and smaller dimensions. This review begins with an exploration of the fundamental properties of the waveguide ENZ media and then introduces the design principles of different ENZ‐based electromagnetic devices. Finally, the review concludes with the challenges and potential development directions encountered by the ENZ media in the realm of electromagnetic applications.
Author Fu, Pengyu
Wang, Shuyu
Li, Yue
Li, Peihang
Zhang, Yongjian
Yan, Wendi
Author_xml – sequence: 1
  givenname: Peihang
  surname: Li
  fullname: Li, Peihang
  organization: Tsinghua University
– sequence: 2
  givenname: Wendi
  surname: Yan
  fullname: Yan, Wendi
  organization: Tsinghua University
– sequence: 3
  givenname: Shuyu
  surname: Wang
  fullname: Wang, Shuyu
  organization: Tsinghua University
– sequence: 4
  givenname: Pengyu
  surname: Fu
  fullname: Fu, Pengyu
  organization: Tsinghua University
– sequence: 5
  givenname: Yongjian
  surname: Zhang
  fullname: Zhang, Yongjian
  organization: Tsinghua University
– sequence: 6
  givenname: Yue
  orcidid: 0000-0001-9562-3136
  surname: Li
  fullname: Li, Yue
  email: lyee@tsinghua.edu.cn
  organization: Beijing National Research Center for Information Science and Technology
BookMark eNqFUMtKAzEUDaKgVreuC65bbx6TTJalVC3UB6IobkImj5oyTmpmanXnJ_iNfomjFRFBvJtzuZzH5Wyj9SpWDqE9DH0MQA70_Cn1CRAGAALW0BYRGe5hArD-Y99Eu3U9aykkl5gyvIXEqJqGyrkUqml3NK9DGau3l9dTp1MLty7F7omzQXeXobnrXutHN10E6-odtOF1WbvdL-ygq8PR5fC4Nzk7Gg8Hk56hTJKeAWPz3HhBvcmpyGlWyAx7kCCFxd6InBTcGqKt99xRooEXmPMiEwIYdxntoPHK10Y9U_MU7nV6VlEH9XmIaap0aoIpnSq8KDiTGbVMMLAgHTcE80IKQSVpsztof-U1T_Fh4epGzeIiVe37imJJ2skBt6z-imVSrOvk_HcqBvXRtfroWn133QrYL4EJjW5CrJqkQ_m3LFvJlqF0z_-EqMH5zQUmhBH6Dj3MlIE
CitedBy_id crossref_primary_10_3389_fnano_2025_1536462
crossref_primary_10_1002_lpor_202402014
Cites_doi 10.1070/PU1967v009n06ABEH003226
10.1126/sciadv.abq6198
10.1364/OL.40.001500
10.1515/nanoph-2021-0613
10.1063/5.0071797
10.1016/j.crhy.2009.03.008
10.1063/5.0068151
10.1103/PhysRevLett.97.157403
10.1364/OL.43.001738
10.1515/nanoph-2018-0012
10.1109/TAP.2020.3016512
10.1109/TAP.2024.3351203
10.1364/OL.41.002209
10.1038/nphoton.2017.13
10.1007/s00339-019-2385-3
10.1038/srep12956
10.1063/1.2208264
10.1038/s41377-023-01092-8
10.1103/PhysRevLett.116.233901
10.1515/nanoph-2023-0485
10.1002/adts.201900059
10.1364/OPTICA.2.000006
10.1103/PhysRevE.72.016623
10.1109/TAP.2021.3138552
10.1109/LAWP.2023.3339203
10.1073/pnas.2008143117
10.1126/science.1125907
10.1038/nphoton.2013.219
10.1103/PhysRevE.70.046608
10.1126/sciadv.1501790
10.1364/PRJ.491949
10.1103/PhysRevB.94.085118
10.1186/s43593-022-00013-3
10.1126/science.aal2672
10.1103/PhysRevApplied.13.034005
10.1002/lpor.202201000
10.1038/nphoton.2017.39
10.1109/TAP.2021.3098548
10.1021/acsnano.0c07011
10.1038/s41467-022-31013-z
10.1109/TAP.2015.2473700
10.1007/s11467-023-1362-7
10.1103/PhysRevB.76.245109
10.1002/mop.26147
10.1073/pnas.1611924114
10.1021/acs.accounts.2c00028
10.1103/PhysRevB.86.165130
10.1109/TAP.2024.3364749
10.1103/PhysRevB.75.075119
10.1103/PhysRevApplied.16.024033
10.3390/s22030788
10.1364/PRJ.463901
10.1038/ncomms6638
10.1364/OE.21.032279
10.1038/s41563-020-00858-4
10.1103/PhysRevB.87.035136
10.1002/adom.202200463
10.1038/s41467-023-41965-5
10.1103/PhysRevLett.100.033903
10.1126/sciadv.1600987
10.1109/TAP.2022.3209274
10.1038/ncomms10989
10.1021/acs.nanolett.1c00550
10.1007/s11433-021-1901-0
10.1002/0471744751
10.1021/acsnano.5b04373
10.1515/nanoph-2018-0218
10.1002/0471784192
10.1103/PhysRevB.6.4370
10.1109/TAP.2019.2894335
10.1103/PhysRevLett.100.023903
10.1109/MetaMaterials.2015.7342434
10.1109/TMTT.2020.3045722
10.1515/nanoph-2023-0085
10.1016/j.chip.2023.100049
10.1103/PhysRevLett.110.013902
10.1038/nmat1097
10.1109/LMWC.2017.2701337
10.1038/s41467-019-12083-y
10.1109/LAWP.2020.3011484
10.1186/s43593-022-00015-1
10.1109/ICEAA.2017.8065296
10.1063/5.0073134
10.1103/PhysRevA.97.022309
10.1088/1361-6463/aaad27
10.1109/LAWP.2009.2021495
10.1103/PhysRevB.102.165303
10.1021/nl300269c
10.1002/adts.201900017
10.1002/adom.201701292
10.1038/s41377-022-00892-8
10.1109/TAP.1962.1137809
10.1038/s41467-022-32187-2
10.1088/0953-8984/10/22/007
10.1109/TAP.2020.2977746
10.1049/PBEW047E
10.1103/PhysRevLett.89.213902
10.1021/acs.nanolett.0c01810
10.1126/sciadv.abf3362
10.1016/j.eng.2020.10.014
10.1063/5.0079665
ContentType Journal Article
Copyright 2024 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
3V.
7XB
88I
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
KB.
M2P
PCBAR
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.1002/apxr.202400070
DatabaseName Wiley Online Library Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Science Database
Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2751-1200
EndPage n/a
ExternalDocumentID oai_doaj_org_article_bf7b64953d4740d09e6c216b97739278
10_1002_apxr_202400070
APXR12242
Genre reviewArticle
GrantInformation_xml – fundername: National Key Research and Development Program of China
  funderid: 2021YFA0716601
– fundername: National Natural Science Foundation of China
  funderid: U22B2016
GroupedDBID 0R~
24P
88I
ABJCF
ABUWG
ACCMX
AEUYN
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AVUZU
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
KB.
M2P
PCBAR
PDBOC
PIMPY
AAFWJ
AAYXX
AFPKN
CITATION
M~E
PHGZM
PHGZT
3V.
7XB
8FE
8FG
8FK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ARCSS
D1I
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
WIN
PUEGO
ID FETCH-LOGICAL-c3492-c0cd88cf73fc837835b951f09097d1fc782b6dc2adff6e32a06b166b577046e53
IEDL.DBID DOA
ISSN 2751-1200
IngestDate Wed Aug 27 01:26:03 EDT 2025
Wed Aug 13 10:58:16 EDT 2025
Tue Jul 01 02:33:01 EDT 2025
Thu Apr 24 23:00:05 EDT 2025
Wed Jan 22 17:13:32 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3492-c0cd88cf73fc837835b951f09097d1fc782b6dc2adff6e32a06b166b577046e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9562-3136
OpenAccessLink https://doaj.org/article/bf7b64953d4740d09e6c216b97739278
PQID 3192222801
PQPubID 6852862
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_bf7b64953d4740d09e6c216b97739278
proquest_journals_3192222801
crossref_primary_10_1002_apxr_202400070
crossref_citationtrail_10_1002_apxr_202400070
wiley_primary_10_1002_apxr_202400070_APXR12242
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
20240901
2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace Edinburgh
PublicationPlace_xml – name: Edinburgh
PublicationTitle Advanced Physics Research
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley-VCH
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley-VCH
References 2021; 69
2021; 21
2021; 20
2020; 20
2022; 70
2013; 21
2019; 10
2011; 53
2024; 72
2004; 3
2020; 14
2019; 125
2020; 13
2023; 1
2023; 2
2022; 65
2022; 22
2024
2013; 7
2007; 75
2008; 100
2007; 76
2017; 355
2012; 12
2018; 43
2017; 114
2020; 19
2021; 36
2018; 7
2018; 6
2022; 120
2014; 5
2009; 10
2004; 70
2023; 23
2015; 40
2002; 89
2019; 67
2021; 39
2021; 119
2016; 41
2016; 116
2013; 110
2005; 72
1998; 10
2019; 8
2015; 2
2021; 7
2006; 97
2023; 14
2015; 5
2023; 11
2023; 12
2023; 17
2013; 87
2019; 2
2017; 27
2006
2006; 3
2005
2016; 94
1962; 10
2020; 102
2015; 9
1972; 6
2024; 19
2006; 312
1999
2021; 16
2016; 7
1967; 9
2016; 2
2006; 88
2017; 11
2022; 8
2015; 63
2022; 13
2020; 117
2017
2009; 8
2020; 68
2015
2018; 51
2022; 10
2022; 2
2022; 55
2022; 11
2018; 97
2012; 86
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_14_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
Sze S. M. (e_1_2_9_64_1) 2006; 3
e_1_2_9_6_1
e_1_2_9_60_1
Ziheng Z. (e_1_2_9_89_1) 2021; 36
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
Zhang Y. (e_1_2_9_92_1) 2023; 1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_1_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
Li P. (e_1_2_9_37_1) 2021; 39
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
Liu Z. (e_1_2_9_96_1) 2024
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 55
  start-page: 1659
  year: 2022
  publication-title: Acc. Chem. Res.
– year: 2005
– volume: 86
  year: 2012
  publication-title: Phys. Rev. B
– volume: 41
  start-page: 2209
  year: 2016
  publication-title: Opt. Lett.
– volume: 8
  year: 2022
  publication-title: Sci. Adv.
– volume: 10
  start-page: 106
  year: 2009
  publication-title: Comptes Rendus. Physique
– volume: 19
  year: 2024
  publication-title: Front. Phys.
– volume: 10
  year: 2022
  publication-title: Adv. Opt. Mater.
– volume: 11
  start-page: 274
  year: 2017
  publication-title: Nat. Photonics
– volume: 22
  start-page: 788
  year: 2022
  publication-title: Sensors
– volume: 70
  start-page: 4215
  year: 2022
  publication-title: IEEE Transactions on Antennas and Propagation
– volume: 10
  start-page: 2178
  year: 2022
  publication-title: Photon. Res.
– volume: 14
  year: 2020
  publication-title: ACS Nano
– volume: 14
  start-page: 6154
  year: 2023
  publication-title: Nat. Commun.
– volume: 72
  start-page: 2391
  year: 2024
  publication-title: IEEE Transactions on Antennas and Propagation
– volume: 2
  year: 2023
  publication-title: Chip
– volume: 11
  start-page: 72
  year: 2022
  publication-title: Engineering
– volume: 9
  start-page: 805
  year: 1967
  publication-title: Sov. Phys. Uspekhi
– volume: 89
  year: 2002
  publication-title: Phys. Rev. Lett.
– volume: 70
  year: 2022
  publication-title: IEEE Trans. Antennas Propagat.
– volume: 21
  start-page: 5907
  year: 2021
  publication-title: Nano Lett.
– volume: 75
  year: 2007
  publication-title: Phys. Rev. B
– volume: 67
  start-page: 2289
  year: 2019
  publication-title: IEEE Trans. Antennas Propagat.
– volume: 12
  start-page: 1333
  year: 2012
  publication-title: Nano Lett.
– volume: 43
  start-page: 1738
  year: 2018
  publication-title: Opt. Lett.
– volume: 70
  start-page: 720
  year: 2022
  publication-title: IEEE Trans. Antennas Propagat.
– volume: 6
  start-page: 4370
  year: 1972
  publication-title: Phys. Rev. B
– volume: 119
  year: 2021
  publication-title: Appl. Phys. Lett.
– volume: 27
  start-page: 554
  year: 2017
  publication-title: IEEE Microw. Wireless Compon. Lett.
– volume: 7
  start-page: 1117
  year: 2018
  publication-title: Nanophotonics
– volume: 102
  year: 2020
  publication-title: Phys. Rev. B
– volume: 7
  year: 2016
  publication-title: Nat. Commun.
– volume: 13
  start-page: 4747
  year: 2022
  publication-title: Nat. Commun.
– volume: 11
  start-page: 1659
  year: 2022
  publication-title: Nanophotonics
– volume: 5
  year: 2015
  publication-title: Sci. Rep.
– volume: 2
  start-page: 6
  year: 2015
  publication-title: Optica
– volume: 68
  start-page: 5151
  year: 2020
  publication-title: IEEE Trans. Antennas Propagat.
– volume: 114
  start-page: 822
  year: 2017
  publication-title: Proc. Natl. Acad. Sci., U.S.A.
– volume: 21
  year: 2013
  publication-title: Opt. Express
– volume: 23
  start-page: 930
  year: 2023
  publication-title: IEEE Antennas and Wireless Propagation Lett.
– volume: 13
  year: 2020
  publication-title: Phys. Rev. Appl.
– volume: 2
  start-page: 7
  year: 2022
  publication-title: eLight
– volume: 19
  start-page: 1591
  year: 2020
  publication-title: Antennas Wirel. Propag. Lett.
– volume: 72
  start-page: 3055
  year: 2024
  publication-title: IEEE Trans. Antennas Propagat.
– volume: 97
  year: 2006
  publication-title: Phys. Rev. Lett.
– volume: 355
  start-page: 1058
  year: 2017
  publication-title: Science
– volume: 2
  year: 2019
  publication-title: Adv. Theory and Sims.
– volume: 40
  start-page: 1500
  year: 2015
  publication-title: Opt. Lett.
– volume: 97
  year: 2018
  publication-title: Phys. Rev. A
– volume: 76
  year: 2007
  publication-title: Phys. Rev. B
– volume: 110
  year: 2013
  publication-title: Phys. Rev. Lett.
– volume: 16
  year: 2021
  publication-title: Phys. Rev. Applied
– volume: 10
  start-page: 82
  year: 1962
  publication-title: IRE Trans. Antennas Propag.
– volume: 116
  year: 2016
  publication-title: Phys. Rev. Lett.
– volume: 120
  year: 2022
  publication-title: Appl. Phys. Lett.
– volume: 8
  start-page: 421
  year: 2009
  publication-title: Antennas Wirel. Propag. Lett.
– volume: 69
  start-page: 1529
  year: 2021
  publication-title: IEEE Trans. Microwave Theory Techn.
– volume: 10
  start-page: 4785
  year: 1998
  publication-title: J. Phys.: Condens. Matter
– volume: 9
  year: 2015
  publication-title: ACS Nano
– volume: 3
  start-page: 211
  year: 2004
  publication-title: Nat. Mater.
– volume: 312
  start-page: 1780
  year: 2006
  publication-title: Science
– start-page: 523
  year: 2017
  end-page: 526
– volume: 2
  year: 2016
  publication-title: Sci. Adv.
– volume: 94
  year: 2016
  publication-title: Phys. Rev. B
– volume: 87
  year: 2013
  publication-title: Phys. Rev. B
– volume: 63
  start-page: 5107
  year: 2015
  publication-title: IEEE Trans. Antennas Propagat.
– volume: 7
  start-page: 674
  year: 2013
  publication-title: Nat. Photonics
– volume: 2
  year: 2019
  publication-title: Adv. Theory and Simul.
– volume: 39
  start-page: 7495
  year: 2021
  publication-title: J. Lightwave Technol.
– volume: 117
  year: 2020
  publication-title: Proc. Natl. Acad. Sci., U.S.A.
– start-page: 316
  year: 2015
  end-page: 318
– volume: 100
  year: 2008
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 559
  year: 2019
  publication-title: Nanophotonics
– volume: 12
  start-page: 99
  year: 2023
  publication-title: Light: Sci. Appl.
– volume: 3
  start-page: 601
  year: 2006
  publication-title: Phys. semicond. Dev.
– volume: 70
  year: 2004
  publication-title: Phys. Rev. E
– volume: 6
  year: 2018
  publication-title: Adv. Opt. Mater.
– volume: 13
  start-page: 3568
  year: 2022
  publication-title: Nat. Commun.
– volume: 51
  year: 2018
  publication-title: J. Phys. D: Appl. Phys.
– volume: 2
  start-page: 8
  year: 2022
  publication-title: eLight
– volume: 65
  year: 2022
  publication-title: Sci. China Phys. Mech. Astron.
– volume: 12
  start-page: 4195
  year: 2023
  publication-title: Nanophotonics
– start-page: 1
  year: 2024
  publication-title: Antennas Wirel. Propag. Lett.
– volume: 11
  start-page: 149
  year: 2017
  publication-title: Nature Photon
– volume: 12
  start-page: 2007
  year: 2023
  publication-title: Nanophotonics
– volume: 20
  start-page: 916
  year: 2021
  publication-title: Nat. Mater.
– volume: 5
  start-page: 5638
  year: 2014
  publication-title: Nat. Commun.
– volume: 36
  start-page: 905
  year: 2021
  publication-title: Chinese J. Radio Sci.
– volume: 20
  start-page: 5421
  year: 2020
  publication-title: Nano Lett.
– volume: 72
  year: 2005
  publication-title: Phys. Rev. E
– volume: 11
  start-page: 207
  year: 2022
  publication-title: Light Sci. Appl.
– volume: 10
  start-page: 4132
  year: 2019
  publication-title: Nat. Commun.
– volume: 1
  start-page: 1
  year: 2023
  publication-title: Electromag. Sci.
– year: 2006
– volume: 7
  year: 2021
  publication-title: Sci. Adv.
– volume: 17
  year: 2023
  publication-title: Laser Photonics Rev.
– volume: 125
  start-page: 129
  year: 2019
  publication-title: Appl. Phys. A
– volume: 88
  year: 2006
  publication-title: Appl. Phys. Lett.
– volume: 11
  start-page: 1437
  year: 2023
  publication-title: Photon. Res.
– volume: 69
  start-page: 815
  year: 2021
  publication-title: IEEE Trans. Antennas Propagat.
– year: 1999
– volume: 53
  start-page: 1706
  year: 2011
  publication-title: Micro & Optical Tech. Lett.
– ident: e_1_2_9_21_1
  doi: 10.1070/PU1967v009n06ABEH003226
– ident: e_1_2_9_59_1
  doi: 10.1126/sciadv.abq6198
– start-page: 1
  year: 2024
  ident: e_1_2_9_96_1
  publication-title: Antennas Wirel. Propag. Lett.
– ident: e_1_2_9_55_1
  doi: 10.1364/OL.40.001500
– ident: e_1_2_9_60_1
  doi: 10.1515/nanoph-2021-0613
– ident: e_1_2_9_81_1
  doi: 10.1063/5.0071797
– ident: e_1_2_9_31_1
  doi: 10.1016/j.crhy.2009.03.008
– ident: e_1_2_9_95_1
  doi: 10.1063/5.0068151
– ident: e_1_2_9_13_1
  doi: 10.1103/PhysRevLett.97.157403
– ident: e_1_2_9_80_1
  doi: 10.1364/OL.43.001738
– ident: e_1_2_9_98_1
  doi: 10.1515/nanoph-2018-0012
– volume: 39
  start-page: 7495
  year: 2021
  ident: e_1_2_9_37_1
  publication-title: J. Lightwave Technol.
– ident: e_1_2_9_102_1
  doi: 10.1109/TAP.2020.3016512
– ident: e_1_2_9_93_1
  doi: 10.1109/TAP.2024.3351203
– ident: e_1_2_9_106_1
  doi: 10.1364/OL.41.002209
– volume: 3
  start-page: 601
  year: 2006
  ident: e_1_2_9_64_1
  publication-title: Phys. semicond. Dev.
– ident: e_1_2_9_20_1
  doi: 10.1038/nphoton.2017.13
– ident: e_1_2_9_88_1
  doi: 10.1007/s00339-019-2385-3
– ident: e_1_2_9_26_1
  doi: 10.1038/srep12956
– ident: e_1_2_9_1_1
  doi: 10.1063/1.2208264
– ident: e_1_2_9_40_1
  doi: 10.1038/s41377-023-01092-8
– ident: e_1_2_9_56_1
  doi: 10.1103/PhysRevLett.116.233901
– ident: e_1_2_9_18_1
  doi: 10.1515/nanoph-2023-0485
– ident: e_1_2_9_49_1
  doi: 10.1002/adts.201900059
– ident: e_1_2_9_68_1
  doi: 10.1364/OPTICA.2.000006
– ident: e_1_2_9_6_1
  doi: 10.1103/PhysRevE.72.016623
– ident: e_1_2_9_90_1
  doi: 10.1109/TAP.2021.3138552
– ident: e_1_2_9_94_1
  doi: 10.1109/LAWP.2023.3339203
– ident: e_1_2_9_74_1
  doi: 10.1073/pnas.2008143117
– ident: e_1_2_9_5_1
  doi: 10.1126/science.1125907
– ident: e_1_2_9_25_1
  doi: 10.1038/nphoton.2013.219
– ident: e_1_2_9_53_1
  doi: 10.1103/PhysRevE.70.046608
– ident: e_1_2_9_47_1
  doi: 10.1126/sciadv.1501790
– ident: e_1_2_9_71_1
  doi: 10.1364/PRJ.491949
– ident: e_1_2_9_105_1
  doi: 10.1103/PhysRevB.94.085118
– ident: e_1_2_9_43_1
  doi: 10.1186/s43593-022-00013-3
– ident: e_1_2_9_14_1
  doi: 10.1126/science.aal2672
– ident: e_1_2_9_50_1
  doi: 10.1103/PhysRevApplied.13.034005
– ident: e_1_2_9_73_1
  doi: 10.1002/lpor.202201000
– ident: e_1_2_9_41_1
  doi: 10.1038/nphoton.2017.39
– ident: e_1_2_9_97_1
  doi: 10.1109/TAP.2021.3098548
– ident: e_1_2_9_32_1
  doi: 10.1021/acsnano.0c07011
– ident: e_1_2_9_51_1
  doi: 10.1038/s41467-022-31013-z
– ident: e_1_2_9_86_1
  doi: 10.1109/TAP.2015.2473700
– ident: e_1_2_9_19_1
  doi: 10.1007/s11467-023-1362-7
– ident: e_1_2_9_48_1
  doi: 10.1103/PhysRevB.76.245109
– ident: e_1_2_9_85_1
  doi: 10.1002/mop.26147
– ident: e_1_2_9_9_1
  doi: 10.1073/pnas.1611924114
– volume: 1
  start-page: 1
  year: 2023
  ident: e_1_2_9_92_1
  publication-title: Electromag. Sci.
– ident: e_1_2_9_38_1
  doi: 10.1021/acs.accounts.2c00028
– ident: e_1_2_9_100_1
  doi: 10.1103/PhysRevB.86.165130
– ident: e_1_2_9_104_1
  doi: 10.1109/TAP.2024.3364749
– ident: e_1_2_9_61_1
  doi: 10.1103/PhysRevB.75.075119
– ident: e_1_2_9_76_1
  doi: 10.1103/PhysRevApplied.16.024033
– ident: e_1_2_9_91_1
  doi: 10.3390/s22030788
– ident: e_1_2_9_27_1
  doi: 10.1364/PRJ.463901
– ident: e_1_2_9_62_1
  doi: 10.1038/ncomms6638
– ident: e_1_2_9_70_1
  doi: 10.1364/OE.21.032279
– ident: e_1_2_9_34_1
  doi: 10.1038/s41563-020-00858-4
– ident: e_1_2_9_24_1
  doi: 10.1103/PhysRevB.87.035136
– ident: e_1_2_9_35_1
  doi: 10.1002/adom.202200463
– ident: e_1_2_9_17_1
  doi: 10.1038/s41467-023-41965-5
– ident: e_1_2_9_3_1
  doi: 10.1103/PhysRevLett.100.033903
– ident: e_1_2_9_8_1
  doi: 10.1126/sciadv.1600987
– ident: e_1_2_9_103_1
  doi: 10.1109/TAP.2022.3209274
– ident: e_1_2_9_7_1
  doi: 10.1038/ncomms10989
– ident: e_1_2_9_45_1
  doi: 10.1021/acs.nanolett.1c00550
– ident: e_1_2_9_77_1
  doi: 10.1007/s11433-021-1901-0
– ident: e_1_2_9_66_1
  doi: 10.1002/0471744751
– ident: e_1_2_9_22_1
  doi: 10.1021/acsnano.5b04373
– ident: e_1_2_9_36_1
  doi: 10.1515/nanoph-2018-0218
– ident: e_1_2_9_65_1
  doi: 10.1002/0471784192
– ident: e_1_2_9_28_1
  doi: 10.1103/PhysRevB.6.4370
– ident: e_1_2_9_11_1
  doi: 10.1109/TAP.2019.2894335
– ident: e_1_2_9_72_1
  doi: 10.1103/PhysRevLett.100.023903
– ident: e_1_2_9_84_1
  doi: 10.1109/MetaMaterials.2015.7342434
– ident: e_1_2_9_78_1
  doi: 10.1109/TMTT.2020.3045722
– ident: e_1_2_9_79_1
  doi: 10.1515/nanoph-2023-0085
– ident: e_1_2_9_54_1
  doi: 10.1016/j.chip.2023.100049
– ident: e_1_2_9_4_1
  doi: 10.1103/PhysRevLett.110.013902
– ident: e_1_2_9_23_1
  doi: 10.1038/nmat1097
– ident: e_1_2_9_87_1
  doi: 10.1109/LMWC.2017.2701337
– ident: e_1_2_9_15_1
  doi: 10.1038/s41467-019-12083-y
– ident: e_1_2_9_12_1
  doi: 10.1109/LAWP.2020.3011484
– ident: e_1_2_9_16_1
  doi: 10.1186/s43593-022-00015-1
– ident: e_1_2_9_63_1
  doi: 10.1109/ICEAA.2017.8065296
– ident: e_1_2_9_82_1
  doi: 10.1063/5.0073134
– ident: e_1_2_9_10_1
  doi: 10.1103/PhysRevA.97.022309
– ident: e_1_2_9_101_1
  doi: 10.1088/1361-6463/aaad27
– ident: e_1_2_9_69_1
  doi: 10.1109/LAWP.2009.2021495
– ident: e_1_2_9_57_1
  doi: 10.1103/PhysRevB.102.165303
– ident: e_1_2_9_39_1
  doi: 10.1021/nl300269c
– ident: e_1_2_9_42_1
  doi: 10.1002/adts.201900017
– ident: e_1_2_9_2_1
  doi: 10.1002/adom.201701292
– ident: e_1_2_9_58_1
  doi: 10.1038/s41377-022-00892-8
– ident: e_1_2_9_46_1
  doi: 10.1109/TAP.1962.1137809
– ident: e_1_2_9_75_1
  doi: 10.1038/s41467-022-32187-2
– ident: e_1_2_9_29_1
  doi: 10.1088/0953-8984/10/22/007
– ident: e_1_2_9_99_1
  doi: 10.1109/TAP.2020.2977746
– ident: e_1_2_9_67_1
  doi: 10.1049/PBEW047E
– ident: e_1_2_9_30_1
  doi: 10.1103/PhysRevLett.89.213902
– ident: e_1_2_9_44_1
  doi: 10.1021/acs.nanolett.0c01810
– ident: e_1_2_9_33_1
  doi: 10.1126/sciadv.abf3362
– volume: 36
  start-page: 905
  year: 2021
  ident: e_1_2_9_89_1
  publication-title: Chinese J. Radio Sci.
– ident: e_1_2_9_52_1
  doi: 10.1016/j.eng.2020.10.014
– ident: e_1_2_9_83_1
  doi: 10.1063/5.0079665
SSID ssj0002891341
Score 2.306337
Snippet Epsilon‐Near‐Zero (ENZ) media have attracted widespread interest due to their unique electromagnetic properties, which have brought distinctive characteristics...
Abstract Epsilon‐Near‐Zero (ENZ) media have attracted widespread interest due to their unique electromagnetic properties, which have brought distinctive...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Boundary conditions
Decoupling
Design
Electromagnetic properties
Electromagnetism
Engineering
ENZ
Flexibility
metamaterial
Periodic structures
Physical properties
Plasma
Plasma frequencies
Plasmonics
Propagation
waveguide dispersion
waveguide effective ENZ
Waveguides
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA4-LnoQn7i6Sg-Cp2iStkl7klVWRHARUVy8hDxFkO26q-LRn-Bv9JeY6WbX9aCeSsu0lJlJ5svM8A1Ce4pRz7ggOBy9HM6Y4bhU1GPPrBO-zLSux3RedPjZTXbezbsx4TaMbZXjPbHeqG1lIEd-GFyFQbaC0KP-E4apUVBdjSM0ZtF82IKLcPiaP253Lq8mWRYGVbh6fCUTOcU0-MSYuZGwQ9V_A0pQaKMkMK14KjLVBP4_UOc0dq2Dz-kyWoqoMWmNzLyCZlxvFS1OcQmuITF1l7T7w4fHqvf5_tEJnhwud25QJVCUUQlkXpNb9eruXx6sG66jm9P29ckZjlMRsAEmQWyIsUVhvEi9ATb4NNcBJXlSklJY6k0I-Zpbw5T1nruUKcI15VznQoSzsMvTDTTXq3puEyUsxG5VBLE08xk1RpeZ5cLaELGUKsq8gfBYI9JEynCYXPEoR2THTIIG5USDDbQ_ke-PyDJ-lTwGBU-kgOS6flAN7mVcM1J7oTn0v9pMZMSS0nHDKNcBsgZUJ4oGao7NI-PKG8pvP2mgg9pk__yKbF12r6C-yLb-_t42WoCXRg1mTTT3PHhxOwGRPOvd6HZfEQncQg
  priority: 102
  providerName: ProQuest
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-Ll5EUbG-2IPgKTTJZpPdo0pLERQRi8VLyLMI0pZWxaM_wd_oLzGzu13bg4inhTC7LJOZzJeZ5BuETjWjgQlJcNx6ecyZFbjQNODAnJeh4MaUbTqvb0Svz68G2WDhFn_FD9Ek3MAzyvUaHFybWfuHNFRP3oHPE85ARrNdRetwvxbY8xm_bbIsDKpwZftKJjOKabSJOXMjYe3lTyxFppLAfwl1LmLXMvh0t9BmjRqT82qat9GKH-0gucAlmHQms6fn8ejr4_Mm2m58PPrpOIEyjE4g15o86Dc_fH1yfraL-t3O_WUP130QsAXuQGyJdXlug0yDBf73NDMRFwVSkEI6GmwM8kY4y7QLQfiUaSIMFcJkUsbdr8_SPbQ2Go_8PkpYjNY6j2IpD5xaawruhHQuxiit8yJrITzXgbI1STj0qnhWFb0xU6Az1eishc4a-UlFj_Gr5AWotJECWutyYDwdqtpLlAnSCDjx6rjkxJHCC8uoMBGkRhwn8xY6mk-Iqn1tpuIiwiCPRWgLVRbzx6-o89vBHVQU2cF_XzhEGzBaHTI7Qmsv01d_HFHJizkpDe8bh2_ZSA
  priority: 102
  providerName: Wiley-Blackwell
Title Engineering Epsilon‐Near‐Zero Media with Waveguides
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400070
https://www.proquest.com/docview/3192222801
https://doaj.org/article/bf7b64953d4740d09e6c216b97739278
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsNAEF60XryIomK0lhwET9HNZrObHFtpFcFSRLF4WfZXFElLq-LRR_AZfRJ3krTEg3jxkkAYwjCzyTezM_sNQkeSxI4wjiOfetmIEs2iXMYucsRY7nKqVDmm82rILm7p5TgdN0Z9QU9YRQ9cGe5UOa4YNEEayik2OLdMk5gpH7d4aOflMV-PeY1k6qkqnwFT2YKlEZNTOX0H-k9omcQwmbiBQiVZ_48IsxmnlkAz2EQbdYQYdivNttCKLbYRb_AGhv3p_PF5Unx9fA79OvW3ezubhFBykSHsq4Z38s0-vD4aO99Bt4P-zdlFVM88iDTwBEYaa5Nl2vHEaeB6T1LlYyCHc5xzEzvtAV0xo4k0zjGbEImZihlTKec-07VpsotaxaSweygkHpll5sUS6mistcqpYdwYj0dSZnkaoGhhA6FrQnCYS_EsKipjIsBmYmmzAB0v5acVFcavkj0w6VIKKKzLB96xonas-MuxAWovHCLq72ou_A-DwJ4VjgN0UjrpD1VEdzS-huoh2f8PpQ7QOry6ajJro9bL7NUe-qjkRXXQKqEjf80G5x201usPR9edclF-A3-03zs
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEE-xUCAHECdT23Hs5IBQgS5b2q4QasWKi_GzqlRtlt2Wx42fwC_hR_FL8OSxLAfg1FOUaBRF47Hns2fyfQAPDWeRS0VJ2noFIriTpDIsksh9ULES1jYynftjOToUryfFZA1-9P_CYFtlvyY2C7WvHZ6Rb6ZQ4XhaQdmz2UeCqlFYXe0lNNqw2A1fP6ct2-Lpzss0vo84H24fvBiRTlWAOGTiI446X5Yuqjw6ZFPPC5tQRqQVrZRn0aWUaaV33PgYZci5odIyKW2hVNpLBlSJSEv-BZHnFc6ocvhqeabDsebXiGVyVTDCUgT2PJGUb5rZFyQgxaZNitrIK3mwkQv4A-OuIuUm1Q2vwpUOo2ZbbVBdg7UwvQ6XV5gLb4Baucu2Z4vjk3r689v3cXJQurwP8zrDEpDJ8Jw3e2c-haOzYx8WN-HwXLx1C9an9TTchownpGDKZJaLKJhzthJeKu9TfjSmrIoBkN4j2nUE5aiTcaJbamWu0YN66cEBPF7az1pqjr9aPkcHL62QUrt5UM-PdDdDtY3KSuy29UIJ6mkVpONM2gSQE4ZU5QA2-uHR3Txf6N9ROYAnzZD951P01pvJW6xm8jv_ft8DuDg62N_Tezvj3btwCV_QtrZtwPrp_CzcS1jo1N5vAjCDD-cd8b8A8CMXQQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-tAEF48FeS8iKJitWoehPO0uLtJdpPHeileixysFl-WvYogbWlVfPQn-Bv9Je4kaWwf5HCeAmESwuzMzrczk28Q2leMesYFweHo5XDCDMe5oh57Zp3weaJ1MabzqstPe8l5P-3P_MVf8kPUCTfwjGK_BgcfWX_wTRqqRm_A5wk9kMFsf6FFoMoLdr3Yvu3d9-o8C4M6XDHAkomUYhqsYsrdSNjB_EvmYlNB4T-HO2fRaxF-OitoucKNUbtc6FW04AZrSMywCUYno8nj03Dw-f7RDdYbLvduPIygEKMiyLZGd-rVPbw8WjdZR73Oyc3RKa4mIWAD7IHYEGOzzHgRewMM8HGqAzLyJCe5sNSbEOY1t4Yp6z13MVOEa8q5ToUI51-XxhuoMRgO3CaKWIjXKgticeITaozOE8uFtSFKKZXlaRPhqQ6kqWjCYVrFkywJjpkEnclaZ030p5YflQQZP0oegkprKSC2Lm4Mxw-y8hOpvdAcel5tIhJiSe64YZTrAFMDkhNZE7WmCyIrb5vIsI0wyGQR2kSlzfzjU2T7uv8Xaops638f2ENL18cdeXnWvdhGv0Gg7Dhrocbz-MXtBIjyrHcrK_wCVkPdrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Epsilon%E2%80%90Near%E2%80%90Zero+Media+with+Waveguides&rft.jtitle=Advanced+Physics+Research&rft.au=Peihang+Li&rft.au=Wendi+Yan&rft.au=Shuyu+Wang&rft.au=Pengyu+Fu&rft.date=2024-09-01&rft.pub=Wiley-VCH&rft.eissn=2751-1200&rft.volume=3&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapxr.202400070&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bf7b64953d4740d09e6c216b97739278
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon