Engineering Epsilon‐Near‐Zero Media with Waveguides
Epsilon‐Near‐Zero (ENZ) media have attracted widespread interest due to their unique electromagnetic properties, which have brought distinctive characteristics and phenomena, such as spatiotemporal decoupling, supercoupling and tunneling, constant phase transmission, near‐field enhancement, and so o...
Saved in:
Published in | Advanced Physics Research Vol. 3; no. 9 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Edinburgh
John Wiley & Sons, Inc
01.09.2024
Wiley-VCH |
Subjects | |
Online Access | Get full text |
ISSN | 2751-1200 2751-1200 |
DOI | 10.1002/apxr.202400070 |
Cover
Loading…
Abstract | Epsilon‐Near‐Zero (ENZ) media have attracted widespread interest due to their unique electromagnetic properties, which have brought distinctive characteristics and phenomena, such as spatiotemporal decoupling, supercoupling and tunneling, constant phase transmission, near‐field enhancement, and so on. However, these ENZ characteristics are existed in natural plasmonic materials at their intrinsic plasma frequencies and accompanied by significant losses, thus limiting their applications in engineering. Different from the effect ENZ media with artificially periodic structures, the waveguide ENZ media offers a promising platform with non‐periodic architectures. Unlike the natural plasmonic materials and the periodic‐structured ENZ media, the waveguide ENZ media utilizes waveguide dispersion to achieve effective ENZ characteristics and phenomena with lower loss and smaller dimensions. This review begins with an exploration of the fundamental properties of the waveguide ENZ media and then introduces the design principles of different ENZ‐based electromagnetic devices. Finally, the review concludes with the challenges and potential development directions encountered by the ENZ media in the realm of electromagnetic applications.
Waveguide Epsilon‐Near‐Zero (ENZ) media provide a promising platform characterized by non‐periodic architectures with lower loss and smaller dimensions. This review begins by exploring the fundamental properties of waveguide ENZ dielectrics. Following this, the design principles of various ENZ‐based electromagnetic devices are discussed. Finally, the review presents a range of engineering applications of waveguide ENZ media, categorized into three distinct classifications. |
---|---|
AbstractList | Epsilon‐Near‐Zero (ENZ) media have attracted widespread interest due to their unique electromagnetic properties, which have brought distinctive characteristics and phenomena, such as spatiotemporal decoupling, supercoupling and tunneling, constant phase transmission, near‐field enhancement, and so on. However, these ENZ characteristics are existed in natural plasmonic materials at their intrinsic plasma frequencies and accompanied by significant losses, thus limiting their applications in engineering. Different from the effect ENZ media with artificially periodic structures, the waveguide ENZ media offers a promising platform with non‐periodic architectures. Unlike the natural plasmonic materials and the periodic‐structured ENZ media, the waveguide ENZ media utilizes waveguide dispersion to achieve effective ENZ characteristics and phenomena with lower loss and smaller dimensions. This review begins with an exploration of the fundamental properties of the waveguide ENZ media and then introduces the design principles of different ENZ‐based electromagnetic devices. Finally, the review concludes with the challenges and potential development directions encountered by the ENZ media in the realm of electromagnetic applications. Epsilon‐Near‐Zero (ENZ) media have attracted widespread interest due to their unique electromagnetic properties, which have brought distinctive characteristics and phenomena, such as spatiotemporal decoupling, supercoupling and tunneling, constant phase transmission, near‐field enhancement, and so on. However, these ENZ characteristics are existed in natural plasmonic materials at their intrinsic plasma frequencies and accompanied by significant losses, thus limiting their applications in engineering. Different from the effect ENZ media with artificially periodic structures, the waveguide ENZ media offers a promising platform with non‐periodic architectures. Unlike the natural plasmonic materials and the periodic‐structured ENZ media, the waveguide ENZ media utilizes waveguide dispersion to achieve effective ENZ characteristics and phenomena with lower loss and smaller dimensions. This review begins with an exploration of the fundamental properties of the waveguide ENZ media and then introduces the design principles of different ENZ‐based electromagnetic devices. Finally, the review concludes with the challenges and potential development directions encountered by the ENZ media in the realm of electromagnetic applications. Waveguide Epsilon‐Near‐Zero (ENZ) media provide a promising platform characterized by non‐periodic architectures with lower loss and smaller dimensions. This review begins by exploring the fundamental properties of waveguide ENZ dielectrics. Following this, the design principles of various ENZ‐based electromagnetic devices are discussed. Finally, the review presents a range of engineering applications of waveguide ENZ media, categorized into three distinct classifications. Abstract Epsilon‐Near‐Zero (ENZ) media have attracted widespread interest due to their unique electromagnetic properties, which have brought distinctive characteristics and phenomena, such as spatiotemporal decoupling, supercoupling and tunneling, constant phase transmission, near‐field enhancement, and so on. However, these ENZ characteristics are existed in natural plasmonic materials at their intrinsic plasma frequencies and accompanied by significant losses, thus limiting their applications in engineering. Different from the effect ENZ media with artificially periodic structures, the waveguide ENZ media offers a promising platform with non‐periodic architectures. Unlike the natural plasmonic materials and the periodic‐structured ENZ media, the waveguide ENZ media utilizes waveguide dispersion to achieve effective ENZ characteristics and phenomena with lower loss and smaller dimensions. This review begins with an exploration of the fundamental properties of the waveguide ENZ media and then introduces the design principles of different ENZ‐based electromagnetic devices. Finally, the review concludes with the challenges and potential development directions encountered by the ENZ media in the realm of electromagnetic applications. |
Author | Fu, Pengyu Wang, Shuyu Li, Yue Li, Peihang Zhang, Yongjian Yan, Wendi |
Author_xml | – sequence: 1 givenname: Peihang surname: Li fullname: Li, Peihang organization: Tsinghua University – sequence: 2 givenname: Wendi surname: Yan fullname: Yan, Wendi organization: Tsinghua University – sequence: 3 givenname: Shuyu surname: Wang fullname: Wang, Shuyu organization: Tsinghua University – sequence: 4 givenname: Pengyu surname: Fu fullname: Fu, Pengyu organization: Tsinghua University – sequence: 5 givenname: Yongjian surname: Zhang fullname: Zhang, Yongjian organization: Tsinghua University – sequence: 6 givenname: Yue orcidid: 0000-0001-9562-3136 surname: Li fullname: Li, Yue email: lyee@tsinghua.edu.cn organization: Beijing National Research Center for Information Science and Technology |
BookMark | eNqFUMtKAzEUDaKgVreuC65bbx6TTJalVC3UB6IobkImj5oyTmpmanXnJ_iNfomjFRFBvJtzuZzH5Wyj9SpWDqE9DH0MQA70_Cn1CRAGAALW0BYRGe5hArD-Y99Eu3U9aykkl5gyvIXEqJqGyrkUqml3NK9DGau3l9dTp1MLty7F7omzQXeXobnrXutHN10E6-odtOF1WbvdL-ygq8PR5fC4Nzk7Gg8Hk56hTJKeAWPz3HhBvcmpyGlWyAx7kCCFxd6InBTcGqKt99xRooEXmPMiEwIYdxntoPHK10Y9U_MU7nV6VlEH9XmIaap0aoIpnSq8KDiTGbVMMLAgHTcE80IKQSVpsztof-U1T_Fh4epGzeIiVe37imJJ2skBt6z-imVSrOvk_HcqBvXRtfroWn133QrYL4EJjW5CrJqkQ_m3LFvJlqF0z_-EqMH5zQUmhBH6Dj3MlIE |
CitedBy_id | crossref_primary_10_3389_fnano_2025_1536462 crossref_primary_10_1002_lpor_202402014 |
Cites_doi | 10.1070/PU1967v009n06ABEH003226 10.1126/sciadv.abq6198 10.1364/OL.40.001500 10.1515/nanoph-2021-0613 10.1063/5.0071797 10.1016/j.crhy.2009.03.008 10.1063/5.0068151 10.1103/PhysRevLett.97.157403 10.1364/OL.43.001738 10.1515/nanoph-2018-0012 10.1109/TAP.2020.3016512 10.1109/TAP.2024.3351203 10.1364/OL.41.002209 10.1038/nphoton.2017.13 10.1007/s00339-019-2385-3 10.1038/srep12956 10.1063/1.2208264 10.1038/s41377-023-01092-8 10.1103/PhysRevLett.116.233901 10.1515/nanoph-2023-0485 10.1002/adts.201900059 10.1364/OPTICA.2.000006 10.1103/PhysRevE.72.016623 10.1109/TAP.2021.3138552 10.1109/LAWP.2023.3339203 10.1073/pnas.2008143117 10.1126/science.1125907 10.1038/nphoton.2013.219 10.1103/PhysRevE.70.046608 10.1126/sciadv.1501790 10.1364/PRJ.491949 10.1103/PhysRevB.94.085118 10.1186/s43593-022-00013-3 10.1126/science.aal2672 10.1103/PhysRevApplied.13.034005 10.1002/lpor.202201000 10.1038/nphoton.2017.39 10.1109/TAP.2021.3098548 10.1021/acsnano.0c07011 10.1038/s41467-022-31013-z 10.1109/TAP.2015.2473700 10.1007/s11467-023-1362-7 10.1103/PhysRevB.76.245109 10.1002/mop.26147 10.1073/pnas.1611924114 10.1021/acs.accounts.2c00028 10.1103/PhysRevB.86.165130 10.1109/TAP.2024.3364749 10.1103/PhysRevB.75.075119 10.1103/PhysRevApplied.16.024033 10.3390/s22030788 10.1364/PRJ.463901 10.1038/ncomms6638 10.1364/OE.21.032279 10.1038/s41563-020-00858-4 10.1103/PhysRevB.87.035136 10.1002/adom.202200463 10.1038/s41467-023-41965-5 10.1103/PhysRevLett.100.033903 10.1126/sciadv.1600987 10.1109/TAP.2022.3209274 10.1038/ncomms10989 10.1021/acs.nanolett.1c00550 10.1007/s11433-021-1901-0 10.1002/0471744751 10.1021/acsnano.5b04373 10.1515/nanoph-2018-0218 10.1002/0471784192 10.1103/PhysRevB.6.4370 10.1109/TAP.2019.2894335 10.1103/PhysRevLett.100.023903 10.1109/MetaMaterials.2015.7342434 10.1109/TMTT.2020.3045722 10.1515/nanoph-2023-0085 10.1016/j.chip.2023.100049 10.1103/PhysRevLett.110.013902 10.1038/nmat1097 10.1109/LMWC.2017.2701337 10.1038/s41467-019-12083-y 10.1109/LAWP.2020.3011484 10.1186/s43593-022-00015-1 10.1109/ICEAA.2017.8065296 10.1063/5.0073134 10.1103/PhysRevA.97.022309 10.1088/1361-6463/aaad27 10.1109/LAWP.2009.2021495 10.1103/PhysRevB.102.165303 10.1021/nl300269c 10.1002/adts.201900017 10.1002/adom.201701292 10.1038/s41377-022-00892-8 10.1109/TAP.1962.1137809 10.1038/s41467-022-32187-2 10.1088/0953-8984/10/22/007 10.1109/TAP.2020.2977746 10.1049/PBEW047E 10.1103/PhysRevLett.89.213902 10.1021/acs.nanolett.0c01810 10.1126/sciadv.abf3362 10.1016/j.eng.2020.10.014 10.1063/5.0079665 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). Advanced Physics Research published by Wiley‐VCH GmbH – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION 3V. 7XB 88I 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO GNUQQ HCIFZ KB. M2P PCBAR PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U DOA |
DOI | 10.1002/apxr.202400070 |
DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Science Database Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2751-1200 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_bf7b64953d4740d09e6c216b97739278 10_1002_apxr_202400070 APXR12242 |
Genre | reviewArticle |
GrantInformation_xml | – fundername: National Key Research and Development Program of China funderid: 2021YFA0716601 – fundername: National Natural Science Foundation of China funderid: U22B2016 |
GroupedDBID | 0R~ 24P 88I ABJCF ABUWG ACCMX AEUYN AFKRA ALMA_UNASSIGNED_HOLDINGS ALUQN AVUZU AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO EBS GNUQQ GROUPED_DOAJ HCIFZ KB. M2P PCBAR PDBOC PIMPY AAFWJ AAYXX AFPKN CITATION M~E PHGZM PHGZT 3V. 7XB 8FE 8FG 8FK AAMMB AEFGJ AGXDD AIDQK AIDYY ARCSS D1I PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U WIN PUEGO |
ID | FETCH-LOGICAL-c3492-c0cd88cf73fc837835b951f09097d1fc782b6dc2adff6e32a06b166b577046e53 |
IEDL.DBID | DOA |
ISSN | 2751-1200 |
IngestDate | Wed Aug 27 01:26:03 EDT 2025 Wed Aug 13 10:58:16 EDT 2025 Tue Jul 01 02:33:01 EDT 2025 Thu Apr 24 23:00:05 EDT 2025 Wed Jan 22 17:13:32 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3492-c0cd88cf73fc837835b951f09097d1fc782b6dc2adff6e32a06b166b577046e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-9562-3136 |
OpenAccessLink | https://doaj.org/article/bf7b64953d4740d09e6c216b97739278 |
PQID | 3192222801 |
PQPubID | 6852862 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bf7b64953d4740d09e6c216b97739278 proquest_journals_3192222801 crossref_primary_10_1002_apxr_202400070 crossref_citationtrail_10_1002_apxr_202400070 wiley_primary_10_1002_apxr_202400070_APXR12242 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2024 2024-09-00 20240901 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
PublicationDecade | 2020 |
PublicationPlace | Edinburgh |
PublicationPlace_xml | – name: Edinburgh |
PublicationTitle | Advanced Physics Research |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2021; 69 2021; 21 2021; 20 2020; 20 2022; 70 2013; 21 2019; 10 2011; 53 2024; 72 2004; 3 2020; 14 2019; 125 2020; 13 2023; 1 2023; 2 2022; 65 2022; 22 2024 2013; 7 2007; 75 2008; 100 2007; 76 2017; 355 2012; 12 2018; 43 2017; 114 2020; 19 2021; 36 2018; 7 2018; 6 2022; 120 2014; 5 2009; 10 2004; 70 2023; 23 2015; 40 2002; 89 2019; 67 2021; 39 2021; 119 2016; 41 2016; 116 2013; 110 2005; 72 1998; 10 2019; 8 2015; 2 2021; 7 2006; 97 2023; 14 2015; 5 2023; 11 2023; 12 2023; 17 2013; 87 2019; 2 2017; 27 2006 2006; 3 2005 2016; 94 1962; 10 2020; 102 2015; 9 1972; 6 2024; 19 2006; 312 1999 2021; 16 2016; 7 1967; 9 2016; 2 2006; 88 2017; 11 2022; 8 2015; 63 2022; 13 2020; 117 2017 2009; 8 2020; 68 2015 2018; 51 2022; 10 2022; 2 2022; 55 2022; 11 2018; 97 2012; 86 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_14_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 Sze S. M. (e_1_2_9_64_1) 2006; 3 e_1_2_9_6_1 e_1_2_9_60_1 Ziheng Z. (e_1_2_9_89_1) 2021; 36 e_1_2_9_2_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 Zhang Y. (e_1_2_9_92_1) 2023; 1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_1_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 Li P. (e_1_2_9_37_1) 2021; 39 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 Liu Z. (e_1_2_9_96_1) 2024 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 55 start-page: 1659 year: 2022 publication-title: Acc. Chem. Res. – year: 2005 – volume: 86 year: 2012 publication-title: Phys. Rev. B – volume: 41 start-page: 2209 year: 2016 publication-title: Opt. Lett. – volume: 8 year: 2022 publication-title: Sci. Adv. – volume: 10 start-page: 106 year: 2009 publication-title: Comptes Rendus. Physique – volume: 19 year: 2024 publication-title: Front. Phys. – volume: 10 year: 2022 publication-title: Adv. Opt. Mater. – volume: 11 start-page: 274 year: 2017 publication-title: Nat. Photonics – volume: 22 start-page: 788 year: 2022 publication-title: Sensors – volume: 70 start-page: 4215 year: 2022 publication-title: IEEE Transactions on Antennas and Propagation – volume: 10 start-page: 2178 year: 2022 publication-title: Photon. Res. – volume: 14 year: 2020 publication-title: ACS Nano – volume: 14 start-page: 6154 year: 2023 publication-title: Nat. Commun. – volume: 72 start-page: 2391 year: 2024 publication-title: IEEE Transactions on Antennas and Propagation – volume: 2 year: 2023 publication-title: Chip – volume: 11 start-page: 72 year: 2022 publication-title: Engineering – volume: 9 start-page: 805 year: 1967 publication-title: Sov. Phys. Uspekhi – volume: 89 year: 2002 publication-title: Phys. Rev. Lett. – volume: 70 year: 2022 publication-title: IEEE Trans. Antennas Propagat. – volume: 21 start-page: 5907 year: 2021 publication-title: Nano Lett. – volume: 75 year: 2007 publication-title: Phys. Rev. B – volume: 67 start-page: 2289 year: 2019 publication-title: IEEE Trans. Antennas Propagat. – volume: 12 start-page: 1333 year: 2012 publication-title: Nano Lett. – volume: 43 start-page: 1738 year: 2018 publication-title: Opt. Lett. – volume: 70 start-page: 720 year: 2022 publication-title: IEEE Trans. Antennas Propagat. – volume: 6 start-page: 4370 year: 1972 publication-title: Phys. Rev. B – volume: 119 year: 2021 publication-title: Appl. Phys. Lett. – volume: 27 start-page: 554 year: 2017 publication-title: IEEE Microw. Wireless Compon. Lett. – volume: 7 start-page: 1117 year: 2018 publication-title: Nanophotonics – volume: 102 year: 2020 publication-title: Phys. Rev. B – volume: 7 year: 2016 publication-title: Nat. Commun. – volume: 13 start-page: 4747 year: 2022 publication-title: Nat. Commun. – volume: 11 start-page: 1659 year: 2022 publication-title: Nanophotonics – volume: 5 year: 2015 publication-title: Sci. Rep. – volume: 2 start-page: 6 year: 2015 publication-title: Optica – volume: 68 start-page: 5151 year: 2020 publication-title: IEEE Trans. Antennas Propagat. – volume: 114 start-page: 822 year: 2017 publication-title: Proc. Natl. Acad. Sci., U.S.A. – volume: 21 year: 2013 publication-title: Opt. Express – volume: 23 start-page: 930 year: 2023 publication-title: IEEE Antennas and Wireless Propagation Lett. – volume: 13 year: 2020 publication-title: Phys. Rev. Appl. – volume: 2 start-page: 7 year: 2022 publication-title: eLight – volume: 19 start-page: 1591 year: 2020 publication-title: Antennas Wirel. Propag. Lett. – volume: 72 start-page: 3055 year: 2024 publication-title: IEEE Trans. Antennas Propagat. – volume: 97 year: 2006 publication-title: Phys. Rev. Lett. – volume: 355 start-page: 1058 year: 2017 publication-title: Science – volume: 2 year: 2019 publication-title: Adv. Theory and Sims. – volume: 40 start-page: 1500 year: 2015 publication-title: Opt. Lett. – volume: 97 year: 2018 publication-title: Phys. Rev. A – volume: 76 year: 2007 publication-title: Phys. Rev. B – volume: 110 year: 2013 publication-title: Phys. Rev. Lett. – volume: 16 year: 2021 publication-title: Phys. Rev. Applied – volume: 10 start-page: 82 year: 1962 publication-title: IRE Trans. Antennas Propag. – volume: 116 year: 2016 publication-title: Phys. Rev. Lett. – volume: 120 year: 2022 publication-title: Appl. Phys. Lett. – volume: 8 start-page: 421 year: 2009 publication-title: Antennas Wirel. Propag. Lett. – volume: 69 start-page: 1529 year: 2021 publication-title: IEEE Trans. Microwave Theory Techn. – volume: 10 start-page: 4785 year: 1998 publication-title: J. Phys.: Condens. Matter – volume: 9 year: 2015 publication-title: ACS Nano – volume: 3 start-page: 211 year: 2004 publication-title: Nat. Mater. – volume: 312 start-page: 1780 year: 2006 publication-title: Science – start-page: 523 year: 2017 end-page: 526 – volume: 2 year: 2016 publication-title: Sci. Adv. – volume: 94 year: 2016 publication-title: Phys. Rev. B – volume: 87 year: 2013 publication-title: Phys. Rev. B – volume: 63 start-page: 5107 year: 2015 publication-title: IEEE Trans. Antennas Propagat. – volume: 7 start-page: 674 year: 2013 publication-title: Nat. Photonics – volume: 2 year: 2019 publication-title: Adv. Theory and Simul. – volume: 39 start-page: 7495 year: 2021 publication-title: J. Lightwave Technol. – volume: 117 year: 2020 publication-title: Proc. Natl. Acad. Sci., U.S.A. – start-page: 316 year: 2015 end-page: 318 – volume: 100 year: 2008 publication-title: Phys. Rev. Lett. – volume: 8 start-page: 559 year: 2019 publication-title: Nanophotonics – volume: 12 start-page: 99 year: 2023 publication-title: Light: Sci. Appl. – volume: 3 start-page: 601 year: 2006 publication-title: Phys. semicond. Dev. – volume: 70 year: 2004 publication-title: Phys. Rev. E – volume: 6 year: 2018 publication-title: Adv. Opt. Mater. – volume: 13 start-page: 3568 year: 2022 publication-title: Nat. Commun. – volume: 51 year: 2018 publication-title: J. Phys. D: Appl. Phys. – volume: 2 start-page: 8 year: 2022 publication-title: eLight – volume: 65 year: 2022 publication-title: Sci. China Phys. Mech. Astron. – volume: 12 start-page: 4195 year: 2023 publication-title: Nanophotonics – start-page: 1 year: 2024 publication-title: Antennas Wirel. Propag. Lett. – volume: 11 start-page: 149 year: 2017 publication-title: Nature Photon – volume: 12 start-page: 2007 year: 2023 publication-title: Nanophotonics – volume: 20 start-page: 916 year: 2021 publication-title: Nat. Mater. – volume: 5 start-page: 5638 year: 2014 publication-title: Nat. Commun. – volume: 36 start-page: 905 year: 2021 publication-title: Chinese J. Radio Sci. – volume: 20 start-page: 5421 year: 2020 publication-title: Nano Lett. – volume: 72 year: 2005 publication-title: Phys. Rev. E – volume: 11 start-page: 207 year: 2022 publication-title: Light Sci. Appl. – volume: 10 start-page: 4132 year: 2019 publication-title: Nat. Commun. – volume: 1 start-page: 1 year: 2023 publication-title: Electromag. Sci. – year: 2006 – volume: 7 year: 2021 publication-title: Sci. Adv. – volume: 17 year: 2023 publication-title: Laser Photonics Rev. – volume: 125 start-page: 129 year: 2019 publication-title: Appl. Phys. A – volume: 88 year: 2006 publication-title: Appl. Phys. Lett. – volume: 11 start-page: 1437 year: 2023 publication-title: Photon. Res. – volume: 69 start-page: 815 year: 2021 publication-title: IEEE Trans. Antennas Propagat. – year: 1999 – volume: 53 start-page: 1706 year: 2011 publication-title: Micro & Optical Tech. Lett. – ident: e_1_2_9_21_1 doi: 10.1070/PU1967v009n06ABEH003226 – ident: e_1_2_9_59_1 doi: 10.1126/sciadv.abq6198 – start-page: 1 year: 2024 ident: e_1_2_9_96_1 publication-title: Antennas Wirel. Propag. Lett. – ident: e_1_2_9_55_1 doi: 10.1364/OL.40.001500 – ident: e_1_2_9_60_1 doi: 10.1515/nanoph-2021-0613 – ident: e_1_2_9_81_1 doi: 10.1063/5.0071797 – ident: e_1_2_9_31_1 doi: 10.1016/j.crhy.2009.03.008 – ident: e_1_2_9_95_1 doi: 10.1063/5.0068151 – ident: e_1_2_9_13_1 doi: 10.1103/PhysRevLett.97.157403 – ident: e_1_2_9_80_1 doi: 10.1364/OL.43.001738 – ident: e_1_2_9_98_1 doi: 10.1515/nanoph-2018-0012 – volume: 39 start-page: 7495 year: 2021 ident: e_1_2_9_37_1 publication-title: J. Lightwave Technol. – ident: e_1_2_9_102_1 doi: 10.1109/TAP.2020.3016512 – ident: e_1_2_9_93_1 doi: 10.1109/TAP.2024.3351203 – ident: e_1_2_9_106_1 doi: 10.1364/OL.41.002209 – volume: 3 start-page: 601 year: 2006 ident: e_1_2_9_64_1 publication-title: Phys. semicond. Dev. – ident: e_1_2_9_20_1 doi: 10.1038/nphoton.2017.13 – ident: e_1_2_9_88_1 doi: 10.1007/s00339-019-2385-3 – ident: e_1_2_9_26_1 doi: 10.1038/srep12956 – ident: e_1_2_9_1_1 doi: 10.1063/1.2208264 – ident: e_1_2_9_40_1 doi: 10.1038/s41377-023-01092-8 – ident: e_1_2_9_56_1 doi: 10.1103/PhysRevLett.116.233901 – ident: e_1_2_9_18_1 doi: 10.1515/nanoph-2023-0485 – ident: e_1_2_9_49_1 doi: 10.1002/adts.201900059 – ident: e_1_2_9_68_1 doi: 10.1364/OPTICA.2.000006 – ident: e_1_2_9_6_1 doi: 10.1103/PhysRevE.72.016623 – ident: e_1_2_9_90_1 doi: 10.1109/TAP.2021.3138552 – ident: e_1_2_9_94_1 doi: 10.1109/LAWP.2023.3339203 – ident: e_1_2_9_74_1 doi: 10.1073/pnas.2008143117 – ident: e_1_2_9_5_1 doi: 10.1126/science.1125907 – ident: e_1_2_9_25_1 doi: 10.1038/nphoton.2013.219 – ident: e_1_2_9_53_1 doi: 10.1103/PhysRevE.70.046608 – ident: e_1_2_9_47_1 doi: 10.1126/sciadv.1501790 – ident: e_1_2_9_71_1 doi: 10.1364/PRJ.491949 – ident: e_1_2_9_105_1 doi: 10.1103/PhysRevB.94.085118 – ident: e_1_2_9_43_1 doi: 10.1186/s43593-022-00013-3 – ident: e_1_2_9_14_1 doi: 10.1126/science.aal2672 – ident: e_1_2_9_50_1 doi: 10.1103/PhysRevApplied.13.034005 – ident: e_1_2_9_73_1 doi: 10.1002/lpor.202201000 – ident: e_1_2_9_41_1 doi: 10.1038/nphoton.2017.39 – ident: e_1_2_9_97_1 doi: 10.1109/TAP.2021.3098548 – ident: e_1_2_9_32_1 doi: 10.1021/acsnano.0c07011 – ident: e_1_2_9_51_1 doi: 10.1038/s41467-022-31013-z – ident: e_1_2_9_86_1 doi: 10.1109/TAP.2015.2473700 – ident: e_1_2_9_19_1 doi: 10.1007/s11467-023-1362-7 – ident: e_1_2_9_48_1 doi: 10.1103/PhysRevB.76.245109 – ident: e_1_2_9_85_1 doi: 10.1002/mop.26147 – ident: e_1_2_9_9_1 doi: 10.1073/pnas.1611924114 – volume: 1 start-page: 1 year: 2023 ident: e_1_2_9_92_1 publication-title: Electromag. Sci. – ident: e_1_2_9_38_1 doi: 10.1021/acs.accounts.2c00028 – ident: e_1_2_9_100_1 doi: 10.1103/PhysRevB.86.165130 – ident: e_1_2_9_104_1 doi: 10.1109/TAP.2024.3364749 – ident: e_1_2_9_61_1 doi: 10.1103/PhysRevB.75.075119 – ident: e_1_2_9_76_1 doi: 10.1103/PhysRevApplied.16.024033 – ident: e_1_2_9_91_1 doi: 10.3390/s22030788 – ident: e_1_2_9_27_1 doi: 10.1364/PRJ.463901 – ident: e_1_2_9_62_1 doi: 10.1038/ncomms6638 – ident: e_1_2_9_70_1 doi: 10.1364/OE.21.032279 – ident: e_1_2_9_34_1 doi: 10.1038/s41563-020-00858-4 – ident: e_1_2_9_24_1 doi: 10.1103/PhysRevB.87.035136 – ident: e_1_2_9_35_1 doi: 10.1002/adom.202200463 – ident: e_1_2_9_17_1 doi: 10.1038/s41467-023-41965-5 – ident: e_1_2_9_3_1 doi: 10.1103/PhysRevLett.100.033903 – ident: e_1_2_9_8_1 doi: 10.1126/sciadv.1600987 – ident: e_1_2_9_103_1 doi: 10.1109/TAP.2022.3209274 – ident: e_1_2_9_7_1 doi: 10.1038/ncomms10989 – ident: e_1_2_9_45_1 doi: 10.1021/acs.nanolett.1c00550 – ident: e_1_2_9_77_1 doi: 10.1007/s11433-021-1901-0 – ident: e_1_2_9_66_1 doi: 10.1002/0471744751 – ident: e_1_2_9_22_1 doi: 10.1021/acsnano.5b04373 – ident: e_1_2_9_36_1 doi: 10.1515/nanoph-2018-0218 – ident: e_1_2_9_65_1 doi: 10.1002/0471784192 – ident: e_1_2_9_28_1 doi: 10.1103/PhysRevB.6.4370 – ident: e_1_2_9_11_1 doi: 10.1109/TAP.2019.2894335 – ident: e_1_2_9_72_1 doi: 10.1103/PhysRevLett.100.023903 – ident: e_1_2_9_84_1 doi: 10.1109/MetaMaterials.2015.7342434 – ident: e_1_2_9_78_1 doi: 10.1109/TMTT.2020.3045722 – ident: e_1_2_9_79_1 doi: 10.1515/nanoph-2023-0085 – ident: e_1_2_9_54_1 doi: 10.1016/j.chip.2023.100049 – ident: e_1_2_9_4_1 doi: 10.1103/PhysRevLett.110.013902 – ident: e_1_2_9_23_1 doi: 10.1038/nmat1097 – ident: e_1_2_9_87_1 doi: 10.1109/LMWC.2017.2701337 – ident: e_1_2_9_15_1 doi: 10.1038/s41467-019-12083-y – ident: e_1_2_9_12_1 doi: 10.1109/LAWP.2020.3011484 – ident: e_1_2_9_16_1 doi: 10.1186/s43593-022-00015-1 – ident: e_1_2_9_63_1 doi: 10.1109/ICEAA.2017.8065296 – ident: e_1_2_9_82_1 doi: 10.1063/5.0073134 – ident: e_1_2_9_10_1 doi: 10.1103/PhysRevA.97.022309 – ident: e_1_2_9_101_1 doi: 10.1088/1361-6463/aaad27 – ident: e_1_2_9_69_1 doi: 10.1109/LAWP.2009.2021495 – ident: e_1_2_9_57_1 doi: 10.1103/PhysRevB.102.165303 – ident: e_1_2_9_39_1 doi: 10.1021/nl300269c – ident: e_1_2_9_42_1 doi: 10.1002/adts.201900017 – ident: e_1_2_9_2_1 doi: 10.1002/adom.201701292 – ident: e_1_2_9_58_1 doi: 10.1038/s41377-022-00892-8 – ident: e_1_2_9_46_1 doi: 10.1109/TAP.1962.1137809 – ident: e_1_2_9_75_1 doi: 10.1038/s41467-022-32187-2 – ident: e_1_2_9_29_1 doi: 10.1088/0953-8984/10/22/007 – ident: e_1_2_9_99_1 doi: 10.1109/TAP.2020.2977746 – ident: e_1_2_9_67_1 doi: 10.1049/PBEW047E – ident: e_1_2_9_30_1 doi: 10.1103/PhysRevLett.89.213902 – ident: e_1_2_9_44_1 doi: 10.1021/acs.nanolett.0c01810 – ident: e_1_2_9_33_1 doi: 10.1126/sciadv.abf3362 – volume: 36 start-page: 905 year: 2021 ident: e_1_2_9_89_1 publication-title: Chinese J. Radio Sci. – ident: e_1_2_9_52_1 doi: 10.1016/j.eng.2020.10.014 – ident: e_1_2_9_83_1 doi: 10.1063/5.0079665 |
SSID | ssj0002891341 |
Score | 2.306337 |
Snippet | Epsilon‐Near‐Zero (ENZ) media have attracted widespread interest due to their unique electromagnetic properties, which have brought distinctive characteristics... Abstract Epsilon‐Near‐Zero (ENZ) media have attracted widespread interest due to their unique electromagnetic properties, which have brought distinctive... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Boundary conditions Decoupling Design Electromagnetic properties Electromagnetism Engineering ENZ Flexibility metamaterial Periodic structures Physical properties Plasma Plasma frequencies Plasmonics Propagation waveguide dispersion waveguide effective ENZ Waveguides |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LS8QwEA4-LnoQn7i6Sg-Cp2iStkl7klVWRHARUVy8hDxFkO26q-LRn-Bv9JeY6WbX9aCeSsu0lJlJ5svM8A1Ce4pRz7ggOBy9HM6Y4bhU1GPPrBO-zLSux3RedPjZTXbezbsx4TaMbZXjPbHeqG1lIEd-GFyFQbaC0KP-E4apUVBdjSM0ZtF82IKLcPiaP253Lq8mWRYGVbh6fCUTOcU0-MSYuZGwQ9V_A0pQaKMkMK14KjLVBP4_UOc0dq2Dz-kyWoqoMWmNzLyCZlxvFS1OcQmuITF1l7T7w4fHqvf5_tEJnhwud25QJVCUUQlkXpNb9eruXx6sG66jm9P29ckZjlMRsAEmQWyIsUVhvEi9ATb4NNcBJXlSklJY6k0I-Zpbw5T1nruUKcI15VznQoSzsMvTDTTXq3puEyUsxG5VBLE08xk1RpeZ5cLaELGUKsq8gfBYI9JEynCYXPEoR2THTIIG5USDDbQ_ke-PyDJ-lTwGBU-kgOS6flAN7mVcM1J7oTn0v9pMZMSS0nHDKNcBsgZUJ4oGao7NI-PKG8pvP2mgg9pk__yKbF12r6C-yLb-_t42WoCXRg1mTTT3PHhxOwGRPOvd6HZfEQncQg priority: 102 providerName: ProQuest – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA4-Ll5EUbG-2IPgKTTJZpPdo0pLERQRi8VLyLMI0pZWxaM_wd_oLzGzu13bg4inhTC7LJOZzJeZ5BuETjWjgQlJcNx6ecyZFbjQNODAnJeh4MaUbTqvb0Svz68G2WDhFn_FD9Ek3MAzyvUaHFybWfuHNFRP3oHPE85ARrNdRetwvxbY8xm_bbIsDKpwZftKJjOKabSJOXMjYe3lTyxFppLAfwl1LmLXMvh0t9BmjRqT82qat9GKH-0gucAlmHQms6fn8ejr4_Mm2m58PPrpOIEyjE4g15o86Dc_fH1yfraL-t3O_WUP130QsAXuQGyJdXlug0yDBf73NDMRFwVSkEI6GmwM8kY4y7QLQfiUaSIMFcJkUsbdr8_SPbQ2Go_8PkpYjNY6j2IpD5xaawruhHQuxiit8yJrITzXgbI1STj0qnhWFb0xU6Az1eishc4a-UlFj_Gr5AWotJECWutyYDwdqtpLlAnSCDjx6rjkxJHCC8uoMBGkRhwn8xY6mk-Iqn1tpuIiwiCPRWgLVRbzx6-o89vBHVQU2cF_XzhEGzBaHTI7Qmsv01d_HFHJizkpDe8bh2_ZSA priority: 102 providerName: Wiley-Blackwell |
Title | Engineering Epsilon‐Near‐Zero Media with Waveguides |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fapxr.202400070 https://www.proquest.com/docview/3192222801 https://doaj.org/article/bf7b64953d4740d09e6c216b97739278 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSsNAEF60XryIomK0lhwET9HNZrObHFtpFcFSRLF4WfZXFElLq-LRR_AZfRJ3krTEg3jxkkAYwjCzyTezM_sNQkeSxI4wjiOfetmIEs2iXMYucsRY7nKqVDmm82rILm7p5TgdN0Z9QU9YRQ9cGe5UOa4YNEEayik2OLdMk5gpH7d4aOflMV-PeY1k6qkqnwFT2YKlEZNTOX0H-k9omcQwmbiBQiVZ_48IsxmnlkAz2EQbdYQYdivNttCKLbYRb_AGhv3p_PF5Unx9fA79OvW3ezubhFBykSHsq4Z38s0-vD4aO99Bt4P-zdlFVM88iDTwBEYaa5Nl2vHEaeB6T1LlYyCHc5xzEzvtAV0xo4k0zjGbEImZihlTKec-07VpsotaxaSweygkHpll5sUS6mistcqpYdwYj0dSZnkaoGhhA6FrQnCYS_EsKipjIsBmYmmzAB0v5acVFcavkj0w6VIKKKzLB96xonas-MuxAWovHCLq72ou_A-DwJ4VjgN0UjrpD1VEdzS-huoh2f8PpQ7QOry6ajJro9bL7NUe-qjkRXXQKqEjf80G5x201usPR9edclF-A3-03zs |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcEE-xUCAHECdT23Hs5IBQgS5b2q4QasWKi_GzqlRtlt2Wx42fwC_hR_FL8OSxLAfg1FOUaBRF47Hns2fyfQAPDWeRS0VJ2noFIriTpDIsksh9ULES1jYynftjOToUryfFZA1-9P_CYFtlvyY2C7WvHZ6Rb6ZQ4XhaQdmz2UeCqlFYXe0lNNqw2A1fP6ct2-Lpzss0vo84H24fvBiRTlWAOGTiI446X5Yuqjw6ZFPPC5tQRqQVrZRn0aWUaaV33PgYZci5odIyKW2hVNpLBlSJSEv-BZHnFc6ocvhqeabDsebXiGVyVTDCUgT2PJGUb5rZFyQgxaZNitrIK3mwkQv4A-OuIuUm1Q2vwpUOo2ZbbVBdg7UwvQ6XV5gLb4Baucu2Z4vjk3r689v3cXJQurwP8zrDEpDJ8Jw3e2c-haOzYx8WN-HwXLx1C9an9TTchownpGDKZJaLKJhzthJeKu9TfjSmrIoBkN4j2nUE5aiTcaJbamWu0YN66cEBPF7az1pqjr9aPkcHL62QUrt5UM-PdDdDtY3KSuy29UIJ6mkVpONM2gSQE4ZU5QA2-uHR3Txf6N9ROYAnzZD951P01pvJW6xm8jv_ft8DuDg62N_Tezvj3btwCV_QtrZtwPrp_CzcS1jo1N5vAjCDD-cd8b8A8CMXQQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS-tAEF48FeS8iKJitWoehPO0uLtJdpPHeileixysFl-WvYogbWlVfPQn-Bv9Je4kaWwf5HCeAmESwuzMzrczk28Q2leMesYFweHo5XDCDMe5oh57Zp3weaJ1MabzqstPe8l5P-3P_MVf8kPUCTfwjGK_BgcfWX_wTRqqRm_A5wk9kMFsf6FFoMoLdr3Yvu3d9-o8C4M6XDHAkomUYhqsYsrdSNjB_EvmYlNB4T-HO2fRaxF-OitoucKNUbtc6FW04AZrSMywCUYno8nj03Dw-f7RDdYbLvduPIygEKMiyLZGd-rVPbw8WjdZR73Oyc3RKa4mIWAD7IHYEGOzzHgRewMM8HGqAzLyJCe5sNSbEOY1t4Yp6z13MVOEa8q5ToUI51-XxhuoMRgO3CaKWIjXKgticeITaozOE8uFtSFKKZXlaRPhqQ6kqWjCYVrFkywJjpkEnclaZ030p5YflQQZP0oegkprKSC2Lm4Mxw-y8hOpvdAcel5tIhJiSe64YZTrAFMDkhNZE7WmCyIrb5vIsI0wyGQR2kSlzfzjU2T7uv8Xaops638f2ENL18cdeXnWvdhGv0Gg7Dhrocbz-MXtBIjyrHcrK_wCVkPdrA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Epsilon%E2%80%90Near%E2%80%90Zero+Media+with+Waveguides&rft.jtitle=Advanced+Physics+Research&rft.au=Peihang+Li&rft.au=Wendi+Yan&rft.au=Shuyu+Wang&rft.au=Pengyu+Fu&rft.date=2024-09-01&rft.pub=Wiley-VCH&rft.eissn=2751-1200&rft.volume=3&rft.issue=9&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fapxr.202400070&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_bf7b64953d4740d09e6c216b97739278 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2751-1200&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2751-1200&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2751-1200&client=summon |