Variable importance evaluation with personalized odds ratio for machine learning model interpretability with applications to electronic health records‐based mortality prediction
The interpretability of machine learning models, even though with an excellent prediction performance, remains a challenge in practical applications. The model interpretability and variable importance for well‐performed supervised machine learning models are investigated in this study. With the comm...
Saved in:
Published in | Statistics in medicine Vol. 42; no. 6; pp. 761 - 780 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
15.03.2023
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The interpretability of machine learning models, even though with an excellent prediction performance, remains a challenge in practical applications. The model interpretability and variable importance for well‐performed supervised machine learning models are investigated in this study. With the commonly accepted concept of odds ratio (OR), we propose a novel and computationally efficient Variable Importance evaluation framework based on the Personalized Odds Ratio (VIPOR). It is a model‐agnostic interpretation method that can be used to evaluate variable importance both locally and globally. Locally, the variable importance is quantified by the personalized odds ratio (POR), which can account for subject heterogeneity in machine learning. Globally, we utilize a hierarchical tree to group the predictors into five groups: completely positive, completely negative, positive dominated, negative dominated, and neutral groups. The relative importance of predictors within each group is ranked based on different statistics of PORs across subjects for different application purposes. For illustration, we apply the proposed VIPOR method to interpreting a multilayer perceptron (MLP) model, which aims to predict the mortality of subarachnoid hemorrhage (SAH) patients using real‐world electronic health records (EHR) data. We compare the important variables derived from MLP with other machine learning models, including tree‐based models and the L1‐regularized logistic regression model. The top importance variables are consistently identified by VIPOR across different prediction models. Comparisons with existing interpretation methods are also conducted and discussed based on publicly available data sets. |
---|---|
AbstractList | The interpretability of machine learning models, even though with an excellent prediction performance, remains a challenge in practical applications. The model interpretability and variable importance for well‐performed supervised machine learning models are investigated in this study. With the commonly accepted concept of odds ratio (OR), we propose a novel and computationally efficient Variable Importance evaluation framework based on the Personalized Odds Ratio (VIPOR). It is a model‐agnostic interpretation method that can be used to evaluate variable importance both locally and globally. Locally, the variable importance is quantified by the personalized odds ratio (POR), which can account for subject heterogeneity in machine learning. Globally, we utilize a hierarchical tree to group the predictors into five groups: completely positive, completely negative, positive dominated, negative dominated, and neutral groups. The relative importance of predictors within each group is ranked based on different statistics of PORs across subjects for different application purposes. For illustration, we apply the proposed VIPOR method to interpreting a multilayer perceptron (MLP) model, which aims to predict the mortality of subarachnoid hemorrhage (SAH) patients using real‐world electronic health records (EHR) data. We compare the important variables derived from MLP with other machine learning models, including tree‐based models and the L1‐regularized logistic regression model. The top importance variables are consistently identified by VIPOR across different prediction models. Comparisons with existing interpretation methods are also conducted and discussed based on publicly available data sets. The interpretability of machine learning models, even though with an excellent prediction performance, remains a challenge in practical applications. The model interpretability and variable importance for well-performed supervised machine learning models are investigated in this study. With the commonly accepted concept of odds ratio (OR), we propose a novel and computationally efficient Variable Importance evaluation framework based on the Personalized Odds Ratio (VIPOR). It is a model-agnostic interpretation method that can be used to evaluate variable importance both locally and globally. Locally, the variable importance is quantified by the personalized odds ratio (POR), which can account for subject heterogeneity in machine learning. Globally, we utilize a hierarchical tree to group the predictors into five groups: completely positive, completely negative, positive dominated, negative dominated, and neutral groups. The relative importance of predictors within each group is ranked based on different statistics of PORs across subjects for different application purposes. For illustration, we apply the proposed VIPOR method to interpreting a multilayer perceptron (MLP) model, which aims to predict the mortality of subarachnoid hemorrhage (SAH) patients using real-world electronic health records (EHR) data. We compare the important variables derived from MLP with other machine learning models, including tree-based models and the L1-regularized logistic regression model. The top importance variables are consistently identified by VIPOR across different prediction models. Comparisons with existing interpretation methods are also conducted and discussed based on publicly available data sets.The interpretability of machine learning models, even though with an excellent prediction performance, remains a challenge in practical applications. The model interpretability and variable importance for well-performed supervised machine learning models are investigated in this study. With the commonly accepted concept of odds ratio (OR), we propose a novel and computationally efficient Variable Importance evaluation framework based on the Personalized Odds Ratio (VIPOR). It is a model-agnostic interpretation method that can be used to evaluate variable importance both locally and globally. Locally, the variable importance is quantified by the personalized odds ratio (POR), which can account for subject heterogeneity in machine learning. Globally, we utilize a hierarchical tree to group the predictors into five groups: completely positive, completely negative, positive dominated, negative dominated, and neutral groups. The relative importance of predictors within each group is ranked based on different statistics of PORs across subjects for different application purposes. For illustration, we apply the proposed VIPOR method to interpreting a multilayer perceptron (MLP) model, which aims to predict the mortality of subarachnoid hemorrhage (SAH) patients using real-world electronic health records (EHR) data. We compare the important variables derived from MLP with other machine learning models, including tree-based models and the L1-regularized logistic regression model. The top importance variables are consistently identified by VIPOR across different prediction models. Comparisons with existing interpretation methods are also conducted and discussed based on publicly available data sets. |
Author | Yu, Duo Wu, Hulin |
Author_xml | – sequence: 1 givenname: Duo orcidid: 0000-0002-8988-1646 surname: Yu fullname: Yu, Duo organization: Dell Medical School, The University of Texas at Austin – sequence: 2 givenname: Hulin orcidid: 0000-0002-5809-5407 surname: Wu fullname: Wu, Hulin email: hulin.wu@uth.tmc.edu organization: The University of Texas Health Science Center at Houston |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36601725$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1u1DAURi1URKcFiSdAltiwyWA7iT1ZogpKpSIW_Gwjx75mXDl2sJ1Ww6qPwLvwRjwJzkwBqQJ54YXPd651vxN05IMHhJ5SsqaEsJfJjuuON-wBWlHSiYqwdnOEVoQJUXFB22N0ktIVIZS2TDxCxzXnhArWrtCPzzJaOTjAdpxCzNIrwHAt3SyzDR7f2LzFE8QUvHT2G2gctE44Lq_YhIhHqbbWA3Ygo7f-Cx6DBoetzxCnCFkO1tm8O4jkNDmr9uaEc8DgQOUYvFV4C9IVIoIKUaeft98Hmcq0cfnTXlBk2qol-hg9NNIleHJ3n6JPb15_PHtbXb4_vzh7dVmpuulYNZjWKEa4ZKYDSrXe0A0ZNqScQXIyEKiN2BDD20bXppM1dCAUbbhRqpbDUJ-iFwfvFMPXGVLuR5sUOCc9hDn1THBalETwgj6_h16FOZaVLZRoCsZaUqhnd9Q8jKD7KdpRxl3_u46_E1UMKUUwfxBK-qXpvjTdL00XdH0PVTbvN5ujtO5fgeoQuLEOdv8V9x8u3u35X_PJv9E |
CitedBy_id | crossref_primary_10_1109_ACCESS_2023_3301162 crossref_primary_10_1007_s12561_024_09454_5 crossref_primary_10_1186_s12911_024_02579_z crossref_primary_10_3390_jcm13185503 crossref_primary_10_3390_systems12100416 crossref_primary_10_1016_j_heliyon_2023_e22202 |
Cites_doi | 10.1007/s10115-013-0679-x 10.1038/s42256-019-0138-9 10.1201/9781003030003-5 10.1109/ACCESS.2017.2694446 10.1145/2939672.2939778 10.1186/s12911-019-1004-8 10.1148/rg.2017160130 10.1016/S0304-3800(02)00064-9 10.1002/acn3.51208 10.1145/3233547.3233667 10.1609/aaai.v32i1.11491 10.2196/jmir.5870 10.1016/j.jacr.2017.12.028 10.1161/STR.0b013e3182587839 10.1016/j.jocn.2021.07.028 10.1016/j.ecolmodel.2015.06.034 10.1056/NEJMcp1605827 10.1109/TKDE.2010.100 10.1093/ije/28.5.964 10.4135/9781412984560 10.1038/s41598-021-87790-y 10.1109/TKDE.2007.190734 10.1109/CCAA.2018.8777449 10.1145/2783258.2788613 10.1214/aos/1013203451 10.1093/aje/154.3.264 10.1023/A:1010933404324 10.1056/NEJMoa1204942 10.1111/rssb.12377 10.1073/pnas.1900654116 10.1142/S0129065797000227 10.1016/j.tips.2019.06.001 |
ContentType | Journal Article |
Copyright | 2023 John Wiley & Sons Ltd. 2023 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. – notice: 2023 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1002/sim.9642 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 780 |
ExternalDocumentID | 36601725 10_1002_sim_9642 SIM9642 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: NIH Texas D‐CFAR funderid: P30 AI161943 – fundername: Cancer Prevention and Research Institute of Texas funderid: RP170668 – fundername: Cancer Prevention and Research Institute of Texas grantid: RP170668 – fundername: NIAID NIH HHS grantid: P30 AI161943 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM K9. 7X8 |
ID | FETCH-LOGICAL-c3492-bf5fc206a2f9e11dd8180b80808ba60b0e3f780f654d3f9a3e9e7c146fcc3abb3 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Fri Jul 11 06:22:16 EDT 2025 Fri Jul 25 09:55:20 EDT 2025 Mon Jul 21 06:07:51 EDT 2025 Tue Jul 01 03:28:18 EDT 2025 Thu Apr 24 23:04:25 EDT 2025 Wed Jan 22 16:24:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | variable importance electronic health records predictive modeling interpretable machine learning |
Language | English |
License | 2023 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3492-bf5fc206a2f9e11dd8180b80808ba60b0e3f780f654d3f9a3e9e7c146fcc3abb3 |
Notes | Funding information Cancer Prevention and Research Institute of Texas, Grant/Award Number: RP170668; NIH Texas D‐CFAR, Grant/Award Number: P30 AI161943 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5809-5407 0000-0002-8988-1646 |
PMID | 36601725 |
PQID | 2774118250 |
PQPubID | 48361 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2761180076 proquest_journals_2774118250 pubmed_primary_36601725 crossref_primary_10_1002_sim_9642 crossref_citationtrail_10_1002_sim_9642 wiley_primary_10_1002_sim_9642_SIM9642 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 March 2023 |
PublicationDateYYYYMMDD | 2023-03-15 |
PublicationDate_xml | – month: 03 year: 2023 text: 15 March 2023 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2017; 5 2010; 11 2002; 154 2020; 82 1999; 28 1997 2019; 19 2011; 12 2001; 29 2014; 41 2012; 367 2016; 18 2001; 45 2017; 377 1991; 6 1997; 8 2021; 91 2010; 23 2020; 7 2001; 154 2019; 40 2020; 2 2021; 11 2017; 37 2019; 20 2015; 313 2022 2021 2020 2019; 116 2019 2018 2017 2016 2015 1982 2008; 20 2012; 43 2018; 15 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_42_1 e_1_2_10_40_1 Kononenko I (e_1_2_10_27_1) 2010; 11 e_1_2_10_2_1 Candel A (e_1_2_10_44_1) 2016 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_39_1 Chen T (e_1_2_10_47_1) 2015 e_1_2_10_8_1 e_1_2_10_14_1 Shapley LS (e_1_2_10_24_1) 2016 e_1_2_10_13_1 Lundberg SM (e_1_2_10_38_1) 2018 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Pedersen TL (e_1_2_10_34_1) 2021 Lundberg SM (e_1_2_10_26_1) 2018 Garson GD (e_1_2_10_22_1) 1991; 6 Molnar C (e_1_2_10_35_1) 2022 e_1_2_10_29_1 Fisher A (e_1_2_10_16_1) 2019; 20 e_1_2_10_48_1 e_1_2_10_45_1 e_1_2_10_43_1 Pedregosa F (e_1_2_10_50_1) 2011; 12 e_1_2_10_20_1 e_1_2_10_41_1 Ribeiro MT (e_1_2_10_36_1) 2021 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_9_1 e_1_2_10_10_1 Baehrens D (e_1_2_10_12_1) 2010; 11 e_1_2_10_31_1 Cox C (e_1_2_10_49_1) 1997 Greenwell B (e_1_2_10_37_1) 2021 Lundberg SM (e_1_2_10_25_1) 2017 Alvarez‐Melis D (e_1_2_10_33_1) 2018 e_1_2_10_28_1 |
References_xml | – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 article-title: Random forests publication-title: Mach Learn – volume: 37 start-page: 505 issue: 2 year: 2017 end-page: 515 article-title: Machine learning for medical imaging publication-title: Radiographics – volume: 6 start-page: 46 issue: 4 year: 1991 end-page: 51 article-title: Interpreting neural‐network connection weights publication-title: AI Exp – volume: 41 start-page: 647 issue: 3 year: 2014 end-page: 665 article-title: Explaining prediction models and individual predictions with feature contributions publication-title: Knowl Informat Syst – volume: 154 start-page: 135 issue: 1‐2 year: 2002 end-page: 150 article-title: Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks publication-title: Ecol Model – start-page: 307 year: 2016 end-page: 318 – volume: 11 start-page: 1803 issue: Jun year: 2010 end-page: 1831 article-title: How to explain individual classification decisions publication-title: J Mach Learn Res – volume: 18 issue: 12 year: 2016 article-title: Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view publication-title: J Med Internet Res – volume: 11 start-page: 1 issue: 1 year: 2021 end-page: 13 article-title: Scopolamine promotes neuroinflammation and delirium‐like neuropsychiatric disorder in mice publication-title: Sci Rep – start-page: 559 year: 2018 end-page: 560 – volume: 367 start-page: 1108 issue: 12 year: 2012 end-page: 1118 article-title: Hypoglycemia and risk of death in critically ill patients publication-title: New England J Med – volume: 91 start-page: 334 year: 2021 end-page: 342 article-title: Analysis of risk factors correlated with angiographic vasospasm in patients with aneurysmal subarachnoid hemorrhage using explainable predictive modeling publication-title: J Clin Neurosci – volume: 43 start-page: 1711 issue: 6 year: 2012 end-page: 1737 article-title: Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association publication-title: Stroke – year: 2021 – volume: 154 start-page: 264 issue: 3 year: 2001 end-page: 275 article-title: Application of nonparametric models for calculating odds ratios and their confidence intervals for continuous exposures publication-title: Am J Epidemiol – volume: 8 start-page: 209 issue: 02 year: 1997 end-page: 218 article-title: Data mining of inputs: analysing magnitude and functional measures publication-title: Int J Neural Syst – volume: 29 start-page: 1189 issue: 5 year: 2001 end-page: 1232 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann Stat – volume: 20 start-page: 589 issue: 5 year: 2008 end-page: 600 article-title: Explaining classifications for individual instances publication-title: IEEE Tran Knowl Data Eng – start-page: 1 year: 2018 end-page: 4 – year: 2016 – year: 2018 – volume: 5 start-page: 8869 year: 2017 end-page: 8879 article-title: Disease prediction by machine learning over big data from healthcare communities publication-title: IEEE Access – volume: 40 issue: 8 year: 2019 article-title: The missing pieces of artificial intelligence in medicine publication-title: Trends Pharmacol Sci – start-page: 111 year: 2020 end-page: 147 – volume: 20 start-page: 1 issue: 177 year: 2019 end-page: 81 article-title: All models are wrong, but many are useful: Learning a variable's importance by studying an entire class of prediction models simultaneously publication-title: J Mach Learn Res – volume: 2 start-page: 56 issue: 1 year: 2020 end-page: 67 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nature Mach Intell – year: 1982 – volume: 82 start-page: 1059 issue: 4 year: 2020 end-page: 1086 article-title: Visualizing the effects of predictor variables in black box supervised learning models publication-title: J R Stat Soc Series B Stat Methodol – volume: 11 start-page: 1 issue: Jan year: 2010 end-page: 18 article-title: An efficient explanation of individual classifications using game theory publication-title: J Mach Learn Res – volume: 7 start-page: 2178 issue: 11 year: 2020 end-page: 2185 article-title: Machine learning prediction of the adverse outcome for nontraumatic subarachnoid hemorrhage patients publication-title: Annal Clinical Translat Neurol – year: 2022 – volume: 15 start-page: 512 issue: 3 year: 2018 end-page: 520 article-title: Machine learning in medical imaging publication-title: J Am Coll Radiol – year: 1997 – volume: 23 start-page: 51 issue: 1 year: 2010 end-page: 63 article-title: Data leakage detection publication-title: IEEE Tran Knowl Data Eng – volume: 116 start-page: 22071 issue: 44 year: 2019 end-page: 22080 article-title: Definitions, methods, and applications in interpretable machine learning publication-title: Proc Natl Acad Sci – volume: 28 start-page: 964 issue: 5 year: 1999 end-page: 974 article-title: The use of fractional polynomials to model continuous risk variables in epidemiology publication-title: Int J Epidemiol – start-page: 1721 year: 2015 end-page: 1730 – volume: 313 start-page: 307 year: 2015 end-page: 313 article-title: A new R2‐based metric to shed greater insight on variable importance in artificial neural networks publication-title: Ecol Model – volume: 377 start-page: 257 issue: 3 year: 2017 end-page: 266 article-title: Subarachnoid hemorrhage publication-title: New England J Med – year: 2017 – volume: 12 start-page: 2825 year: 2011 end-page: 2830 article-title: Scikit‐learn: Machine Learning in Python publication-title: J Mach Learn Res – start-page: 1135 year: 2016 end-page: 1144 – year: 2019 – volume: 19 start-page: 1 issue: 1 year: 2019 end-page: 16 article-title: Comparing different supervised machine learning algorithms for disease prediction publication-title: BMC Med Inform Decis Mak – year: 2015 – ident: e_1_2_10_28_1 doi: 10.1007/s10115-013-0679-x – volume-title: shap year: 2018 ident: e_1_2_10_38_1 – ident: e_1_2_10_29_1 doi: 10.1038/s42256-019-0138-9 – ident: e_1_2_10_54_1 doi: 10.1201/9781003030003-5 – ident: e_1_2_10_30_1 – ident: e_1_2_10_4_1 doi: 10.1109/ACCESS.2017.2694446 – ident: e_1_2_10_15_1 doi: 10.1145/2939672.2939778 – ident: e_1_2_10_5_1 doi: 10.1186/s12911-019-1004-8 – ident: e_1_2_10_2_1 doi: 10.1148/rg.2017160130 – ident: e_1_2_10_21_1 doi: 10.1016/S0304-3800(02)00064-9 – ident: e_1_2_10_7_1 doi: 10.1002/acn3.51208 – volume-title: Vital Health Stat 1. No. 35 year: 1997 ident: e_1_2_10_49_1 – volume: 11 start-page: 1 year: 2010 ident: e_1_2_10_27_1 article-title: An efficient explanation of individual classifications using game theory publication-title: J Mach Learn Res – ident: e_1_2_10_10_1 doi: 10.1145/3233547.3233667 – ident: e_1_2_10_14_1 doi: 10.1609/aaai.v32i1.11491 – ident: e_1_2_10_31_1 – volume: 6 start-page: 46 issue: 4 year: 1991 ident: e_1_2_10_22_1 article-title: Interpreting neural‐network connection weights publication-title: AI Exp – ident: e_1_2_10_53_1 doi: 10.2196/jmir.5870 – ident: e_1_2_10_3_1 doi: 10.1016/j.jacr.2017.12.028 – volume-title: deep learning with H2O year: 2016 ident: e_1_2_10_44_1 – volume-title: On the robustness of interpretability methods year: 2018 ident: e_1_2_10_33_1 – ident: e_1_2_10_42_1 doi: 10.1161/STR.0b013e3182587839 – ident: e_1_2_10_39_1 doi: 10.1016/j.jocn.2021.07.028 – volume-title: Consistent individualized feature attribution for tree ensembles year: 2018 ident: e_1_2_10_26_1 – ident: e_1_2_10_48_1 – ident: e_1_2_10_18_1 doi: 10.1016/j.ecolmodel.2015.06.034 – ident: e_1_2_10_43_1 doi: 10.1056/NEJMcp1605827 – volume: 20 start-page: 1 issue: 177 year: 2019 ident: e_1_2_10_16_1 article-title: All models are wrong, but many are useful: Learning a variable's importance by studying an entire class of prediction models simultaneously publication-title: J Mach Learn Res – ident: e_1_2_10_52_1 doi: 10.1109/TKDE.2010.100 – volume-title: Local Interpretable Model‐Agnostic Explanations year: 2021 ident: e_1_2_10_34_1 – ident: e_1_2_10_40_1 doi: 10.1093/ije/28.5.964 – ident: e_1_2_10_32_1 – ident: e_1_2_10_51_1 doi: 10.4135/9781412984560 – ident: e_1_2_10_46_1 doi: 10.1038/s41598-021-87790-y – ident: e_1_2_10_13_1 doi: 10.1109/TKDE.2007.190734 – ident: e_1_2_10_6_1 doi: 10.1109/CCAA.2018.8777449 – ident: e_1_2_10_11_1 doi: 10.1145/2783258.2788613 – volume: 11 start-page: 1803 year: 2010 ident: e_1_2_10_12_1 article-title: How to explain individual classification decisions publication-title: J Mach Learn Res – ident: e_1_2_10_19_1 doi: 10.1214/aos/1013203451 – ident: e_1_2_10_41_1 doi: 10.1093/aje/154.3.264 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_10_50_1 article-title: Scikit‐learn: Machine Learning in Python publication-title: J Mach Learn Res – ident: e_1_2_10_17_1 doi: 10.1023/A:1010933404324 – volume-title: iml: Interpretable Machine Learning year: 2022 ident: e_1_2_10_35_1 – volume-title: fastshap: Fast Approximate Shapley Values year: 2021 ident: e_1_2_10_37_1 – ident: e_1_2_10_45_1 doi: 10.1056/NEJMoa1204942 – volume-title: iml: Interpretable Machine Learning year: 2021 ident: e_1_2_10_36_1 – start-page: 307 volume-title: Contributions to the Theory of Games (AM‐28) year: 2016 ident: e_1_2_10_24_1 – volume-title: Proceedings of the Advances in Neural Information Processing Systems year: 2017 ident: e_1_2_10_25_1 – ident: e_1_2_10_20_1 doi: 10.1111/rssb.12377 – volume-title: Xgboost: Extreme Gradient Boosting. R package version 0.4‐2 year: 2015 ident: e_1_2_10_47_1 – ident: e_1_2_10_8_1 doi: 10.1073/pnas.1900654116 – ident: e_1_2_10_23_1 doi: 10.1142/S0129065797000227 – ident: e_1_2_10_9_1 doi: 10.1016/j.tips.2019.06.001 |
SSID | ssj0011527 |
Score | 2.4406726 |
Snippet | The interpretability of machine learning models, even though with an excellent prediction performance, remains a challenge in practical applications. The model... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 761 |
SubjectTerms | Electronic health records interpretable machine learning Machine learning predictive modeling variable importance |
Title | Variable importance evaluation with personalized odds ratio for machine learning model interpretability with applications to electronic health records‐based mortality prediction |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.9642 https://www.ncbi.nlm.nih.gov/pubmed/36601725 https://www.proquest.com/docview/2774118250 https://www.proquest.com/docview/2761180076 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hHlAlxGN5LRQ0SAhO2TqO49RHhKgK0nIAiipxiPwKWsHuVmT3QE_9Cf0v_KP-knrsJEt5SIhTDrYniTwefx7PfAPwlLZ4njuWVY11mdCKZYYbnnnNK6ON4kZQvvP0rTw4FG-OyqMuqpJyYRI_xOBwo5UR7TUtcG3a3Q1paDubT1RAz8H8UqgW4aF3A3NU3ldrpRtKWeVlzzvL-G4_8PJO9Bu8vIxW43azfwM-9R-aoky-TNYrM7Env3A4_t-f3ITrHQrFF0ltbsEVvxjB1Wl3zz6Ca8mbhylJaQTbhEkTpfNt-PExnK8p4wpn84jeg97ghjUcybWLxz3IP_EOl861GFUNA0bGeQzg9NhVrPiMsRwPzob4xxiw-z0J-vmGHVdL3NTtwZTDicnP1J6fntGW7II0OlGQgCDMzWLixh043H_14eVB1tV-yCzxJWamKRvLmdS8UT7PnaOcdEMkmHtGS2aYL5pqjzWyFK5olC688pUNZr-xttDGFHdha7Fc-PuAhdDGiSo0cy1KZpUJZi6MV9ao3ORiDM97PahtR4xO9Tm-1onSmddhgmqaoDE8GXoeJzKQP_TZ6VWp7sxBWwctFHSSK1kQMTSHhUy3M3rhl2vqI4mOj1VyDPeSCg4vKaSks3o5hmdRkf769vr96yk9H_xrx4ewzQNso6i6vNyBrdW3tX8UYNbKPI4L6gLBeCtH |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIkElxM8CZaHAICE4Zes4iVOLE0JUW-j2AC3qASnyX9CK7m7F7h7oiUfgXXgjngSPnWQpPxLilIPtSSKP7W_GM98APKYjnqeWJWVtbJIryRLNNU-c4qVWWnKdU77z6EAMj_JXx8XxGjxrc2EiP0TncKOVEfZrWuDkkN5esYbOx5OB9PD5Alykgt7BnnrTcUelbb1WuqMUZVq0zLOMb7cjz59FvwHM83g1HDi71-B9-6kxzuTjYLnQA3P2C4vjf_7LdbjaAFF8HjXnBqy5aQ8ujZqr9h5ciQ49jHlKPdggWBpZnW_Ct3fexKakKxxPAoD3qoMr4nAk7y6etjj_zFmcWTvHoG3oYTJOQgynw6ZoxQcMFXlw3IVAhpjdz1HQz5fsuJjhqnQPxjROjK6m-fcvX-lUtl4aGRUkwAuz45C7cQuOdl8evhgmTfmHxBBlYqLrojacCcVr6dLUWkpL18SDuaOVYJq5rC53WC2K3Ga1VJmTrjR-56-NyZTW2W1Yn86m7g5glitt89I3c5UXzEjtdzo_XhotU53mfXjaKkJlGm50KtFxUkVWZ175CapogvrwqOt5GvlA_tBnq9WlqtkR5pVXw5yMuYJ5EV2zX8t0QaOmbrakPoIY-Vgp-rAZdbB7SSYEmetFH54ETfrr26u3eyN63v3Xjg_h8vBwtF_t7x28vgcb3KM4CrJLiy1YX3xauvsedS30g7C6fgA84S9i |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2CIlWVqgIDhaEFjIRglanjOM54iSijFpgKAUWVWER-BY3KPNSZWdAVn8C_9I_4EnztJEN5SIhVFrZvEvnYPrbvPRfgMS7xLLU0KSpjE64kTTTTLHGKFVppyTTHeOfhkTg45i9P8pPaqxJjYaI-RHvghiMjzNc4wGe22luJhs5H45707PkqXOOC9hHR-29b6ai0SdeKV5SiSPNGeJayvabl5aXoN355ma6G9WZwHT42XxrdTE57y4XumfNfRBz_71duwFZNQ8mziJubcMVNOrA-rC_aO7AZj_NIjFLqwAaS0qjpfAsuPvgNNoZckdE40HcPHLKSDSd4tktmDcs_d5ZMrZ2TgDXiSTIZBw9OR-qUFZ9IyMdDRq0DZPDY_RIN_XzFThZTskrcQ2IQJ4kHTfPvX7_hmmy9NdxSoAFvzI5C5MZtOB68eP_8IKmTPyQGBRMTXeWVYVQoVkmXptZiULpGFcy-VoJq6rKq6NNK5NxmlVSZk64wft6vjMmU1tk2rE2mE3cXSMaVtrzwxUzxnBqp_Tzn20ujZapT3oWnDQ5KUyujY4KOz2XUdGal76ASO6gLj9qas6gG8oc6uw2Uyno-mJcehRy3cjn1JtpiP5LxekZN3HSJdQTq8dFCdOFOhGD7kkwI3KznXXgSgPTXt5fvDof4vPevFR_C-pv9Qfn68OjVDmwwT-HQwy7Nd2FtcbZ09z3lWugHYWz9AL--Lho |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+importance+evaluation+with+personalized+odds+ratio+for+machine+learning+model+interpretability+with+applications+to+electronic+health+records%E2%80%90based+mortality+prediction&rft.jtitle=Statistics+in+medicine&rft.au=Yu%2C+Duo&rft.au=Wu%2C+Hulin&rft.date=2023-03-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=42&rft.issue=6&rft.spage=761&rft.epage=780&rft_id=info:doi/10.1002%2Fsim.9642&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |