Variable importance evaluation with personalized odds ratio for machine learning model interpretability with applications to electronic health records‐based mortality prediction

The interpretability of machine learning models, even though with an excellent prediction performance, remains a challenge in practical applications. The model interpretability and variable importance for well‐performed supervised machine learning models are investigated in this study. With the comm...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 42; no. 6; pp. 761 - 780
Main Authors Yu, Duo, Wu, Hulin
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.03.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The interpretability of machine learning models, even though with an excellent prediction performance, remains a challenge in practical applications. The model interpretability and variable importance for well‐performed supervised machine learning models are investigated in this study. With the commonly accepted concept of odds ratio (OR), we propose a novel and computationally efficient Variable Importance evaluation framework based on the Personalized Odds Ratio (VIPOR). It is a model‐agnostic interpretation method that can be used to evaluate variable importance both locally and globally. Locally, the variable importance is quantified by the personalized odds ratio (POR), which can account for subject heterogeneity in machine learning. Globally, we utilize a hierarchical tree to group the predictors into five groups: completely positive, completely negative, positive dominated, negative dominated, and neutral groups. The relative importance of predictors within each group is ranked based on different statistics of PORs across subjects for different application purposes. For illustration, we apply the proposed VIPOR method to interpreting a multilayer perceptron (MLP) model, which aims to predict the mortality of subarachnoid hemorrhage (SAH) patients using real‐world electronic health records (EHR) data. We compare the important variables derived from MLP with other machine learning models, including tree‐based models and the L1‐regularized logistic regression model. The top importance variables are consistently identified by VIPOR across different prediction models. Comparisons with existing interpretation methods are also conducted and discussed based on publicly available data sets.
AbstractList The interpretability of machine learning models, even though with an excellent prediction performance, remains a challenge in practical applications. The model interpretability and variable importance for well‐performed supervised machine learning models are investigated in this study. With the commonly accepted concept of odds ratio (OR), we propose a novel and computationally efficient Variable Importance evaluation framework based on the Personalized Odds Ratio (VIPOR). It is a model‐agnostic interpretation method that can be used to evaluate variable importance both locally and globally. Locally, the variable importance is quantified by the personalized odds ratio (POR), which can account for subject heterogeneity in machine learning. Globally, we utilize a hierarchical tree to group the predictors into five groups: completely positive, completely negative, positive dominated, negative dominated, and neutral groups. The relative importance of predictors within each group is ranked based on different statistics of PORs across subjects for different application purposes. For illustration, we apply the proposed VIPOR method to interpreting a multilayer perceptron (MLP) model, which aims to predict the mortality of subarachnoid hemorrhage (SAH) patients using real‐world electronic health records (EHR) data. We compare the important variables derived from MLP with other machine learning models, including tree‐based models and the L1‐regularized logistic regression model. The top importance variables are consistently identified by VIPOR across different prediction models. Comparisons with existing interpretation methods are also conducted and discussed based on publicly available data sets.
The interpretability of machine learning models, even though with an excellent prediction performance, remains a challenge in practical applications. The model interpretability and variable importance for well-performed supervised machine learning models are investigated in this study. With the commonly accepted concept of odds ratio (OR), we propose a novel and computationally efficient Variable Importance evaluation framework based on the Personalized Odds Ratio (VIPOR). It is a model-agnostic interpretation method that can be used to evaluate variable importance both locally and globally. Locally, the variable importance is quantified by the personalized odds ratio (POR), which can account for subject heterogeneity in machine learning. Globally, we utilize a hierarchical tree to group the predictors into five groups: completely positive, completely negative, positive dominated, negative dominated, and neutral groups. The relative importance of predictors within each group is ranked based on different statistics of PORs across subjects for different application purposes. For illustration, we apply the proposed VIPOR method to interpreting a multilayer perceptron (MLP) model, which aims to predict the mortality of subarachnoid hemorrhage (SAH) patients using real-world electronic health records (EHR) data. We compare the important variables derived from MLP with other machine learning models, including tree-based models and the L1-regularized logistic regression model. The top importance variables are consistently identified by VIPOR across different prediction models. Comparisons with existing interpretation methods are also conducted and discussed based on publicly available data sets.The interpretability of machine learning models, even though with an excellent prediction performance, remains a challenge in practical applications. The model interpretability and variable importance for well-performed supervised machine learning models are investigated in this study. With the commonly accepted concept of odds ratio (OR), we propose a novel and computationally efficient Variable Importance evaluation framework based on the Personalized Odds Ratio (VIPOR). It is a model-agnostic interpretation method that can be used to evaluate variable importance both locally and globally. Locally, the variable importance is quantified by the personalized odds ratio (POR), which can account for subject heterogeneity in machine learning. Globally, we utilize a hierarchical tree to group the predictors into five groups: completely positive, completely negative, positive dominated, negative dominated, and neutral groups. The relative importance of predictors within each group is ranked based on different statistics of PORs across subjects for different application purposes. For illustration, we apply the proposed VIPOR method to interpreting a multilayer perceptron (MLP) model, which aims to predict the mortality of subarachnoid hemorrhage (SAH) patients using real-world electronic health records (EHR) data. We compare the important variables derived from MLP with other machine learning models, including tree-based models and the L1-regularized logistic regression model. The top importance variables are consistently identified by VIPOR across different prediction models. Comparisons with existing interpretation methods are also conducted and discussed based on publicly available data sets.
Author Yu, Duo
Wu, Hulin
Author_xml – sequence: 1
  givenname: Duo
  orcidid: 0000-0002-8988-1646
  surname: Yu
  fullname: Yu, Duo
  organization: Dell Medical School, The University of Texas at Austin
– sequence: 2
  givenname: Hulin
  orcidid: 0000-0002-5809-5407
  surname: Wu
  fullname: Wu, Hulin
  email: hulin.wu@uth.tmc.edu
  organization: The University of Texas Health Science Center at Houston
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36601725$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAURi1URKcFiSdAltiwyWA7iT1ZogpKpSIW_Gwjx75mXDl2sJ1Ww6qPwLvwRjwJzkwBqQJ54YXPd651vxN05IMHhJ5SsqaEsJfJjuuON-wBWlHSiYqwdnOEVoQJUXFB22N0ktIVIZS2TDxCxzXnhArWrtCPzzJaOTjAdpxCzNIrwHAt3SyzDR7f2LzFE8QUvHT2G2gctE44Lq_YhIhHqbbWA3Ygo7f-Cx6DBoetzxCnCFkO1tm8O4jkNDmr9uaEc8DgQOUYvFV4C9IVIoIKUaeft98Hmcq0cfnTXlBk2qol-hg9NNIleHJ3n6JPb15_PHtbXb4_vzh7dVmpuulYNZjWKEa4ZKYDSrXe0A0ZNqScQXIyEKiN2BDD20bXppM1dCAUbbhRqpbDUJ-iFwfvFMPXGVLuR5sUOCc9hDn1THBalETwgj6_h16FOZaVLZRoCsZaUqhnd9Q8jKD7KdpRxl3_u46_E1UMKUUwfxBK-qXpvjTdL00XdH0PVTbvN5ujtO5fgeoQuLEOdv8V9x8u3u35X_PJv9E
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3301162
crossref_primary_10_1007_s12561_024_09454_5
crossref_primary_10_1186_s12911_024_02579_z
crossref_primary_10_3390_jcm13185503
crossref_primary_10_3390_systems12100416
crossref_primary_10_1016_j_heliyon_2023_e22202
Cites_doi 10.1007/s10115-013-0679-x
10.1038/s42256-019-0138-9
10.1201/9781003030003-5
10.1109/ACCESS.2017.2694446
10.1145/2939672.2939778
10.1186/s12911-019-1004-8
10.1148/rg.2017160130
10.1016/S0304-3800(02)00064-9
10.1002/acn3.51208
10.1145/3233547.3233667
10.1609/aaai.v32i1.11491
10.2196/jmir.5870
10.1016/j.jacr.2017.12.028
10.1161/STR.0b013e3182587839
10.1016/j.jocn.2021.07.028
10.1016/j.ecolmodel.2015.06.034
10.1056/NEJMcp1605827
10.1109/TKDE.2010.100
10.1093/ije/28.5.964
10.4135/9781412984560
10.1038/s41598-021-87790-y
10.1109/TKDE.2007.190734
10.1109/CCAA.2018.8777449
10.1145/2783258.2788613
10.1214/aos/1013203451
10.1093/aje/154.3.264
10.1023/A:1010933404324
10.1056/NEJMoa1204942
10.1111/rssb.12377
10.1073/pnas.1900654116
10.1142/S0129065797000227
10.1016/j.tips.2019.06.001
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/sim.9642
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
PubMed
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 780
ExternalDocumentID 36601725
10_1002_sim_9642
SIM9642
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: NIH Texas D‐CFAR
  funderid: P30 AI161943
– fundername: Cancer Prevention and Research Institute of Texas
  funderid: RP170668
– fundername: Cancer Prevention and Research Institute of Texas
  grantid: RP170668
– fundername: NIAID NIH HHS
  grantid: P30 AI161943
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
K9.
7X8
ID FETCH-LOGICAL-c3492-bf5fc206a2f9e11dd8180b80808ba60b0e3f780f654d3f9a3e9e7c146fcc3abb3
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 06:22:16 EDT 2025
Fri Jul 25 09:55:20 EDT 2025
Mon Jul 21 06:07:51 EDT 2025
Tue Jul 01 03:28:18 EDT 2025
Thu Apr 24 23:04:25 EDT 2025
Wed Jan 22 16:24:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords variable importance
electronic health records
predictive modeling
interpretable machine learning
Language English
License 2023 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3492-bf5fc206a2f9e11dd8180b80808ba60b0e3f780f654d3f9a3e9e7c146fcc3abb3
Notes Funding information
Cancer Prevention and Research Institute of Texas, Grant/Award Number: RP170668; NIH Texas D‐CFAR, Grant/Award Number: P30 AI161943
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5809-5407
0000-0002-8988-1646
PMID 36601725
PQID 2774118250
PQPubID 48361
PageCount 20
ParticipantIDs proquest_miscellaneous_2761180076
proquest_journals_2774118250
pubmed_primary_36601725
crossref_primary_10_1002_sim_9642
crossref_citationtrail_10_1002_sim_9642
wiley_primary_10_1002_sim_9642_SIM9642
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 March 2023
PublicationDateYYYYMMDD 2023-03-15
PublicationDate_xml – month: 03
  year: 2023
  text: 15 March 2023
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 5
2010; 11
2002; 154
2020; 82
1999; 28
1997
2019; 19
2011; 12
2001; 29
2014; 41
2012; 367
2016; 18
2001; 45
2017; 377
1991; 6
1997; 8
2021; 91
2010; 23
2020; 7
2001; 154
2019; 40
2020; 2
2021; 11
2017; 37
2019; 20
2015; 313
2022
2021
2020
2019; 116
2019
2018
2017
2016
2015
1982
2008; 20
2012; 43
2018; 15
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_42_1
e_1_2_10_40_1
Kononenko I (e_1_2_10_27_1) 2010; 11
e_1_2_10_2_1
Candel A (e_1_2_10_44_1) 2016
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_39_1
Chen T (e_1_2_10_47_1) 2015
e_1_2_10_8_1
e_1_2_10_14_1
Shapley LS (e_1_2_10_24_1) 2016
e_1_2_10_13_1
Lundberg SM (e_1_2_10_38_1) 2018
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Pedersen TL (e_1_2_10_34_1) 2021
Lundberg SM (e_1_2_10_26_1) 2018
Garson GD (e_1_2_10_22_1) 1991; 6
Molnar C (e_1_2_10_35_1) 2022
e_1_2_10_29_1
Fisher A (e_1_2_10_16_1) 2019; 20
e_1_2_10_48_1
e_1_2_10_45_1
e_1_2_10_43_1
Pedregosa F (e_1_2_10_50_1) 2011; 12
e_1_2_10_20_1
e_1_2_10_41_1
Ribeiro MT (e_1_2_10_36_1) 2021
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_9_1
e_1_2_10_10_1
Baehrens D (e_1_2_10_12_1) 2010; 11
e_1_2_10_31_1
Cox C (e_1_2_10_49_1) 1997
Greenwell B (e_1_2_10_37_1) 2021
Lundberg SM (e_1_2_10_25_1) 2017
Alvarez‐Melis D (e_1_2_10_33_1) 2018
e_1_2_10_28_1
References_xml – volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  article-title: Random forests
  publication-title: Mach Learn
– volume: 37
  start-page: 505
  issue: 2
  year: 2017
  end-page: 515
  article-title: Machine learning for medical imaging
  publication-title: Radiographics
– volume: 6
  start-page: 46
  issue: 4
  year: 1991
  end-page: 51
  article-title: Interpreting neural‐network connection weights
  publication-title: AI Exp
– volume: 41
  start-page: 647
  issue: 3
  year: 2014
  end-page: 665
  article-title: Explaining prediction models and individual predictions with feature contributions
  publication-title: Knowl Informat Syst
– volume: 154
  start-page: 135
  issue: 1‐2
  year: 2002
  end-page: 150
  article-title: Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks
  publication-title: Ecol Model
– start-page: 307
  year: 2016
  end-page: 318
– volume: 11
  start-page: 1803
  issue: Jun
  year: 2010
  end-page: 1831
  article-title: How to explain individual classification decisions
  publication-title: J Mach Learn Res
– volume: 18
  issue: 12
  year: 2016
  article-title: Guidelines for developing and reporting machine learning predictive models in biomedical research: a multidisciplinary view
  publication-title: J Med Internet Res
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  end-page: 13
  article-title: Scopolamine promotes neuroinflammation and delirium‐like neuropsychiatric disorder in mice
  publication-title: Sci Rep
– start-page: 559
  year: 2018
  end-page: 560
– volume: 367
  start-page: 1108
  issue: 12
  year: 2012
  end-page: 1118
  article-title: Hypoglycemia and risk of death in critically ill patients
  publication-title: New England J Med
– volume: 91
  start-page: 334
  year: 2021
  end-page: 342
  article-title: Analysis of risk factors correlated with angiographic vasospasm in patients with aneurysmal subarachnoid hemorrhage using explainable predictive modeling
  publication-title: J Clin Neurosci
– volume: 43
  start-page: 1711
  issue: 6
  year: 2012
  end-page: 1737
  article-title: Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association
  publication-title: Stroke
– year: 2021
– volume: 154
  start-page: 264
  issue: 3
  year: 2001
  end-page: 275
  article-title: Application of nonparametric models for calculating odds ratios and their confidence intervals for continuous exposures
  publication-title: Am J Epidemiol
– volume: 8
  start-page: 209
  issue: 02
  year: 1997
  end-page: 218
  article-title: Data mining of inputs: analysing magnitude and functional measures
  publication-title: Int J Neural Syst
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  end-page: 1232
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann Stat
– volume: 20
  start-page: 589
  issue: 5
  year: 2008
  end-page: 600
  article-title: Explaining classifications for individual instances
  publication-title: IEEE Tran Knowl Data Eng
– start-page: 1
  year: 2018
  end-page: 4
– year: 2016
– year: 2018
– volume: 5
  start-page: 8869
  year: 2017
  end-page: 8879
  article-title: Disease prediction by machine learning over big data from healthcare communities
  publication-title: IEEE Access
– volume: 40
  issue: 8
  year: 2019
  article-title: The missing pieces of artificial intelligence in medicine
  publication-title: Trends Pharmacol Sci
– start-page: 111
  year: 2020
  end-page: 147
– volume: 20
  start-page: 1
  issue: 177
  year: 2019
  end-page: 81
  article-title: All models are wrong, but many are useful: Learning a variable's importance by studying an entire class of prediction models simultaneously
  publication-title: J Mach Learn Res
– volume: 2
  start-page: 56
  issue: 1
  year: 2020
  end-page: 67
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nature Mach Intell
– year: 1982
– volume: 82
  start-page: 1059
  issue: 4
  year: 2020
  end-page: 1086
  article-title: Visualizing the effects of predictor variables in black box supervised learning models
  publication-title: J R Stat Soc Series B Stat Methodol
– volume: 11
  start-page: 1
  issue: Jan
  year: 2010
  end-page: 18
  article-title: An efficient explanation of individual classifications using game theory
  publication-title: J Mach Learn Res
– volume: 7
  start-page: 2178
  issue: 11
  year: 2020
  end-page: 2185
  article-title: Machine learning prediction of the adverse outcome for nontraumatic subarachnoid hemorrhage patients
  publication-title: Annal Clinical Translat Neurol
– year: 2022
– volume: 15
  start-page: 512
  issue: 3
  year: 2018
  end-page: 520
  article-title: Machine learning in medical imaging
  publication-title: J Am Coll Radiol
– year: 1997
– volume: 23
  start-page: 51
  issue: 1
  year: 2010
  end-page: 63
  article-title: Data leakage detection
  publication-title: IEEE Tran Knowl Data Eng
– volume: 116
  start-page: 22071
  issue: 44
  year: 2019
  end-page: 22080
  article-title: Definitions, methods, and applications in interpretable machine learning
  publication-title: Proc Natl Acad Sci
– volume: 28
  start-page: 964
  issue: 5
  year: 1999
  end-page: 974
  article-title: The use of fractional polynomials to model continuous risk variables in epidemiology
  publication-title: Int J Epidemiol
– start-page: 1721
  year: 2015
  end-page: 1730
– volume: 313
  start-page: 307
  year: 2015
  end-page: 313
  article-title: A new R2‐based metric to shed greater insight on variable importance in artificial neural networks
  publication-title: Ecol Model
– volume: 377
  start-page: 257
  issue: 3
  year: 2017
  end-page: 266
  article-title: Subarachnoid hemorrhage
  publication-title: New England J Med
– year: 2017
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  article-title: Scikit‐learn: Machine Learning in Python
  publication-title: J Mach Learn Res
– start-page: 1135
  year: 2016
  end-page: 1144
– year: 2019
– volume: 19
  start-page: 1
  issue: 1
  year: 2019
  end-page: 16
  article-title: Comparing different supervised machine learning algorithms for disease prediction
  publication-title: BMC Med Inform Decis Mak
– year: 2015
– ident: e_1_2_10_28_1
  doi: 10.1007/s10115-013-0679-x
– volume-title: shap
  year: 2018
  ident: e_1_2_10_38_1
– ident: e_1_2_10_29_1
  doi: 10.1038/s42256-019-0138-9
– ident: e_1_2_10_54_1
  doi: 10.1201/9781003030003-5
– ident: e_1_2_10_30_1
– ident: e_1_2_10_4_1
  doi: 10.1109/ACCESS.2017.2694446
– ident: e_1_2_10_15_1
  doi: 10.1145/2939672.2939778
– ident: e_1_2_10_5_1
  doi: 10.1186/s12911-019-1004-8
– ident: e_1_2_10_2_1
  doi: 10.1148/rg.2017160130
– ident: e_1_2_10_21_1
  doi: 10.1016/S0304-3800(02)00064-9
– ident: e_1_2_10_7_1
  doi: 10.1002/acn3.51208
– volume-title: Vital Health Stat 1. No. 35
  year: 1997
  ident: e_1_2_10_49_1
– volume: 11
  start-page: 1
  year: 2010
  ident: e_1_2_10_27_1
  article-title: An efficient explanation of individual classifications using game theory
  publication-title: J Mach Learn Res
– ident: e_1_2_10_10_1
  doi: 10.1145/3233547.3233667
– ident: e_1_2_10_14_1
  doi: 10.1609/aaai.v32i1.11491
– ident: e_1_2_10_31_1
– volume: 6
  start-page: 46
  issue: 4
  year: 1991
  ident: e_1_2_10_22_1
  article-title: Interpreting neural‐network connection weights
  publication-title: AI Exp
– ident: e_1_2_10_53_1
  doi: 10.2196/jmir.5870
– ident: e_1_2_10_3_1
  doi: 10.1016/j.jacr.2017.12.028
– volume-title: deep learning with H2O
  year: 2016
  ident: e_1_2_10_44_1
– volume-title: On the robustness of interpretability methods
  year: 2018
  ident: e_1_2_10_33_1
– ident: e_1_2_10_42_1
  doi: 10.1161/STR.0b013e3182587839
– ident: e_1_2_10_39_1
  doi: 10.1016/j.jocn.2021.07.028
– volume-title: Consistent individualized feature attribution for tree ensembles
  year: 2018
  ident: e_1_2_10_26_1
– ident: e_1_2_10_48_1
– ident: e_1_2_10_18_1
  doi: 10.1016/j.ecolmodel.2015.06.034
– ident: e_1_2_10_43_1
  doi: 10.1056/NEJMcp1605827
– volume: 20
  start-page: 1
  issue: 177
  year: 2019
  ident: e_1_2_10_16_1
  article-title: All models are wrong, but many are useful: Learning a variable's importance by studying an entire class of prediction models simultaneously
  publication-title: J Mach Learn Res
– ident: e_1_2_10_52_1
  doi: 10.1109/TKDE.2010.100
– volume-title: Local Interpretable Model‐Agnostic Explanations
  year: 2021
  ident: e_1_2_10_34_1
– ident: e_1_2_10_40_1
  doi: 10.1093/ije/28.5.964
– ident: e_1_2_10_32_1
– ident: e_1_2_10_51_1
  doi: 10.4135/9781412984560
– ident: e_1_2_10_46_1
  doi: 10.1038/s41598-021-87790-y
– ident: e_1_2_10_13_1
  doi: 10.1109/TKDE.2007.190734
– ident: e_1_2_10_6_1
  doi: 10.1109/CCAA.2018.8777449
– ident: e_1_2_10_11_1
  doi: 10.1145/2783258.2788613
– volume: 11
  start-page: 1803
  year: 2010
  ident: e_1_2_10_12_1
  article-title: How to explain individual classification decisions
  publication-title: J Mach Learn Res
– ident: e_1_2_10_19_1
  doi: 10.1214/aos/1013203451
– ident: e_1_2_10_41_1
  doi: 10.1093/aje/154.3.264
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_10_50_1
  article-title: Scikit‐learn: Machine Learning in Python
  publication-title: J Mach Learn Res
– ident: e_1_2_10_17_1
  doi: 10.1023/A:1010933404324
– volume-title: iml: Interpretable Machine Learning
  year: 2022
  ident: e_1_2_10_35_1
– volume-title: fastshap: Fast Approximate Shapley Values
  year: 2021
  ident: e_1_2_10_37_1
– ident: e_1_2_10_45_1
  doi: 10.1056/NEJMoa1204942
– volume-title: iml: Interpretable Machine Learning
  year: 2021
  ident: e_1_2_10_36_1
– start-page: 307
  volume-title: Contributions to the Theory of Games (AM‐28)
  year: 2016
  ident: e_1_2_10_24_1
– volume-title: Proceedings of the Advances in Neural Information Processing Systems
  year: 2017
  ident: e_1_2_10_25_1
– ident: e_1_2_10_20_1
  doi: 10.1111/rssb.12377
– volume-title: Xgboost: Extreme Gradient Boosting. R package version 0.4‐2
  year: 2015
  ident: e_1_2_10_47_1
– ident: e_1_2_10_8_1
  doi: 10.1073/pnas.1900654116
– ident: e_1_2_10_23_1
  doi: 10.1142/S0129065797000227
– ident: e_1_2_10_9_1
  doi: 10.1016/j.tips.2019.06.001
SSID ssj0011527
Score 2.4406726
Snippet The interpretability of machine learning models, even though with an excellent prediction performance, remains a challenge in practical applications. The model...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 761
SubjectTerms Electronic health records
interpretable machine learning
Machine learning
predictive modeling
variable importance
Title Variable importance evaluation with personalized odds ratio for machine learning model interpretability with applications to electronic health records‐based mortality prediction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.9642
https://www.ncbi.nlm.nih.gov/pubmed/36601725
https://www.proquest.com/docview/2774118250
https://www.proquest.com/docview/2761180076
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6hHlAlxGN5LRQ0SAhO2TqO49RHhKgK0nIAiipxiPwKWsHuVmT3QE_9Cf0v_KP-knrsJEt5SIhTDrYniTwefx7PfAPwlLZ4njuWVY11mdCKZYYbnnnNK6ON4kZQvvP0rTw4FG-OyqMuqpJyYRI_xOBwo5UR7TUtcG3a3Q1paDubT1RAz8H8UqgW4aF3A3NU3ldrpRtKWeVlzzvL-G4_8PJO9Bu8vIxW43azfwM-9R-aoky-TNYrM7Env3A4_t-f3ITrHQrFF0ltbsEVvxjB1Wl3zz6Ca8mbhylJaQTbhEkTpfNt-PExnK8p4wpn84jeg97ghjUcybWLxz3IP_EOl861GFUNA0bGeQzg9NhVrPiMsRwPzob4xxiw-z0J-vmGHVdL3NTtwZTDicnP1J6fntGW7II0OlGQgCDMzWLixh043H_14eVB1tV-yCzxJWamKRvLmdS8UT7PnaOcdEMkmHtGS2aYL5pqjzWyFK5olC688pUNZr-xttDGFHdha7Fc-PuAhdDGiSo0cy1KZpUJZi6MV9ao3ORiDM97PahtR4xO9Tm-1onSmddhgmqaoDE8GXoeJzKQP_TZ6VWp7sxBWwctFHSSK1kQMTSHhUy3M3rhl2vqI4mOj1VyDPeSCg4vKaSks3o5hmdRkf769vr96yk9H_xrx4ewzQNso6i6vNyBrdW3tX8UYNbKPI4L6gLBeCtH
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6VIkElxM8CZaHAICE4Zes4iVOLE0JUW-j2AC3qASnyX9CK7m7F7h7oiUfgXXgjngSPnWQpPxLilIPtSSKP7W_GM98APKYjnqeWJWVtbJIryRLNNU-c4qVWWnKdU77z6EAMj_JXx8XxGjxrc2EiP0TncKOVEfZrWuDkkN5esYbOx5OB9PD5Alykgt7BnnrTcUelbb1WuqMUZVq0zLOMb7cjz59FvwHM83g1HDi71-B9-6kxzuTjYLnQA3P2C4vjf_7LdbjaAFF8HjXnBqy5aQ8ujZqr9h5ciQ49jHlKPdggWBpZnW_Ct3fexKakKxxPAoD3qoMr4nAk7y6etjj_zFmcWTvHoG3oYTJOQgynw6ZoxQcMFXlw3IVAhpjdz1HQz5fsuJjhqnQPxjROjK6m-fcvX-lUtl4aGRUkwAuz45C7cQuOdl8evhgmTfmHxBBlYqLrojacCcVr6dLUWkpL18SDuaOVYJq5rC53WC2K3Ga1VJmTrjR-56-NyZTW2W1Yn86m7g5glitt89I3c5UXzEjtdzo_XhotU53mfXjaKkJlGm50KtFxUkVWZ175CapogvrwqOt5GvlA_tBnq9WlqtkR5pVXw5yMuYJ5EV2zX8t0QaOmbrakPoIY-Vgp-rAZdbB7SSYEmetFH54ETfrr26u3eyN63v3Xjg_h8vBwtF_t7x28vgcb3KM4CrJLiy1YX3xauvsedS30g7C6fgA84S9i
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL2CIlWVqgIDhaEFjIRglanjOM54iSijFpgKAUWVWER-BY3KPNSZWdAVn8C_9I_4EnztJEN5SIhVFrZvEvnYPrbvPRfgMS7xLLU0KSpjE64kTTTTLHGKFVppyTTHeOfhkTg45i9P8pPaqxJjYaI-RHvghiMjzNc4wGe22luJhs5H45707PkqXOOC9hHR-29b6ai0SdeKV5SiSPNGeJayvabl5aXoN355ma6G9WZwHT42XxrdTE57y4XumfNfRBz_71duwFZNQ8mziJubcMVNOrA-rC_aO7AZj_NIjFLqwAaS0qjpfAsuPvgNNoZckdE40HcPHLKSDSd4tktmDcs_d5ZMrZ2TgDXiSTIZBw9OR-qUFZ9IyMdDRq0DZPDY_RIN_XzFThZTskrcQ2IQJ4kHTfPvX7_hmmy9NdxSoAFvzI5C5MZtOB68eP_8IKmTPyQGBRMTXeWVYVQoVkmXptZiULpGFcy-VoJq6rKq6NNK5NxmlVSZk64wft6vjMmU1tk2rE2mE3cXSMaVtrzwxUzxnBqp_Tzn20ujZapT3oWnDQ5KUyujY4KOz2XUdGal76ASO6gLj9qas6gG8oc6uw2Uyno-mJcehRy3cjn1JtpiP5LxekZN3HSJdQTq8dFCdOFOhGD7kkwI3KznXXgSgPTXt5fvDof4vPevFR_C-pv9Qfn68OjVDmwwT-HQwy7Nd2FtcbZ09z3lWugHYWz9AL--Lho
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variable+importance+evaluation+with+personalized+odds+ratio+for+machine+learning+model+interpretability+with+applications+to+electronic+health+records%E2%80%90based+mortality+prediction&rft.jtitle=Statistics+in+medicine&rft.au=Yu%2C+Duo&rft.au=Wu%2C+Hulin&rft.date=2023-03-15&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=42&rft.issue=6&rft.spage=761&rft.epage=780&rft_id=info:doi/10.1002%2Fsim.9642&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon