The vitamin D metabolome: An update on analysis and function

Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25‐hydroxyvitamin D3 (25OHD3) and its conversion to the active hormonal form, 1α,25‐dihydroxyvitamin D3 (1α,25(OH)2D3) via the enzyme 25‐hydroxyvitamin D‐1α‐hydroxylase (CYP27B1). However, whilst...

Full description

Saved in:
Bibliographic Details
Published inCell biochemistry and function Vol. 37; no. 6; pp. 408 - 423
Main Author Jenkinson, Carl
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25‐hydroxyvitamin D3 (25OHD3) and its conversion to the active hormonal form, 1α,25‐dihydroxyvitamin D3 (1α,25(OH)2D3) via the enzyme 25‐hydroxyvitamin D‐1α‐hydroxylase (CYP27B1). However, whilst these metabolites form the endocrine backbone of vitamin D physiology, it is important to recognise that there are other metabolic and catabolic pathways that are now recognised as being crucially important to vitamin D function. These pathways include C3‐epimerization, CYP24A1 hydroxylase, CYP11A1 alternative metabolism of vitamin D3, and phase II metabolism. Endogenous metabolites beyond 25OHD3 are usually present at low endogenous levels and may only be functional in specific target tissues rather than in the general circulation. However, the technologies available to measure these metabolites have also improved, so that measurement of alternative vitamin D metabolic pathways may become more routine in the near future. The aim of this review is to provide a comprehensive overview of the various pathways of vitamin D metabolism, as well as describe the analytical techniques currently available to measure these vitamin D metabolites.
AbstractList Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25‐hydroxyvitamin D3 (25OHD3) and its conversion to the active hormonal form, 1α,25‐dihydroxyvitamin D3 (1α,25(OH) 2 D3) via the enzyme 25‐hydroxyvitamin D‐1α‐hydroxylase (CYP27B1). However, whilst these metabolites form the endocrine backbone of vitamin D physiology, it is important to recognise that there are other metabolic and catabolic pathways that are now recognised as being crucially important to vitamin D function. These pathways include C3‐epimerization, CYP24A1 hydroxylase, CYP11A1 alternative metabolism of vitamin D3, and phase II metabolism. Endogenous metabolites beyond 25OHD3 are usually present at low endogenous levels and may only be functional in specific target tissues rather than in the general circulation. However, the technologies available to measure these metabolites have also improved, so that measurement of alternative vitamin D metabolic pathways may become more routine in the near future. The aim of this review is to provide a comprehensive overview of the various pathways of vitamin D metabolism, as well as describe the analytical techniques currently available to measure these vitamin D metabolites.
Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25-hydroxyvitamin D3 (25OHD3) and its conversion to the active hormonal form, 1α,25-dihydroxyvitamin D3 (1α,25(OH) D3) via the enzyme 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1). However, whilst these metabolites form the endocrine backbone of vitamin D physiology, it is important to recognise that there are other metabolic and catabolic pathways that are now recognised as being crucially important to vitamin D function. These pathways include C3-epimerization, CYP24A1 hydroxylase, CYP11A1 alternative metabolism of vitamin D3, and phase II metabolism. Endogenous metabolites beyond 25OHD3 are usually present at low endogenous levels and may only be functional in specific target tissues rather than in the general circulation. However, the technologies available to measure these metabolites have also improved, so that measurement of alternative vitamin D metabolic pathways may become more routine in the near future. The aim of this review is to provide a comprehensive overview of the various pathways of vitamin D metabolism, as well as describe the analytical techniques currently available to measure these vitamin D metabolites.
Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25‐hydroxyvitamin D3 (25OHD3) and its conversion to the active hormonal form, 1α,25‐dihydroxyvitamin D3 (1α,25(OH)2D3) via the enzyme 25‐hydroxyvitamin D‐1α‐hydroxylase (CYP27B1). However, whilst these metabolites form the endocrine backbone of vitamin D physiology, it is important to recognise that there are other metabolic and catabolic pathways that are now recognised as being crucially important to vitamin D function. These pathways include C3‐epimerization, CYP24A1 hydroxylase, CYP11A1 alternative metabolism of vitamin D3, and phase II metabolism. Endogenous metabolites beyond 25OHD3 are usually present at low endogenous levels and may only be functional in specific target tissues rather than in the general circulation. However, the technologies available to measure these metabolites have also improved, so that measurement of alternative vitamin D metabolic pathways may become more routine in the near future. The aim of this review is to provide a comprehensive overview of the various pathways of vitamin D metabolism, as well as describe the analytical techniques currently available to measure these vitamin D metabolites.
Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25-hydroxyvitamin D3 (25OHD3) and its conversion to the active hormonal form, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 D3) via the enzyme 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1). However, whilst these metabolites form the endocrine backbone of vitamin D physiology, it is important to recognise that there are other metabolic and catabolic pathways that are now recognised as being crucially important to vitamin D function. These pathways include C3-epimerization, CYP24A1 hydroxylase, CYP11A1 alternative metabolism of vitamin D3, and phase II metabolism. Endogenous metabolites beyond 25OHD3 are usually present at low endogenous levels and may only be functional in specific target tissues rather than in the general circulation. However, the technologies available to measure these metabolites have also improved, so that measurement of alternative vitamin D metabolic pathways may become more routine in the near future. The aim of this review is to provide a comprehensive overview of the various pathways of vitamin D metabolism, as well as describe the analytical techniques currently available to measure these vitamin D metabolites.Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25-hydroxyvitamin D3 (25OHD3) and its conversion to the active hormonal form, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 D3) via the enzyme 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1). However, whilst these metabolites form the endocrine backbone of vitamin D physiology, it is important to recognise that there are other metabolic and catabolic pathways that are now recognised as being crucially important to vitamin D function. These pathways include C3-epimerization, CYP24A1 hydroxylase, CYP11A1 alternative metabolism of vitamin D3, and phase II metabolism. Endogenous metabolites beyond 25OHD3 are usually present at low endogenous levels and may only be functional in specific target tissues rather than in the general circulation. However, the technologies available to measure these metabolites have also improved, so that measurement of alternative vitamin D metabolic pathways may become more routine in the near future. The aim of this review is to provide a comprehensive overview of the various pathways of vitamin D metabolism, as well as describe the analytical techniques currently available to measure these vitamin D metabolites.
Author Jenkinson, Carl
Author_xml – sequence: 1
  givenname: Carl
  orcidid: 0000-0002-1838-5282
  surname: Jenkinson
  fullname: Jenkinson, Carl
  email: c.jenkinson@bham.ac.uk
  organization: University of Birmingham
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31328813$$D View this record in MEDLINE/PubMed
BookMark eNp10E1LwzAYwPEgE_ei4CeQghcvnXntGvEyp1Nh4GWeQ5o-xY42mU2r7Nvb7kVB9JQcfnl48h-innUWEDoneEwwptcmycaMU3KEBgRLGeKY8x4aYBqxMOIx76Oh9yuMsYwYPkF9RhiNY8IG6Hb5BsFHXusyt8F9UEKtE1e4Em6CqQ2adaprCJwNtNXFxue-vaRB1lhT586eouNMFx7O9ucIvc4flrOncPHy-DybLkLDuCQhEGYES0CkDAPBYDIsEh4bJmDCmYwJ4dRkMktFRGJGjRA6IVzQRCdMtpyN0NVu7rpy7w34WpW5N1AU2oJrvKI0InIicCxbevmLrlxTtctvlaRYTEinLvaqSUpI1brKS11t1KFLC8Y7YCrnfQWZMm2j7s91pfNCEay68KoNr7rwPyt-PzjM_IOGO_qZF7D516nZ3XzrvwBEho2u
CitedBy_id crossref_primary_10_1002_mas_21768
crossref_primary_10_1139_bcb_2022_0049
crossref_primary_10_1007_s12013_020_00913_6
crossref_primary_10_1080_07391102_2021_1964601
crossref_primary_10_1186_s43043_024_00197_3
crossref_primary_10_1038_s41584_023_00944_2
crossref_primary_10_1016_j_cca_2021_03_002
crossref_primary_10_1111_brv_13091
crossref_primary_10_1515_cclm_2022_1267
crossref_primary_10_3892_ijo_2022_5386
crossref_primary_10_1016_j_tjnut_2023_10_029
crossref_primary_10_3390_ijms22169097
crossref_primary_10_33176_AACB_20_00006
crossref_primary_10_3390_cancers12102965
crossref_primary_10_1016_j_jsbmb_2022_106229
crossref_primary_10_1016_j_bioorg_2022_105660
crossref_primary_10_3390_nu14081586
crossref_primary_10_1038_s41371_021_00577_6
crossref_primary_10_1111_odi_13650
crossref_primary_10_3390_nu12030801
crossref_primary_10_1210_endrev_bnae009
crossref_primary_10_3389_fvets_2021_707741
crossref_primary_10_1016_j_steroids_2021_108812
crossref_primary_10_1186_s13063_024_08461_7
crossref_primary_10_2147_IJGM_S366725
crossref_primary_10_1007_s00216_022_04097_1
crossref_primary_10_1210_clinem_dgab708
crossref_primary_10_1016_j_ijbiomac_2022_04_048
crossref_primary_10_3390_biom14050551
crossref_primary_10_1017_S0007114523001952
crossref_primary_10_3390_ijms21239296
crossref_primary_10_1515_chem_2021_0107
crossref_primary_10_20473_mog_V30I32022_154_160
crossref_primary_10_3390_cells13030239
crossref_primary_10_1039_D2AN01982E
crossref_primary_10_1016_j_heliyon_2023_e14291
crossref_primary_10_3390_nu13113672
crossref_primary_10_1530_EC_21_0554
crossref_primary_10_3390_nu12040998
crossref_primary_10_3390_ijms25105286
crossref_primary_10_3390_nu12113541
crossref_primary_10_3390_cosmetics11020037
crossref_primary_10_3390_ijms22094983
crossref_primary_10_3390_molecules25112583
crossref_primary_10_1016_j_clnu_2020_10_027
crossref_primary_10_1186_s41043_023_00401_6
crossref_primary_10_3389_fimmu_2021_678487
crossref_primary_10_3390_diagnostics12051229
crossref_primary_10_3390_nu13010200
crossref_primary_10_26442_00403660_2021_10_201081
crossref_primary_10_1515_cclm_2022_0148
crossref_primary_10_3390_nu13061758
crossref_primary_10_3390_nu14224779
crossref_primary_10_1096_fj_202200578R
crossref_primary_10_3389_fonc_2021_743667
crossref_primary_10_54005_geneltip_1098363
crossref_primary_10_1016_j_plipres_2023_101220
crossref_primary_10_3389_fphar_2022_835480
crossref_primary_10_3390_foods12071429
crossref_primary_10_1021_acs_molpharmaceut_1c00944
crossref_primary_10_3390_biology10030237
crossref_primary_10_3390_ijms23020933
crossref_primary_10_3389_fphar_2022_902639
crossref_primary_10_1016_j_ejmech_2024_116403
Cites_doi 10.1172/JCI5244
10.1016/j.abb.2012.01.013
10.1016/S0021-9258(17)43539-3
10.1002/jcb.10359
10.1021/bi00717a005
10.1016/j.jsbmb.2010.02.025
10.1146/annurev.nu.04.070184.002425
10.1016/j.bcp.2012.09.032
10.1210/jcem-67-2-373
10.1073/pnas.78.11.6579
10.1016/S0731-7085(02)00135-8
10.1016/j.jchromb.2017.06.017
10.1073/pnas.1315006110
10.1373/clinchem.2015.241430
10.1093/ajcn/85.3.860
10.1007/s12031-015-0643-1
10.1530/EJE-15-0338
10.1073/pnas.95.4.1387
10.1111/j.1742-4658.2005.04819.x
10.1210/jc.2008-1454
10.1016/S0960-0760(97)00020-4
10.1016/j.abb.2012.02.016
10.3748/wjg.v19.i17.2621
10.1038/281317a0
10.1002/jbmr.387
10.1016/j.jchromb.2015.12.014
10.1373/clinchem.2015.239491
10.1093/clinchem/30.11.1731
10.1021/bi960658i
10.1007/s11154-013-9241-0
10.1371/journal.pone.0030773
10.1073/pnas.0402490101
10.1016/S0021-9673(01)00985-2
10.1021/bi00430a051
10.1002/jcb.24576
10.1016/j.tibs.2004.10.005
10.1042/bj2620173
10.1021/jm040129
10.1021/jm980736v
10.1016/j.jchromb.2018.04.025
10.1038/srep14875
10.1016/j.foodchem.2004.08.022
10.1021/mp500429u
10.1073/pnas.75.5.2080
10.1124/dmd.117.078428
10.1093/clinchem/46.10.1657
10.1021/bi00454a035
10.1046/j.1432-1327.1999.00375.x
10.1016/j.jsbmb.2012.09.016
10.1007/s00216-008-2095-8
10.1681/ASN.V133621
10.3177/jnsv.47.108
10.1016/S0378-4347(96)00377-5
10.1006/abbi.1999.1308
10.3945/jn.114.192419
10.1021/bi036056y
10.1111/j.1742-4658.2006.05302.x
10.1126/science.6256855
10.1016/j.jsbmb.2014.11.010
10.1016/j.abb.2006.08.021
10.1021/acschembio.6b00569
10.1681/ASN.V10122465
10.1373/clinchem.2015.244459
10.1074/jbc.M311473200
10.1016/j.jchromb.2014.01.045
10.1210/jcem-33-3-554
10.1021/bi00366a051
10.1021/bi030207f
10.1016/j.clinbiochem.2010.05.007
10.1073/pnas.68.9.2131
10.1016/j.clinbiochem.2018.02.013
10.1152/physrev.1998.78.4.1193
10.1021/jm050738x
10.1016/S0960-0760(01)00082-6
10.1016/j.ejmech.2010.07.001
10.1124/dmd.113.050955
10.1002/1873-3468.12767
10.1016/S0021-9258(20)80689-9
10.1359/JBMR.0301257
10.1042/cs0400039
10.1016/j.jchromb.2013.05.029
10.1126/science.982048
10.1021/bi00294a025
10.1016/j.jsbmb.2011.11.012
10.1021/ac9026862
10.1073/pnas.0702093104
10.1016/j.bbalip.2006.01.004
10.1016/j.placenta.2016.12.019
10.1021/bi00573a011
10.1016/S0021-9258(17)44058-0
10.1039/C7AY00550D
10.1016/S0168-9452(02)00420-X
10.1016/S0039-128X(00)00087-8
10.1016/S0021-9258(17)40673-9
10.1194/jlr.R031534
10.1021/ac202047n
10.1093/ajcn/88.2.582S
10.1126/science.183.4130.1198
10.1210/en.2009-1156
10.1016/j.clinbiochem.2012.10.037
10.1016/0003-9861(84)90422-3
10.1007/s00216-017-0215-z
10.1046/j.1432-1327.2000.01680.x
10.1006/bbrc.1998.9098
10.1210/jc.2014-4387
10.1016/j.jsbmb.2017.02.004
10.1016/0960-894X(96)00301-0
10.1016/j.abb.2011.11.003
10.1016/j.plabm.2015.04.001
10.1016/j.jchromb.2014.08.027
10.1002/jbmr.1839
10.1021/bi00456a014
10.1073/pnas.2336107100
10.1016/S0731-7085(96)01983-8
10.1016/j.chembiol.2013.12.016
10.1021/bi00415a058
10.1172/JCI200419081
10.1016/S0005-2760(97)00026-X
10.1021/bi00504a037
10.1002/(SICI)1097-4644(19990401)73:1<106::AID-JCB12>3.0.CO;2-Q
10.1530/JME-18-0086
10.1016/S0039-128X(99)00057-4
10.1021/jm5009314
10.1021/ol035922w
10.1074/jbc.M307028200
10.1126/science.186.4168.1038
10.1006/abbi.2001.2419
10.1056/NEJMra070553
10.1016/0003-2697(77)90648-0
10.1021/bi00850a001
10.1016/0014-5793(85)80002-8
10.1002/mas.21408
10.1124/mol.111.076356
10.1021/bi00302a021
10.3389/fpls.2013.00136
10.1210/jc.2013-2872
10.1021/jm0604070
10.1021/bi00558a007
10.1210/jc.2010-2704
10.1210/jc.2011-0385
10.1126/science.6281884
10.1016/j.bone.2014.12.068
10.1074/jbc.273.24.14805
10.1021/bi00375a045
10.1210/endo.140.5.6691
10.1124/dmd.110.034389
10.1016/0006-2952(96)00173-6
10.1210/jcem-63-4-954
10.1016/j.jsbmb.2017.07.018
10.1016/j.jsbmb.2006.12.091
10.1016/j.bmc.2010.06.011
10.1016/j.annepidem.2007.12.001
10.1056/NEJMoa1103864
10.1016/j.jsbmb.2013.10.012
10.1042/bj2140261
10.1172/JCI98680
10.1016/j.chembiol.2005.06.010
10.1124/mol.65.3.720
10.1373/clinchem.2015.244541
10.1016/j.jsbmb.2017.11.014
10.1006/abbi.1996.0213
10.1111/febs.12862
10.1016/j.mce.2003.11.017
10.1016/S0021-9258(18)34119-X
10.1126/science.6251551
10.1016/j.jsbmb.2017.06.006
10.1016/j.jsbmb.2018.10.002
10.1210/en.2013-2013
10.1016/0039-128X(87)90083-3
10.1016/j.jsbmb.2013.09.012
10.1056/NEJMoa1306357
10.1016/j.jsbmb.2006.12.078
10.1073/pnas.90.18.8668
10.1210/jc.2004-0360
10.1016/j.bcp.2007.11.008
10.1016/j.jchromb.2009.11.026
10.1210/jc.2013-4388
10.1093/ajcn/68.4.854
10.1016/j.jchemneu.2004.08.006
10.1074/jbc.M809542200
10.1016/j.jchromb.2016.01.049
10.1210/jc.2007-2308
10.1016/j.pbiomolbio.2006.02.004
10.1159/000486536
10.1210/jc.2010-0195
10.1016/j.clinbiochem.2012.11.030
10.1016/j.cca.2014.12.036
10.1007/s00198-015-3125-y
10.1002/mas.21353
10.1056/NEJMoa1807841
10.1016/j.ecl.2010.02.002
10.1016/S0003-9861(73)80008-6
10.1111/j.1742-4658.2008.06406.x
10.1002/bmc.1130050404
10.1002/jcb.20553
10.1016/j.ab.2011.06.043
10.1016/0003-9861(81)90107-7
10.1016/S0960-0760(03)00063-3
10.1093/ajcn/87.4.1087S
10.1210/jc.2006-0710
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TM
7U7
8FD
C1K
FR3
P64
RC3
7X8
DOI 10.1002/cbf.3421
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

Genetics Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1099-0844
EndPage 423
ExternalDocumentID 31328813
10_1002_cbf_3421
CBF3421
Genre reviewArticle
Journal Article
Review
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NDZJH
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIJ
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TM
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c3491-e13c53be5d30e10ecf05b48c35e743981142cf9fd561832c55ab1452bab390ec3
IEDL.DBID DR2
ISSN 0263-6484
1099-0844
IngestDate Fri Jul 11 10:15:42 EDT 2025
Fri Jul 25 10:21:31 EDT 2025
Wed Feb 19 02:36:43 EST 2025
Tue Jul 01 02:49:15 EDT 2025
Thu Apr 24 22:58:29 EDT 2025
Wed Jan 22 16:40:34 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords metabolism
analysis
hydroxylation
conjugation
vitamin D
metabolic pathways
Language English
License 2019 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3491-e13c53be5d30e10ecf05b48c35e743981142cf9fd561832c55ab1452bab390ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1838-5282
PMID 31328813
PQID 2269205719
PQPubID 2029981
PageCount 16
ParticipantIDs proquest_miscellaneous_2261975089
proquest_journals_2269205719
pubmed_primary_31328813
crossref_citationtrail_10_1002_cbf_3421
crossref_primary_10_1002_cbf_3421
wiley_primary_10_1002_cbf_3421_CBF3421
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
2019-08-00
2019-Aug
20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationTitle Cell biochemistry and function
PublicationTitleAlternate Cell Biochem Funct
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1968; 7
2007; 103
2007; 104
2013; 4
2004; 29
2010; 18
1978; 75
2013; 369
2002; 13
2015; 74
1999; 42
1998; 83
1974; 186
2012; 523
2003; 278
2001; 47
2012; 129
2014; 21
2006; 455
1998; 273
1974; 183
2018; 46
2018; 177
2004; 215
1976; 194
2000; 14
2010; 878
2018; 1
2009; 94
2013; 114
2016; 1009‐1010
2013; 110
1982; 257
1979; 281
1998; 95
2009; 19
2001; 935
2018; 180
2011; 365
2014; 99
1977; 252
1983; 22
1981; 78
2003; 164
1987; 49
2004; 43
2015; 57
1983; 258
1979; 18
2010; 38
1997; 690
2010; 39
2011; 418
2000; 65
2004; 47
1999; 103
1981; 206
2014; 155
1977; 80
2012; 32
1981; 20
2019; 186
1998; 68
2016; 11
2010; 45
2014; 953‐954
2017; 50
1971; 33
1984; 30
2001; 392
2004; 279
1984; 4
1981; 211
1990; 29
2015; 61
2006; 49
1986; 25
1988; 27
2005; 96
2005; 92
2007; 85
2014; 144
1998; 78
2003; 100
2005; 12
2004; 65
2015; 34
1974; 13
1971; 40
2013; 28
2017; 1060
2018; 128
2000; 46
2015; 100
1984; 23
2011; 96
2018; 1087‐1088
2017; 591
2006; 1761
2008; 75
1996; 35
1999; 368
2005; 29
1980; 210
2017; 9
1973; 155
2013; 19
2015; 173
2014; 969
2017; 409
1984; 230
2013; 14
1982; 216
1989; 262
1997; 15
2006; 69
1999; 10
2003; 5
2014; 57
2016; 1014
2010; 151
1998; 249
2009; 284
2018; 72
2011; 26
2014; 281
2008; 275
2003; 84
2014; 55
2003; 88
1996; 6
2008; 391
2006; 92
2004; 101
2015; 2
1983; 214
2012; 81
1996; 329
2006; 91
1997; 1346
1997; 62
2015; 5
2005; 272
1985; 191
2013; 46
1971; 68
2015; 442
2004; 89
2013; 41
2006; 273
2010; 121
1999; 140
1996; 52
1999; 262
2017; 173
1999; 64
1993; 90
2018; 61
1993; 268
2019; 380
2008; 93
1989; 28
1991; 5
2010; 82
2015; 151
2007; 357
2015; 26
1980; 19
2002; 29
2004; 113
2000; 267
1986; 63
2004; 19
2013; 32
1984; 259
2013; 932
1988; 67
2013; 136
2011; 44
2016; 62
2016
2008; 87
2008; 88
1999; 73
2001; 78
2012; 7
2018; 54
2010; 95
1987; 26
2012; 84
e_1_2_14_73_1
e_1_2_14_96_1
e_1_2_14_110_1
e_1_2_14_50_1
e_1_2_14_12_1
Wagner D (e_1_2_14_195_1) 2012; 32
e_1_2_14_58_1
e_1_2_14_182_1
e_1_2_14_6_1
e_1_2_14_121_1
e_1_2_14_107_1
e_1_2_14_144_1
e_1_2_14_167_1
e_1_2_14_85_1
e_1_2_14_129_1
e_1_2_14_62_1
e_1_2_14_24_1
e_1_2_14_204_1
e_1_2_14_47_1
e_1_2_14_193_1
e_1_2_14_170_1
e_1_2_14_119_1
e_1_2_14_132_1
Napoli JL (e_1_2_14_80_1) 1982; 257
e_1_2_14_155_1
e_1_2_14_178_1
e_1_2_14_72_1
e_1_2_14_95_1
e_1_2_14_111_1
e_1_2_14_11_1
e_1_2_14_34_1
e_1_2_14_57_1
e_1_2_14_181_1
e_1_2_14_120_1
e_1_2_14_143_1
e_1_2_14_7_1
e_1_2_14_108_1
e_1_2_14_166_1
e_1_2_14_189_1
Norman AW (e_1_2_14_35_1) 1993; 268
e_1_2_14_84_1
e_1_2_14_128_1
e_1_2_14_100_1
Mawer EB (e_1_2_14_89_1) 1998; 83
e_1_2_14_61_1
e_1_2_14_23_1
e_1_2_14_46_1
e_1_2_14_203_1
e_1_2_14_69_1
e_1_2_14_192_1
e_1_2_14_131_1
e_1_2_14_154_1
e_1_2_14_177_1
e_1_2_14_52_1
e_1_2_14_90_1
e_1_2_14_14_1
e_1_2_14_98_1
e_1_2_14_37_1
Yamada S (e_1_2_14_79_1) 1984; 259
e_1_2_14_161_1
e_1_2_14_123_1
e_1_2_14_169_1
e_1_2_14_105_1
e_1_2_14_146_1
e_1_2_14_41_1
e_1_2_14_64_1
e_1_2_14_4_1
e_1_2_14_87_1
e_1_2_14_49_1
e_1_2_14_206_1
e_1_2_14_26_1
Jones G (e_1_2_14_78_1) 1983; 258
e_1_2_14_172_1
e_1_2_14_117_1
e_1_2_14_134_1
e_1_2_14_157_1
e_1_2_14_74_1
e_1_2_14_97_1
e_1_2_14_51_1
e_1_2_14_13_1
e_1_2_14_59_1
e_1_2_14_160_1
e_1_2_14_183_1
e_1_2_14_5_1
e_1_2_14_122_1
e_1_2_14_145_1
e_1_2_14_168_1
e_1_2_14_106_1
e_1_2_14_86_1
e_1_2_14_63_1
e_1_2_14_40_1
e_1_2_14_25_1
e_1_2_14_48_1
e_1_2_14_205_1
e_1_2_14_171_1
e_1_2_14_194_1
e_1_2_14_118_1
e_1_2_14_133_1
e_1_2_14_156_1
e_1_2_14_179_1
(e_1_2_14_33_1) 2018
e_1_2_14_114_1
e_1_2_14_137_1
Hollis BW (e_1_2_14_184_1) 2000; 46
e_1_2_14_31_1
e_1_2_14_92_1
e_1_2_14_54_1
e_1_2_14_39_1
e_1_2_14_77_1
e_1_2_14_16_1
e_1_2_14_200_1
e_1_2_14_140_1
e_1_2_14_186_1
e_1_2_14_163_1
e_1_2_14_125_1
e_1_2_14_103_1
e_1_2_14_148_1
Zehnder D (e_1_2_14_36_1) 1999; 10
e_1_2_14_2_1
e_1_2_14_20_1
e_1_2_14_81_1
e_1_2_14_43_1
e_1_2_14_66_1
e_1_2_14_28_1
e_1_2_14_151_1
e_1_2_14_197_1
e_1_2_14_174_1
e_1_2_14_115_1
e_1_2_14_136_1
Bula CM (e_1_2_14_75_1) 2000; 14
e_1_2_14_159_1
e_1_2_14_30_1
e_1_2_14_53_1
e_1_2_14_91_1
e_1_2_14_15_1
e_1_2_14_38_1
e_1_2_14_76_1
e_1_2_14_99_1
e_1_2_14_162_1
e_1_2_14_185_1
e_1_2_14_124_1
e_1_2_14_147_1
e_1_2_14_104_1
e_1_2_14_42_1
e_1_2_14_3_1
e_1_2_14_65_1
e_1_2_14_27_1
e_1_2_14_88_1
e_1_2_14_150_1
e_1_2_14_173_1
e_1_2_14_196_1
e_1_2_14_116_1
e_1_2_14_135_1
e_1_2_14_158_1
e_1_2_14_94_1
e_1_2_14_112_1
e_1_2_14_139_1
e_1_2_14_71_1
e_1_2_14_10_1
e_1_2_14_56_1
e_1_2_14_202_1
e_1_2_14_180_1
e_1_2_14_165_1
e_1_2_14_8_1
e_1_2_14_109_1
e_1_2_14_142_1
e_1_2_14_188_1
e_1_2_14_60_1
e_1_2_14_83_1
e_1_2_14_127_1
e_1_2_14_101_1
e_1_2_14_45_1
e_1_2_14_68_1
e_1_2_14_22_1
e_1_2_14_19_1
e_1_2_14_191_1
e_1_2_14_130_1
e_1_2_14_176_1
e_1_2_14_153_1
e_1_2_14_199_1
e_1_2_14_113_1
e_1_2_14_138_1
e_1_2_14_70_1
e_1_2_14_93_1
e_1_2_14_32_1
e_1_2_14_55_1
e_1_2_14_17_1
e_1_2_14_29_1
e_1_2_14_201_1
e_1_2_14_141_1
e_1_2_14_164_1
e_1_2_14_187_1
e_1_2_14_9_1
e_1_2_14_126_1
e_1_2_14_149_1
e_1_2_14_102_1
e_1_2_14_82_1
e_1_2_14_67_1
e_1_2_14_21_1
e_1_2_14_44_1
e_1_2_14_190_1
e_1_2_14_18_1
e_1_2_14_152_1
e_1_2_14_175_1
e_1_2_14_198_1
References_xml – volume: 29
  start-page: 947
  issue: 5
  year: 2002
  end-page: 955
  article-title: Characterisation of urinary metabolites of vitamin D(3) in man under physiological conditions using liquid chromatography‐tandem mass spectrometry
  publication-title: J Pharm Biomed Anal
– volume: 55
  start-page: 13
  issue: 1
  year: 2014
  end-page: 31
  article-title: Cytochrome P450‐mediated metabolism of vitamin D
  publication-title: J Lipid Res
– volume: 28
  start-page: 1763
  issue: 4
  year: 1989
  end-page: 1769
  article-title: Calcitroic acid, end product of renal metabolism of 1,25‐dihydroxyvitamin D3 through C‐24 oxidation pathway
  publication-title: Biochemistry
– volume: 365
  start-page: 410
  issue: 5
  year: 2011
  end-page: 421
  article-title: Mutations in CYP24A1 and idiopathic infantile hypercalcemia
  publication-title: N Engl J Med
– volume: 68
  start-page: 2131
  issue: 9
  year: 1971
  end-page: 2134
  article-title: Regulation by calcium of in vivo synthesis of 1,25‐dihydroxycholecalciferol and 21,25‐dihydroxycholecalciferol
  publication-title: Proc Natl Acad Sci U S A
– volume: 78
  start-page: 1193
  issue: 4
  year: 1998
  end-page: 1231
  article-title: Current understanding of the molecular actions of vitamin D
  publication-title: Physiol Rev
– volume: 1060
  start-page: 158
  year: 2017
  end-page: 165
  article-title: Simultaneous quantification of 25‐hydroxyvitamin D3‐3‐sulfate and 25‐hydroxyvitamin D3‐3‐glucuronide in human serum and plasma using liquid chromatography‐tandem mass spectrometry coupled with DAPTAD‐derivatization
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
– volume: 523
  start-page: 9
  issue: 1
  year: 2012
  end-page: 18
  article-title: 25‐Hydroxyvitamin D‐24‐hydroxylase (CYP24A1): its important role in the degradation of vitamin D
  publication-title: Arch Biochem Biophys
– volume: 75
  start-page: 2080
  issue: 5
  year: 1978
  end-page: 2081
  article-title: Direct C‐1 hydroxylation of vitamin D compounds: convenient preparation of 1alpha‐hydroxyvitamin D3, 1alpha, 25‐dihydroxyvitamin D3, and 1alpha‐hydroxyvitamin D2
  publication-title: Proc Natl Acad Sci U S A
– volume: 45
  start-page: 4427
  issue: 10
  year: 2010
  end-page: 4434
  article-title: Synthesis and CYP24A1 inhibitory activity of (E)‐2‐(2‐substituted benzylidene)‐ and 2‐(2‐substituted benzyl)‐6‐methoxy‐tetralones
  publication-title: Eur J Med Chem
– volume: 29
  start-page: 664
  issue: 12
  year: 2004
  end-page: 673
  article-title: Enzymes involved in the activation and inactivation of vitamin D
  publication-title: Trends Biochem Sci
– volume: 262
  start-page: 173
  issue: 1
  year: 1989
  end-page: 180
  article-title: Target cell metabolism of 1,25‐dihydroxyvitamin D3 to calcitroic acid. Evidence for a pathway in kidney and bone involving 24‐oxidation
  publication-title: Biochem J
– volume: 5
  start-page: 4859
  issue: 25
  year: 2003
  end-page: 4862
  article-title: Dramatic enhancement of antagonistic activity on vitamin D receptor: a double functionalization of 1alpha‐hydroxyvitamin D3 26,23‐lactones
  publication-title: Org Lett
– volume: 369
  start-page: 1991
  issue: 21
  year: 2013
  end-page: 2000
  article-title: Vitamin D‐binding protein and vitamin D status of black Americans and white Americans
  publication-title: N Engl J Med
– volume: 62
  start-page: 179
  issue: 1
  year: 2016
  end-page: 187
  article-title: Measurement by a novel LC‐MS/MS methodology reveals similar serum concentrations of vitamin D‐binding protein in Blacks and Whites
  publication-title: Clin Chem
– volume: 690
  start-page: 348
  issue: 1‐2
  year: 1997
  end-page: 354
  article-title: Characterisation of monoglucuronides of vitamin D2 and 25‐hydroxyvitamin D2 in rat bile using high‐performance liquid chromatography‐atmospheric pressure chemical ionisation mass spectrometry
  publication-title: J Chromatogr B Biomed Sci Appl
– volume: 89
  start-page: 5387
  issue: 11
  year: 2004
  end-page: 5391
  article-title: Vitamin D(2) is much less effective than vitamin D(3) in humans
  publication-title: J Clin Endocrinol Metab
– volume: 62
  start-page: 236
  issue: 1
  year: 2016
  end-page: 242
  article-title: LC‐MS/MS for identifying patients with CYP24A1 mutations
  publication-title: Clin Chem
– volume: 46
  start-page: 1657
  issue: 10
  year: 2000
  end-page: 1661
  article-title: Comparison of commercially available (125)I‐based RIA methods for the determination of circulating 25‐hydroxyvitamin D
  publication-title: Clin Chem
– volume: 281
  start-page: 3280
  issue: 14
  year: 2014
  end-page: 3296
  article-title: Kinetic analysis of human CYP24A1 metabolism of vitamin D via the C24‐oxidation pathway
  publication-title: FEBS J
– volume: 252
  start-page: 1421
  issue: 4
  year: 1977
  end-page: 1424
  article-title: The 24‐hydroxylation of 1,25‐dihydroxyvitamin D3
  publication-title: J Biol Chem
– volume: 61
  start-page: 1033
  issue: 8
  year: 2015
  end-page: 1048
  article-title: Mass spectrometric profiling of vitamin D metabolites beyond 25‐hydroxyvitamin D
  publication-title: Clin Chem
– volume: 273
  start-page: 2891
  issue: 13
  year: 2006
  end-page: 2901
  article-title: An alternative pathway of vitamin D metabolism. Cytochrome P450scc (CYP11A1)‐mediated conversion to 20‐hydroxyvitamin D2 and 17,20‐dihydroxyvitamin D2
  publication-title: FEBS J
– volume: 93
  start-page: 677
  issue: 3
  year: 2008
  end-page: 681
  article-title: Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25‐hydroxyvitamin D
  publication-title: J Clin Endocrinol Metab
– volume: 83
  start-page: 2156
  issue: 6
  year: 1998
  end-page: 2166
  article-title: Unique 24‐hydroxylated metabolites represent a significant pathway of metabolism of vitamin D2 in humans: 24‐hydroxyvitamin D2 and 1,24‐dihydroxyvitamin D2 detectable in human serum
  publication-title: J Clin Endocrinol Metab
– volume: 177
  start-page: 6
  year: 2018
  end-page: 9
  article-title: Limitations of vitamin D supplementation trials: why observational studies will continue to help determine the role of vitamin D in health
  publication-title: J Steroid Biochem Mol Biol
– volume: 7
  issue: 1
  year: 2012
  article-title: Vitamin D binding protein and monocyte response to 25‐hydroxyvitamin D and 1,25‐dihydroxyvitamin D: analysis by mathematical modelling
  publication-title: PLoS ONE
– volume: 78
  start-page: 6579
  issue: 11
  year: 1981
  end-page: 6583
  article-title: Synthesis and determination of configuration of natural 25‐hydroxyvitamin D(3) 26,23‐lactone
  publication-title: Proc Natl Acad Sci U S A
– volume: 953‐954
  start-page: 62
  year: 2014
  end-page: 67
  article-title: Development of a sensitive LC/MS/MS method for vitamin D metabolites: 1,25 dihydroxyvitamin D2&3 measurement using a novel derivatization agent
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
– volume: 144
  start-page: 28
  issue: Pt A
  year: 2014
  end-page: 39
  article-title: The role of CYP11A1 in the production of vitamin D metabolites and their role in the regulation of epidermal functions
  publication-title: J Steroid Biochem Mol Biol
– volume: 249
  start-page: 11
  issue: 1
  year: 1998
  end-page: 16
  article-title: The promoter of the human 25‐hydroxyvitamin D3 1 alpha‐hydroxylase gene confers positive and negative responsiveness to PTH, calcitonin, and 1 alpha,25(OH)2D3
  publication-title: Biochem Biophys Res Commun
– volume: 368
  start-page: 319
  issue: 2
  year: 1999
  end-page: 328
  article-title: Physiological significance of C‐28 hydroxylation in the metabolism of 1alpha,25‐dihydroxyvitamin D(2)
  publication-title: Arch Biochem Biophys
– volume: 523
  start-page: 30
  issue: 1
  year: 2012
  end-page: 36
  article-title: Vitamin D 25‐hydroxylase—four decades of searching, are we there yet?
  publication-title: Arch Biochem Biophys
– volume: 28
  start-page: 1101
  issue: 5
  year: 2013
  end-page: 1116
  article-title: Enhancement of hepatic 4‐hydroxylation of 25‐hydroxyvitamin D3 through CYP3A4 induction in vitro and in vivo: implications for drug‐induced osteomalacia
  publication-title: J Bone Miner Res
– volume: 27
  start-page: 5785
  issue: 15
  year: 1988
  end-page: 5790
  article-title: 24,26‐Dihydroxyvitamin D2: a unique physiological metabolite of vitamin D2
  publication-title: Biochemistry
– volume: 455
  start-page: 18
  issue: 1
  year: 2006
  end-page: 30
  article-title: 23‐carboxy‐24,25,26,27‐tetranorvitamin D3 (calcioic acid) and 24‐carboxy‐25,26,27‐trinorvitamin D3 (cholacalcioic acid): end products of 25‐hydroxyvitamin D3 metabolism in rat kidney through C‐24 oxidation pathway
  publication-title: Arch Biochem Biophys
– volume: 2
  start-page: 1
  year: 2015
  end-page: 14
  article-title: Measurement of circulating 25‐hydroxyvitamin D: a historical review
  publication-title: Pract Lab Med
– volume: 183
  start-page: 1198
  issue: 130
  year: 1974
  end-page: 1200
  article-title: Stimulation of 24,25‐dihydroxyvitamin D3 production by 1,25‐dihydroxyvitamin D3
  publication-title: Science
– volume: 186
  start-page: 1038
  issue: 4168
  year: 1974
  end-page: 1040
  article-title: 1‐Alpha‐hydroxyvitamin‐D2—potent synthetic analog of vitamin‐D2
  publication-title: Science
– volume: 63
  start-page: 954
  issue: 4
  year: 1986
  end-page: 959
  article-title: Assessment of the free fraction of 25‐hydroxyvitamin D in serum and its regulation by albumin and the vitamin D‐binding protein
  publication-title: J Clin Endocrinol Metab
– volume: 13
  start-page: 4091
  issue: 20
  year: 1974
  end-page: 4097
  article-title: Filter assay for 1alpha, 25‐dihydroxyvitamin D3. Utilisation of the hormone's target tissue chromatin receptor
  publication-title: Biochemistry
– volume: 50
  start-page: 70
  year: 2017
  end-page: 77
  article-title: Dysregulation of maternal and placental vitamin D metabolism in preeclampsia
  publication-title: Placenta
– volume: 84
  start-page: 423
  issue: 4
  year: 2003
  end-page: 429
  article-title: Genistein inhibits vitamin D hydroxylases CYP24 and CYP27B1 expression in prostate cells
  publication-title: J Steroid Biochem Mol Biol
– volume: 90
  start-page: 8668
  issue: 18
  year: 1993
  end-page: 8672
  article-title: Transfected human liver cytochrome P‐450 hydroxylates vitamin D analogs at different side‐chain positions
  publication-title: Proc Natl Acad Sci U S A
– volume: 5
  start-page: 153
  issue: 4
  year: 1991
  end-page: 160
  article-title: Analysis of vitamin‐D and its metabolites using thermospray liquid‐chromatography mass‐spectrometry
  publication-title: Biomed Chromatogr
– volume: 20
  start-page: 222
  issue: 1
  year: 1981
  end-page: 226
  article-title: Isolation and identification of 25‐hydroxyvitamin D2 25‐glucuronide: a biliary metabolite of vitamin D2 in the chick
  publication-title: Biochemistry
– volume: 43
  start-page: 4530
  issue: 15
  year: 2004
  end-page: 4537
  article-title: Novel metabolism of 1 alpha,25‐dihydroxyvitamin D3 with C24‐C25 bond cleavage catalysed by human CYP24A1
  publication-title: Biochemistry
– volume: 259
  start-page: 884
  issue: 2
  year: 1984
  end-page: 889
  article-title: Isolation, identification, and metabolism of (23S,25R)‐25‐hydroxyvitamin D3 26,23‐lactol. A biosynthetic precursor of (23S,25R)‐25‐hydroxyvitamin D3 26,23‐lactone
  publication-title: J Biol Chem
– volume: 14
  start-page: 159
  issue: 2
  year: 2013
  end-page: 184
  article-title: Vitamin D and metabolites measurement by tandem mass spectrometry
  publication-title: Rev Endocr Metab Disord
– volume: 61
  start-page: T271
  issue: 2
  year: 2018
  end-page: T283
  article-title: Insights into steroid sulfation and desulfation pathways
  publication-title: J Mol Endocrinol
– volume: 101
  start-page: 7711
  issue: 20
  year: 2004
  end-page: 7715
  article-title: Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25‐hydroxylase
  publication-title: Proc Natl Acad Sci U S A
– volume: 26
  start-page: 1609
  issue: 7
  year: 2011
  end-page: 1616
  article-title: Vitamin D‐binding protein modifies the vitamin D‐bone mineral density relationship
  publication-title: J Bone Miner Res
– volume: 34
  start-page: 2
  issue: 1
  year: 2015
  end-page: 23
  article-title: Analysis of vitamin D metabolic markers by mass spectrometry: current techniques, limitations of the “gold standard” method, and anticipated future directions
  publication-title: Mass Spectrom Rev
– volume: 64
  start-page: 715
  issue: 10
  year: 1999
  end-page: 725
  article-title: In vitro and in vivo glucuronidation of 24,25‐dihydroxyvitamin D3
  publication-title: Steroids
– volume: 40
  start-page: 39
  issue: 1
  year: 1971
  end-page: 53
  article-title: The metabolism of isotopically labelled vitamin D3 in man: the influence of the state of vitamin D nutrition
  publication-title: Clin Sci
– volume: 14
  start-page: 1788
  issue: 11
  year: 2000
  end-page: 1796
  article-title: 25‐Dehydro‐1alpha‐hydroxyvitamin D3‐26,23S‐lactone antagonises the nuclear vitamin D receptor by mediating a unique noncovalent conformational change
  publication-title: Mol Endocrinol
– volume: 94
  start-page: 26
  issue: 1
  year: 2009
  end-page: 34
  article-title: Nonclassic actions of vitamin D
  publication-title: J Clin Endocrinol Metab
– volume: 74
  start-page: 166
  year: 2015
  end-page: 170
  article-title: Vitamin D binding protein genotype is associated with plasma 25OHD concentration in West African children
  publication-title: Bone
– volume: 128
  start-page: 1913
  issue: 5
  year: 2018
  end-page: 1918
  article-title: CYP3A4 mutation causes vitamin D‐dependent rickets type 3
  publication-title: J Clin Invest
– volume: 151
  start-page: 4301
  issue: 9
  year: 2010
  end-page: 4312
  article-title: CYP24A1 inhibition enhances the antitumor activity of calcitriol
  publication-title: Endocrinology
– volume: 22
  start-page: 5848
  issue: 25
  year: 1983
  end-page: 5853
  article-title: C(24)‐ and C(23)‐oxidation, converging pathways of intestinal 1,25‐dihydroxyvitamin D3 metabolism: identification of 24‐keto‐1,23,25‐trihydroxyvitamin D3
  publication-title: Biochemistry
– volume: 84
  start-page: 956
  issue: 2
  year: 2012
  end-page: 962
  article-title: Development and certification of a standard reference material for vitamin D metabolites in human serum
  publication-title: Anal Chem
– volume: 23
  start-page: 1473
  issue: 7
  year: 1984
  end-page: 1478
  article-title: Isolation and identification of 1 alpha,25‐dihydroxy‐24‐oxovitamin D3, 1 alpha,25‐dihydroxyvitamin D3 26,23‐lactone, and 1 alpha,24(S),25‐trihydroxyvitamin D3: in vivo metabolites of 1 alpha,25‐dihydroxyvitamin D3
  publication-title: Biochemistry
– volume: 103
  start-page: 567
  issue: 3‐5
  year: 2007
  end-page: 571
  article-title: Immune regulation of l alpha‐hydroxylase in murine peritoneal macrophages: unravelling the IFN gamma pathway
  publication-title: J Steroid Biochem Mol Biol
– volume: 103
  start-page: 239
  issue: 2
  year: 1999
  end-page: 251
  article-title: Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein
  publication-title: J Clin Investig
– volume: 42
  start-page: 3539
  issue: 18
  year: 1999
  end-page: 3556
  article-title: Synthesis, biological activity, and conformational analysis of four seco‐D‐15,19‐bisnor‐1alpha,25‐dihydroxyvitamin D analogues, diastereomeric at C17 and C20
  publication-title: J Med Chem
– volume: 523
  start-page: 95
  issue: 1
  year: 2012
  end-page: 102
  article-title: Extrarenal expression of the 25‐hydroxyvitamin D‐1‐hydroxylase
  publication-title: Arch Biochem Biophys
– volume: 12
  start-page: 931
  issue: 8
  year: 2005
  end-page: 939
  article-title: Enzymatic metabolism of ergosterol by cytochrome p450scc to biologically active 17alpha,24‐dihydroxyergosterol
  publication-title: Chem Biol
– volume: 357
  start-page: 266
  issue: 3
  year: 2007
  end-page: 281
  article-title: Vitamin D deficiency
  publication-title: N Engl J Med
– volume: 144
  start-page: 1050
  issue: 7
  year: 2014
  end-page: 1057
  article-title: The 3 epimer of 25‐hydroxycholecalciferol is present in the circulation of the majority of adults in a nationally representative sample and has endogenous origins
  publication-title: J Nutr
– volume: 62
  start-page: 134
  issue: 1
  year: 2016
  end-page: 143
  article-title: Applications of MALDI mass spectrometry in clinical chemistry
  publication-title: Clin Chem
– volume: 57
  start-page: 605
  issue: 4
  year: 2015
  end-page: 613
  article-title: Molecular mechanisms of the action of vitamin A in Th17/Treg axis in multiple sclerosis
  publication-title: J Mol Neurosci
– volume: 32
  start-page: 72
  issue: 1
  year: 2013
  end-page: 86
  article-title: The role of mass spectrometry in the analysis of vitamin D compounds
  publication-title: Mass Spectrom Rev
– volume: 84
  start-page: 1696
  issue: 12
  year: 2012
  end-page: 1704
  article-title: Rat CYP24A1 acts on 20‐hydroxyvitamin D‐3 producing hydroxylated products with increased biological activity
  publication-title: Biochem Pharmacol
– volume: 257
  start-page: 9634
  issue: 16
  year: 1982
  end-page: 9639
  article-title: 23S,25‐dihydroxyvitamin D3 as a circulating metabolite of vitamin D3. Its role in 25‐hydroxyvitamin D3‐26,23‐lactone biosynthesis
  publication-title: J Biol Chem
– volume: 114
  start-page: 2293
  issue: 10
  year: 2013
  end-page: 2305
  article-title: Metabolic stability of 3‐epi‐1alpha,25‐dihydroxyvitamin D3 over 1 alpha 25‐dihydroxyvitamin D3: metabolism and molecular docking studies using rat CYP24A1
  publication-title: J Cell Biochem
– volume: 1014
  start-page: 56
  year: 2016
  end-page: 63
  article-title: High throughput LC‐MS/MS method for the simultaneous analysis of multiple vitamin D analytes in serum
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
– volume: 275
  start-page: 2585
  issue: 10
  year: 2008
  end-page: 2596
  article-title: Pathways and products for the metabolism of vitamin D3 by cytochrome P450scc
  publication-title: FEBS J
– volume: 177
  start-page: 30
  year: 2018
  end-page: 35
  article-title: Hydroxyvitamin D assays: an historical perspective from DEQAS
  publication-title: J Steroid Biochem Mol Biol
– volume: 95
  start-page: 3368
  issue: 7
  year: 2010
  end-page: 3376
  article-title: Vitamin D‐binding protein directs monocyte responses to 25‐hydroxy‐ and 1,25‐dihydroxyvitamin D
  publication-title: J Clin Endocrinol Metab
– volume: 54
  start-page: 61
  year: 2018
  end-page: 67
  article-title: C3‐epimerization of 25‐hydroxyvitamin D increases with increasing serum 25‐hydroxyvitamin D levels and shows a high degree of tracking over time
  publication-title: Clin Biochem
– volume: 18
  start-page: 4939
  issue: 14
  year: 2010
  end-page: 4946
  article-title: Synthesis and CYP24A1 inhibitory activity of N‐(2‐(1H‐imidazol‐1‐yl)‐2‐phenylethyl)arylamides
  publication-title: Bioorg Med Chem
– volume: 13
  start-page: 621
  issue: 3
  year: 2002
  end-page: 629
  article-title: Synthesis of 1,25‐dihydroxyvitamin D(3) by human endothelial cells is regulated by inflammatory cytokines: a novel autocrine determinant of vascular cell adhesion
  publication-title: J Am Soc Nephrol
– volume: 46
  start-page: 1264
  issue: 13‐14
  year: 2013
  end-page: 1271
  article-title: Analytical measurement of serum 25‐OH‐vitamin D(3), 25‐OH‐vitamin D(2) and their C3‐epimers by LC‐MS/MS in infant and paediatric specimens
  publication-title: Clin Biochem
– volume: 15
  start-page: 1207
  issue: 9‐10
  year: 1997
  end-page: 1214
  article-title: Enzymatic hydrolysis of the conjugate of vitamin D and related compounds
  publication-title: J Pharm Biomed Anal
– volume: 41
  start-page: 1112
  issue: 5
  year: 2013
  end-page: 1124
  article-title: Hydroxylation of CYP11A1‐derived products of vitamin D3 metabolism by human and mouse CYP27B1
  publication-title: Drug Metab Dispos
– volume: 32
  start-page: 259
  issue: 1
  year: 2012
  end-page: 263
  article-title: Determination of 1,25‐dihydroxyvitamin D concentrations in human colon tissues and matched serum samples
  publication-title: Anticancer Res
– volume: 46
  start-page: 190
  issue: 3
  year: 2013
  end-page: 196
  article-title: Analytical measurement and clinical relevance of vitamin D‐3 C3‐epimer
  publication-title: Clin Biochem
– volume: 267
  start-page: 6158
  issue: 20
  year: 2000
  end-page: 6165
  article-title: Dual metabolic pathway of 25‐hydroxyvitamin D3 catalysed by human CYP24
  publication-title: Eur J Biochem
– volume: 91
  start-page: 3055
  issue: 8
  year: 2006
  end-page: 3061
  article-title: C‐3 epimers can account for a significant proportion of total circulating 25‐hydroxyvitamin D in infants, complicating accurate measurement and interpretation of vitamin D status
  publication-title: J Clin Endocrinol Metab
– volume: 88
  start-page: 282
  issue: 2
  year: 2003
  end-page: 285
  article-title: Rat cytochrome P450C24 (CYP24) does not metabolise 1,25‐dihydroxyvitamin D2 to calcitroic acid
  publication-title: J Cell Biochem
– volume: 82
  start-page: 1942
  issue: 5
  year: 2010
  end-page: 1948
  article-title: Development of a candidate reference measurement procedure for the determination of 25‐hydroxyvitamin D3 and 25‐hydroxyvitamin D2 in human serum using isotope‐dilution liquid chromatography‐tandem mass spectrometry
  publication-title: Anal Chem
– volume: 144
  start-page: 132
  issue: Pt A
  year: 2014
  end-page: 137
  article-title: Vitamin D and DBP: the free hormone hypothesis revisited
  publication-title: J Steroid Biochem Mol Biol
– volume: 67
  start-page: 373
  issue: 2
  year: 1988
  end-page: 378
  article-title: Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin
  publication-title: J Clin Endocrinol Metab
– volume: 38
  start-page: 1553
  issue: 9
  year: 2010
  end-page: 1559
  article-title: Purified mouse CYP27B1 can hydroxylate 20,23‐dihydroxyvitamin D‐3, producing 1 alpha,20,23‐trihydroxyvitamin D‐3, which has altered biological activity
  publication-title: Drug Metab Dispos
– volume: 6
  start-page: 1703
  issue: 14
  year: 1996
  end-page: 1708
  article-title: Synthesis of CD‐ring modified 1 alpha,25‐dihydroxy vitamin D analogues: C‐ring analogues
  publication-title: Bioorg Med Chem Lett
– volume: 173
  start-page: 341
  year: 2017
  end-page: 348
  article-title: 1beta,25‐dihydroxyvitamin D3: a new vitamin D metabolite in human serum
  publication-title: J Steroid Biochem Mol Biol
– volume: 49
  start-page: 2398
  issue: 8
  year: 2006
  end-page: 2406
  article-title: Practical synthesis and evaluation of the biological activities of 1alpha,25‐dihydroxyvitamin D3 antagonists, 1alpha,25‐dihydroxyvitamin D3‐26,23‐lactams. Designed on the basis of the helix 12‐folding inhibition hypothesis
  publication-title: J Med Chem
– volume: 33
  start-page: 554
  issue: 3
  year: 1971
  end-page: 557
  article-title: Competitive binding assay for vitamin D and 25‐OH vitamin D
  publication-title: J Clin Endocrinol Metab
– volume: 206
  start-page: 403
  issue: 2
  year: 1981
  end-page: 413
  article-title: Calcitroic acid: biological activity and tissue distribution studies
  publication-title: Arch Biochem Biophys
– volume: 1346
  start-page: 147
  issue: 2
  year: 1997
  end-page: 157
  article-title: In vivo metabolism of 24R,25‐dihydroxyvitamin D3: structure of its major bile metabolite
  publication-title: Biochim Biophys Acta
– volume: 44
  start-page: 66
  issue: 1
  year: 2011
  end-page: 76
  article-title: Progress of liquid chromatography‐mass spectrometry in measurement of vitamin D metabolites and analogues
  publication-title: Clin Biochem
– volume: 155
  start-page: 2052
  issue: 6
  year: 2014
  end-page: 2063
  article-title: Human UGT1A4 and UGT1A3 conjugate 25‐hydroxyvitamin D3: metabolite structure, kinetics, inducibility, and interindividual variability
  publication-title: Endocrinology
– volume: 68
  start-page: 854
  issue: 4
  year: 1998
  end-page: 858
  article-title: Evidence that vitamin D‐3 increases serum 25‐hydroxyvitamin D more efficiently than does vitamin D‐2
  publication-title: Am J Clin Nutr
– volume: 65
  start-page: 281
  issue: 5
  year: 2000
  end-page: 294
  article-title: Characterisation of new conjugated metabolites in bile of rats administered 24,25‐dihydroxyvitamin D(3) and 25‐hydroxyvitamin D(3)
  publication-title: Steroids
– volume: 25
  start-page: 5328
  issue: 18
  year: 1986
  end-page: 5336
  article-title: Isolation and identification of 1,24,25‐trihydroxyvitamin D2, 1,24,25,28‐tetrahydroxyvitamin D2, and 1,24,25,26‐tetrahydroxyvitamin D2: new metabolites of 1,25‐dihydroxyvitamin D2 produced in rat kidney
  publication-title: Biochemistry
– volume: 151
  start-page: 25
  year: 2015
  end-page: 37
  article-title: Novel activities of CYP11A1 and their potential physiological significance
  publication-title: J Steroid Biochem Mol Biol
– volume: 47
  start-page: 108
  issue: 2
  year: 2001
  end-page: 115
  article-title: Isolation, identification and biological activity of 24R,25‐dihydroxy‐3‐epi‐vitamin D3: a novel metabolite of 24R,25‐dihydroxyvitamin D3 produced in rat osteosarcoma cells (UMR 106)
  publication-title: J Nutr Sci Vitaminol (Tokyo)
– volume: 99
  start-page: 808
  issue: 3
  year: 2014
  end-page: 816
  article-title: Exploring the role of vitamin D in type 1 diabetes, rheumatoid arthritis, and Alzheimer disease: new insights from accurate analysis of 10 forms
  publication-title: J Clin Endocrinol Metab
– volume: 211
  start-page: 590
  issue: 4482
  year: 1981
  end-page: 593
  article-title: Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator
  publication-title: Science
– volume: 62
  start-page: 21
  issue: 1
  year: 1997
  end-page: 28
  article-title: Vitamin D metabolism in human colon adenocarcinoma‐derived Caco‐2 cells: expression of 25‐hydroxyvitamin D‐3‐1 alpha‐hydroxylase activity and regulation of side‐chain metabolism
  publication-title: J Steroid Biochem Mol Biol
– volume: 52
  start-page: 133
  issue: 1
  year: 1996
  end-page: 140
  article-title: Anti‐proliferative activity and target cell catabolism of the vitamin D analog 1 alpha,24(S)‐(OH)2D2 in normal and immortalised human epidermal cells
  publication-title: Biochem Pharmacol
– volume: 87
  start-page: 1087S
  issue: 4
  year: 2008
  end-page: 1091S
  article-title: Blood biomarkers of vitamin D status
  publication-title: Am J Clin Nutr
– volume: 7
  start-page: 3317
  issue: 10
  year: 1968
  end-page: 3322
  article-title: 25‐hydroxycholecalciferol. A biologically active metabolite of vitamin D3
  publication-title: Biochemistry
– volume: 73
  start-page: 106
  issue: 1
  year: 1999
  end-page: 113
  article-title: 1Alpha,25‐dihydroxy‐3‐epi‐vitamin D3, a natural metabolite of 1alpha,25‐dihydroxyvitamin D3, is a potent suppressor of parathyroid hormone secretion
  publication-title: J Cell Biochem
– volume: 104
  start-page: 12673
  issue: 31
  year: 2007
  end-page: 12678
  article-title: Single A326G mutation converts human CYP24A1 from 25‐OH‐D3‐24‐hydroxylase into ‐23‐hydroxylase, generating 1alpha,25‐(OH)2D3‐26,23‐lactone
  publication-title: Proc Natl Acad Sci U S A
– volume: 75
  start-page: 1240
  issue: 5
  year: 2008
  end-page: 1250
  article-title: Identification of human UDP‐glucuronosyltransferases catalysing hepatic 1alpha,25‐dihydroxyvitamin D3 conjugation
  publication-title: Biochem Pharmacol
– volume: 80
  start-page: 298
  issue: 1
  year: 1977
  end-page: 305
  article-title: Determination of 25‐hydroxyvitamin D2 and 25‐hydroxyvitamin D3 in human plasma using high‐pressure liquid chromatography
  publication-title: Anal Biochem
– volume: 49
  start-page: 155
  issue: 1‐3
  year: 1987
  end-page: 196
  article-title: Gas chromatography‐mass spectrometry and the measurement of vitamin D metabolites in human serum or plasma
  publication-title: Steroids
– volume: 180
  start-page: 87
  year: 2018
  end-page: 104
  article-title: Why should we measure free 25(OH) vitamin D?
  publication-title: J Steroid Biochem Mol Biol
– volume: 49
  start-page: 5199
  issue: 17
  year: 2006
  end-page: 5205
  article-title: Probing a water channel near the A‐ring of receptor‐bound 1 alpha,25‐dihydroxyvitamin D3 with selected 2 alpha‐substituted analogues
  publication-title: J Med Chem
– volume: 43
  start-page: 4101
  issue: 14
  year: 2004
  end-page: 4110
  article-title: Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2‐carbon‐substituted vitamin D3 hormone analogues and a LXXLL‐containing coactivator peptide
  publication-title: Biochemistry
– volume: 30
  start-page: 1731
  issue: 11
  year: 1984
  end-page: 1736
  article-title: Two direct (nonchromatographic) assays for 25‐hydroxyvitamin D
  publication-title: Clin Chem
– volume: 78
  start-page: 167
  issue: 2
  year: 2001
  end-page: 176
  article-title: Double bond in the side chain of 1alpha,25‐dihydroxy‐22‐ene‐vitamin D(3) is reduced during its metabolism: studies in chronic myeloid leukaemia (RWLeu‐4) cells and rat kidney
  publication-title: J Steroid Biochem Mol Biol
– volume: 969
  start-page: 230
  year: 2014
  end-page: 234
  article-title: Development and validation of a method for determination of plasma 25‐hydroxyvitamin D3 3‐sulfate using liquid chromatography/tandem mass spectrometry
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
– volume: 29
  start-page: 943
  issue: 4
  year: 1990
  end-page: 949
  article-title: 24,25,28‐Trihydroxyvitamin D2 and 24,25,26‐trihydroxyvitamin D2: novel metabolites of vitamin D2
  publication-title: Biochemistry
– volume: 46
  start-page: 367
  issue: 4
  year: 2018
  end-page: 379
  article-title: Polymorphic human sulfotransferase 2A1 mediates the formation of 25‐hydroxyvitamin D3‐3‐O‐sulfate, a major circulating vitamin D metabolite in humans
  publication-title: Drug Metab Dispos
– volume: 72
  start-page: 87
  issue: 2
  year: 2018
  end-page: 95
  article-title: Vitamin D: classic and novel actions
  publication-title: Ann Nutr Metab
– volume: 96
  start-page: 569
  issue: 3
  year: 2005
  end-page: 578
  article-title: Isolation and identification of 1alpha‐hydroxy‐3‐epi‐vitamin D3, a potent suppressor of parathyroid hormone secretion
  publication-title: J Cell Biochem
– volume: 1761
  start-page: 221
  issue: 2
  year: 2006
  end-page: 234
  article-title: Evidence for the activation of 1 alpha‐hydroxyvitamin D‐2 by 25‐hydroxyvitamin D‐24‐hydroxylase: delineation of pathways involving 1 alpha,24‐dihydroxyvitamin D‐2 and 1 alpha,25‐dihydroxyvitamin D‐2
  publication-title: BBA‐Mol Cell Biol L
– volume: 380
  start-page: 1150
  issue: 12
  year: 2019
  end-page: 1157
  article-title: Vitamin D‐binding protein deficiency and homozygous deletion of the GC gene
  publication-title: N Engl J Med
– volume: 1087‐1088
  start-page: 43
  year: 2018
  end-page: 48
  article-title: Analysis of multiple vitamin D metabolites by ultra‐performance supercritical fluid chromatography‐tandem mass spectrometry (UPSFC‐MS/MS)
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
– volume: 215
  start-page: 31
  issue: 1‐2
  year: 2004
  end-page: 38
  article-title: Vitamin D and barrier function: a novel role for extra‐renal 1 alpha‐hydroxylase
  publication-title: Mol Cell Endocrinol
– volume: 19
  start-page: 73
  issue: 2
  year: 2009
  end-page: 78
  article-title: Vitamin D status: measurement, interpretation, and clinical application
  publication-title: Ann Epidemiol
– volume: 278
  start-page: 38084
  issue: 39
  year: 2003
  end-page: 38093
  article-title: De‐orphanization of cytochrome P450 2R1: a microsomal vitamin D 25‐hydroxilase
  publication-title: J Biol Chem
– volume: 65
  start-page: 720
  issue: 3
  year: 2004
  end-page: 729
  article-title: Dehydroepiandrosterone sulfotransferase is a target for transcriptional induction by the vitamin D receptor
  publication-title: Mol Pharmacol
– volume: 96
  start-page: 53
  issue: 1
  year: 2011
  end-page: 58
  article-title: The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know
  publication-title: J Clin Endocrinol Metab
– volume: 191
  start-page: 171
  issue: 2
  year: 1985
  end-page: 175
  article-title: 25‐Hydroxyvitamin D3 3‐sulphate is a major circulating form of vitamin D in man
  publication-title: FEBS Lett
– year: 2016
– volume: 21
  start-page: 319
  issue: 3
  year: 2014
  end-page: 329
  article-title: Vitamin D metabolism, mechanism of action, and clinical applications
  publication-title: Chem Biol
– volume: 81
  start-page: 498
  issue: 4
  year: 2012
  end-page: 509
  article-title: An inducible cytochrome P450 3A4‐dependent vitamin D catabolic pathway
  publication-title: Mol Pharmacol
– volume: 26
  start-page: 2339
  issue: 9
  year: 2015
  end-page: 2344
  article-title: Serum C3 epimer of 25‐hydroxyvitamin D and its determinants in adults: a national health examination survey in Thais
  publication-title: Osteoporos Int
– volume: 164
  start-page: 357
  issue: 3
  year: 2003
  end-page: 369
  article-title: Vitamin D compounds in plants
  publication-title: Plant Sci
– volume: 85
  start-page: 860
  issue: 3
  year: 2007
  end-page: 868
  article-title: Hypovitaminosis D in British adults at age 45 y: nationwide cohort study of dietary and lifestyle predictors
  publication-title: Am J Clin Nutr
– volume: 591
  start-page: 2417
  issue: 16
  year: 2017
  end-page: 2425
  article-title: Sulfation of vitamin D3 ‐related compounds‐identification and characterisation of the responsible human cytosolic sulfotransferases
  publication-title: FEBS Lett
– volume: 19
  start-page: 3933
  issue: 17
  year: 1980
  end-page: 3937
  article-title: Synthesis of [3 beta‐3H]‐3‐epivitamin D3 and its metabolism in the rat
  publication-title: Biochemistry
– volume: 210
  start-page: 203
  issue: 4466
  year: 1980
  end-page: 205
  article-title: Photosynthesis of previtamin D3 in human skin and the physiologic consequences
  publication-title: Science
– volume: 110
  start-page: 15650
  issue: 39
  year: 2013
  end-page: 15655
  article-title: CYP2R1 is a major, but not exclusive, contributor to 25‐hydroxyvitamin D production in vivo
  publication-title: Proc Natl Acad Sci U S A
– volume: 392
  start-page: 14
  issue: 1
  year: 2001
  end-page: 22
  article-title: Calcitroic acid is a major catabolic metabolite in the metabolism of 1 alpha‐dihydroxyvitamin D‐2
  publication-title: Arch Biochem Biophys
– volume: 92
  start-page: 541
  issue: 3
  year: 2005
  end-page: 546
  article-title: Distribution of ergosterol in different tissues of mushrooms and its effect on the conversion of ergosterol to vitamin D‐2 by UV irradiation
  publication-title: Food Chem
– volume: 113
  start-page: 561
  issue: 4
  year: 2004
  end-page: 568
  article-title: Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism
  publication-title: J Clin Invest
– volume: 129
  start-page: 163
  issue: 3‐5
  year: 2012
  end-page: 171
  article-title: Metabolism of cholesterol, vitamin D3 and 20‐hydroxyvitamin D3 incorporated into phospholipid vesicles by human CYP27A1
  publication-title: J Steroid Biochem Mol Biol
– volume: 155
  start-page: 47
  issue: 1
  year: 1973
  end-page: 57
  article-title: Vitamin D3‐25‐hydroxylase—tissue occurrence and apparent lack of regulation
  publication-title: Arch Biochem Biophys
– volume: 121
  start-page: 565
  issue: 3‐5
  year: 2010
  end-page: 573
  article-title: Quantification of circulating 25‐hydroxyvitamin D by liquid chromatography‐tandem mass spectrometry
  publication-title: J Steroid Biochem Mol Biol
– volume: 272
  start-page: 4080
  issue: 16
  year: 2005
  end-page: 4090
  article-title: The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism
  publication-title: FEBS J
– volume: 47
  start-page: 6854
  issue: 27
  year: 2004
  end-page: 6863
  article-title: Potent, selective and low‐calcemic inhibitors of CYP24 hydroxylase: 24‐sulfoximine analogues of the hormone 1alpha,25‐dihydroxyvitamin D(3)
  publication-title: J Med Chem
– volume: 409
  start-page: 2705
  issue: 10
  year: 2017
  end-page: 2714
  article-title: Direct aqueous measurement of 25‐hydroxyvitamin D levels in a cellular environment by LC‐MS/MS using the novel chemical derivatization reagent MDBP
  publication-title: Anal Bioanal Chem
– volume: 216
  start-page: 1001
  issue: 4549
  year: 1982
  end-page: 1003
  article-title: Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin
  publication-title: Science
– volume: 173
  start-page: D1
  issue: 2
  year: 2015
  end-page: D12
  article-title: Mass spectrometry and immunoassay: how to measure steroid hormones today and tomorrow
  publication-title: Eur J Endocrinol
– volume: 262
  start-page: 43
  issue: 1
  year: 1999
  end-page: 48
  article-title: Metabolic studies using recombinant Escherichia coli cells producing rat mitochondrial CYP24 CYP24 can convert 1alpha,25‐dihydroxyvitamin D3 to calcitroic acid
  publication-title: Eur J Biochem
– volume: 230
  start-page: 424
  issue: 2
  year: 1984
  end-page: 429
  article-title: 24‐Oxo and 26,23‐lactone metabolites of 1,25‐dihydroxyvitamin‐D3 have direct bone‐resorbing activity
  publication-title: Arch Biochem Biophys
– volume: 29
  start-page: 21
  issue: 1
  year: 2005
  end-page: 30
  article-title: Distribution of the vitamin D receptor and 1 alpha‐hydroxylase in human brain
  publication-title: J Chem Neuroanat
– volume: 19
  start-page: 680
  issue: 4
  year: 2004
  end-page: 688
  article-title: CYP3A4 is a human microsomal vitamin D 25‐hydroxylase
  publication-title: J Bone Miner Res
– volume: 103
  start-page: 316
  issue: 3‐5
  year: 2007
  end-page: 321
  article-title: Extra‐renal 25‐hydroxyvitamin D‐3‐1 alpha‐hydroxylase in human health and disease
  publication-title: J Steroid Biochem Mol Biol
– volume: 11
  start-page: 2665
  issue: 10
  year: 2016
  end-page: 2672
  article-title: Calcitroic acid—a review
  publication-title: ACS Chem Biol
– volume: 878
  start-page: 1654
  issue: 20
  year: 2010
  end-page: 1661
  article-title: Advances in determination of vitamin D related compounds in biological samples using liquid chromatography‐mass spectrometry: a review
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
– volume: 284
  start-page: 14838
  issue: 22
  year: 2009
  end-page: 14848
  article-title: Placenta‐specific methylation of the vitamin D 24‐hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface
  publication-title: J Biol Chem
– volume: 329
  start-page: 228
  issue: 2
  year: 1996
  end-page: 234
  article-title: 1 alpha,25‐(OH)2‐vitamin D3 analogs with minimal in vivo calcemic activity can stimulate significant transepithelial calcium transport and mRNA expression in vitro
  publication-title: Arch Biochem Biophys
– volume: 442
  start-page: 75
  year: 2015
  end-page: 81
  article-title: The 25‐hydroxyvitamin D‐3 C‐3 epimer: distribution, correlates, and reclassification of 25‐hydroxyvitamin D status in the population‐based Atherosclerosis Risk in Communities Study (ARIC)
  publication-title: Clin Chim Acta
– volume: 100
  start-page: E1343
  issue: 10
  year: 2015
  end-page: E1352
  article-title: CYP24A1 mutations in a cohort of hypercalcemic patients: evidence for a recessive trait
  publication-title: J Clin Endocrinol Metab
– volume: 96
  start-page: 1911
  issue: 7
  year: 2011
  end-page: 1930
  article-title: Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline
  publication-title: J Clin Endocrinol Metab
– volume: 88
  start-page: 582S
  issue: 2
  year: 2008
  end-page: 586S
  article-title: Pharmacokinetics of vitamin D toxicity
  publication-title: Am J Clin Nutr
– volume: 35
  start-page: 8465
  issue: 25
  year: 1996
  end-page: 8472
  article-title: Human 25‐hydroxyvitamin D3‐24‐hydroxylase, a multicatalytic enzyme
  publication-title: Biochemistry
– volume: 136
  start-page: 333
  year: 2013
  end-page: 336
  article-title: 1,25‐Dihydroxyvitamin D3‐glycoside of herbal origin exhibits delayed release pharmacokinetics when compared to its synthetic counterpart
  publication-title: J Steroid Biochem Mol Biol
– volume: 140
  start-page: 2224
  issue: 5
  year: 1999
  end-page: 2231
  article-title: Positive and negative regulations of the renal 25‐hydroxyvitamin D3 1alpha‐hydroxylase gene by parathyroid hormone, calcitonin, and 1alpha,25(OH)2D3 in intact animals
  publication-title: Endocrinology
– volume: 391
  start-page: 1917
  issue: 5
  year: 2008
  end-page: 1930
  article-title: Metabolic profiling of major vitamin D metabolites using Diels‐Alder derivatization and ultra‐performance liquid chromatography‐tandem mass spectrometry
  publication-title: Anal Bioanal Chem
– volume: 18
  start-page: 1003
  issue: 6
  year: 1979
  end-page: 1008
  article-title: Isolation and identification of pre‐vitamin D3 from the skin of rats exposed to ultraviolet‐irradiation
  publication-title: Biochemistry
– volume: 100
  start-page: 14754
  issue: 25
  year: 2003
  end-page: 14759
  article-title: A pathway for the metabolism of vitamin D3: unique hydroxylated metabolites formed during catalysis with cytochrome P450scc (CYP11A1)
  publication-title: Proc Natl Acad Sci U S A
– volume: 9
  start-page: 2723
  issue: 18
  year: 2017
  end-page: 2731
  article-title: Automated development of an LC‐MS/MS method for measuring multiple vitamin D metabolites using MUSCLE software
  publication-title: Anal Methods
– volume: 5
  year: 2015
  article-title: Detection of novel CYP11A1‐derived secosteroids in the human epidermis and serum and pig adrenal gland
  publication-title: Sci Rep
– volume: 268
  start-page: 20022
  issue: 27
  year: 1993
  end-page: 20030
  article-title: Demonstration that 1 beta,25‐dihydroxyvitamin D3 is an antagonist of the nongenomic but not genomic biological responses and biological profile of the three A‐ring diastereomers of 1 alpha,25‐dihydroxyvitamin D3
  publication-title: J Biol Chem
– volume: 19
  start-page: 2621
  issue: 17
  year: 2013
  end-page: 2628
  article-title: CYP24A1 inhibition facilitates the anti‐tumour effect of vitamin D3 on colorectal cancer cells
  publication-title: World J Gastroenterol
– volume: 935
  start-page: 93
  issue: 1‐2
  year: 2001
  end-page: 103
  article-title: Sensitive analysis of 1alpha,25‐dihydroxyvitamin D3 in biological fluids by liquid chromatography‐tandem mass spectrometry
  publication-title: J Chromatogr A
– volume: 69
  start-page: 56
  issue: 1
  year: 2006
  end-page: 65
  article-title: Intestinal and hepatic CYP3A4 catalyse hydroxylation of 1alpha,25‐dihydroxyvitamin D(3): implications for drug‐induced osteomalacia
  publication-title: Mol Pharmacol
– volume: 1009‐1010
  start-page: 80
  year: 2016
  end-page: 86
  article-title: Determination of four sulfated vitamin D compounds in human biological fluids by liquid chromatography‐tandem mass spectrometry
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
– volume: 4
  start-page: 493
  year: 1984
  end-page: 520
  article-title: Vitamin D: metabolism and biological actions
  publication-title: Annu Rev Nutr
– volume: 214
  start-page: 261
  issue: 1
  year: 1983
  end-page: 264
  article-title: (23S)‐1,23,25‐Trihydroxycholecalciferol, an intestinal metabolite of 1,25‐dihydroxycholecalciferol
  publication-title: Biochem J
– volume: 92
  start-page: 17
  issue: 1
  year: 2006
  end-page: 25
  article-title: Who, what, where and when‐influences on cutaneous vitamin D synthesis
  publication-title: Prog Biophys Mol Biol
– volume: 29
  start-page: 578
  issue: 2
  year: 1990
  end-page: 582
  article-title: 1 alpha‐hydroxylation of 24‐hydroxyvitamin D2 represents a minor physiological pathway for the activation of vitamin D2 in mammals
  publication-title: Biochemistry
– volume: 4
  start-page: 136
  year: 2013
  article-title: Vitamin D in plants: a review of occurrence, analysis, and biosynthesis
  publication-title: Front Plant Sci
– volume: 273
  start-page: 14805
  issue: 24
  year: 1998
  end-page: 14812
  article-title: Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted sterol 27‐hydroxylase gene
  publication-title: J Biol Chem
– volume: 279
  start-page: 15897
  issue: 16
  year: 2004
  end-page: 15907
  article-title: C‐3 epimerization of vitamin D3 metabolites and further metabolism of C‐3 epimers: 25‐hydroxyvitamin D3 is metabolised to 3‐epi‐25‐hydroxyvitamin D3 and subsequently metabolised through C‐1alpha or C‐24 hydroxylation
  publication-title: J Biol Chem
– volume: 26
  start-page: 324
  issue: 1
  year: 1987
  end-page: 331
  article-title: Isolation and identification of 1,23‐dihydroxy‐24,25,26,27‐tetranorvitamin D3, a new metabolite of 1,25‐dihydroxyvitamin D3 produced in rat kidney
  publication-title: Biochemistry
– volume: 194
  start-page: 853
  issue: 4267
  year: 1976
  end-page: 855
  article-title: Calcinogenic factor in Solanum malacoxylon: evidence that it is 1,25‐dihydroxyvitamin D3‐glycoside
  publication-title: Science
– volume: 281
  start-page: 317
  issue: 5729
  year: 1979
  end-page: 319
  article-title: 1 alpha, 25‐Dihydroxyvitamin D3 and 24,25‐dihydroxyvitamin D3 in vitro synthesis by human decidua and placenta
  publication-title: Nature
– volume: 1
  year: 2018
– volume: 258
  start-page: 12920
  issue: 21
  year: 1983
  end-page: 12928
  article-title: The isolation and identification of two new metabolites of 25‐hydroxyvitamin D3 produced in the kidney
  publication-title: J Biol Chem
– volume: 57
  start-page: 7702
  issue: 18
  year: 2014
  end-page: 7715
  article-title: Small‐molecule inhibitors of 25‐hydroxyvitamin D‐24‐hydroxylase (CYP24A1): synthesis and biological evaluation
  publication-title: J Med Chem
– volume: 418
  start-page: 126
  issue: 1
  year: 2011
  end-page: 133
  article-title: Simultaneous measurement of plasma vitamin D(3) metabolites, including 4beta,25‐dihydroxyvitamin D(3), using liquid chromatography‐tandem mass spectrometry
  publication-title: Anal Biochem
– volume: 186
  start-page: 110
  year: 2019
  end-page: 116
  article-title: Vitamin D C3‐epimer levels are proportionally higher with oral vitamin D supplementation compared to ultraviolet irradiation of skin in mice but not humans
  publication-title: J Steroid Biochem Mol Biol
– volume: 932
  start-page: 6
  year: 2013
  end-page: 11
  article-title: Quantification of vitamin D and 25‐hydroxyvitamin D in soft tissues by liquid chromatography‐tandem mass spectrometry
  publication-title: J Chromatogr B Analyt Technol Biomed Life Sci
– volume: 99
  start-page: 2567
  issue: 7
  year: 2014
  end-page: 2574
  article-title: Clinical utility of simultaneous quantitation of 25‐hydroxyvitamin D and 24,25‐dihydroxyvitamin D by LC‐MS/MS involving derivatization with DMEQ‐TAD
  publication-title: J Clin Endocrinol Metab
– volume: 39
  start-page: 243
  issue: 2
  year: 2010
  end-page: 253
  article-title: Vitamin D: metabolism
  publication-title: Endocrinol Metab Clin North Am
– volume: 95
  start-page: 1387
  issue: 4
  year: 1998
  end-page: 1391
  article-title: Parathyroid hormone activation of the 25‐hydroxyvitamin D3‐1alpha‐hydroxylase gene promoter
  publication-title: Proc Natl Acad Sci U S A
– volume: 10
  start-page: 2465
  issue: 12
  year: 1999
  end-page: 2473
  article-title: Expression of 25‐hydroxyvitamin D‐3‐1 alpha‐hydroxylase in the human kidney
  publication-title: J Am Soc Nephrol
– ident: e_1_2_14_202_1
  doi: 10.1172/JCI5244
– ident: e_1_2_14_25_1
  doi: 10.1016/j.abb.2012.01.013
– volume: 259
  start-page: 884
  issue: 2
  year: 1984
  ident: e_1_2_14_79_1
  article-title: Isolation, identification, and metabolism of (23S,25R)‐25‐hydroxyvitamin D3 26,23‐lactol. A biosynthetic precursor of (23S,25R)‐25‐hydroxyvitamin D3 26,23‐lactone
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)43539-3
– ident: e_1_2_14_91_1
  doi: 10.1002/jcb.10359
– ident: e_1_2_14_170_1
  doi: 10.1021/bi00717a005
– ident: e_1_2_14_169_1
  doi: 10.1016/j.jsbmb.2010.02.025
– ident: e_1_2_14_58_1
  doi: 10.1146/annurev.nu.04.070184.002425
– ident: e_1_2_14_104_1
  doi: 10.1016/j.bcp.2012.09.032
– ident: e_1_2_14_11_1
  doi: 10.1210/jcem-67-2-373
– ident: e_1_2_14_81_1
  doi: 10.1073/pnas.78.11.6579
– volume: 83
  start-page: 2156
  issue: 6
  year: 1998
  ident: e_1_2_14_89_1
  article-title: Unique 24‐hydroxylated metabolites represent a significant pathway of metabolism of vitamin D2 in humans: 24‐hydroxyvitamin D2 and 1,24‐dihydroxyvitamin D2 detectable in human serum
  publication-title: J Clin Endocrinol Metab
– ident: e_1_2_14_136_1
  doi: 10.1016/S0731-7085(02)00135-8
– ident: e_1_2_14_128_1
  doi: 10.1016/j.jchromb.2017.06.017
– ident: e_1_2_14_28_1
  doi: 10.1073/pnas.1315006110
– ident: e_1_2_14_172_1
  doi: 10.1373/clinchem.2015.241430
– ident: e_1_2_14_2_1
  doi: 10.1093/ajcn/85.3.860
– ident: e_1_2_14_190_1
  doi: 10.1007/s12031-015-0643-1
– ident: e_1_2_14_183_1
  doi: 10.1530/EJE-15-0338
– ident: e_1_2_14_49_1
  doi: 10.1073/pnas.95.4.1387
– ident: e_1_2_14_102_1
  doi: 10.1111/j.1742-4658.2005.04819.x
– ident: e_1_2_14_189_1
  doi: 10.1210/jc.2008-1454
– ident: e_1_2_14_39_1
  doi: 10.1016/S0960-0760(97)00020-4
– ident: e_1_2_14_40_1
  doi: 10.1016/j.abb.2012.02.016
– ident: e_1_2_14_157_1
  doi: 10.3748/wjg.v19.i17.2621
– ident: e_1_2_14_37_1
  doi: 10.1038/281317a0
– ident: e_1_2_14_200_1
  doi: 10.1002/jbmr.387
– ident: e_1_2_14_144_1
  doi: 10.1016/j.jchromb.2015.12.014
– ident: e_1_2_14_191_1
  doi: 10.1373/clinchem.2015.239491
– ident: e_1_2_14_165_1
  doi: 10.1093/clinchem/30.11.1731
– ident: e_1_2_14_53_1
  doi: 10.1021/bi960658i
– ident: e_1_2_14_168_1
  doi: 10.1007/s11154-013-9241-0
– ident: e_1_2_14_199_1
  doi: 10.1371/journal.pone.0030773
– ident: e_1_2_14_27_1
  doi: 10.1073/pnas.0402490101
– ident: e_1_2_14_171_1
  doi: 10.1016/S0021-9673(01)00985-2
– ident: e_1_2_14_55_1
  doi: 10.1021/bi00430a051
– ident: e_1_2_14_112_1
  doi: 10.1002/jcb.24576
– ident: e_1_2_14_45_1
  doi: 10.1016/j.tibs.2004.10.005
– ident: e_1_2_14_64_1
  doi: 10.1042/bj2620173
– ident: e_1_2_14_158_1
  doi: 10.1021/jm040129
– ident: e_1_2_14_153_1
  doi: 10.1021/jm980736v
– ident: e_1_2_14_179_1
  doi: 10.1016/j.jchromb.2018.04.025
– ident: e_1_2_14_100_1
  doi: 10.1038/srep14875
– ident: e_1_2_14_15_1
  doi: 10.1016/j.foodchem.2004.08.022
– ident: e_1_2_14_85_1
  doi: 10.1021/mp500429u
– ident: e_1_2_14_149_1
  doi: 10.1073/pnas.75.5.2080
– ident: e_1_2_14_137_1
  doi: 10.1124/dmd.117.078428
– volume: 46
  start-page: 1657
  issue: 10
  year: 2000
  ident: e_1_2_14_184_1
  article-title: Comparison of commercially available (125)I‐based RIA methods for the determination of circulating 25‐hydroxyvitamin D
  publication-title: Clin Chem
  doi: 10.1093/clinchem/46.10.1657
– ident: e_1_2_14_92_1
  doi: 10.1021/bi00454a035
– ident: e_1_2_14_56_1
  doi: 10.1046/j.1432-1327.1999.00375.x
– ident: e_1_2_14_145_1
  doi: 10.1016/j.jsbmb.2012.09.016
– ident: e_1_2_14_176_1
  doi: 10.1007/s00216-008-2095-8
– ident: e_1_2_14_43_1
  doi: 10.1681/ASN.V133621
– ident: e_1_2_14_113_1
  doi: 10.3177/jnsv.47.108
– ident: e_1_2_14_131_1
  doi: 10.1016/S0378-4347(96)00377-5
– ident: e_1_2_14_96_1
  doi: 10.1006/abbi.1999.1308
– ident: e_1_2_14_119_1
  doi: 10.3945/jn.114.192419
– ident: e_1_2_14_150_1
  doi: 10.1021/bi036056y
– ident: e_1_2_14_107_1
  doi: 10.1111/j.1742-4658.2006.05302.x
– ident: e_1_2_14_14_1
  doi: 10.1126/science.6256855
– ident: e_1_2_14_99_1
  doi: 10.1016/j.jsbmb.2014.11.010
– ident: e_1_2_14_76_1
  doi: 10.1016/j.abb.2006.08.021
– ident: e_1_2_14_68_1
  doi: 10.1021/acschembio.6b00569
– volume: 10
  start-page: 2465
  issue: 12
  year: 1999
  ident: e_1_2_14_36_1
  article-title: Expression of 25‐hydroxyvitamin D‐3‐1 alpha‐hydroxylase in the human kidney
  publication-title: J Am Soc Nephrol
  doi: 10.1681/ASN.V10122465
– ident: e_1_2_14_62_1
  doi: 10.1373/clinchem.2015.244459
– ident: e_1_2_14_111_1
  doi: 10.1074/jbc.M311473200
– ident: e_1_2_14_178_1
  doi: 10.1016/j.jchromb.2014.01.045
– ident: e_1_2_14_163_1
  doi: 10.1210/jcem-33-3-554
– ident: e_1_2_14_87_1
  doi: 10.1021/bi00366a051
– ident: e_1_2_14_71_1
  doi: 10.1021/bi030207f
– ident: e_1_2_14_173_1
  doi: 10.1016/j.clinbiochem.2010.05.007
– ident: e_1_2_14_47_1
  doi: 10.1073/pnas.68.9.2131
– ident: e_1_2_14_118_1
  doi: 10.1016/j.clinbiochem.2018.02.013
– ident: e_1_2_14_20_1
  doi: 10.1152/physrev.1998.78.4.1193
– ident: e_1_2_14_73_1
  doi: 10.1021/jm050738x
– ident: e_1_2_14_88_1
  doi: 10.1016/S0960-0760(01)00082-6
– ident: e_1_2_14_155_1
  doi: 10.1016/j.ejmech.2010.07.001
– ident: e_1_2_14_103_1
  doi: 10.1124/dmd.113.050955
– ident: e_1_2_14_141_1
  doi: 10.1002/1873-3468.12767
– volume: 268
  start-page: 20022
  issue: 27
  year: 1993
  ident: e_1_2_14_35_1
  article-title: Demonstration that 1 beta,25‐dihydroxyvitamin D3 is an antagonist of the nongenomic but not genomic biological responses and biological profile of the three A‐ring diastereomers of 1 alpha,25‐dihydroxyvitamin D3
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(20)80689-9
– ident: e_1_2_14_34_1
  doi: 10.1359/JBMR.0301257
– ident: e_1_2_14_22_1
  doi: 10.1042/cs0400039
– volume: 14
  start-page: 1788
  issue: 11
  year: 2000
  ident: e_1_2_14_75_1
  article-title: 25‐Dehydro‐1alpha‐hydroxyvitamin D3‐26,23S‐lactone antagonises the nuclear vitamin D receptor by mediating a unique noncovalent conformational change
  publication-title: Mol Endocrinol
– ident: e_1_2_14_194_1
  doi: 10.1016/j.jchromb.2013.05.029
– ident: e_1_2_14_147_1
  doi: 10.1126/science.982048
– ident: e_1_2_14_65_1
  doi: 10.1021/bi00294a025
– ident: e_1_2_14_105_1
  doi: 10.1016/j.jsbmb.2011.11.012
– ident: e_1_2_14_185_1
  doi: 10.1021/ac9026862
– ident: e_1_2_14_59_1
  doi: 10.1073/pnas.0702093104
– ident: e_1_2_14_94_1
  doi: 10.1016/j.bbalip.2006.01.004
– ident: e_1_2_14_193_1
  doi: 10.1016/j.placenta.2016.12.019
– ident: e_1_2_14_10_1
  doi: 10.1021/bi00573a011
– volume: 258
  start-page: 12920
  issue: 21
  year: 1983
  ident: e_1_2_14_78_1
  article-title: The isolation and identification of two new metabolites of 25‐hydroxyvitamin D3 produced in the kidney
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)44058-0
– ident: e_1_2_14_182_1
  doi: 10.1039/C7AY00550D
– ident: e_1_2_14_146_1
  doi: 10.1016/S0168-9452(02)00420-X
– ident: e_1_2_14_135_1
  doi: 10.1016/S0039-128X(00)00087-8
– ident: e_1_2_14_63_1
  doi: 10.1016/S0021-9258(17)40673-9
– ident: e_1_2_14_30_1
  doi: 10.1194/jlr.R031534
– ident: e_1_2_14_186_1
  doi: 10.1021/ac202047n
– ident: e_1_2_14_21_1
  doi: 10.1093/ajcn/88.2.582S
– ident: e_1_2_14_77_1
  doi: 10.1126/science.183.4130.1198
– ident: e_1_2_14_159_1
  doi: 10.1210/en.2009-1156
– ident: e_1_2_14_110_1
  doi: 10.1016/j.clinbiochem.2012.10.037
– ident: e_1_2_14_72_1
  doi: 10.1016/0003-9861(84)90422-3
– ident: e_1_2_14_192_1
  doi: 10.1007/s00216-017-0215-z
– ident: e_1_2_14_52_1
  doi: 10.1046/j.1432-1327.2000.01680.x
– ident: e_1_2_14_46_1
  doi: 10.1006/bbrc.1998.9098
– ident: e_1_2_14_61_1
  doi: 10.1210/jc.2014-4387
– ident: e_1_2_14_125_1
  doi: 10.1016/j.jsbmb.2017.02.004
– ident: e_1_2_14_152_1
  doi: 10.1016/0960-894X(96)00301-0
– ident: e_1_2_14_51_1
  doi: 10.1016/j.abb.2011.11.003
– ident: e_1_2_14_164_1
  doi: 10.1016/j.plabm.2015.04.001
– ident: e_1_2_14_139_1
  doi: 10.1016/j.jchromb.2014.08.027
– ident: e_1_2_14_83_1
  doi: 10.1002/jbmr.1839
– ident: e_1_2_14_97_1
  doi: 10.1021/bi00456a014
– ident: e_1_2_14_98_1
  doi: 10.1073/pnas.2336107100
– ident: e_1_2_14_129_1
  doi: 10.1016/S0731-7085(96)01983-8
– ident: e_1_2_14_8_1
  doi: 10.1016/j.chembiol.2013.12.016
– ident: e_1_2_14_95_1
  doi: 10.1021/bi00415a058
– ident: e_1_2_14_50_1
  doi: 10.1172/JCI200419081
– ident: e_1_2_14_134_1
  doi: 10.1016/S0005-2760(97)00026-X
– ident: e_1_2_14_130_1
  doi: 10.1021/bi00504a037
– ident: e_1_2_14_115_1
  doi: 10.1002/(SICI)1097-4644(19990401)73:1<106::AID-JCB12>3.0.CO;2-Q
– ident: e_1_2_14_140_1
  doi: 10.1530/JME-18-0086
– ident: e_1_2_14_133_1
  doi: 10.1016/S0039-128X(99)00057-4
– ident: e_1_2_14_154_1
  doi: 10.1021/jm5009314
– ident: e_1_2_14_74_1
  doi: 10.1021/ol035922w
– ident: e_1_2_14_31_1
  doi: 10.1074/jbc.M307028200
– ident: e_1_2_14_148_1
  doi: 10.1126/science.186.4168.1038
– ident: e_1_2_14_90_1
  doi: 10.1006/abbi.2001.2419
– ident: e_1_2_14_4_1
  doi: 10.1056/NEJMra070553
– ident: e_1_2_14_166_1
  doi: 10.1016/0003-2697(77)90648-0
– ident: e_1_2_14_26_1
  doi: 10.1021/bi00850a001
– ident: e_1_2_14_138_1
  doi: 10.1016/0014-5793(85)80002-8
– ident: e_1_2_14_175_1
  doi: 10.1002/mas.21408
– ident: e_1_2_14_82_1
  doi: 10.1124/mol.111.076356
– ident: e_1_2_14_70_1
  doi: 10.1021/bi00302a021
– ident: e_1_2_14_19_1
  doi: 10.3389/fpls.2013.00136
– ident: e_1_2_14_126_1
  doi: 10.1210/jc.2013-2872
– ident: e_1_2_14_151_1
  doi: 10.1021/jm0604070
– ident: e_1_2_14_114_1
  doi: 10.1021/bi00558a007
– ident: e_1_2_14_6_1
  doi: 10.1210/jc.2010-2704
– ident: e_1_2_14_7_1
  doi: 10.1210/jc.2011-0385
– ident: e_1_2_14_13_1
  doi: 10.1126/science.6281884
– ident: e_1_2_14_204_1
  doi: 10.1016/j.bone.2014.12.068
– ident: e_1_2_14_32_1
  doi: 10.1074/jbc.273.24.14805
– ident: e_1_2_14_66_1
  doi: 10.1021/bi00375a045
– ident: e_1_2_14_3_1
– ident: e_1_2_14_48_1
  doi: 10.1210/endo.140.5.6691
– ident: e_1_2_14_106_1
  doi: 10.1124/dmd.110.034389
– ident: e_1_2_14_93_1
  doi: 10.1016/0006-2952(96)00173-6
– ident: e_1_2_14_196_1
  doi: 10.1210/jcem-63-4-954
– ident: e_1_2_14_187_1
  doi: 10.1016/j.jsbmb.2017.07.018
– ident: e_1_2_14_38_1
  doi: 10.1016/j.jsbmb.2006.12.091
– ident: e_1_2_14_156_1
  doi: 10.1016/j.bmc.2010.06.011
– ident: e_1_2_14_161_1
  doi: 10.1016/j.annepidem.2007.12.001
– ident: e_1_2_14_60_1
  doi: 10.1056/NEJMoa1103864
– ident: e_1_2_14_101_1
  doi: 10.1016/j.jsbmb.2013.10.012
– volume: 32
  start-page: 259
  issue: 1
  year: 2012
  ident: e_1_2_14_195_1
  article-title: Determination of 1,25‐dihydroxyvitamin D concentrations in human colon tissues and matched serum samples
  publication-title: Anticancer Res
– ident: e_1_2_14_69_1
  doi: 10.1042/bj2140261
– ident: e_1_2_14_86_1
  doi: 10.1172/JCI98680
– ident: e_1_2_14_109_1
  doi: 10.1016/j.chembiol.2005.06.010
– ident: e_1_2_14_143_1
  doi: 10.1124/mol.65.3.720
– ident: e_1_2_14_203_1
  doi: 10.1373/clinchem.2015.244541
– ident: e_1_2_14_205_1
  doi: 10.1016/j.jsbmb.2017.11.014
– ident: e_1_2_14_117_1
  doi: 10.1006/abbi.1996.0213
– ident: e_1_2_14_57_1
  doi: 10.1111/febs.12862
– ident: e_1_2_14_44_1
  doi: 10.1016/j.mce.2003.11.017
– volume: 257
  start-page: 9634
  issue: 16
  year: 1982
  ident: e_1_2_14_80_1
  article-title: 23S,25‐dihydroxyvitamin D3 as a circulating metabolite of vitamin D3. Its role in 25‐hydroxyvitamin D3‐26,23‐lactone biosynthesis
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)34119-X
– ident: e_1_2_14_9_1
  doi: 10.1126/science.6251551
– ident: e_1_2_14_5_1
  doi: 10.1016/j.jsbmb.2017.06.006
– ident: e_1_2_14_124_1
  doi: 10.1016/j.jsbmb.2018.10.002
– ident: e_1_2_14_127_1
  doi: 10.1210/en.2013-2013
– ident: e_1_2_14_180_1
  doi: 10.1016/0039-128X(87)90083-3
– ident: e_1_2_14_201_1
  doi: 10.1016/j.jsbmb.2013.09.012
– ident: e_1_2_14_197_1
  doi: 10.1056/NEJMoa1306357
– ident: e_1_2_14_42_1
  doi: 10.1016/j.jsbmb.2006.12.078
– ident: e_1_2_14_29_1
  doi: 10.1073/pnas.90.18.8668
– ident: e_1_2_14_16_1
  doi: 10.1210/jc.2004-0360
– ident: e_1_2_14_132_1
  doi: 10.1016/j.bcp.2007.11.008
– ident: e_1_2_14_142_1
  doi: 10.1016/j.jchromb.2009.11.026
– ident: e_1_2_14_177_1
  doi: 10.1210/jc.2013-4388
– ident: e_1_2_14_18_1
  doi: 10.1093/ajcn/68.4.854
– ident: e_1_2_14_41_1
  doi: 10.1016/j.jchemneu.2004.08.006
– ident: e_1_2_14_54_1
  doi: 10.1074/jbc.M809542200
– ident: e_1_2_14_174_1
  doi: 10.1016/j.jchromb.2016.01.049
– ident: e_1_2_14_17_1
  doi: 10.1210/jc.2007-2308
– ident: e_1_2_14_12_1
  doi: 10.1016/j.pbiomolbio.2006.02.004
– ident: e_1_2_14_188_1
  doi: 10.1159/000486536
– ident: e_1_2_14_198_1
  doi: 10.1210/jc.2010-0195
– ident: e_1_2_14_123_1
  doi: 10.1016/j.clinbiochem.2012.11.030
– ident: e_1_2_14_121_1
  doi: 10.1016/j.cca.2014.12.036
– ident: e_1_2_14_120_1
  doi: 10.1007/s00198-015-3125-y
– ident: e_1_2_14_181_1
  doi: 10.1002/mas.21353
– ident: e_1_2_14_206_1
  doi: 10.1056/NEJMoa1807841
– ident: e_1_2_14_24_1
  doi: 10.1016/j.ecl.2010.02.002
– ident: e_1_2_14_23_1
  doi: 10.1016/S0003-9861(73)80008-6
– ident: e_1_2_14_108_1
  doi: 10.1111/j.1742-4658.2008.06406.x
– ident: e_1_2_14_167_1
  doi: 10.1002/bmc.1130050404
– ident: e_1_2_14_116_1
  doi: 10.1002/jcb.20553
– volume-title: Vitamin D
  year: 2018
  ident: e_1_2_14_33_1
– ident: e_1_2_14_84_1
  doi: 10.1016/j.ab.2011.06.043
– ident: e_1_2_14_67_1
  doi: 10.1016/0003-9861(81)90107-7
– ident: e_1_2_14_160_1
  doi: 10.1016/S0960-0760(03)00063-3
– ident: e_1_2_14_162_1
  doi: 10.1093/ajcn/87.4.1087S
– ident: e_1_2_14_122_1
  doi: 10.1210/jc.2006-0710
SSID ssj0009630
Score 2.4590616
SecondaryResourceType review_article
Snippet Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25‐hydroxyvitamin D3 (25OHD3) and its conversion to...
Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25-hydroxyvitamin D3 (25OHD3) and its conversion to...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 408
SubjectTerms 25-Hydroxyvitamin D
analysis
Animals
Calciferol
conjugation
Humans
Hydroxylase
hydroxylation
Metabolic pathways
Metabolism
Metabolites
Metabolome - physiology
Vitamin D
Vitamin D - analysis
Vitamin D - metabolism
Vitamin D3
Title The vitamin D metabolome: An update on analysis and function
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbf.3421
https://www.ncbi.nlm.nih.gov/pubmed/31328813
https://www.proquest.com/docview/2269205719
https://www.proquest.com/docview/2261975089
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yEH3xY35Np0QQferWNslMxJc5HUPQB1EQfChJmsLQdaKdoH-9d_2Y-AXiUwu9Ju3dJfn1evkdIXvWKCQaS7yOULHHtZOedIH1hB8fhrDC69hgQP_isjO44ee34rbMqsS9MAU_xDTghiMjn69xgGvz3P4gDbUmaTGe7yHHVC3EQ1cfzFHgV2V4hXkdLnnFO-uH7erGzyvRN3j5Ga3my01_kdxVD1pkmdy3Jplp2bcvHI7_e5MlslCiUNot3GaZzLi0TmaLupSvdTLXq8rArZBjcCT6Msz0aJjSUzpyGbjNw3jkjmg3pZNHjBjQcUp1yW4CJzHF1RItvkpu-mfXvYFXllzwLOMq8FzArGDGiZj5LvCdTXxhuLRMOPxykbjz1iYqiQF2wVxghdAm4CI02jAF4myN1NJx6jYI9WMpnDGMG3HIO1JrnFu54r7F9rRokINK_ZEt-cixLMZDVDAphxHoJUK9NMjuVPKx4OD4QaZZWTAqR-FzBNBShQBIAwVNTC-D_vCniE7deJLLBApgkwSZ9cLy006Q1lLKgDXIfm6_X3uPeid9PG7-VXCLzAPyUkUmYZPUsqeJ2wZ0k5md3I_fAZK38i8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hUEUvQIHC8iiuhNpTliS2Fxu4wMJq2wKHCiQOlSLbcSQEm0WQRYJfz0wei6BFqjglUiZOMjP2fJ7Y3wBsOquJaCwLOlKngTBeBcpHLpBhuh1jhDeppYT-yWmnfy5-XsiLCdht9sJU_BDjhBv1jHK8pg5OCemtZ9ZQZ7M2F7SJfIoKepfzqd_P3FHoWXWChQcdoUTDPBvGW82dL2PRXwDzJV4tA05vFv40r1qtM7lqjwrbdo-vWBzf-S1zMFMDUbZfec4nmPD5PHyoSlM-zMN0t6kEtwB76Evs_rIwg8ucHbKBL9BzrocDv8P2cza6oaQBG-bM1AQneJIyCphk9EU47x2ddftBXXUhcFzoKPARd5JbL1Me-ij0LgulFcpx6Wnyomjzrct0liLywuHASWlsJGRsjeUaxflnmMyHuV8GFqZKemu5sHJbdJQxNLwKLUJH7RnZgu-N_hNXU5JTZYzrpCJTjhPUS0J6acHXseRNRcPxD5m1xoRJ3RHvEkSXOkZMGmlsYnwZ9Uf_RUzuh6NSJtKInBTKLFWmHz-EmC2VingLvpUGfPPpSfegR8eV_xXcgOn-2clxcvzj9NcqfEQgpquFhWswWdyO_DqCncJ-KZ36CbzC9ko
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB9EsfXFqvXjrNYVSvuUM8nuxt3SF3vXw49WSqkg-BB2NxsQvdyhOaH96zuTjxNrBelTApnsJjOzO79Mdn8D8M5ZTURjeZBInQXCeBUoH7lAhtl-jBHeZJYS-t9Ok8MzcXwuz5tVlbQXpuaHmCbcaGRU8zUN8HGW792Thjqbd7mgPeRzIgkVeXT_xz11FDpWk1_hQSKUaIlnw3ivvfNhKHqELx_C1SreDF7BRfuk9TKTq-6ktF33-y8Sx_97lSVYbGAoO6j9ZhlmfLEC83Vhyl8r8LLX1oF7DZ_Qk9jdZWmGlwXrs6Ev0W-uR0P_kR0UbDKmlAEbFcw09CZ4kjEKl2TyVTgbfPnZOwyamguB40JHgY-4k9x6mfHQR6F3eSitUI5LT58uirbeulznGeIunAyclMZGQsbWWK5RnK_BbDEq_AawMFPSW8uFlfsiUcbQ5Cq0CB21Z2QHPrTqT11DSE51Ma7Tmko5TlEvKemlA7tTyXFNwvEPma3WgmkzDG9TxJY6RkQaaWxiehn1R39FTOFHk0om0oibFMqs15afdkK8lkpFvAPvK_s92Xva-zyg4-ZzBXfgxff-IP16dHryBhYQhel6VeEWzJY3E7-NSKe0byuX_gP33vUC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+vitamin+D+metabolome%3A+An+update+on+analysis+and+function&rft.jtitle=Cell+biochemistry+and+function&rft.au=Jenkinson%2C+Carl&rft.date=2019-08-01&rft.eissn=1099-0844&rft.volume=37&rft.issue=6&rft.spage=408&rft_id=info:doi/10.1002%2Fcbf.3421&rft_id=info%3Apmid%2F31328813&rft.externalDocID=31328813
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-6484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-6484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-6484&client=summon