The vitamin D metabolome: An update on analysis and function
Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25‐hydroxyvitamin D3 (25OHD3) and its conversion to the active hormonal form, 1α,25‐dihydroxyvitamin D3 (1α,25(OH)2D3) via the enzyme 25‐hydroxyvitamin D‐1α‐hydroxylase (CYP27B1). However, whilst...
Saved in:
Published in | Cell biochemistry and function Vol. 37; no. 6; pp. 408 - 423 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25‐hydroxyvitamin D3 (25OHD3) and its conversion to the active hormonal form, 1α,25‐dihydroxyvitamin D3 (1α,25(OH)2D3) via the enzyme 25‐hydroxyvitamin D‐1α‐hydroxylase (CYP27B1). However, whilst these metabolites form the endocrine backbone of vitamin D physiology, it is important to recognise that there are other metabolic and catabolic pathways that are now recognised as being crucially important to vitamin D function. These pathways include C3‐epimerization, CYP24A1 hydroxylase, CYP11A1 alternative metabolism of vitamin D3, and phase II metabolism. Endogenous metabolites beyond 25OHD3 are usually present at low endogenous levels and may only be functional in specific target tissues rather than in the general circulation. However, the technologies available to measure these metabolites have also improved, so that measurement of alternative vitamin D metabolic pathways may become more routine in the near future. The aim of this review is to provide a comprehensive overview of the various pathways of vitamin D metabolism, as well as describe the analytical techniques currently available to measure these vitamin D metabolites. |
---|---|
AbstractList | Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25‐hydroxyvitamin D3 (25OHD3) and its conversion to the active hormonal form, 1α,25‐dihydroxyvitamin D3 (1α,25(OH)
2
D3) via the enzyme 25‐hydroxyvitamin D‐1α‐hydroxylase (CYP27B1). However, whilst these metabolites form the endocrine backbone of vitamin D physiology, it is important to recognise that there are other metabolic and catabolic pathways that are now recognised as being crucially important to vitamin D function. These pathways include C3‐epimerization, CYP24A1 hydroxylase, CYP11A1 alternative metabolism of vitamin D3, and phase II metabolism. Endogenous metabolites beyond 25OHD3 are usually present at low endogenous levels and may only be functional in specific target tissues rather than in the general circulation. However, the technologies available to measure these metabolites have also improved, so that measurement of alternative vitamin D metabolic pathways may become more routine in the near future. The aim of this review is to provide a comprehensive overview of the various pathways of vitamin D metabolism, as well as describe the analytical techniques currently available to measure these vitamin D metabolites. Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25-hydroxyvitamin D3 (25OHD3) and its conversion to the active hormonal form, 1α,25-dihydroxyvitamin D3 (1α,25(OH) D3) via the enzyme 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1). However, whilst these metabolites form the endocrine backbone of vitamin D physiology, it is important to recognise that there are other metabolic and catabolic pathways that are now recognised as being crucially important to vitamin D function. These pathways include C3-epimerization, CYP24A1 hydroxylase, CYP11A1 alternative metabolism of vitamin D3, and phase II metabolism. Endogenous metabolites beyond 25OHD3 are usually present at low endogenous levels and may only be functional in specific target tissues rather than in the general circulation. However, the technologies available to measure these metabolites have also improved, so that measurement of alternative vitamin D metabolic pathways may become more routine in the near future. The aim of this review is to provide a comprehensive overview of the various pathways of vitamin D metabolism, as well as describe the analytical techniques currently available to measure these vitamin D metabolites. Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25‐hydroxyvitamin D3 (25OHD3) and its conversion to the active hormonal form, 1α,25‐dihydroxyvitamin D3 (1α,25(OH)2D3) via the enzyme 25‐hydroxyvitamin D‐1α‐hydroxylase (CYP27B1). However, whilst these metabolites form the endocrine backbone of vitamin D physiology, it is important to recognise that there are other metabolic and catabolic pathways that are now recognised as being crucially important to vitamin D function. These pathways include C3‐epimerization, CYP24A1 hydroxylase, CYP11A1 alternative metabolism of vitamin D3, and phase II metabolism. Endogenous metabolites beyond 25OHD3 are usually present at low endogenous levels and may only be functional in specific target tissues rather than in the general circulation. However, the technologies available to measure these metabolites have also improved, so that measurement of alternative vitamin D metabolic pathways may become more routine in the near future. The aim of this review is to provide a comprehensive overview of the various pathways of vitamin D metabolism, as well as describe the analytical techniques currently available to measure these vitamin D metabolites. Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25-hydroxyvitamin D3 (25OHD3) and its conversion to the active hormonal form, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 D3) via the enzyme 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1). However, whilst these metabolites form the endocrine backbone of vitamin D physiology, it is important to recognise that there are other metabolic and catabolic pathways that are now recognised as being crucially important to vitamin D function. These pathways include C3-epimerization, CYP24A1 hydroxylase, CYP11A1 alternative metabolism of vitamin D3, and phase II metabolism. Endogenous metabolites beyond 25OHD3 are usually present at low endogenous levels and may only be functional in specific target tissues rather than in the general circulation. However, the technologies available to measure these metabolites have also improved, so that measurement of alternative vitamin D metabolic pathways may become more routine in the near future. The aim of this review is to provide a comprehensive overview of the various pathways of vitamin D metabolism, as well as describe the analytical techniques currently available to measure these vitamin D metabolites.Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25-hydroxyvitamin D3 (25OHD3) and its conversion to the active hormonal form, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2 D3) via the enzyme 25-hydroxyvitamin D-1α-hydroxylase (CYP27B1). However, whilst these metabolites form the endocrine backbone of vitamin D physiology, it is important to recognise that there are other metabolic and catabolic pathways that are now recognised as being crucially important to vitamin D function. These pathways include C3-epimerization, CYP24A1 hydroxylase, CYP11A1 alternative metabolism of vitamin D3, and phase II metabolism. Endogenous metabolites beyond 25OHD3 are usually present at low endogenous levels and may only be functional in specific target tissues rather than in the general circulation. However, the technologies available to measure these metabolites have also improved, so that measurement of alternative vitamin D metabolic pathways may become more routine in the near future. The aim of this review is to provide a comprehensive overview of the various pathways of vitamin D metabolism, as well as describe the analytical techniques currently available to measure these vitamin D metabolites. |
Author | Jenkinson, Carl |
Author_xml | – sequence: 1 givenname: Carl orcidid: 0000-0002-1838-5282 surname: Jenkinson fullname: Jenkinson, Carl email: c.jenkinson@bham.ac.uk organization: University of Birmingham |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31328813$$D View this record in MEDLINE/PubMed |
BookMark | eNp10E1LwzAYwPEgE_ei4CeQghcvnXntGvEyp1Nh4GWeQ5o-xY42mU2r7Nvb7kVB9JQcfnl48h-innUWEDoneEwwptcmycaMU3KEBgRLGeKY8x4aYBqxMOIx76Oh9yuMsYwYPkF9RhiNY8IG6Hb5BsFHXusyt8F9UEKtE1e4Em6CqQ2adaprCJwNtNXFxue-vaRB1lhT586eouNMFx7O9ucIvc4flrOncPHy-DybLkLDuCQhEGYES0CkDAPBYDIsEh4bJmDCmYwJ4dRkMktFRGJGjRA6IVzQRCdMtpyN0NVu7rpy7w34WpW5N1AU2oJrvKI0InIicCxbevmLrlxTtctvlaRYTEinLvaqSUpI1brKS11t1KFLC8Y7YCrnfQWZMm2j7s91pfNCEay68KoNr7rwPyt-PzjM_IOGO_qZF7D516nZ3XzrvwBEho2u |
CitedBy_id | crossref_primary_10_1002_mas_21768 crossref_primary_10_1139_bcb_2022_0049 crossref_primary_10_1007_s12013_020_00913_6 crossref_primary_10_1080_07391102_2021_1964601 crossref_primary_10_1186_s43043_024_00197_3 crossref_primary_10_1038_s41584_023_00944_2 crossref_primary_10_1016_j_cca_2021_03_002 crossref_primary_10_1111_brv_13091 crossref_primary_10_1515_cclm_2022_1267 crossref_primary_10_3892_ijo_2022_5386 crossref_primary_10_1016_j_tjnut_2023_10_029 crossref_primary_10_3390_ijms22169097 crossref_primary_10_33176_AACB_20_00006 crossref_primary_10_3390_cancers12102965 crossref_primary_10_1016_j_jsbmb_2022_106229 crossref_primary_10_1016_j_bioorg_2022_105660 crossref_primary_10_3390_nu14081586 crossref_primary_10_1038_s41371_021_00577_6 crossref_primary_10_1111_odi_13650 crossref_primary_10_3390_nu12030801 crossref_primary_10_1210_endrev_bnae009 crossref_primary_10_3389_fvets_2021_707741 crossref_primary_10_1016_j_steroids_2021_108812 crossref_primary_10_1186_s13063_024_08461_7 crossref_primary_10_2147_IJGM_S366725 crossref_primary_10_1007_s00216_022_04097_1 crossref_primary_10_1210_clinem_dgab708 crossref_primary_10_1016_j_ijbiomac_2022_04_048 crossref_primary_10_3390_biom14050551 crossref_primary_10_1017_S0007114523001952 crossref_primary_10_3390_ijms21239296 crossref_primary_10_1515_chem_2021_0107 crossref_primary_10_20473_mog_V30I32022_154_160 crossref_primary_10_3390_cells13030239 crossref_primary_10_1039_D2AN01982E crossref_primary_10_1016_j_heliyon_2023_e14291 crossref_primary_10_3390_nu13113672 crossref_primary_10_1530_EC_21_0554 crossref_primary_10_3390_nu12040998 crossref_primary_10_3390_ijms25105286 crossref_primary_10_3390_nu12113541 crossref_primary_10_3390_cosmetics11020037 crossref_primary_10_3390_ijms22094983 crossref_primary_10_3390_molecules25112583 crossref_primary_10_1016_j_clnu_2020_10_027 crossref_primary_10_1186_s41043_023_00401_6 crossref_primary_10_3389_fimmu_2021_678487 crossref_primary_10_3390_diagnostics12051229 crossref_primary_10_3390_nu13010200 crossref_primary_10_26442_00403660_2021_10_201081 crossref_primary_10_1515_cclm_2022_0148 crossref_primary_10_3390_nu13061758 crossref_primary_10_3390_nu14224779 crossref_primary_10_1096_fj_202200578R crossref_primary_10_3389_fonc_2021_743667 crossref_primary_10_54005_geneltip_1098363 crossref_primary_10_1016_j_plipres_2023_101220 crossref_primary_10_3389_fphar_2022_835480 crossref_primary_10_3390_foods12071429 crossref_primary_10_1021_acs_molpharmaceut_1c00944 crossref_primary_10_3390_biology10030237 crossref_primary_10_3390_ijms23020933 crossref_primary_10_3389_fphar_2022_902639 crossref_primary_10_1016_j_ejmech_2024_116403 |
Cites_doi | 10.1172/JCI5244 10.1016/j.abb.2012.01.013 10.1016/S0021-9258(17)43539-3 10.1002/jcb.10359 10.1021/bi00717a005 10.1016/j.jsbmb.2010.02.025 10.1146/annurev.nu.04.070184.002425 10.1016/j.bcp.2012.09.032 10.1210/jcem-67-2-373 10.1073/pnas.78.11.6579 10.1016/S0731-7085(02)00135-8 10.1016/j.jchromb.2017.06.017 10.1073/pnas.1315006110 10.1373/clinchem.2015.241430 10.1093/ajcn/85.3.860 10.1007/s12031-015-0643-1 10.1530/EJE-15-0338 10.1073/pnas.95.4.1387 10.1111/j.1742-4658.2005.04819.x 10.1210/jc.2008-1454 10.1016/S0960-0760(97)00020-4 10.1016/j.abb.2012.02.016 10.3748/wjg.v19.i17.2621 10.1038/281317a0 10.1002/jbmr.387 10.1016/j.jchromb.2015.12.014 10.1373/clinchem.2015.239491 10.1093/clinchem/30.11.1731 10.1021/bi960658i 10.1007/s11154-013-9241-0 10.1371/journal.pone.0030773 10.1073/pnas.0402490101 10.1016/S0021-9673(01)00985-2 10.1021/bi00430a051 10.1002/jcb.24576 10.1016/j.tibs.2004.10.005 10.1042/bj2620173 10.1021/jm040129 10.1021/jm980736v 10.1016/j.jchromb.2018.04.025 10.1038/srep14875 10.1016/j.foodchem.2004.08.022 10.1021/mp500429u 10.1073/pnas.75.5.2080 10.1124/dmd.117.078428 10.1093/clinchem/46.10.1657 10.1021/bi00454a035 10.1046/j.1432-1327.1999.00375.x 10.1016/j.jsbmb.2012.09.016 10.1007/s00216-008-2095-8 10.1681/ASN.V133621 10.3177/jnsv.47.108 10.1016/S0378-4347(96)00377-5 10.1006/abbi.1999.1308 10.3945/jn.114.192419 10.1021/bi036056y 10.1111/j.1742-4658.2006.05302.x 10.1126/science.6256855 10.1016/j.jsbmb.2014.11.010 10.1016/j.abb.2006.08.021 10.1021/acschembio.6b00569 10.1681/ASN.V10122465 10.1373/clinchem.2015.244459 10.1074/jbc.M311473200 10.1016/j.jchromb.2014.01.045 10.1210/jcem-33-3-554 10.1021/bi00366a051 10.1021/bi030207f 10.1016/j.clinbiochem.2010.05.007 10.1073/pnas.68.9.2131 10.1016/j.clinbiochem.2018.02.013 10.1152/physrev.1998.78.4.1193 10.1021/jm050738x 10.1016/S0960-0760(01)00082-6 10.1016/j.ejmech.2010.07.001 10.1124/dmd.113.050955 10.1002/1873-3468.12767 10.1016/S0021-9258(20)80689-9 10.1359/JBMR.0301257 10.1042/cs0400039 10.1016/j.jchromb.2013.05.029 10.1126/science.982048 10.1021/bi00294a025 10.1016/j.jsbmb.2011.11.012 10.1021/ac9026862 10.1073/pnas.0702093104 10.1016/j.bbalip.2006.01.004 10.1016/j.placenta.2016.12.019 10.1021/bi00573a011 10.1016/S0021-9258(17)44058-0 10.1039/C7AY00550D 10.1016/S0168-9452(02)00420-X 10.1016/S0039-128X(00)00087-8 10.1016/S0021-9258(17)40673-9 10.1194/jlr.R031534 10.1021/ac202047n 10.1093/ajcn/88.2.582S 10.1126/science.183.4130.1198 10.1210/en.2009-1156 10.1016/j.clinbiochem.2012.10.037 10.1016/0003-9861(84)90422-3 10.1007/s00216-017-0215-z 10.1046/j.1432-1327.2000.01680.x 10.1006/bbrc.1998.9098 10.1210/jc.2014-4387 10.1016/j.jsbmb.2017.02.004 10.1016/0960-894X(96)00301-0 10.1016/j.abb.2011.11.003 10.1016/j.plabm.2015.04.001 10.1016/j.jchromb.2014.08.027 10.1002/jbmr.1839 10.1021/bi00456a014 10.1073/pnas.2336107100 10.1016/S0731-7085(96)01983-8 10.1016/j.chembiol.2013.12.016 10.1021/bi00415a058 10.1172/JCI200419081 10.1016/S0005-2760(97)00026-X 10.1021/bi00504a037 10.1002/(SICI)1097-4644(19990401)73:1<106::AID-JCB12>3.0.CO;2-Q 10.1530/JME-18-0086 10.1016/S0039-128X(99)00057-4 10.1021/jm5009314 10.1021/ol035922w 10.1074/jbc.M307028200 10.1126/science.186.4168.1038 10.1006/abbi.2001.2419 10.1056/NEJMra070553 10.1016/0003-2697(77)90648-0 10.1021/bi00850a001 10.1016/0014-5793(85)80002-8 10.1002/mas.21408 10.1124/mol.111.076356 10.1021/bi00302a021 10.3389/fpls.2013.00136 10.1210/jc.2013-2872 10.1021/jm0604070 10.1021/bi00558a007 10.1210/jc.2010-2704 10.1210/jc.2011-0385 10.1126/science.6281884 10.1016/j.bone.2014.12.068 10.1074/jbc.273.24.14805 10.1021/bi00375a045 10.1210/endo.140.5.6691 10.1124/dmd.110.034389 10.1016/0006-2952(96)00173-6 10.1210/jcem-63-4-954 10.1016/j.jsbmb.2017.07.018 10.1016/j.jsbmb.2006.12.091 10.1016/j.bmc.2010.06.011 10.1016/j.annepidem.2007.12.001 10.1056/NEJMoa1103864 10.1016/j.jsbmb.2013.10.012 10.1042/bj2140261 10.1172/JCI98680 10.1016/j.chembiol.2005.06.010 10.1124/mol.65.3.720 10.1373/clinchem.2015.244541 10.1016/j.jsbmb.2017.11.014 10.1006/abbi.1996.0213 10.1111/febs.12862 10.1016/j.mce.2003.11.017 10.1016/S0021-9258(18)34119-X 10.1126/science.6251551 10.1016/j.jsbmb.2017.06.006 10.1016/j.jsbmb.2018.10.002 10.1210/en.2013-2013 10.1016/0039-128X(87)90083-3 10.1016/j.jsbmb.2013.09.012 10.1056/NEJMoa1306357 10.1016/j.jsbmb.2006.12.078 10.1073/pnas.90.18.8668 10.1210/jc.2004-0360 10.1016/j.bcp.2007.11.008 10.1016/j.jchromb.2009.11.026 10.1210/jc.2013-4388 10.1093/ajcn/68.4.854 10.1016/j.jchemneu.2004.08.006 10.1074/jbc.M809542200 10.1016/j.jchromb.2016.01.049 10.1210/jc.2007-2308 10.1016/j.pbiomolbio.2006.02.004 10.1159/000486536 10.1210/jc.2010-0195 10.1016/j.clinbiochem.2012.11.030 10.1016/j.cca.2014.12.036 10.1007/s00198-015-3125-y 10.1002/mas.21353 10.1056/NEJMoa1807841 10.1016/j.ecl.2010.02.002 10.1016/S0003-9861(73)80008-6 10.1111/j.1742-4658.2008.06406.x 10.1002/bmc.1130050404 10.1002/jcb.20553 10.1016/j.ab.2011.06.043 10.1016/0003-9861(81)90107-7 10.1016/S0960-0760(03)00063-3 10.1093/ajcn/87.4.1087S 10.1210/jc.2006-0710 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TM 7U7 8FD C1K FR3 P64 RC3 7X8 |
DOI | 10.1002/cbf.3421 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts Nucleic Acids Abstracts Chemoreception Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1099-0844 |
EndPage | 423 |
ExternalDocumentID | 31328813 10_1002_cbf_3421 CBF3421 |
Genre | reviewArticle Journal Article Review |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 29B 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NDZJH NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI Q.N Q11 QB0 QRW R.K RBB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E V8K W8V W99 WBKPD WH7 WIB WIH WIJ WIK WJL WNSPC WOHZO WQJ WRC WSB WXI WXSBR WYISQ XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 7TM 7U7 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K FR3 P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3491-e13c53be5d30e10ecf05b48c35e743981142cf9fd561832c55ab1452bab390ec3 |
IEDL.DBID | DR2 |
ISSN | 0263-6484 1099-0844 |
IngestDate | Fri Jul 11 10:15:42 EDT 2025 Fri Jul 25 10:21:31 EDT 2025 Wed Feb 19 02:36:43 EST 2025 Tue Jul 01 02:49:15 EDT 2025 Thu Apr 24 22:58:29 EDT 2025 Wed Jan 22 16:40:34 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | metabolism analysis hydroxylation conjugation vitamin D metabolic pathways |
Language | English |
License | 2019 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3491-e13c53be5d30e10ecf05b48c35e743981142cf9fd561832c55ab1452bab390ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1838-5282 |
PMID | 31328813 |
PQID | 2269205719 |
PQPubID | 2029981 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2261975089 proquest_journals_2269205719 pubmed_primary_31328813 crossref_citationtrail_10_1002_cbf_3421 crossref_primary_10_1002_cbf_3421 wiley_primary_10_1002_cbf_3421_CBF3421 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2019 2019-08-00 2019-Aug 20190801 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: August 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bognor Regis |
PublicationTitle | Cell biochemistry and function |
PublicationTitleAlternate | Cell Biochem Funct |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1968; 7 2007; 103 2007; 104 2013; 4 2004; 29 2010; 18 1978; 75 2013; 369 2002; 13 2015; 74 1999; 42 1998; 83 1974; 186 2012; 523 2003; 278 2001; 47 2012; 129 2014; 21 2006; 455 1998; 273 1974; 183 2018; 46 2018; 177 2004; 215 1976; 194 2000; 14 2010; 878 2018; 1 2009; 94 2013; 114 2016; 1009‐1010 2013; 110 1982; 257 1979; 281 1998; 95 2009; 19 2001; 935 2018; 180 2011; 365 2014; 99 1977; 252 1983; 22 1981; 78 2003; 164 1987; 49 2004; 43 2015; 57 1983; 258 1979; 18 2010; 38 1997; 690 2010; 39 2011; 418 2000; 65 2004; 47 1999; 103 1981; 206 2014; 155 1977; 80 2012; 32 1981; 20 2019; 186 1998; 68 2016; 11 2010; 45 2014; 953‐954 2017; 50 1971; 33 1984; 30 2001; 392 2004; 279 1984; 4 1981; 211 1990; 29 2015; 61 2006; 49 1986; 25 1988; 27 2005; 96 2005; 92 2007; 85 2014; 144 1998; 78 2003; 100 2005; 12 2004; 65 2015; 34 1974; 13 1971; 40 2013; 28 2017; 1060 2018; 128 2000; 46 2015; 100 1984; 23 2011; 96 2018; 1087‐1088 2017; 591 2006; 1761 2008; 75 1996; 35 1999; 368 2005; 29 1980; 210 2017; 9 1973; 155 2013; 19 2015; 173 2014; 969 2017; 409 1984; 230 2013; 14 1982; 216 1989; 262 1997; 15 2006; 69 1999; 10 2003; 5 2014; 57 2016; 1014 2010; 151 1998; 249 2009; 284 2018; 72 2011; 26 2014; 281 2008; 275 2003; 84 2014; 55 2003; 88 1996; 6 2008; 391 2006; 92 2004; 101 2015; 2 1983; 214 2012; 81 1996; 329 2006; 91 1997; 1346 1997; 62 2015; 5 2005; 272 1985; 191 2013; 46 1971; 68 2015; 442 2004; 89 2013; 41 2006; 273 2010; 121 1999; 140 1996; 52 1999; 262 2017; 173 1999; 64 1993; 90 2018; 61 1993; 268 2019; 380 2008; 93 1989; 28 1991; 5 2010; 82 2015; 151 2007; 357 2015; 26 1980; 19 2002; 29 2004; 113 2000; 267 1986; 63 2004; 19 2013; 32 1984; 259 2013; 932 1988; 67 2013; 136 2011; 44 2016; 62 2016 2008; 87 2008; 88 1999; 73 2001; 78 2012; 7 2018; 54 2010; 95 1987; 26 2012; 84 e_1_2_14_73_1 e_1_2_14_96_1 e_1_2_14_110_1 e_1_2_14_50_1 e_1_2_14_12_1 Wagner D (e_1_2_14_195_1) 2012; 32 e_1_2_14_58_1 e_1_2_14_182_1 e_1_2_14_6_1 e_1_2_14_121_1 e_1_2_14_107_1 e_1_2_14_144_1 e_1_2_14_167_1 e_1_2_14_85_1 e_1_2_14_129_1 e_1_2_14_62_1 e_1_2_14_24_1 e_1_2_14_204_1 e_1_2_14_47_1 e_1_2_14_193_1 e_1_2_14_170_1 e_1_2_14_119_1 e_1_2_14_132_1 Napoli JL (e_1_2_14_80_1) 1982; 257 e_1_2_14_155_1 e_1_2_14_178_1 e_1_2_14_72_1 e_1_2_14_95_1 e_1_2_14_111_1 e_1_2_14_11_1 e_1_2_14_34_1 e_1_2_14_57_1 e_1_2_14_181_1 e_1_2_14_120_1 e_1_2_14_143_1 e_1_2_14_7_1 e_1_2_14_108_1 e_1_2_14_166_1 e_1_2_14_189_1 Norman AW (e_1_2_14_35_1) 1993; 268 e_1_2_14_84_1 e_1_2_14_128_1 e_1_2_14_100_1 Mawer EB (e_1_2_14_89_1) 1998; 83 e_1_2_14_61_1 e_1_2_14_23_1 e_1_2_14_46_1 e_1_2_14_203_1 e_1_2_14_69_1 e_1_2_14_192_1 e_1_2_14_131_1 e_1_2_14_154_1 e_1_2_14_177_1 e_1_2_14_52_1 e_1_2_14_90_1 e_1_2_14_14_1 e_1_2_14_98_1 e_1_2_14_37_1 Yamada S (e_1_2_14_79_1) 1984; 259 e_1_2_14_161_1 e_1_2_14_123_1 e_1_2_14_169_1 e_1_2_14_105_1 e_1_2_14_146_1 e_1_2_14_41_1 e_1_2_14_64_1 e_1_2_14_4_1 e_1_2_14_87_1 e_1_2_14_49_1 e_1_2_14_206_1 e_1_2_14_26_1 Jones G (e_1_2_14_78_1) 1983; 258 e_1_2_14_172_1 e_1_2_14_117_1 e_1_2_14_134_1 e_1_2_14_157_1 e_1_2_14_74_1 e_1_2_14_97_1 e_1_2_14_51_1 e_1_2_14_13_1 e_1_2_14_59_1 e_1_2_14_160_1 e_1_2_14_183_1 e_1_2_14_5_1 e_1_2_14_122_1 e_1_2_14_145_1 e_1_2_14_168_1 e_1_2_14_106_1 e_1_2_14_86_1 e_1_2_14_63_1 e_1_2_14_40_1 e_1_2_14_25_1 e_1_2_14_48_1 e_1_2_14_205_1 e_1_2_14_171_1 e_1_2_14_194_1 e_1_2_14_118_1 e_1_2_14_133_1 e_1_2_14_156_1 e_1_2_14_179_1 (e_1_2_14_33_1) 2018 e_1_2_14_114_1 e_1_2_14_137_1 Hollis BW (e_1_2_14_184_1) 2000; 46 e_1_2_14_31_1 e_1_2_14_92_1 e_1_2_14_54_1 e_1_2_14_39_1 e_1_2_14_77_1 e_1_2_14_16_1 e_1_2_14_200_1 e_1_2_14_140_1 e_1_2_14_186_1 e_1_2_14_163_1 e_1_2_14_125_1 e_1_2_14_103_1 e_1_2_14_148_1 Zehnder D (e_1_2_14_36_1) 1999; 10 e_1_2_14_2_1 e_1_2_14_20_1 e_1_2_14_81_1 e_1_2_14_43_1 e_1_2_14_66_1 e_1_2_14_28_1 e_1_2_14_151_1 e_1_2_14_197_1 e_1_2_14_174_1 e_1_2_14_115_1 e_1_2_14_136_1 Bula CM (e_1_2_14_75_1) 2000; 14 e_1_2_14_159_1 e_1_2_14_30_1 e_1_2_14_53_1 e_1_2_14_91_1 e_1_2_14_15_1 e_1_2_14_38_1 e_1_2_14_76_1 e_1_2_14_99_1 e_1_2_14_162_1 e_1_2_14_185_1 e_1_2_14_124_1 e_1_2_14_147_1 e_1_2_14_104_1 e_1_2_14_42_1 e_1_2_14_3_1 e_1_2_14_65_1 e_1_2_14_27_1 e_1_2_14_88_1 e_1_2_14_150_1 e_1_2_14_173_1 e_1_2_14_196_1 e_1_2_14_116_1 e_1_2_14_135_1 e_1_2_14_158_1 e_1_2_14_94_1 e_1_2_14_112_1 e_1_2_14_139_1 e_1_2_14_71_1 e_1_2_14_10_1 e_1_2_14_56_1 e_1_2_14_202_1 e_1_2_14_180_1 e_1_2_14_165_1 e_1_2_14_8_1 e_1_2_14_109_1 e_1_2_14_142_1 e_1_2_14_188_1 e_1_2_14_60_1 e_1_2_14_83_1 e_1_2_14_127_1 e_1_2_14_101_1 e_1_2_14_45_1 e_1_2_14_68_1 e_1_2_14_22_1 e_1_2_14_19_1 e_1_2_14_191_1 e_1_2_14_130_1 e_1_2_14_176_1 e_1_2_14_153_1 e_1_2_14_199_1 e_1_2_14_113_1 e_1_2_14_138_1 e_1_2_14_70_1 e_1_2_14_93_1 e_1_2_14_32_1 e_1_2_14_55_1 e_1_2_14_17_1 e_1_2_14_29_1 e_1_2_14_201_1 e_1_2_14_141_1 e_1_2_14_164_1 e_1_2_14_187_1 e_1_2_14_9_1 e_1_2_14_126_1 e_1_2_14_149_1 e_1_2_14_102_1 e_1_2_14_82_1 e_1_2_14_67_1 e_1_2_14_21_1 e_1_2_14_44_1 e_1_2_14_190_1 e_1_2_14_18_1 e_1_2_14_152_1 e_1_2_14_175_1 e_1_2_14_198_1 |
References_xml | – volume: 29 start-page: 947 issue: 5 year: 2002 end-page: 955 article-title: Characterisation of urinary metabolites of vitamin D(3) in man under physiological conditions using liquid chromatography‐tandem mass spectrometry publication-title: J Pharm Biomed Anal – volume: 55 start-page: 13 issue: 1 year: 2014 end-page: 31 article-title: Cytochrome P450‐mediated metabolism of vitamin D publication-title: J Lipid Res – volume: 28 start-page: 1763 issue: 4 year: 1989 end-page: 1769 article-title: Calcitroic acid, end product of renal metabolism of 1,25‐dihydroxyvitamin D3 through C‐24 oxidation pathway publication-title: Biochemistry – volume: 365 start-page: 410 issue: 5 year: 2011 end-page: 421 article-title: Mutations in CYP24A1 and idiopathic infantile hypercalcemia publication-title: N Engl J Med – volume: 68 start-page: 2131 issue: 9 year: 1971 end-page: 2134 article-title: Regulation by calcium of in vivo synthesis of 1,25‐dihydroxycholecalciferol and 21,25‐dihydroxycholecalciferol publication-title: Proc Natl Acad Sci U S A – volume: 78 start-page: 1193 issue: 4 year: 1998 end-page: 1231 article-title: Current understanding of the molecular actions of vitamin D publication-title: Physiol Rev – volume: 1060 start-page: 158 year: 2017 end-page: 165 article-title: Simultaneous quantification of 25‐hydroxyvitamin D3‐3‐sulfate and 25‐hydroxyvitamin D3‐3‐glucuronide in human serum and plasma using liquid chromatography‐tandem mass spectrometry coupled with DAPTAD‐derivatization publication-title: J Chromatogr B Analyt Technol Biomed Life Sci – volume: 523 start-page: 9 issue: 1 year: 2012 end-page: 18 article-title: 25‐Hydroxyvitamin D‐24‐hydroxylase (CYP24A1): its important role in the degradation of vitamin D publication-title: Arch Biochem Biophys – volume: 75 start-page: 2080 issue: 5 year: 1978 end-page: 2081 article-title: Direct C‐1 hydroxylation of vitamin D compounds: convenient preparation of 1alpha‐hydroxyvitamin D3, 1alpha, 25‐dihydroxyvitamin D3, and 1alpha‐hydroxyvitamin D2 publication-title: Proc Natl Acad Sci U S A – volume: 45 start-page: 4427 issue: 10 year: 2010 end-page: 4434 article-title: Synthesis and CYP24A1 inhibitory activity of (E)‐2‐(2‐substituted benzylidene)‐ and 2‐(2‐substituted benzyl)‐6‐methoxy‐tetralones publication-title: Eur J Med Chem – volume: 29 start-page: 664 issue: 12 year: 2004 end-page: 673 article-title: Enzymes involved in the activation and inactivation of vitamin D publication-title: Trends Biochem Sci – volume: 262 start-page: 173 issue: 1 year: 1989 end-page: 180 article-title: Target cell metabolism of 1,25‐dihydroxyvitamin D3 to calcitroic acid. Evidence for a pathway in kidney and bone involving 24‐oxidation publication-title: Biochem J – volume: 5 start-page: 4859 issue: 25 year: 2003 end-page: 4862 article-title: Dramatic enhancement of antagonistic activity on vitamin D receptor: a double functionalization of 1alpha‐hydroxyvitamin D3 26,23‐lactones publication-title: Org Lett – volume: 369 start-page: 1991 issue: 21 year: 2013 end-page: 2000 article-title: Vitamin D‐binding protein and vitamin D status of black Americans and white Americans publication-title: N Engl J Med – volume: 62 start-page: 179 issue: 1 year: 2016 end-page: 187 article-title: Measurement by a novel LC‐MS/MS methodology reveals similar serum concentrations of vitamin D‐binding protein in Blacks and Whites publication-title: Clin Chem – volume: 690 start-page: 348 issue: 1‐2 year: 1997 end-page: 354 article-title: Characterisation of monoglucuronides of vitamin D2 and 25‐hydroxyvitamin D2 in rat bile using high‐performance liquid chromatography‐atmospheric pressure chemical ionisation mass spectrometry publication-title: J Chromatogr B Biomed Sci Appl – volume: 89 start-page: 5387 issue: 11 year: 2004 end-page: 5391 article-title: Vitamin D(2) is much less effective than vitamin D(3) in humans publication-title: J Clin Endocrinol Metab – volume: 62 start-page: 236 issue: 1 year: 2016 end-page: 242 article-title: LC‐MS/MS for identifying patients with CYP24A1 mutations publication-title: Clin Chem – volume: 46 start-page: 1657 issue: 10 year: 2000 end-page: 1661 article-title: Comparison of commercially available (125)I‐based RIA methods for the determination of circulating 25‐hydroxyvitamin D publication-title: Clin Chem – volume: 281 start-page: 3280 issue: 14 year: 2014 end-page: 3296 article-title: Kinetic analysis of human CYP24A1 metabolism of vitamin D via the C24‐oxidation pathway publication-title: FEBS J – volume: 252 start-page: 1421 issue: 4 year: 1977 end-page: 1424 article-title: The 24‐hydroxylation of 1,25‐dihydroxyvitamin D3 publication-title: J Biol Chem – volume: 61 start-page: 1033 issue: 8 year: 2015 end-page: 1048 article-title: Mass spectrometric profiling of vitamin D metabolites beyond 25‐hydroxyvitamin D publication-title: Clin Chem – volume: 273 start-page: 2891 issue: 13 year: 2006 end-page: 2901 article-title: An alternative pathway of vitamin D metabolism. Cytochrome P450scc (CYP11A1)‐mediated conversion to 20‐hydroxyvitamin D2 and 17,20‐dihydroxyvitamin D2 publication-title: FEBS J – volume: 93 start-page: 677 issue: 3 year: 2008 end-page: 681 article-title: Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25‐hydroxyvitamin D publication-title: J Clin Endocrinol Metab – volume: 83 start-page: 2156 issue: 6 year: 1998 end-page: 2166 article-title: Unique 24‐hydroxylated metabolites represent a significant pathway of metabolism of vitamin D2 in humans: 24‐hydroxyvitamin D2 and 1,24‐dihydroxyvitamin D2 detectable in human serum publication-title: J Clin Endocrinol Metab – volume: 177 start-page: 6 year: 2018 end-page: 9 article-title: Limitations of vitamin D supplementation trials: why observational studies will continue to help determine the role of vitamin D in health publication-title: J Steroid Biochem Mol Biol – volume: 7 issue: 1 year: 2012 article-title: Vitamin D binding protein and monocyte response to 25‐hydroxyvitamin D and 1,25‐dihydroxyvitamin D: analysis by mathematical modelling publication-title: PLoS ONE – volume: 78 start-page: 6579 issue: 11 year: 1981 end-page: 6583 article-title: Synthesis and determination of configuration of natural 25‐hydroxyvitamin D(3) 26,23‐lactone publication-title: Proc Natl Acad Sci U S A – volume: 953‐954 start-page: 62 year: 2014 end-page: 67 article-title: Development of a sensitive LC/MS/MS method for vitamin D metabolites: 1,25 dihydroxyvitamin D2&3 measurement using a novel derivatization agent publication-title: J Chromatogr B Analyt Technol Biomed Life Sci – volume: 144 start-page: 28 issue: Pt A year: 2014 end-page: 39 article-title: The role of CYP11A1 in the production of vitamin D metabolites and their role in the regulation of epidermal functions publication-title: J Steroid Biochem Mol Biol – volume: 249 start-page: 11 issue: 1 year: 1998 end-page: 16 article-title: The promoter of the human 25‐hydroxyvitamin D3 1 alpha‐hydroxylase gene confers positive and negative responsiveness to PTH, calcitonin, and 1 alpha,25(OH)2D3 publication-title: Biochem Biophys Res Commun – volume: 368 start-page: 319 issue: 2 year: 1999 end-page: 328 article-title: Physiological significance of C‐28 hydroxylation in the metabolism of 1alpha,25‐dihydroxyvitamin D(2) publication-title: Arch Biochem Biophys – volume: 523 start-page: 30 issue: 1 year: 2012 end-page: 36 article-title: Vitamin D 25‐hydroxylase—four decades of searching, are we there yet? publication-title: Arch Biochem Biophys – volume: 28 start-page: 1101 issue: 5 year: 2013 end-page: 1116 article-title: Enhancement of hepatic 4‐hydroxylation of 25‐hydroxyvitamin D3 through CYP3A4 induction in vitro and in vivo: implications for drug‐induced osteomalacia publication-title: J Bone Miner Res – volume: 27 start-page: 5785 issue: 15 year: 1988 end-page: 5790 article-title: 24,26‐Dihydroxyvitamin D2: a unique physiological metabolite of vitamin D2 publication-title: Biochemistry – volume: 455 start-page: 18 issue: 1 year: 2006 end-page: 30 article-title: 23‐carboxy‐24,25,26,27‐tetranorvitamin D3 (calcioic acid) and 24‐carboxy‐25,26,27‐trinorvitamin D3 (cholacalcioic acid): end products of 25‐hydroxyvitamin D3 metabolism in rat kidney through C‐24 oxidation pathway publication-title: Arch Biochem Biophys – volume: 2 start-page: 1 year: 2015 end-page: 14 article-title: Measurement of circulating 25‐hydroxyvitamin D: a historical review publication-title: Pract Lab Med – volume: 183 start-page: 1198 issue: 130 year: 1974 end-page: 1200 article-title: Stimulation of 24,25‐dihydroxyvitamin D3 production by 1,25‐dihydroxyvitamin D3 publication-title: Science – volume: 186 start-page: 1038 issue: 4168 year: 1974 end-page: 1040 article-title: 1‐Alpha‐hydroxyvitamin‐D2—potent synthetic analog of vitamin‐D2 publication-title: Science – volume: 63 start-page: 954 issue: 4 year: 1986 end-page: 959 article-title: Assessment of the free fraction of 25‐hydroxyvitamin D in serum and its regulation by albumin and the vitamin D‐binding protein publication-title: J Clin Endocrinol Metab – volume: 13 start-page: 4091 issue: 20 year: 1974 end-page: 4097 article-title: Filter assay for 1alpha, 25‐dihydroxyvitamin D3. Utilisation of the hormone's target tissue chromatin receptor publication-title: Biochemistry – volume: 50 start-page: 70 year: 2017 end-page: 77 article-title: Dysregulation of maternal and placental vitamin D metabolism in preeclampsia publication-title: Placenta – volume: 84 start-page: 423 issue: 4 year: 2003 end-page: 429 article-title: Genistein inhibits vitamin D hydroxylases CYP24 and CYP27B1 expression in prostate cells publication-title: J Steroid Biochem Mol Biol – volume: 90 start-page: 8668 issue: 18 year: 1993 end-page: 8672 article-title: Transfected human liver cytochrome P‐450 hydroxylates vitamin D analogs at different side‐chain positions publication-title: Proc Natl Acad Sci U S A – volume: 5 start-page: 153 issue: 4 year: 1991 end-page: 160 article-title: Analysis of vitamin‐D and its metabolites using thermospray liquid‐chromatography mass‐spectrometry publication-title: Biomed Chromatogr – volume: 20 start-page: 222 issue: 1 year: 1981 end-page: 226 article-title: Isolation and identification of 25‐hydroxyvitamin D2 25‐glucuronide: a biliary metabolite of vitamin D2 in the chick publication-title: Biochemistry – volume: 43 start-page: 4530 issue: 15 year: 2004 end-page: 4537 article-title: Novel metabolism of 1 alpha,25‐dihydroxyvitamin D3 with C24‐C25 bond cleavage catalysed by human CYP24A1 publication-title: Biochemistry – volume: 259 start-page: 884 issue: 2 year: 1984 end-page: 889 article-title: Isolation, identification, and metabolism of (23S,25R)‐25‐hydroxyvitamin D3 26,23‐lactol. A biosynthetic precursor of (23S,25R)‐25‐hydroxyvitamin D3 26,23‐lactone publication-title: J Biol Chem – volume: 14 start-page: 159 issue: 2 year: 2013 end-page: 184 article-title: Vitamin D and metabolites measurement by tandem mass spectrometry publication-title: Rev Endocr Metab Disord – volume: 61 start-page: T271 issue: 2 year: 2018 end-page: T283 article-title: Insights into steroid sulfation and desulfation pathways publication-title: J Mol Endocrinol – volume: 101 start-page: 7711 issue: 20 year: 2004 end-page: 7715 article-title: Genetic evidence that the human CYP2R1 enzyme is a key vitamin D 25‐hydroxylase publication-title: Proc Natl Acad Sci U S A – volume: 26 start-page: 1609 issue: 7 year: 2011 end-page: 1616 article-title: Vitamin D‐binding protein modifies the vitamin D‐bone mineral density relationship publication-title: J Bone Miner Res – volume: 34 start-page: 2 issue: 1 year: 2015 end-page: 23 article-title: Analysis of vitamin D metabolic markers by mass spectrometry: current techniques, limitations of the “gold standard” method, and anticipated future directions publication-title: Mass Spectrom Rev – volume: 64 start-page: 715 issue: 10 year: 1999 end-page: 725 article-title: In vitro and in vivo glucuronidation of 24,25‐dihydroxyvitamin D3 publication-title: Steroids – volume: 40 start-page: 39 issue: 1 year: 1971 end-page: 53 article-title: The metabolism of isotopically labelled vitamin D3 in man: the influence of the state of vitamin D nutrition publication-title: Clin Sci – volume: 14 start-page: 1788 issue: 11 year: 2000 end-page: 1796 article-title: 25‐Dehydro‐1alpha‐hydroxyvitamin D3‐26,23S‐lactone antagonises the nuclear vitamin D receptor by mediating a unique noncovalent conformational change publication-title: Mol Endocrinol – volume: 94 start-page: 26 issue: 1 year: 2009 end-page: 34 article-title: Nonclassic actions of vitamin D publication-title: J Clin Endocrinol Metab – volume: 74 start-page: 166 year: 2015 end-page: 170 article-title: Vitamin D binding protein genotype is associated with plasma 25OHD concentration in West African children publication-title: Bone – volume: 128 start-page: 1913 issue: 5 year: 2018 end-page: 1918 article-title: CYP3A4 mutation causes vitamin D‐dependent rickets type 3 publication-title: J Clin Invest – volume: 151 start-page: 4301 issue: 9 year: 2010 end-page: 4312 article-title: CYP24A1 inhibition enhances the antitumor activity of calcitriol publication-title: Endocrinology – volume: 22 start-page: 5848 issue: 25 year: 1983 end-page: 5853 article-title: C(24)‐ and C(23)‐oxidation, converging pathways of intestinal 1,25‐dihydroxyvitamin D3 metabolism: identification of 24‐keto‐1,23,25‐trihydroxyvitamin D3 publication-title: Biochemistry – volume: 84 start-page: 956 issue: 2 year: 2012 end-page: 962 article-title: Development and certification of a standard reference material for vitamin D metabolites in human serum publication-title: Anal Chem – volume: 23 start-page: 1473 issue: 7 year: 1984 end-page: 1478 article-title: Isolation and identification of 1 alpha,25‐dihydroxy‐24‐oxovitamin D3, 1 alpha,25‐dihydroxyvitamin D3 26,23‐lactone, and 1 alpha,24(S),25‐trihydroxyvitamin D3: in vivo metabolites of 1 alpha,25‐dihydroxyvitamin D3 publication-title: Biochemistry – volume: 103 start-page: 567 issue: 3‐5 year: 2007 end-page: 571 article-title: Immune regulation of l alpha‐hydroxylase in murine peritoneal macrophages: unravelling the IFN gamma pathway publication-title: J Steroid Biochem Mol Biol – volume: 103 start-page: 239 issue: 2 year: 1999 end-page: 251 article-title: Osteopathy and resistance to vitamin D toxicity in mice null for vitamin D binding protein publication-title: J Clin Investig – volume: 42 start-page: 3539 issue: 18 year: 1999 end-page: 3556 article-title: Synthesis, biological activity, and conformational analysis of four seco‐D‐15,19‐bisnor‐1alpha,25‐dihydroxyvitamin D analogues, diastereomeric at C17 and C20 publication-title: J Med Chem – volume: 523 start-page: 95 issue: 1 year: 2012 end-page: 102 article-title: Extrarenal expression of the 25‐hydroxyvitamin D‐1‐hydroxylase publication-title: Arch Biochem Biophys – volume: 12 start-page: 931 issue: 8 year: 2005 end-page: 939 article-title: Enzymatic metabolism of ergosterol by cytochrome p450scc to biologically active 17alpha,24‐dihydroxyergosterol publication-title: Chem Biol – volume: 357 start-page: 266 issue: 3 year: 2007 end-page: 281 article-title: Vitamin D deficiency publication-title: N Engl J Med – volume: 144 start-page: 1050 issue: 7 year: 2014 end-page: 1057 article-title: The 3 epimer of 25‐hydroxycholecalciferol is present in the circulation of the majority of adults in a nationally representative sample and has endogenous origins publication-title: J Nutr – volume: 62 start-page: 134 issue: 1 year: 2016 end-page: 143 article-title: Applications of MALDI mass spectrometry in clinical chemistry publication-title: Clin Chem – volume: 57 start-page: 605 issue: 4 year: 2015 end-page: 613 article-title: Molecular mechanisms of the action of vitamin A in Th17/Treg axis in multiple sclerosis publication-title: J Mol Neurosci – volume: 32 start-page: 72 issue: 1 year: 2013 end-page: 86 article-title: The role of mass spectrometry in the analysis of vitamin D compounds publication-title: Mass Spectrom Rev – volume: 84 start-page: 1696 issue: 12 year: 2012 end-page: 1704 article-title: Rat CYP24A1 acts on 20‐hydroxyvitamin D‐3 producing hydroxylated products with increased biological activity publication-title: Biochem Pharmacol – volume: 257 start-page: 9634 issue: 16 year: 1982 end-page: 9639 article-title: 23S,25‐dihydroxyvitamin D3 as a circulating metabolite of vitamin D3. Its role in 25‐hydroxyvitamin D3‐26,23‐lactone biosynthesis publication-title: J Biol Chem – volume: 114 start-page: 2293 issue: 10 year: 2013 end-page: 2305 article-title: Metabolic stability of 3‐epi‐1alpha,25‐dihydroxyvitamin D3 over 1 alpha 25‐dihydroxyvitamin D3: metabolism and molecular docking studies using rat CYP24A1 publication-title: J Cell Biochem – volume: 1014 start-page: 56 year: 2016 end-page: 63 article-title: High throughput LC‐MS/MS method for the simultaneous analysis of multiple vitamin D analytes in serum publication-title: J Chromatogr B Analyt Technol Biomed Life Sci – volume: 275 start-page: 2585 issue: 10 year: 2008 end-page: 2596 article-title: Pathways and products for the metabolism of vitamin D3 by cytochrome P450scc publication-title: FEBS J – volume: 177 start-page: 30 year: 2018 end-page: 35 article-title: Hydroxyvitamin D assays: an historical perspective from DEQAS publication-title: J Steroid Biochem Mol Biol – volume: 95 start-page: 3368 issue: 7 year: 2010 end-page: 3376 article-title: Vitamin D‐binding protein directs monocyte responses to 25‐hydroxy‐ and 1,25‐dihydroxyvitamin D publication-title: J Clin Endocrinol Metab – volume: 54 start-page: 61 year: 2018 end-page: 67 article-title: C3‐epimerization of 25‐hydroxyvitamin D increases with increasing serum 25‐hydroxyvitamin D levels and shows a high degree of tracking over time publication-title: Clin Biochem – volume: 18 start-page: 4939 issue: 14 year: 2010 end-page: 4946 article-title: Synthesis and CYP24A1 inhibitory activity of N‐(2‐(1H‐imidazol‐1‐yl)‐2‐phenylethyl)arylamides publication-title: Bioorg Med Chem – volume: 13 start-page: 621 issue: 3 year: 2002 end-page: 629 article-title: Synthesis of 1,25‐dihydroxyvitamin D(3) by human endothelial cells is regulated by inflammatory cytokines: a novel autocrine determinant of vascular cell adhesion publication-title: J Am Soc Nephrol – volume: 46 start-page: 1264 issue: 13‐14 year: 2013 end-page: 1271 article-title: Analytical measurement of serum 25‐OH‐vitamin D(3), 25‐OH‐vitamin D(2) and their C3‐epimers by LC‐MS/MS in infant and paediatric specimens publication-title: Clin Biochem – volume: 15 start-page: 1207 issue: 9‐10 year: 1997 end-page: 1214 article-title: Enzymatic hydrolysis of the conjugate of vitamin D and related compounds publication-title: J Pharm Biomed Anal – volume: 41 start-page: 1112 issue: 5 year: 2013 end-page: 1124 article-title: Hydroxylation of CYP11A1‐derived products of vitamin D3 metabolism by human and mouse CYP27B1 publication-title: Drug Metab Dispos – volume: 32 start-page: 259 issue: 1 year: 2012 end-page: 263 article-title: Determination of 1,25‐dihydroxyvitamin D concentrations in human colon tissues and matched serum samples publication-title: Anticancer Res – volume: 46 start-page: 190 issue: 3 year: 2013 end-page: 196 article-title: Analytical measurement and clinical relevance of vitamin D‐3 C3‐epimer publication-title: Clin Biochem – volume: 267 start-page: 6158 issue: 20 year: 2000 end-page: 6165 article-title: Dual metabolic pathway of 25‐hydroxyvitamin D3 catalysed by human CYP24 publication-title: Eur J Biochem – volume: 91 start-page: 3055 issue: 8 year: 2006 end-page: 3061 article-title: C‐3 epimers can account for a significant proportion of total circulating 25‐hydroxyvitamin D in infants, complicating accurate measurement and interpretation of vitamin D status publication-title: J Clin Endocrinol Metab – volume: 88 start-page: 282 issue: 2 year: 2003 end-page: 285 article-title: Rat cytochrome P450C24 (CYP24) does not metabolise 1,25‐dihydroxyvitamin D2 to calcitroic acid publication-title: J Cell Biochem – volume: 82 start-page: 1942 issue: 5 year: 2010 end-page: 1948 article-title: Development of a candidate reference measurement procedure for the determination of 25‐hydroxyvitamin D3 and 25‐hydroxyvitamin D2 in human serum using isotope‐dilution liquid chromatography‐tandem mass spectrometry publication-title: Anal Chem – volume: 144 start-page: 132 issue: Pt A year: 2014 end-page: 137 article-title: Vitamin D and DBP: the free hormone hypothesis revisited publication-title: J Steroid Biochem Mol Biol – volume: 67 start-page: 373 issue: 2 year: 1988 end-page: 378 article-title: Influence of season and latitude on the cutaneous synthesis of vitamin D3: exposure to winter sunlight in Boston and Edmonton will not promote vitamin D3 synthesis in human skin publication-title: J Clin Endocrinol Metab – volume: 38 start-page: 1553 issue: 9 year: 2010 end-page: 1559 article-title: Purified mouse CYP27B1 can hydroxylate 20,23‐dihydroxyvitamin D‐3, producing 1 alpha,20,23‐trihydroxyvitamin D‐3, which has altered biological activity publication-title: Drug Metab Dispos – volume: 6 start-page: 1703 issue: 14 year: 1996 end-page: 1708 article-title: Synthesis of CD‐ring modified 1 alpha,25‐dihydroxy vitamin D analogues: C‐ring analogues publication-title: Bioorg Med Chem Lett – volume: 173 start-page: 341 year: 2017 end-page: 348 article-title: 1beta,25‐dihydroxyvitamin D3: a new vitamin D metabolite in human serum publication-title: J Steroid Biochem Mol Biol – volume: 49 start-page: 2398 issue: 8 year: 2006 end-page: 2406 article-title: Practical synthesis and evaluation of the biological activities of 1alpha,25‐dihydroxyvitamin D3 antagonists, 1alpha,25‐dihydroxyvitamin D3‐26,23‐lactams. Designed on the basis of the helix 12‐folding inhibition hypothesis publication-title: J Med Chem – volume: 33 start-page: 554 issue: 3 year: 1971 end-page: 557 article-title: Competitive binding assay for vitamin D and 25‐OH vitamin D publication-title: J Clin Endocrinol Metab – volume: 206 start-page: 403 issue: 2 year: 1981 end-page: 413 article-title: Calcitroic acid: biological activity and tissue distribution studies publication-title: Arch Biochem Biophys – volume: 1346 start-page: 147 issue: 2 year: 1997 end-page: 157 article-title: In vivo metabolism of 24R,25‐dihydroxyvitamin D3: structure of its major bile metabolite publication-title: Biochim Biophys Acta – volume: 44 start-page: 66 issue: 1 year: 2011 end-page: 76 article-title: Progress of liquid chromatography‐mass spectrometry in measurement of vitamin D metabolites and analogues publication-title: Clin Biochem – volume: 155 start-page: 2052 issue: 6 year: 2014 end-page: 2063 article-title: Human UGT1A4 and UGT1A3 conjugate 25‐hydroxyvitamin D3: metabolite structure, kinetics, inducibility, and interindividual variability publication-title: Endocrinology – volume: 68 start-page: 854 issue: 4 year: 1998 end-page: 858 article-title: Evidence that vitamin D‐3 increases serum 25‐hydroxyvitamin D more efficiently than does vitamin D‐2 publication-title: Am J Clin Nutr – volume: 65 start-page: 281 issue: 5 year: 2000 end-page: 294 article-title: Characterisation of new conjugated metabolites in bile of rats administered 24,25‐dihydroxyvitamin D(3) and 25‐hydroxyvitamin D(3) publication-title: Steroids – volume: 25 start-page: 5328 issue: 18 year: 1986 end-page: 5336 article-title: Isolation and identification of 1,24,25‐trihydroxyvitamin D2, 1,24,25,28‐tetrahydroxyvitamin D2, and 1,24,25,26‐tetrahydroxyvitamin D2: new metabolites of 1,25‐dihydroxyvitamin D2 produced in rat kidney publication-title: Biochemistry – volume: 151 start-page: 25 year: 2015 end-page: 37 article-title: Novel activities of CYP11A1 and their potential physiological significance publication-title: J Steroid Biochem Mol Biol – volume: 47 start-page: 108 issue: 2 year: 2001 end-page: 115 article-title: Isolation, identification and biological activity of 24R,25‐dihydroxy‐3‐epi‐vitamin D3: a novel metabolite of 24R,25‐dihydroxyvitamin D3 produced in rat osteosarcoma cells (UMR 106) publication-title: J Nutr Sci Vitaminol (Tokyo) – volume: 99 start-page: 808 issue: 3 year: 2014 end-page: 816 article-title: Exploring the role of vitamin D in type 1 diabetes, rheumatoid arthritis, and Alzheimer disease: new insights from accurate analysis of 10 forms publication-title: J Clin Endocrinol Metab – volume: 211 start-page: 590 issue: 4482 year: 1981 end-page: 593 article-title: Regulation of cutaneous previtamin D3 photosynthesis in man: skin pigment is not an essential regulator publication-title: Science – volume: 62 start-page: 21 issue: 1 year: 1997 end-page: 28 article-title: Vitamin D metabolism in human colon adenocarcinoma‐derived Caco‐2 cells: expression of 25‐hydroxyvitamin D‐3‐1 alpha‐hydroxylase activity and regulation of side‐chain metabolism publication-title: J Steroid Biochem Mol Biol – volume: 52 start-page: 133 issue: 1 year: 1996 end-page: 140 article-title: Anti‐proliferative activity and target cell catabolism of the vitamin D analog 1 alpha,24(S)‐(OH)2D2 in normal and immortalised human epidermal cells publication-title: Biochem Pharmacol – volume: 87 start-page: 1087S issue: 4 year: 2008 end-page: 1091S article-title: Blood biomarkers of vitamin D status publication-title: Am J Clin Nutr – volume: 7 start-page: 3317 issue: 10 year: 1968 end-page: 3322 article-title: 25‐hydroxycholecalciferol. A biologically active metabolite of vitamin D3 publication-title: Biochemistry – volume: 73 start-page: 106 issue: 1 year: 1999 end-page: 113 article-title: 1Alpha,25‐dihydroxy‐3‐epi‐vitamin D3, a natural metabolite of 1alpha,25‐dihydroxyvitamin D3, is a potent suppressor of parathyroid hormone secretion publication-title: J Cell Biochem – volume: 104 start-page: 12673 issue: 31 year: 2007 end-page: 12678 article-title: Single A326G mutation converts human CYP24A1 from 25‐OH‐D3‐24‐hydroxylase into ‐23‐hydroxylase, generating 1alpha,25‐(OH)2D3‐26,23‐lactone publication-title: Proc Natl Acad Sci U S A – volume: 75 start-page: 1240 issue: 5 year: 2008 end-page: 1250 article-title: Identification of human UDP‐glucuronosyltransferases catalysing hepatic 1alpha,25‐dihydroxyvitamin D3 conjugation publication-title: Biochem Pharmacol – volume: 80 start-page: 298 issue: 1 year: 1977 end-page: 305 article-title: Determination of 25‐hydroxyvitamin D2 and 25‐hydroxyvitamin D3 in human plasma using high‐pressure liquid chromatography publication-title: Anal Biochem – volume: 49 start-page: 155 issue: 1‐3 year: 1987 end-page: 196 article-title: Gas chromatography‐mass spectrometry and the measurement of vitamin D metabolites in human serum or plasma publication-title: Steroids – volume: 180 start-page: 87 year: 2018 end-page: 104 article-title: Why should we measure free 25(OH) vitamin D? publication-title: J Steroid Biochem Mol Biol – volume: 49 start-page: 5199 issue: 17 year: 2006 end-page: 5205 article-title: Probing a water channel near the A‐ring of receptor‐bound 1 alpha,25‐dihydroxyvitamin D3 with selected 2 alpha‐substituted analogues publication-title: J Med Chem – volume: 43 start-page: 4101 issue: 14 year: 2004 end-page: 4110 article-title: Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2‐carbon‐substituted vitamin D3 hormone analogues and a LXXLL‐containing coactivator peptide publication-title: Biochemistry – volume: 30 start-page: 1731 issue: 11 year: 1984 end-page: 1736 article-title: Two direct (nonchromatographic) assays for 25‐hydroxyvitamin D publication-title: Clin Chem – volume: 78 start-page: 167 issue: 2 year: 2001 end-page: 176 article-title: Double bond in the side chain of 1alpha,25‐dihydroxy‐22‐ene‐vitamin D(3) is reduced during its metabolism: studies in chronic myeloid leukaemia (RWLeu‐4) cells and rat kidney publication-title: J Steroid Biochem Mol Biol – volume: 969 start-page: 230 year: 2014 end-page: 234 article-title: Development and validation of a method for determination of plasma 25‐hydroxyvitamin D3 3‐sulfate using liquid chromatography/tandem mass spectrometry publication-title: J Chromatogr B Analyt Technol Biomed Life Sci – volume: 29 start-page: 943 issue: 4 year: 1990 end-page: 949 article-title: 24,25,28‐Trihydroxyvitamin D2 and 24,25,26‐trihydroxyvitamin D2: novel metabolites of vitamin D2 publication-title: Biochemistry – volume: 46 start-page: 367 issue: 4 year: 2018 end-page: 379 article-title: Polymorphic human sulfotransferase 2A1 mediates the formation of 25‐hydroxyvitamin D3‐3‐O‐sulfate, a major circulating vitamin D metabolite in humans publication-title: Drug Metab Dispos – volume: 72 start-page: 87 issue: 2 year: 2018 end-page: 95 article-title: Vitamin D: classic and novel actions publication-title: Ann Nutr Metab – volume: 96 start-page: 569 issue: 3 year: 2005 end-page: 578 article-title: Isolation and identification of 1alpha‐hydroxy‐3‐epi‐vitamin D3, a potent suppressor of parathyroid hormone secretion publication-title: J Cell Biochem – volume: 1761 start-page: 221 issue: 2 year: 2006 end-page: 234 article-title: Evidence for the activation of 1 alpha‐hydroxyvitamin D‐2 by 25‐hydroxyvitamin D‐24‐hydroxylase: delineation of pathways involving 1 alpha,24‐dihydroxyvitamin D‐2 and 1 alpha,25‐dihydroxyvitamin D‐2 publication-title: BBA‐Mol Cell Biol L – volume: 380 start-page: 1150 issue: 12 year: 2019 end-page: 1157 article-title: Vitamin D‐binding protein deficiency and homozygous deletion of the GC gene publication-title: N Engl J Med – volume: 1087‐1088 start-page: 43 year: 2018 end-page: 48 article-title: Analysis of multiple vitamin D metabolites by ultra‐performance supercritical fluid chromatography‐tandem mass spectrometry (UPSFC‐MS/MS) publication-title: J Chromatogr B Analyt Technol Biomed Life Sci – volume: 215 start-page: 31 issue: 1‐2 year: 2004 end-page: 38 article-title: Vitamin D and barrier function: a novel role for extra‐renal 1 alpha‐hydroxylase publication-title: Mol Cell Endocrinol – volume: 19 start-page: 73 issue: 2 year: 2009 end-page: 78 article-title: Vitamin D status: measurement, interpretation, and clinical application publication-title: Ann Epidemiol – volume: 278 start-page: 38084 issue: 39 year: 2003 end-page: 38093 article-title: De‐orphanization of cytochrome P450 2R1: a microsomal vitamin D 25‐hydroxilase publication-title: J Biol Chem – volume: 65 start-page: 720 issue: 3 year: 2004 end-page: 729 article-title: Dehydroepiandrosterone sulfotransferase is a target for transcriptional induction by the vitamin D receptor publication-title: Mol Pharmacol – volume: 96 start-page: 53 issue: 1 year: 2011 end-page: 58 article-title: The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know publication-title: J Clin Endocrinol Metab – volume: 191 start-page: 171 issue: 2 year: 1985 end-page: 175 article-title: 25‐Hydroxyvitamin D3 3‐sulphate is a major circulating form of vitamin D in man publication-title: FEBS Lett – year: 2016 – volume: 21 start-page: 319 issue: 3 year: 2014 end-page: 329 article-title: Vitamin D metabolism, mechanism of action, and clinical applications publication-title: Chem Biol – volume: 81 start-page: 498 issue: 4 year: 2012 end-page: 509 article-title: An inducible cytochrome P450 3A4‐dependent vitamin D catabolic pathway publication-title: Mol Pharmacol – volume: 26 start-page: 2339 issue: 9 year: 2015 end-page: 2344 article-title: Serum C3 epimer of 25‐hydroxyvitamin D and its determinants in adults: a national health examination survey in Thais publication-title: Osteoporos Int – volume: 164 start-page: 357 issue: 3 year: 2003 end-page: 369 article-title: Vitamin D compounds in plants publication-title: Plant Sci – volume: 85 start-page: 860 issue: 3 year: 2007 end-page: 868 article-title: Hypovitaminosis D in British adults at age 45 y: nationwide cohort study of dietary and lifestyle predictors publication-title: Am J Clin Nutr – volume: 591 start-page: 2417 issue: 16 year: 2017 end-page: 2425 article-title: Sulfation of vitamin D3 ‐related compounds‐identification and characterisation of the responsible human cytosolic sulfotransferases publication-title: FEBS Lett – volume: 19 start-page: 3933 issue: 17 year: 1980 end-page: 3937 article-title: Synthesis of [3 beta‐3H]‐3‐epivitamin D3 and its metabolism in the rat publication-title: Biochemistry – volume: 210 start-page: 203 issue: 4466 year: 1980 end-page: 205 article-title: Photosynthesis of previtamin D3 in human skin and the physiologic consequences publication-title: Science – volume: 110 start-page: 15650 issue: 39 year: 2013 end-page: 15655 article-title: CYP2R1 is a major, but not exclusive, contributor to 25‐hydroxyvitamin D production in vivo publication-title: Proc Natl Acad Sci U S A – volume: 392 start-page: 14 issue: 1 year: 2001 end-page: 22 article-title: Calcitroic acid is a major catabolic metabolite in the metabolism of 1 alpha‐dihydroxyvitamin D‐2 publication-title: Arch Biochem Biophys – volume: 92 start-page: 541 issue: 3 year: 2005 end-page: 546 article-title: Distribution of ergosterol in different tissues of mushrooms and its effect on the conversion of ergosterol to vitamin D‐2 by UV irradiation publication-title: Food Chem – volume: 113 start-page: 561 issue: 4 year: 2004 end-page: 568 article-title: Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism publication-title: J Clin Invest – volume: 129 start-page: 163 issue: 3‐5 year: 2012 end-page: 171 article-title: Metabolism of cholesterol, vitamin D3 and 20‐hydroxyvitamin D3 incorporated into phospholipid vesicles by human CYP27A1 publication-title: J Steroid Biochem Mol Biol – volume: 155 start-page: 47 issue: 1 year: 1973 end-page: 57 article-title: Vitamin D3‐25‐hydroxylase—tissue occurrence and apparent lack of regulation publication-title: Arch Biochem Biophys – volume: 121 start-page: 565 issue: 3‐5 year: 2010 end-page: 573 article-title: Quantification of circulating 25‐hydroxyvitamin D by liquid chromatography‐tandem mass spectrometry publication-title: J Steroid Biochem Mol Biol – volume: 272 start-page: 4080 issue: 16 year: 2005 end-page: 4090 article-title: The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism publication-title: FEBS J – volume: 47 start-page: 6854 issue: 27 year: 2004 end-page: 6863 article-title: Potent, selective and low‐calcemic inhibitors of CYP24 hydroxylase: 24‐sulfoximine analogues of the hormone 1alpha,25‐dihydroxyvitamin D(3) publication-title: J Med Chem – volume: 409 start-page: 2705 issue: 10 year: 2017 end-page: 2714 article-title: Direct aqueous measurement of 25‐hydroxyvitamin D levels in a cellular environment by LC‐MS/MS using the novel chemical derivatization reagent MDBP publication-title: Anal Bioanal Chem – volume: 216 start-page: 1001 issue: 4549 year: 1982 end-page: 1003 article-title: Spectral character of sunlight modulates photosynthesis of previtamin D3 and its photoisomers in human skin publication-title: Science – volume: 173 start-page: D1 issue: 2 year: 2015 end-page: D12 article-title: Mass spectrometry and immunoassay: how to measure steroid hormones today and tomorrow publication-title: Eur J Endocrinol – volume: 262 start-page: 43 issue: 1 year: 1999 end-page: 48 article-title: Metabolic studies using recombinant Escherichia coli cells producing rat mitochondrial CYP24 CYP24 can convert 1alpha,25‐dihydroxyvitamin D3 to calcitroic acid publication-title: Eur J Biochem – volume: 230 start-page: 424 issue: 2 year: 1984 end-page: 429 article-title: 24‐Oxo and 26,23‐lactone metabolites of 1,25‐dihydroxyvitamin‐D3 have direct bone‐resorbing activity publication-title: Arch Biochem Biophys – volume: 29 start-page: 21 issue: 1 year: 2005 end-page: 30 article-title: Distribution of the vitamin D receptor and 1 alpha‐hydroxylase in human brain publication-title: J Chem Neuroanat – volume: 19 start-page: 680 issue: 4 year: 2004 end-page: 688 article-title: CYP3A4 is a human microsomal vitamin D 25‐hydroxylase publication-title: J Bone Miner Res – volume: 103 start-page: 316 issue: 3‐5 year: 2007 end-page: 321 article-title: Extra‐renal 25‐hydroxyvitamin D‐3‐1 alpha‐hydroxylase in human health and disease publication-title: J Steroid Biochem Mol Biol – volume: 11 start-page: 2665 issue: 10 year: 2016 end-page: 2672 article-title: Calcitroic acid—a review publication-title: ACS Chem Biol – volume: 878 start-page: 1654 issue: 20 year: 2010 end-page: 1661 article-title: Advances in determination of vitamin D related compounds in biological samples using liquid chromatography‐mass spectrometry: a review publication-title: J Chromatogr B Analyt Technol Biomed Life Sci – volume: 284 start-page: 14838 issue: 22 year: 2009 end-page: 14848 article-title: Placenta‐specific methylation of the vitamin D 24‐hydroxylase gene: implications for feedback autoregulation of active vitamin D levels at the fetomaternal interface publication-title: J Biol Chem – volume: 329 start-page: 228 issue: 2 year: 1996 end-page: 234 article-title: 1 alpha,25‐(OH)2‐vitamin D3 analogs with minimal in vivo calcemic activity can stimulate significant transepithelial calcium transport and mRNA expression in vitro publication-title: Arch Biochem Biophys – volume: 442 start-page: 75 year: 2015 end-page: 81 article-title: The 25‐hydroxyvitamin D‐3 C‐3 epimer: distribution, correlates, and reclassification of 25‐hydroxyvitamin D status in the population‐based Atherosclerosis Risk in Communities Study (ARIC) publication-title: Clin Chim Acta – volume: 100 start-page: E1343 issue: 10 year: 2015 end-page: E1352 article-title: CYP24A1 mutations in a cohort of hypercalcemic patients: evidence for a recessive trait publication-title: J Clin Endocrinol Metab – volume: 96 start-page: 1911 issue: 7 year: 2011 end-page: 1930 article-title: Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline publication-title: J Clin Endocrinol Metab – volume: 88 start-page: 582S issue: 2 year: 2008 end-page: 586S article-title: Pharmacokinetics of vitamin D toxicity publication-title: Am J Clin Nutr – volume: 35 start-page: 8465 issue: 25 year: 1996 end-page: 8472 article-title: Human 25‐hydroxyvitamin D3‐24‐hydroxylase, a multicatalytic enzyme publication-title: Biochemistry – volume: 136 start-page: 333 year: 2013 end-page: 336 article-title: 1,25‐Dihydroxyvitamin D3‐glycoside of herbal origin exhibits delayed release pharmacokinetics when compared to its synthetic counterpart publication-title: J Steroid Biochem Mol Biol – volume: 140 start-page: 2224 issue: 5 year: 1999 end-page: 2231 article-title: Positive and negative regulations of the renal 25‐hydroxyvitamin D3 1alpha‐hydroxylase gene by parathyroid hormone, calcitonin, and 1alpha,25(OH)2D3 in intact animals publication-title: Endocrinology – volume: 391 start-page: 1917 issue: 5 year: 2008 end-page: 1930 article-title: Metabolic profiling of major vitamin D metabolites using Diels‐Alder derivatization and ultra‐performance liquid chromatography‐tandem mass spectrometry publication-title: Anal Bioanal Chem – volume: 18 start-page: 1003 issue: 6 year: 1979 end-page: 1008 article-title: Isolation and identification of pre‐vitamin D3 from the skin of rats exposed to ultraviolet‐irradiation publication-title: Biochemistry – volume: 100 start-page: 14754 issue: 25 year: 2003 end-page: 14759 article-title: A pathway for the metabolism of vitamin D3: unique hydroxylated metabolites formed during catalysis with cytochrome P450scc (CYP11A1) publication-title: Proc Natl Acad Sci U S A – volume: 9 start-page: 2723 issue: 18 year: 2017 end-page: 2731 article-title: Automated development of an LC‐MS/MS method for measuring multiple vitamin D metabolites using MUSCLE software publication-title: Anal Methods – volume: 5 year: 2015 article-title: Detection of novel CYP11A1‐derived secosteroids in the human epidermis and serum and pig adrenal gland publication-title: Sci Rep – volume: 268 start-page: 20022 issue: 27 year: 1993 end-page: 20030 article-title: Demonstration that 1 beta,25‐dihydroxyvitamin D3 is an antagonist of the nongenomic but not genomic biological responses and biological profile of the three A‐ring diastereomers of 1 alpha,25‐dihydroxyvitamin D3 publication-title: J Biol Chem – volume: 19 start-page: 2621 issue: 17 year: 2013 end-page: 2628 article-title: CYP24A1 inhibition facilitates the anti‐tumour effect of vitamin D3 on colorectal cancer cells publication-title: World J Gastroenterol – volume: 935 start-page: 93 issue: 1‐2 year: 2001 end-page: 103 article-title: Sensitive analysis of 1alpha,25‐dihydroxyvitamin D3 in biological fluids by liquid chromatography‐tandem mass spectrometry publication-title: J Chromatogr A – volume: 69 start-page: 56 issue: 1 year: 2006 end-page: 65 article-title: Intestinal and hepatic CYP3A4 catalyse hydroxylation of 1alpha,25‐dihydroxyvitamin D(3): implications for drug‐induced osteomalacia publication-title: Mol Pharmacol – volume: 1009‐1010 start-page: 80 year: 2016 end-page: 86 article-title: Determination of four sulfated vitamin D compounds in human biological fluids by liquid chromatography‐tandem mass spectrometry publication-title: J Chromatogr B Analyt Technol Biomed Life Sci – volume: 4 start-page: 493 year: 1984 end-page: 520 article-title: Vitamin D: metabolism and biological actions publication-title: Annu Rev Nutr – volume: 214 start-page: 261 issue: 1 year: 1983 end-page: 264 article-title: (23S)‐1,23,25‐Trihydroxycholecalciferol, an intestinal metabolite of 1,25‐dihydroxycholecalciferol publication-title: Biochem J – volume: 92 start-page: 17 issue: 1 year: 2006 end-page: 25 article-title: Who, what, where and when‐influences on cutaneous vitamin D synthesis publication-title: Prog Biophys Mol Biol – volume: 29 start-page: 578 issue: 2 year: 1990 end-page: 582 article-title: 1 alpha‐hydroxylation of 24‐hydroxyvitamin D2 represents a minor physiological pathway for the activation of vitamin D2 in mammals publication-title: Biochemistry – volume: 4 start-page: 136 year: 2013 article-title: Vitamin D in plants: a review of occurrence, analysis, and biosynthesis publication-title: Front Plant Sci – volume: 273 start-page: 14805 issue: 24 year: 1998 end-page: 14812 article-title: Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted sterol 27‐hydroxylase gene publication-title: J Biol Chem – volume: 279 start-page: 15897 issue: 16 year: 2004 end-page: 15907 article-title: C‐3 epimerization of vitamin D3 metabolites and further metabolism of C‐3 epimers: 25‐hydroxyvitamin D3 is metabolised to 3‐epi‐25‐hydroxyvitamin D3 and subsequently metabolised through C‐1alpha or C‐24 hydroxylation publication-title: J Biol Chem – volume: 26 start-page: 324 issue: 1 year: 1987 end-page: 331 article-title: Isolation and identification of 1,23‐dihydroxy‐24,25,26,27‐tetranorvitamin D3, a new metabolite of 1,25‐dihydroxyvitamin D3 produced in rat kidney publication-title: Biochemistry – volume: 194 start-page: 853 issue: 4267 year: 1976 end-page: 855 article-title: Calcinogenic factor in Solanum malacoxylon: evidence that it is 1,25‐dihydroxyvitamin D3‐glycoside publication-title: Science – volume: 281 start-page: 317 issue: 5729 year: 1979 end-page: 319 article-title: 1 alpha, 25‐Dihydroxyvitamin D3 and 24,25‐dihydroxyvitamin D3 in vitro synthesis by human decidua and placenta publication-title: Nature – volume: 1 year: 2018 – volume: 258 start-page: 12920 issue: 21 year: 1983 end-page: 12928 article-title: The isolation and identification of two new metabolites of 25‐hydroxyvitamin D3 produced in the kidney publication-title: J Biol Chem – volume: 57 start-page: 7702 issue: 18 year: 2014 end-page: 7715 article-title: Small‐molecule inhibitors of 25‐hydroxyvitamin D‐24‐hydroxylase (CYP24A1): synthesis and biological evaluation publication-title: J Med Chem – volume: 418 start-page: 126 issue: 1 year: 2011 end-page: 133 article-title: Simultaneous measurement of plasma vitamin D(3) metabolites, including 4beta,25‐dihydroxyvitamin D(3), using liquid chromatography‐tandem mass spectrometry publication-title: Anal Biochem – volume: 186 start-page: 110 year: 2019 end-page: 116 article-title: Vitamin D C3‐epimer levels are proportionally higher with oral vitamin D supplementation compared to ultraviolet irradiation of skin in mice but not humans publication-title: J Steroid Biochem Mol Biol – volume: 932 start-page: 6 year: 2013 end-page: 11 article-title: Quantification of vitamin D and 25‐hydroxyvitamin D in soft tissues by liquid chromatography‐tandem mass spectrometry publication-title: J Chromatogr B Analyt Technol Biomed Life Sci – volume: 99 start-page: 2567 issue: 7 year: 2014 end-page: 2574 article-title: Clinical utility of simultaneous quantitation of 25‐hydroxyvitamin D and 24,25‐dihydroxyvitamin D by LC‐MS/MS involving derivatization with DMEQ‐TAD publication-title: J Clin Endocrinol Metab – volume: 39 start-page: 243 issue: 2 year: 2010 end-page: 253 article-title: Vitamin D: metabolism publication-title: Endocrinol Metab Clin North Am – volume: 95 start-page: 1387 issue: 4 year: 1998 end-page: 1391 article-title: Parathyroid hormone activation of the 25‐hydroxyvitamin D3‐1alpha‐hydroxylase gene promoter publication-title: Proc Natl Acad Sci U S A – volume: 10 start-page: 2465 issue: 12 year: 1999 end-page: 2473 article-title: Expression of 25‐hydroxyvitamin D‐3‐1 alpha‐hydroxylase in the human kidney publication-title: J Am Soc Nephrol – ident: e_1_2_14_202_1 doi: 10.1172/JCI5244 – ident: e_1_2_14_25_1 doi: 10.1016/j.abb.2012.01.013 – volume: 259 start-page: 884 issue: 2 year: 1984 ident: e_1_2_14_79_1 article-title: Isolation, identification, and metabolism of (23S,25R)‐25‐hydroxyvitamin D3 26,23‐lactol. A biosynthetic precursor of (23S,25R)‐25‐hydroxyvitamin D3 26,23‐lactone publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)43539-3 – ident: e_1_2_14_91_1 doi: 10.1002/jcb.10359 – ident: e_1_2_14_170_1 doi: 10.1021/bi00717a005 – ident: e_1_2_14_169_1 doi: 10.1016/j.jsbmb.2010.02.025 – ident: e_1_2_14_58_1 doi: 10.1146/annurev.nu.04.070184.002425 – ident: e_1_2_14_104_1 doi: 10.1016/j.bcp.2012.09.032 – ident: e_1_2_14_11_1 doi: 10.1210/jcem-67-2-373 – ident: e_1_2_14_81_1 doi: 10.1073/pnas.78.11.6579 – volume: 83 start-page: 2156 issue: 6 year: 1998 ident: e_1_2_14_89_1 article-title: Unique 24‐hydroxylated metabolites represent a significant pathway of metabolism of vitamin D2 in humans: 24‐hydroxyvitamin D2 and 1,24‐dihydroxyvitamin D2 detectable in human serum publication-title: J Clin Endocrinol Metab – ident: e_1_2_14_136_1 doi: 10.1016/S0731-7085(02)00135-8 – ident: e_1_2_14_128_1 doi: 10.1016/j.jchromb.2017.06.017 – ident: e_1_2_14_28_1 doi: 10.1073/pnas.1315006110 – ident: e_1_2_14_172_1 doi: 10.1373/clinchem.2015.241430 – ident: e_1_2_14_2_1 doi: 10.1093/ajcn/85.3.860 – ident: e_1_2_14_190_1 doi: 10.1007/s12031-015-0643-1 – ident: e_1_2_14_183_1 doi: 10.1530/EJE-15-0338 – ident: e_1_2_14_49_1 doi: 10.1073/pnas.95.4.1387 – ident: e_1_2_14_102_1 doi: 10.1111/j.1742-4658.2005.04819.x – ident: e_1_2_14_189_1 doi: 10.1210/jc.2008-1454 – ident: e_1_2_14_39_1 doi: 10.1016/S0960-0760(97)00020-4 – ident: e_1_2_14_40_1 doi: 10.1016/j.abb.2012.02.016 – ident: e_1_2_14_157_1 doi: 10.3748/wjg.v19.i17.2621 – ident: e_1_2_14_37_1 doi: 10.1038/281317a0 – ident: e_1_2_14_200_1 doi: 10.1002/jbmr.387 – ident: e_1_2_14_144_1 doi: 10.1016/j.jchromb.2015.12.014 – ident: e_1_2_14_191_1 doi: 10.1373/clinchem.2015.239491 – ident: e_1_2_14_165_1 doi: 10.1093/clinchem/30.11.1731 – ident: e_1_2_14_53_1 doi: 10.1021/bi960658i – ident: e_1_2_14_168_1 doi: 10.1007/s11154-013-9241-0 – ident: e_1_2_14_199_1 doi: 10.1371/journal.pone.0030773 – ident: e_1_2_14_27_1 doi: 10.1073/pnas.0402490101 – ident: e_1_2_14_171_1 doi: 10.1016/S0021-9673(01)00985-2 – ident: e_1_2_14_55_1 doi: 10.1021/bi00430a051 – ident: e_1_2_14_112_1 doi: 10.1002/jcb.24576 – ident: e_1_2_14_45_1 doi: 10.1016/j.tibs.2004.10.005 – ident: e_1_2_14_64_1 doi: 10.1042/bj2620173 – ident: e_1_2_14_158_1 doi: 10.1021/jm040129 – ident: e_1_2_14_153_1 doi: 10.1021/jm980736v – ident: e_1_2_14_179_1 doi: 10.1016/j.jchromb.2018.04.025 – ident: e_1_2_14_100_1 doi: 10.1038/srep14875 – ident: e_1_2_14_15_1 doi: 10.1016/j.foodchem.2004.08.022 – ident: e_1_2_14_85_1 doi: 10.1021/mp500429u – ident: e_1_2_14_149_1 doi: 10.1073/pnas.75.5.2080 – ident: e_1_2_14_137_1 doi: 10.1124/dmd.117.078428 – volume: 46 start-page: 1657 issue: 10 year: 2000 ident: e_1_2_14_184_1 article-title: Comparison of commercially available (125)I‐based RIA methods for the determination of circulating 25‐hydroxyvitamin D publication-title: Clin Chem doi: 10.1093/clinchem/46.10.1657 – ident: e_1_2_14_92_1 doi: 10.1021/bi00454a035 – ident: e_1_2_14_56_1 doi: 10.1046/j.1432-1327.1999.00375.x – ident: e_1_2_14_145_1 doi: 10.1016/j.jsbmb.2012.09.016 – ident: e_1_2_14_176_1 doi: 10.1007/s00216-008-2095-8 – ident: e_1_2_14_43_1 doi: 10.1681/ASN.V133621 – ident: e_1_2_14_113_1 doi: 10.3177/jnsv.47.108 – ident: e_1_2_14_131_1 doi: 10.1016/S0378-4347(96)00377-5 – ident: e_1_2_14_96_1 doi: 10.1006/abbi.1999.1308 – ident: e_1_2_14_119_1 doi: 10.3945/jn.114.192419 – ident: e_1_2_14_150_1 doi: 10.1021/bi036056y – ident: e_1_2_14_107_1 doi: 10.1111/j.1742-4658.2006.05302.x – ident: e_1_2_14_14_1 doi: 10.1126/science.6256855 – ident: e_1_2_14_99_1 doi: 10.1016/j.jsbmb.2014.11.010 – ident: e_1_2_14_76_1 doi: 10.1016/j.abb.2006.08.021 – ident: e_1_2_14_68_1 doi: 10.1021/acschembio.6b00569 – volume: 10 start-page: 2465 issue: 12 year: 1999 ident: e_1_2_14_36_1 article-title: Expression of 25‐hydroxyvitamin D‐3‐1 alpha‐hydroxylase in the human kidney publication-title: J Am Soc Nephrol doi: 10.1681/ASN.V10122465 – ident: e_1_2_14_62_1 doi: 10.1373/clinchem.2015.244459 – ident: e_1_2_14_111_1 doi: 10.1074/jbc.M311473200 – ident: e_1_2_14_178_1 doi: 10.1016/j.jchromb.2014.01.045 – ident: e_1_2_14_163_1 doi: 10.1210/jcem-33-3-554 – ident: e_1_2_14_87_1 doi: 10.1021/bi00366a051 – ident: e_1_2_14_71_1 doi: 10.1021/bi030207f – ident: e_1_2_14_173_1 doi: 10.1016/j.clinbiochem.2010.05.007 – ident: e_1_2_14_47_1 doi: 10.1073/pnas.68.9.2131 – ident: e_1_2_14_118_1 doi: 10.1016/j.clinbiochem.2018.02.013 – ident: e_1_2_14_20_1 doi: 10.1152/physrev.1998.78.4.1193 – ident: e_1_2_14_73_1 doi: 10.1021/jm050738x – ident: e_1_2_14_88_1 doi: 10.1016/S0960-0760(01)00082-6 – ident: e_1_2_14_155_1 doi: 10.1016/j.ejmech.2010.07.001 – ident: e_1_2_14_103_1 doi: 10.1124/dmd.113.050955 – ident: e_1_2_14_141_1 doi: 10.1002/1873-3468.12767 – volume: 268 start-page: 20022 issue: 27 year: 1993 ident: e_1_2_14_35_1 article-title: Demonstration that 1 beta,25‐dihydroxyvitamin D3 is an antagonist of the nongenomic but not genomic biological responses and biological profile of the three A‐ring diastereomers of 1 alpha,25‐dihydroxyvitamin D3 publication-title: J Biol Chem doi: 10.1016/S0021-9258(20)80689-9 – ident: e_1_2_14_34_1 doi: 10.1359/JBMR.0301257 – ident: e_1_2_14_22_1 doi: 10.1042/cs0400039 – volume: 14 start-page: 1788 issue: 11 year: 2000 ident: e_1_2_14_75_1 article-title: 25‐Dehydro‐1alpha‐hydroxyvitamin D3‐26,23S‐lactone antagonises the nuclear vitamin D receptor by mediating a unique noncovalent conformational change publication-title: Mol Endocrinol – ident: e_1_2_14_194_1 doi: 10.1016/j.jchromb.2013.05.029 – ident: e_1_2_14_147_1 doi: 10.1126/science.982048 – ident: e_1_2_14_65_1 doi: 10.1021/bi00294a025 – ident: e_1_2_14_105_1 doi: 10.1016/j.jsbmb.2011.11.012 – ident: e_1_2_14_185_1 doi: 10.1021/ac9026862 – ident: e_1_2_14_59_1 doi: 10.1073/pnas.0702093104 – ident: e_1_2_14_94_1 doi: 10.1016/j.bbalip.2006.01.004 – ident: e_1_2_14_193_1 doi: 10.1016/j.placenta.2016.12.019 – ident: e_1_2_14_10_1 doi: 10.1021/bi00573a011 – volume: 258 start-page: 12920 issue: 21 year: 1983 ident: e_1_2_14_78_1 article-title: The isolation and identification of two new metabolites of 25‐hydroxyvitamin D3 produced in the kidney publication-title: J Biol Chem doi: 10.1016/S0021-9258(17)44058-0 – ident: e_1_2_14_182_1 doi: 10.1039/C7AY00550D – ident: e_1_2_14_146_1 doi: 10.1016/S0168-9452(02)00420-X – ident: e_1_2_14_135_1 doi: 10.1016/S0039-128X(00)00087-8 – ident: e_1_2_14_63_1 doi: 10.1016/S0021-9258(17)40673-9 – ident: e_1_2_14_30_1 doi: 10.1194/jlr.R031534 – ident: e_1_2_14_186_1 doi: 10.1021/ac202047n – ident: e_1_2_14_21_1 doi: 10.1093/ajcn/88.2.582S – ident: e_1_2_14_77_1 doi: 10.1126/science.183.4130.1198 – ident: e_1_2_14_159_1 doi: 10.1210/en.2009-1156 – ident: e_1_2_14_110_1 doi: 10.1016/j.clinbiochem.2012.10.037 – ident: e_1_2_14_72_1 doi: 10.1016/0003-9861(84)90422-3 – ident: e_1_2_14_192_1 doi: 10.1007/s00216-017-0215-z – ident: e_1_2_14_52_1 doi: 10.1046/j.1432-1327.2000.01680.x – ident: e_1_2_14_46_1 doi: 10.1006/bbrc.1998.9098 – ident: e_1_2_14_61_1 doi: 10.1210/jc.2014-4387 – ident: e_1_2_14_125_1 doi: 10.1016/j.jsbmb.2017.02.004 – ident: e_1_2_14_152_1 doi: 10.1016/0960-894X(96)00301-0 – ident: e_1_2_14_51_1 doi: 10.1016/j.abb.2011.11.003 – ident: e_1_2_14_164_1 doi: 10.1016/j.plabm.2015.04.001 – ident: e_1_2_14_139_1 doi: 10.1016/j.jchromb.2014.08.027 – ident: e_1_2_14_83_1 doi: 10.1002/jbmr.1839 – ident: e_1_2_14_97_1 doi: 10.1021/bi00456a014 – ident: e_1_2_14_98_1 doi: 10.1073/pnas.2336107100 – ident: e_1_2_14_129_1 doi: 10.1016/S0731-7085(96)01983-8 – ident: e_1_2_14_8_1 doi: 10.1016/j.chembiol.2013.12.016 – ident: e_1_2_14_95_1 doi: 10.1021/bi00415a058 – ident: e_1_2_14_50_1 doi: 10.1172/JCI200419081 – ident: e_1_2_14_134_1 doi: 10.1016/S0005-2760(97)00026-X – ident: e_1_2_14_130_1 doi: 10.1021/bi00504a037 – ident: e_1_2_14_115_1 doi: 10.1002/(SICI)1097-4644(19990401)73:1<106::AID-JCB12>3.0.CO;2-Q – ident: e_1_2_14_140_1 doi: 10.1530/JME-18-0086 – ident: e_1_2_14_133_1 doi: 10.1016/S0039-128X(99)00057-4 – ident: e_1_2_14_154_1 doi: 10.1021/jm5009314 – ident: e_1_2_14_74_1 doi: 10.1021/ol035922w – ident: e_1_2_14_31_1 doi: 10.1074/jbc.M307028200 – ident: e_1_2_14_148_1 doi: 10.1126/science.186.4168.1038 – ident: e_1_2_14_90_1 doi: 10.1006/abbi.2001.2419 – ident: e_1_2_14_4_1 doi: 10.1056/NEJMra070553 – ident: e_1_2_14_166_1 doi: 10.1016/0003-2697(77)90648-0 – ident: e_1_2_14_26_1 doi: 10.1021/bi00850a001 – ident: e_1_2_14_138_1 doi: 10.1016/0014-5793(85)80002-8 – ident: e_1_2_14_175_1 doi: 10.1002/mas.21408 – ident: e_1_2_14_82_1 doi: 10.1124/mol.111.076356 – ident: e_1_2_14_70_1 doi: 10.1021/bi00302a021 – ident: e_1_2_14_19_1 doi: 10.3389/fpls.2013.00136 – ident: e_1_2_14_126_1 doi: 10.1210/jc.2013-2872 – ident: e_1_2_14_151_1 doi: 10.1021/jm0604070 – ident: e_1_2_14_114_1 doi: 10.1021/bi00558a007 – ident: e_1_2_14_6_1 doi: 10.1210/jc.2010-2704 – ident: e_1_2_14_7_1 doi: 10.1210/jc.2011-0385 – ident: e_1_2_14_13_1 doi: 10.1126/science.6281884 – ident: e_1_2_14_204_1 doi: 10.1016/j.bone.2014.12.068 – ident: e_1_2_14_32_1 doi: 10.1074/jbc.273.24.14805 – ident: e_1_2_14_66_1 doi: 10.1021/bi00375a045 – ident: e_1_2_14_3_1 – ident: e_1_2_14_48_1 doi: 10.1210/endo.140.5.6691 – ident: e_1_2_14_106_1 doi: 10.1124/dmd.110.034389 – ident: e_1_2_14_93_1 doi: 10.1016/0006-2952(96)00173-6 – ident: e_1_2_14_196_1 doi: 10.1210/jcem-63-4-954 – ident: e_1_2_14_187_1 doi: 10.1016/j.jsbmb.2017.07.018 – ident: e_1_2_14_38_1 doi: 10.1016/j.jsbmb.2006.12.091 – ident: e_1_2_14_156_1 doi: 10.1016/j.bmc.2010.06.011 – ident: e_1_2_14_161_1 doi: 10.1016/j.annepidem.2007.12.001 – ident: e_1_2_14_60_1 doi: 10.1056/NEJMoa1103864 – ident: e_1_2_14_101_1 doi: 10.1016/j.jsbmb.2013.10.012 – volume: 32 start-page: 259 issue: 1 year: 2012 ident: e_1_2_14_195_1 article-title: Determination of 1,25‐dihydroxyvitamin D concentrations in human colon tissues and matched serum samples publication-title: Anticancer Res – ident: e_1_2_14_69_1 doi: 10.1042/bj2140261 – ident: e_1_2_14_86_1 doi: 10.1172/JCI98680 – ident: e_1_2_14_109_1 doi: 10.1016/j.chembiol.2005.06.010 – ident: e_1_2_14_143_1 doi: 10.1124/mol.65.3.720 – ident: e_1_2_14_203_1 doi: 10.1373/clinchem.2015.244541 – ident: e_1_2_14_205_1 doi: 10.1016/j.jsbmb.2017.11.014 – ident: e_1_2_14_117_1 doi: 10.1006/abbi.1996.0213 – ident: e_1_2_14_57_1 doi: 10.1111/febs.12862 – ident: e_1_2_14_44_1 doi: 10.1016/j.mce.2003.11.017 – volume: 257 start-page: 9634 issue: 16 year: 1982 ident: e_1_2_14_80_1 article-title: 23S,25‐dihydroxyvitamin D3 as a circulating metabolite of vitamin D3. Its role in 25‐hydroxyvitamin D3‐26,23‐lactone biosynthesis publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)34119-X – ident: e_1_2_14_9_1 doi: 10.1126/science.6251551 – ident: e_1_2_14_5_1 doi: 10.1016/j.jsbmb.2017.06.006 – ident: e_1_2_14_124_1 doi: 10.1016/j.jsbmb.2018.10.002 – ident: e_1_2_14_127_1 doi: 10.1210/en.2013-2013 – ident: e_1_2_14_180_1 doi: 10.1016/0039-128X(87)90083-3 – ident: e_1_2_14_201_1 doi: 10.1016/j.jsbmb.2013.09.012 – ident: e_1_2_14_197_1 doi: 10.1056/NEJMoa1306357 – ident: e_1_2_14_42_1 doi: 10.1016/j.jsbmb.2006.12.078 – ident: e_1_2_14_29_1 doi: 10.1073/pnas.90.18.8668 – ident: e_1_2_14_16_1 doi: 10.1210/jc.2004-0360 – ident: e_1_2_14_132_1 doi: 10.1016/j.bcp.2007.11.008 – ident: e_1_2_14_142_1 doi: 10.1016/j.jchromb.2009.11.026 – ident: e_1_2_14_177_1 doi: 10.1210/jc.2013-4388 – ident: e_1_2_14_18_1 doi: 10.1093/ajcn/68.4.854 – ident: e_1_2_14_41_1 doi: 10.1016/j.jchemneu.2004.08.006 – ident: e_1_2_14_54_1 doi: 10.1074/jbc.M809542200 – ident: e_1_2_14_174_1 doi: 10.1016/j.jchromb.2016.01.049 – ident: e_1_2_14_17_1 doi: 10.1210/jc.2007-2308 – ident: e_1_2_14_12_1 doi: 10.1016/j.pbiomolbio.2006.02.004 – ident: e_1_2_14_188_1 doi: 10.1159/000486536 – ident: e_1_2_14_198_1 doi: 10.1210/jc.2010-0195 – ident: e_1_2_14_123_1 doi: 10.1016/j.clinbiochem.2012.11.030 – ident: e_1_2_14_121_1 doi: 10.1016/j.cca.2014.12.036 – ident: e_1_2_14_120_1 doi: 10.1007/s00198-015-3125-y – ident: e_1_2_14_181_1 doi: 10.1002/mas.21353 – ident: e_1_2_14_206_1 doi: 10.1056/NEJMoa1807841 – ident: e_1_2_14_24_1 doi: 10.1016/j.ecl.2010.02.002 – ident: e_1_2_14_23_1 doi: 10.1016/S0003-9861(73)80008-6 – ident: e_1_2_14_108_1 doi: 10.1111/j.1742-4658.2008.06406.x – ident: e_1_2_14_167_1 doi: 10.1002/bmc.1130050404 – ident: e_1_2_14_116_1 doi: 10.1002/jcb.20553 – volume-title: Vitamin D year: 2018 ident: e_1_2_14_33_1 – ident: e_1_2_14_84_1 doi: 10.1016/j.ab.2011.06.043 – ident: e_1_2_14_67_1 doi: 10.1016/0003-9861(81)90107-7 – ident: e_1_2_14_160_1 doi: 10.1016/S0960-0760(03)00063-3 – ident: e_1_2_14_162_1 doi: 10.1093/ajcn/87.4.1087S – ident: e_1_2_14_122_1 doi: 10.1210/jc.2006-0710 |
SSID | ssj0009630 |
Score | 2.4590616 |
SecondaryResourceType | review_article |
Snippet | Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25‐hydroxyvitamin D3 (25OHD3) and its conversion to... Current understanding of vitamin D tends to be focussed on the measurement of the major circulating form 25-hydroxyvitamin D3 (25OHD3) and its conversion to... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 408 |
SubjectTerms | 25-Hydroxyvitamin D analysis Animals Calciferol conjugation Humans Hydroxylase hydroxylation Metabolic pathways Metabolism Metabolites Metabolome - physiology Vitamin D Vitamin D - analysis Vitamin D - metabolism Vitamin D3 |
Title | The vitamin D metabolome: An update on analysis and function |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbf.3421 https://www.ncbi.nlm.nih.gov/pubmed/31328813 https://www.proquest.com/docview/2269205719 https://www.proquest.com/docview/2261975089 |
Volume | 37 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yEH3xY35Np0QQferWNslMxJc5HUPQB1EQfChJmsLQdaKdoH-9d_2Y-AXiUwu9Ju3dJfn1evkdIXvWKCQaS7yOULHHtZOedIH1hB8fhrDC69hgQP_isjO44ee34rbMqsS9MAU_xDTghiMjn69xgGvz3P4gDbUmaTGe7yHHVC3EQ1cfzFHgV2V4hXkdLnnFO-uH7erGzyvRN3j5Ga3my01_kdxVD1pkmdy3Jplp2bcvHI7_e5MlslCiUNot3GaZzLi0TmaLupSvdTLXq8rArZBjcCT6Msz0aJjSUzpyGbjNw3jkjmg3pZNHjBjQcUp1yW4CJzHF1RItvkpu-mfXvYFXllzwLOMq8FzArGDGiZj5LvCdTXxhuLRMOPxykbjz1iYqiQF2wVxghdAm4CI02jAF4myN1NJx6jYI9WMpnDGMG3HIO1JrnFu54r7F9rRokINK_ZEt-cixLMZDVDAphxHoJUK9NMjuVPKx4OD4QaZZWTAqR-FzBNBShQBIAwVNTC-D_vCniE7deJLLBApgkwSZ9cLy006Q1lLKgDXIfm6_X3uPeid9PG7-VXCLzAPyUkUmYZPUsqeJ2wZ0k5md3I_fAZK38i8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hUEUvQIHC8iiuhNpTliS2Fxu4wMJq2wKHCiQOlSLbcSQEm0WQRYJfz0wei6BFqjglUiZOMjP2fJ7Y3wBsOquJaCwLOlKngTBeBcpHLpBhuh1jhDeppYT-yWmnfy5-XsiLCdht9sJU_BDjhBv1jHK8pg5OCemtZ9ZQZ7M2F7SJfIoKepfzqd_P3FHoWXWChQcdoUTDPBvGW82dL2PRXwDzJV4tA05vFv40r1qtM7lqjwrbdo-vWBzf-S1zMFMDUbZfec4nmPD5PHyoSlM-zMN0t6kEtwB76Evs_rIwg8ucHbKBL9BzrocDv8P2cza6oaQBG-bM1AQneJIyCphk9EU47x2ddftBXXUhcFzoKPARd5JbL1Me-ij0LgulFcpx6Wnyomjzrct0liLywuHASWlsJGRsjeUaxflnmMyHuV8GFqZKemu5sHJbdJQxNLwKLUJH7RnZgu-N_hNXU5JTZYzrpCJTjhPUS0J6acHXseRNRcPxD5m1xoRJ3RHvEkSXOkZMGmlsYnwZ9Uf_RUzuh6NSJtKInBTKLFWmHz-EmC2VingLvpUGfPPpSfegR8eV_xXcgOn-2clxcvzj9NcqfEQgpquFhWswWdyO_DqCncJ-KZ36CbzC9ko |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB9EsfXFqvXjrNYVSvuUM8nuxt3SF3vXw49WSqkg-BB2NxsQvdyhOaH96zuTjxNrBelTApnsJjOzO79Mdn8D8M5ZTURjeZBInQXCeBUoH7lAhtl-jBHeZJYS-t9Ok8MzcXwuz5tVlbQXpuaHmCbcaGRU8zUN8HGW792Thjqbd7mgPeRzIgkVeXT_xz11FDpWk1_hQSKUaIlnw3ivvfNhKHqELx_C1SreDF7BRfuk9TKTq-6ktF33-y8Sx_97lSVYbGAoO6j9ZhlmfLEC83Vhyl8r8LLX1oF7DZ_Qk9jdZWmGlwXrs6Ev0W-uR0P_kR0UbDKmlAEbFcw09CZ4kjEKl2TyVTgbfPnZOwyamguB40JHgY-4k9x6mfHQR6F3eSitUI5LT58uirbeulznGeIunAyclMZGQsbWWK5RnK_BbDEq_AawMFPSW8uFlfsiUcbQ5Cq0CB21Z2QHPrTqT11DSE51Ma7Tmko5TlEvKemlA7tTyXFNwvEPma3WgmkzDG9TxJY6RkQaaWxiehn1R39FTOFHk0om0oibFMqs15afdkK8lkpFvAPvK_s92Xva-zyg4-ZzBXfgxff-IP16dHryBhYQhel6VeEWzJY3E7-NSKe0byuX_gP33vUC |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+vitamin+D+metabolome%3A+An+update+on+analysis+and+function&rft.jtitle=Cell+biochemistry+and+function&rft.au=Jenkinson%2C+Carl&rft.date=2019-08-01&rft.eissn=1099-0844&rft.volume=37&rft.issue=6&rft.spage=408&rft_id=info:doi/10.1002%2Fcbf.3421&rft_id=info%3Apmid%2F31328813&rft.externalDocID=31328813 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-6484&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-6484&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-6484&client=summon |