Tolerogenic probiotics Lactobacillus delbrueckii and Lactobacillus rhamnosus promote anti‐inflammatory profile of macrophages‐derived monocytes of newly diagnosed patients with systemic lupus erythematosus

Systemic lupus erythematosus (SLE) is known as an autoimmune disorder that is characterized by the breakdown of self‐tolerance, resulting in disease onset and progression. Macrophages have been implicated as a factor in the development of SLE through faulty phagocytosis of dead cells or an imbalance...

Full description

Saved in:
Bibliographic Details
Published inCell biochemistry and function Vol. 42; no. 2; pp. e3981 - n/a
Main Authors Javanmardi, Zahra, Mahmoudi, Mahmoud, Rafatpanah, Houshang, Rezaieyazdi, Zahra, Shapouri‐Moghaddam, Abbas, Ahmadi, Parisa, Mollazadeh, Samaneh, Tabasi, Nafiseh Sadat, Esmaeili, Seyed‐Alireza
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.03.2024
Subjects
Online AccessGet full text
ISSN0263-6484
1099-0844
1099-0844
DOI10.1002/cbf.3981

Cover

Loading…
Abstract Systemic lupus erythematosus (SLE) is known as an autoimmune disorder that is characterized by the breakdown of self‐tolerance, resulting in disease onset and progression. Macrophages have been implicated as a factor in the development of SLE through faulty phagocytosis of dead cells or an imbalanced M1/M2 ratio. The study aimed to investigate the immunomodulatory effects of Lactobacillus delbrueckii and Lactobacillus rhamnosus on M1 and M2 macrophages in new case lupus patients. For this purpose, blood monocytes were collected from lupus patients and healthy people and were cultured for 5 days to produce macrophages. For 48 h, the macrophages were then cocultured with either probiotics or lipopolysaccharides (LPS). Flow cytometry and real‐time polymerase chain reaction were then used to analyze the expression of cluster of differentiation (CD) 14, CD80, and human leukocyte antigen – DR (HLADR) markers, as well as cytokine expression (interleukin [IL]1‐β, IL‐12, tumor necrosis factor α [TNF‐α], IL‐10, and transforming growth factor beta [TGF‐β]). The results indicated three distinct macrophage populations, M0, M1, and M2. In both control and patient‐derived macrophage‐derived monocytes (MDMs), the probiotic groups showed a decrease in CD14, CD80, and HLADR expression compared to the LPS group. This decrease was particularly evident in M0 and M2 macrophages from lupus patients and M1 macrophages from healthy subjects. In addition, the probiotic groups showed increased levels of IL‐10 and TGF‐β and decreased levels of IL‐12, IL1‐β, and TNF‐α in MDMs from both healthy and lupus subjects compared to the LPS groups. Although there was a higher expression of pro‐inflammatory cytokines in lupus patients, there was a higher expression of anti‐inflammatory cytokines in healthy subjects. In general, L. delbrueckii and L. rhamnosus could induce anti‐inflammatory effects on MDMs from both healthy and lupus subjects. Significance statement Macrophages have been implicated as a factor in the development of systemic lupus erythematosus through faulty phagocytosis of dead cells or an imbalanced M1/M2 ratio. The study aimed to investigate the immunomodulatory effects of Lactobacillus delbrueckii and Lactobacillus rhamnosus on M1 and M2 macrophages in new case lupus patients. L. delbrueckii and L. rhamnosus could induce anti‐inflammatory effects on macrophage‐derived monocytes (MDMs) from both healthy and lupus subjects. In both control and patient‐derived MDMs, the probiotic groups showed a decrease in cluster of differentiation (CD) 14, CD80, and Human Leukocyte Antigen – DR expression compared to the lipopolysaccharides (LPS) group. Also observed the increased levels of interleukin (IL)‐10 and transforming growth factor beta and decreased levels of IL‐12, IL1‐β, and tumor necrosis factor α in MDMs from both healthy and lupus subjects compared to the LPS groups.
AbstractList Systemic lupus erythematosus (SLE) is known as an autoimmune disorder that is characterized by the breakdown of self-tolerance, resulting in disease onset and progression. Macrophages have been implicated as a factor in the development of SLE through faulty phagocytosis of dead cells or an imbalanced M1/M2 ratio. The study aimed to investigate the immunomodulatory effects of Lactobacillus delbrueckii and Lactobacillus rhamnosus on M1 and M2 macrophages in new case lupus patients. For this purpose, blood monocytes were collected from lupus patients and healthy people and were cultured for 5 days to produce macrophages. For 48 h, the macrophages were then cocultured with either probiotics or lipopolysaccharides (LPS). Flow cytometry and real-time polymerase chain reaction were then used to analyze the expression of cluster of differentiation (CD) 14, CD80, and human leukocyte antigen - DR (HLADR) markers, as well as cytokine expression (interleukin [IL]1-β, IL-12, tumor necrosis factor α [TNF-α], IL-10, and transforming growth factor beta [TGF-β]). The results indicated three distinct macrophage populations, M0, M1, and M2. In both control and patient-derived macrophage-derived monocytes (MDMs), the probiotic groups showed a decrease in CD14, CD80, and HLADR expression compared to the LPS group. This decrease was particularly evident in M0 and M2 macrophages from lupus patients and M1 macrophages from healthy subjects. In addition, the probiotic groups showed increased levels of IL-10 and TGF-β and decreased levels of IL-12, IL1-β, and TNF-α in MDMs from both healthy and lupus subjects compared to the LPS groups. Although there was a higher expression of pro-inflammatory cytokines in lupus patients, there was a higher expression of anti-inflammatory cytokines in healthy subjects. In general, L. delbrueckii and L. rhamnosus could induce anti-inflammatory effects on MDMs from both healthy and lupus subjects.Systemic lupus erythematosus (SLE) is known as an autoimmune disorder that is characterized by the breakdown of self-tolerance, resulting in disease onset and progression. Macrophages have been implicated as a factor in the development of SLE through faulty phagocytosis of dead cells or an imbalanced M1/M2 ratio. The study aimed to investigate the immunomodulatory effects of Lactobacillus delbrueckii and Lactobacillus rhamnosus on M1 and M2 macrophages in new case lupus patients. For this purpose, blood monocytes were collected from lupus patients and healthy people and were cultured for 5 days to produce macrophages. For 48 h, the macrophages were then cocultured with either probiotics or lipopolysaccharides (LPS). Flow cytometry and real-time polymerase chain reaction were then used to analyze the expression of cluster of differentiation (CD) 14, CD80, and human leukocyte antigen - DR (HLADR) markers, as well as cytokine expression (interleukin [IL]1-β, IL-12, tumor necrosis factor α [TNF-α], IL-10, and transforming growth factor beta [TGF-β]). The results indicated three distinct macrophage populations, M0, M1, and M2. In both control and patient-derived macrophage-derived monocytes (MDMs), the probiotic groups showed a decrease in CD14, CD80, and HLADR expression compared to the LPS group. This decrease was particularly evident in M0 and M2 macrophages from lupus patients and M1 macrophages from healthy subjects. In addition, the probiotic groups showed increased levels of IL-10 and TGF-β and decreased levels of IL-12, IL1-β, and TNF-α in MDMs from both healthy and lupus subjects compared to the LPS groups. Although there was a higher expression of pro-inflammatory cytokines in lupus patients, there was a higher expression of anti-inflammatory cytokines in healthy subjects. In general, L. delbrueckii and L. rhamnosus could induce anti-inflammatory effects on MDMs from both healthy and lupus subjects.
Systemic lupus erythematosus (SLE) is known as an autoimmune disorder that is characterized by the breakdown of self‐tolerance, resulting in disease onset and progression. Macrophages have been implicated as a factor in the development of SLE through faulty phagocytosis of dead cells or an imbalanced M1/M2 ratio. The study aimed to investigate the immunomodulatory effects of Lactobacillus delbrueckii and Lactobacillus rhamnosus on M1 and M2 macrophages in new case lupus patients. For this purpose, blood monocytes were collected from lupus patients and healthy people and were cultured for 5 days to produce macrophages. For 48 h, the macrophages were then cocultured with either probiotics or lipopolysaccharides (LPS). Flow cytometry and real‐time polymerase chain reaction were then used to analyze the expression of cluster of differentiation (CD) 14, CD80, and human leukocyte antigen – DR (HLADR) markers, as well as cytokine expression (interleukin [IL]1‐β, IL‐12, tumor necrosis factor α [TNF‐α], IL‐10, and transforming growth factor beta [TGF‐β]). The results indicated three distinct macrophage populations, M0, M1, and M2. In both control and patient‐derived macrophage‐derived monocytes (MDMs), the probiotic groups showed a decrease in CD14, CD80, and HLADR expression compared to the LPS group. This decrease was particularly evident in M0 and M2 macrophages from lupus patients and M1 macrophages from healthy subjects. In addition, the probiotic groups showed increased levels of IL‐10 and TGF‐β and decreased levels of IL‐12, IL1‐β, and TNF‐α in MDMs from both healthy and lupus subjects compared to the LPS groups. Although there was a higher expression of pro‐inflammatory cytokines in lupus patients, there was a higher expression of anti‐inflammatory cytokines in healthy subjects. In general, L. delbrueckii and L. rhamnosus could induce anti‐inflammatory effects on MDMs from both healthy and lupus subjects. Significance statement Macrophages have been implicated as a factor in the development of systemic lupus erythematosus through faulty phagocytosis of dead cells or an imbalanced M1/M2 ratio. The study aimed to investigate the immunomodulatory effects of Lactobacillus delbrueckii and Lactobacillus rhamnosus on M1 and M2 macrophages in new case lupus patients. L. delbrueckii and L. rhamnosus could induce anti‐inflammatory effects on macrophage‐derived monocytes (MDMs) from both healthy and lupus subjects. In both control and patient‐derived MDMs, the probiotic groups showed a decrease in cluster of differentiation (CD) 14, CD80, and Human Leukocyte Antigen – DR expression compared to the lipopolysaccharides (LPS) group. Also observed the increased levels of interleukin (IL)‐10 and transforming growth factor beta and decreased levels of IL‐12, IL1‐β, and tumor necrosis factor α in MDMs from both healthy and lupus subjects compared to the LPS groups.
Systemic lupus erythematosus (SLE) is known as an autoimmune disorder that is characterized by the breakdown of self‐tolerance, resulting in disease onset and progression. Macrophages have been implicated as a factor in the development of SLE through faulty phagocytosis of dead cells or an imbalanced M1/M2 ratio. The study aimed to investigate the immunomodulatory effects of Lactobacillus delbrueckii and Lactobacillus rhamnosus on M1 and M2 macrophages in new case lupus patients. For this purpose, blood monocytes were collected from lupus patients and healthy people and were cultured for 5 days to produce macrophages. For 48 h, the macrophages were then cocultured with either probiotics or lipopolysaccharides (LPS). Flow cytometry and real‐time polymerase chain reaction were then used to analyze the expression of cluster of differentiation (CD) 14, CD80, and human leukocyte antigen – DR (HLADR) markers, as well as cytokine expression (interleukin [IL]1‐β, IL‐12, tumor necrosis factor α [TNF‐α], IL‐10, and transforming growth factor beta [TGF‐β]). The results indicated three distinct macrophage populations, M0, M1, and M2. In both control and patient‐derived macrophage‐derived monocytes (MDMs), the probiotic groups showed a decrease in CD14, CD80, and HLADR expression compared to the LPS group. This decrease was particularly evident in M0 and M2 macrophages from lupus patients and M1 macrophages from healthy subjects. In addition, the probiotic groups showed increased levels of IL‐10 and TGF‐β and decreased levels of IL‐12, IL1‐β, and TNF‐α in MDMs from both healthy and lupus subjects compared to the LPS groups. Although there was a higher expression of pro‐inflammatory cytokines in lupus patients, there was a higher expression of anti‐inflammatory cytokines in healthy subjects. In general, L. delbrueckii and L. rhamnosus could induce anti‐inflammatory effects on MDMs from both healthy and lupus subjects. Macrophages have been implicated as a factor in the development of systemic lupus erythematosus through faulty phagocytosis of dead cells or an imbalanced M1/M2 ratio. The study aimed to investigate the immunomodulatory effects of Lactobacillus delbrueckii and Lactobacillus rhamnosus on M1 and M2 macrophages in new case lupus patients. L. delbrueckii and L. rhamnosus could induce anti‐inflammatory effects on macrophage‐derived monocytes (MDMs) from both healthy and lupus subjects. In both control and patient‐derived MDMs, the probiotic groups showed a decrease in cluster of differentiation (CD) 14, CD80, and Human Leukocyte Antigen – DR expression compared to the lipopolysaccharides (LPS) group. Also observed the increased levels of interleukin (IL)‐10 and transforming growth factor beta and decreased levels of IL‐12, IL1‐β, and tumor necrosis factor α in MDMs from both healthy and lupus subjects compared to the LPS groups.
Systemic lupus erythematosus (SLE) is known as an autoimmune disorder that is characterized by the breakdown of self-tolerance, resulting in disease onset and progression. Macrophages have been implicated as a factor in the development of SLE through faulty phagocytosis of dead cells or an imbalanced M1/M2 ratio. The study aimed to investigate the immunomodulatory effects of Lactobacillus delbrueckii and Lactobacillus rhamnosus on M1 and M2 macrophages in new case lupus patients. For this purpose, blood monocytes were collected from lupus patients and healthy people and were cultured for 5 days to produce macrophages. For 48 h, the macrophages were then cocultured with either probiotics or lipopolysaccharides (LPS). Flow cytometry and real-time polymerase chain reaction were then used to analyze the expression of cluster of differentiation (CD) 14, CD80, and human leukocyte antigen - DR (HLADR) markers, as well as cytokine expression (interleukin [IL]1-β, IL-12, tumor necrosis factor α [TNF-α], IL-10, and transforming growth factor beta [TGF-β]). The results indicated three distinct macrophage populations, M0, M1, and M2. In both control and patient-derived macrophage-derived monocytes (MDMs), the probiotic groups showed a decrease in CD14, CD80, and HLADR expression compared to the LPS group. This decrease was particularly evident in M0 and M2 macrophages from lupus patients and M1 macrophages from healthy subjects. In addition, the probiotic groups showed increased levels of IL-10 and TGF-β and decreased levels of IL-12, IL1-β, and TNF-α in MDMs from both healthy and lupus subjects compared to the LPS groups. Although there was a higher expression of pro-inflammatory cytokines in lupus patients, there was a higher expression of anti-inflammatory cytokines in healthy subjects. In general, L. delbrueckii and L. rhamnosus could induce anti-inflammatory effects on MDMs from both healthy and lupus subjects.
Systemic lupus erythematosus (SLE) is known as an autoimmune disorder that is characterized by the breakdown of self‐tolerance, resulting in disease onset and progression. Macrophages have been implicated as a factor in the development of SLE through faulty phagocytosis of dead cells or an imbalanced M1/M2 ratio. The study aimed to investigate the immunomodulatory effects of Lactobacillus delbrueckii and Lactobacillus rhamnosus on M1 and M2 macrophages in new case lupus patients. For this purpose, blood monocytes were collected from lupus patients and healthy people and were cultured for 5 days to produce macrophages. For 48 h, the macrophages were then cocultured with either probiotics or lipopolysaccharides (LPS). Flow cytometry and real‐time polymerase chain reaction were then used to analyze the expression of cluster of differentiation (CD) 14, CD80, and human leukocyte antigen – DR (HLADR) markers, as well as cytokine expression (interleukin [IL]1‐β, IL‐12, tumor necrosis factor α [TNF‐α], IL‐10, and transforming growth factor beta [TGF‐β]). The results indicated three distinct macrophage populations, M0, M1, and M2. In both control and patient‐derived macrophage‐derived monocytes (MDMs), the probiotic groups showed a decrease in CD14, CD80, and HLADR expression compared to the LPS group. This decrease was particularly evident in M0 and M2 macrophages from lupus patients and M1 macrophages from healthy subjects. In addition, the probiotic groups showed increased levels of IL‐10 and TGF‐β and decreased levels of IL‐12, IL1‐β, and TNF‐α in MDMs from both healthy and lupus subjects compared to the LPS groups. Although there was a higher expression of pro‐inflammatory cytokines in lupus patients, there was a higher expression of anti‐inflammatory cytokines in healthy subjects. In general, L. delbrueckii and L. rhamnosus could induce anti‐inflammatory effects on MDMs from both healthy and lupus subjects.
Author Mahmoudi, Mahmoud
Shapouri‐Moghaddam, Abbas
Tabasi, Nafiseh Sadat
Javanmardi, Zahra
Ahmadi, Parisa
Esmaeili, Seyed‐Alireza
Rafatpanah, Houshang
Rezaieyazdi, Zahra
Mollazadeh, Samaneh
Author_xml – sequence: 1
  givenname: Zahra
  surname: Javanmardi
  fullname: Javanmardi, Zahra
  organization: Mashhad University of Medical Sciences
– sequence: 2
  givenname: Mahmoud
  surname: Mahmoudi
  fullname: Mahmoudi, Mahmoud
  organization: Mashhad University of Medical Sciences
– sequence: 3
  givenname: Houshang
  surname: Rafatpanah
  fullname: Rafatpanah, Houshang
  organization: Mashhad University of Medical Sciences
– sequence: 4
  givenname: Zahra
  surname: Rezaieyazdi
  fullname: Rezaieyazdi, Zahra
  organization: Mashhad University of Medical Sciences
– sequence: 5
  givenname: Abbas
  surname: Shapouri‐Moghaddam
  fullname: Shapouri‐Moghaddam, Abbas
  organization: Mashhad University of Medical Sciences
– sequence: 6
  givenname: Parisa
  surname: Ahmadi
  fullname: Ahmadi, Parisa
  organization: Mashhad University of Medical Sciences
– sequence: 7
  givenname: Samaneh
  surname: Mollazadeh
  fullname: Mollazadeh, Samaneh
  organization: North Khorasan University of Medical Sciences
– sequence: 8
  givenname: Nafiseh Sadat
  surname: Tabasi
  fullname: Tabasi, Nafiseh Sadat
  organization: Mashhad University of Medical Sciences
– sequence: 9
  givenname: Seyed‐Alireza
  orcidid: 0000-0002-9371-4170
  surname: Esmaeili
  fullname: Esmaeili, Seyed‐Alireza
  email: Esmaeiliar@mums.ac.ir, Imunoman2009@gmail.com
  organization: Mashhad University of Medical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38509733$$D View this record in MEDLINE/PubMed
BookMark eNp1kktuFDEQhi0URCYBiROgltiw6cFu98NewogEpJHYhHXL7a6ecfCjsd0Z9Y4jcIScJVfIDTgJbhJARLBySfXVX7-r6gQdWWcBoecErwnGxWvZDWvKGXmEVgRznmNWlkdohYua5nXJymN0EsIlxpjXFD9Bx5RVmDeUrtDthdPg3Q6sktnoXadcVDLcXG-FjK4TUmk9hawH3fkJ5Gelbq6F7bO_034vjHUhRUnCuAiZsFF9__pN2UELY0R0fl5yg9KQuSEzQno37sUOQqJ68OoK-sw46-QcISyIhYOes16JXVJOyVFEBTaG7KDiPgtziGCSZz2NqS34Oe5h6ZNMPEWPB6EDPLt_T9Gns3cXm_f59uP5h82bbS5pyUnesULypqgKySoiU8gZEDwUsoaBUsoGVhQcdzUrK1GRCqDivIFO9IKXkhFGT9GrO930sS8ThNgaFSRoLSy4KbRFGjHBhFV1Ql8-QC_d5G1ylyhWNw0mxSL44p6aOgN9O3plhJ_bX-v60zFNLwQPw2-E4Ha5hDZdQrtcQkLXD1CpYhqhs9ELpf9VkN8VHNKO5v8Kt5u3Zz_5H-lTzgE
CitedBy_id crossref_primary_10_3390_microorganisms13020445
crossref_primary_10_1016_j_mcp_2024_102007
crossref_primary_10_1002_fsn3_70068
crossref_primary_10_1016_j_micpath_2024_107231
crossref_primary_10_1080_10408398_2024_2435593
Cites_doi 10.1093/rheumatology/kew427
10.1016/j.cell.2010.02.029
10.1186/s12882-020-01921-7
10.3389/fimmu.2017.01063
10.3389/fimmu.2017.01097
10.1046/j.1365-3083.1999.00452.x
10.1186/1475-2859-10-S1-S17
10.1186/s13075-016-0989-y
10.3109/02652048.2015.1057249
10.3389/fnut.2022.931458
10.21203/rs.3.rs-49282/v1
10.1038/s41584-021-00668-1
10.1093/cei/uxab028
10.1002/jcp.25748
10.1007/s12032-020-01435-0
10.3389/fphar.2021.759095
10.3389/fimmu.2016.00035
10.1016/j.afres.2022.100185
10.3390/microorganisms10071418
10.1007/978-3-030-55035-6_6
10.1136/annrheumdis-2018-214333
10.1101/2022.06.13.495868
10.1093/ndt/gfy195
10.1007/s13213-015-1093-2
10.1136/gut.2003.037325
10.3389/fimmu.2019.00772
10.4049/jimmunol.1501073
10.3389/fimmu.2014.00514
10.1002/jcb.26155
10.1016/j.cellsig.2013.11.004
10.1007/s12602-019-09612-y
10.1186/s12885-022-09872-y
10.1155/2023/8821610
10.1111/jam.12521
10.1111/j.1440-1746.2008.05723.x
10.1186/s12934-017-0691-z
10.1021/acsnano.3c05998
10.1155/2018/1756308
10.1371/journal.pone.0090972
10.1089/scd.2023.0047
10.3390/nu12061719
10.1371/journal.pone.0042656
10.3389/fcimb.2022.851140
10.3389/fmicb.2019.01047
10.3389/fphar.2018.00071
10.1016/j.intimp.2022.108983
10.3390/biom11060837
10.1002/ibd.21834
10.1002/jcp.27663
10.1136/gut.52.7.975
10.1371/journal.pone.0208132
10.1016/j.clim.2022.109109
10.1016/j.jff.2018.07.025
10.1371/journal.pone.0085923
10.4049/jimmunol.1002315
10.1111/sji.12162
10.1016/j.jaci.2010.12.1087
10.1016/j.humimm.2004.01.005
10.1016/j.nut.2018.02.005
10.1007/s12519-019-00229-3
10.1371/journal.pone.0008668
10.1016/j.cyto.2022.155873
10.3390/foods12040692
10.1080/20013078.2020.1793514
10.3389/fonc.2019.01512
10.1016/j.jaut.2019.01.004
10.1016/j.molimm.2017.05.027
10.1016/B0-12-370879-6/00063-6
10.1191/0961203302lu201oa
10.1016/j.jff.2014.12.040
10.3389/fimmu.2021.734008
10.1002/jcb.27203
10.3389/fimmu.2022.913007
10.1038/s41598-017-08121-8
10.1017/S0022029997002604
10.3389/fimmu.2014.00603
10.1007/s12602-021-09842-z
10.1016/j.crfs.2020.02.002
10.20517/2574-1209.2019.04
10.1002/jcp.26819
10.1007/s11926-017-0708-y
ContentType Journal Article
Copyright 2024 John Wiley & Sons Ltd.
Copyright_xml – notice: 2024 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TM
7U7
8FD
C1K
FR3
P64
RC3
7X8
DOI 10.1002/cbf.3981
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
Nucleic Acids Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1099-0844
EndPage n/a
ExternalDocumentID 38509733
10_1002_cbf_3981
CBF3981
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Mashhad University of Medical Sciences
  funderid: 981792
– fundername: Mashhad University of Medical Sciences
  grantid: 981792
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NDZJH
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V2E
V8K
W8V
W99
WBKPD
WH7
WIB
WIH
WIJ
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WSB
WXI
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
7TM
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
P64
RC3
7X8
ID FETCH-LOGICAL-c3491-b82c97252c851cc9798e10f2c6ef3338f82290b6845a515ee5997ebada94c8183
IEDL.DBID DR2
ISSN 0263-6484
1099-0844
IngestDate Thu Jul 10 22:37:58 EDT 2025
Fri Jul 25 12:10:53 EDT 2025
Wed Feb 19 02:11:13 EST 2025
Tue Jul 01 02:49:17 EDT 2025
Thu Apr 24 23:10:08 EDT 2025
Wed Jan 22 16:13:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords macrophage
probiotic
systemic lupus erythematosus
Lactobacillus delbrueckii
M0/M1/M2 macrophages
Lactobacillus rhamnosus
Language English
License 2024 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3491-b82c97252c851cc9798e10f2c6ef3338f82290b6845a515ee5997ebada94c8183
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9371-4170
PMID 38509733
PQID 2986770128
PQPubID 2029981
PageCount 14
ParticipantIDs proquest_miscellaneous_2973101856
proquest_journals_2986770128
pubmed_primary_38509733
crossref_primary_10_1002_cbf_3981
crossref_citationtrail_10_1002_cbf_3981
wiley_primary_10_1002_cbf_3981_CBF3981
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2024
2024-03-00
2024-Mar
20240301
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: March 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bognor Regis
PublicationTitle Cell biochemistry and function
PublicationTitleAlternate Cell Biochem Funct
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 65
2023; 32
2021; 24
2017; 7
2019; 2019
2017; 8
2019; 99
2019; 10
2017; 88
1999; 49
2023; 2023
2021; 207
2015; 32
2002; 11
2020; 16
2014; 26
2011; 10
2012; 18
2010; 140
2020; 12
2022; 22
2017; 232
2012; 13
2003; 52
2018; 48
2017; 118
2011; 127
2022; 244
2018; 9
2014; 5
2020; 3
2020; 9
2008; 23
2019; 234
2007; 2
2014; 9
2010; 5
2015; 13
2014; 117
2022; 154
2022; 110
2023; 12
2023; 17
2011
2023; 15
2008; 18
2019; 34
2019; 78
2020; 37
2006
2016; 18
1998; 65
2015; 195
2016; 7
2004; 53
2018; 2018
2021; 12
2021; 11
2018; 119
2021
2017; 16
2015; 20
2018; 234
2021; 17
2022; 9
2017; 56
2022; 12
2022; 13
2014; 79
2017; 19
2022; 10
2022; 2
2020; 21
2012; 7
2018; 53
2016; 8
2011; 187
2018; 13
2016; 66
e_1_2_11_70_1
e_1_2_11_72_1
Esmaeili SA (e_1_2_11_52_1) 2021; 24
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_78_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_51_1
e_1_2_11_74_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_76_1
e_1_2_11_11_1
Chalmers SA (e_1_2_11_16_1) 2015; 20
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
Khaledi A (e_1_2_11_15_1) 2016; 8
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_83_1
e_1_2_11_60_1
e_1_2_11_81_1
Lee J‐M (e_1_2_11_80_1) 2008; 18
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_66_1
e_1_2_11_47_1
e_1_2_11_68_1
e_1_2_11_89_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_87_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_71_1
e_1_2_11_90_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_77_1
e_1_2_11_58_1
e_1_2_11_79_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_73_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_75_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
Zhou H‐C (e_1_2_11_85_1) 2022; 13
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_82_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_67_1
e_1_2_11_46_1
e_1_2_11_69_1
e_1_2_11_88_1
e_1_2_11_25_1
e_1_2_11_40_1
Mittal G (e_1_2_11_61_1) 2007; 2
e_1_2_11_63_1
e_1_2_11_86_1
Orme J (e_1_2_11_18_1) 2012; 13
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_84_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – year: 2011
– volume: 7
  start-page: 35
  year: 2016
  article-title: Clearance deficiency and cell death pathways: a model for the pathogenesis of SLE
  publication-title: Front Immunol
– volume: 5
  start-page: 603
  year: 2014
  article-title: TH1/TH2 paradigm extended: macrophage polarization as an unappreciated pathogen‐driven escape mechanism?
  publication-title: Front Immunol
– volume: 7
  issue: 1
  year: 2017
  article-title: Classification of M1/M2‐polarized human macrophages by label‐free hyperspectral reflectance confocal microscopy and multivariate analysis
  publication-title: Sci Rep
– volume: 232
  start-page: 1994
  issue: 8
  year: 2017
  end-page: 2007
  article-title: Tolerogenic probiotics: potential immunoregulators in systemic lupus erythematosus
  publication-title: J Cell Physiol
– volume: 8
  year: 2017
  article-title: Gut REG3γ‐associated Lactobacillus induces anti‐inflammatory macrophages to maintain adipose tissue homeostasis
  publication-title: Front Immunol
– volume: 37
  start-page: 118
  year: 2020
  article-title: MicroRNAs and target molecules in bladder cancer
  publication-title: Med Oncol
– volume: 187
  start-page: 1764
  issue: 4
  year: 2011
  end-page: 1777
  article-title: Macrophage differentiation and polarization via phosphatidylinositol 3‐kinase/Akt–ERK signaling pathway conferred by serum amyloid P component
  publication-title: J Immunol
– volume: 34
  start-page: 597
  issue: 4
  year: 2019
  end-page: 605
  article-title: Mesenchymal stem cells prevent podocyte injury in lupus‐prone B6. MRL‐Faslpr mice via polarizing macrophage into an anti‐inflammatory phenotype
  publication-title: Nephrol Dial Transplant
– volume: 119
  start-page: 7865
  issue: 9
  year: 2018
  end-page: 7872
  article-title: Generation of tolerogenic dendritic cells using and as tolerogenic probiotics
  publication-title: J Cell Biochem
– volume: 66
  start-page: 171
  issue: 1
  year: 2016
  end-page: 178
  article-title: Heat‐killed yogurt‐containing lactic acid bacteria prevent cytokine‐induced barrier disruption in human intestinal Caco‐2 cells
  publication-title: Ann Microbiol
– volume: 24
  start-page: 1509
  issue: 11
  year: 2021
  end-page: 1514
  article-title: Inhibitory effects of tolerogenic probiotics on migratory potential of lupus patient‐derived DCs
  publication-title: Iran J Basic Med Sci
– volume: 9
  year: 2022
  article-title: Dietary component‐induced inflammation and its amelioration by prebiotics, probiotics, and synbiotics
  publication-title: Front Nutr
– volume: 117
  start-page: 303
  issue: 2
  year: 2014
  end-page: 319
  article-title: Cross‐talk between probiotic lactobacilli and host immune system
  publication-title: J Appl Microbiol
– volume: 9
  year: 2020
  article-title: Evaluating the polarization of tumor‐associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice
  publication-title: Front Oncol
– volume: 118
  start-page: 4831
  issue: 12
  year: 2017
  end-page: 4835
  article-title: Vitamin D3 alters the expression of toll‐like receptors in peripheral blood mononuclear cells of patients with systemic lupus erythematosus
  publication-title: J Cell Biochem
– volume: 9
  issue: 3
  year: 2014
  article-title: Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound
  publication-title: PLoS One
– volume: 140
  start-page: 871
  issue: 6
  year: 2010
  end-page: 882
  article-title: Nonresolving inflammation
  publication-title: Cell
– volume: 26
  start-page: 192
  issue: 2
  year: 2014
  end-page: 197
  article-title: Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways
  publication-title: Cell Signal
– volume: 12
  start-page: 798
  issue: 3
  year: 2020
  end-page: 808
  article-title: Macrophage polarization induced by probiotic bacteria: a concise review
  publication-title: Probiotics Antimicrob Proteins
– volume: 12
  start-page: 692
  year: 2023
  article-title: The potential therapeutic role of for treatment of inflammatory bowel disease
  publication-title: Foods
– volume: 234
  start-page: 642
  issue: 1
  year: 2018
  end-page: 649
  article-title: In vivo study: Th1‐Th17 reduction in pristane‐induced systemic lupus erythematosus mice after treatment with tolerogenic probiotics
  publication-title: J Cell Physiol
– volume: 11
  start-page: 317
  issue: 5
  year: 2002
  end-page: 321
  article-title: Dysregulation of the granulocyte‐macrophage colony stimulating factor receptor is one of the causes of defective expression of CD80 antigen in systemic lupus erythematosus
  publication-title: Lupus
– volume: 53
  start-page: 1602
  issue: 11
  year: 2004
  end-page: 1609
  article-title: Modulation of human dendritic cell phenotype and function by probiotic bacteria
  publication-title: Gut
– volume: 11
  start-page: 837
  issue: 6
  year: 2021
  article-title: Macrophage plasticity and polarization are altered in the experimental model of multiple sclerosis
  publication-title: Biomolecules
– volume: 19
  start-page: 81
  issue: 12
  year: 2017
  article-title: Renal macrophages and dendritic cells in SLE nephritis
  publication-title: Curr Rheumatol Rep
– volume: 78
  issue: 11
  year: 2019
  article-title: M1/M2 polarisation state of M‐CSF blood‐derived macrophages in systemic sclerosis
  publication-title: Ann Rheum Dis
– volume: 13
  start-page: 13
  year: 2022
  article-title: LNA‐anti‐miR‐150 alleviates renal interstitial fibrosis by reducing pro‐inflammatory M1/M2 macrophage polarization
  publication-title: Front Immunol
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 12
  article-title: Probiotic cell‐free supernatants exhibited anti‐inflammatory and antioxidant activity on human gut epithelial cells and macrophages stimulated with LPS
  publication-title: Evid Based Complement Alternat Med
– volume: 18
  start-page: 657
  issue: 4
  year: 2012
  end-page: 666
  article-title: Anti‐inflammatory properties of dairy lactobacilli
  publication-title: Inflamm Bowel Dis
– volume: 13
  start-page: 13
  year: 2022
  article-title: Lactate‐driven macrophage polarization in the inflammatory microenvironment alleviates intestinal inflammation
  publication-title: Front Immunol
– volume: 32
  start-page: 465
  issue: 15‐16
  year: 2023
  end-page: 483
  article-title: Single‐cell sequencing informs that mesenchymal stem cell alleviates renal injury through regulating kidney regional immunity in lupus nephritis
  publication-title: Stem Cells Dev
– volume: 2
  start-page: 93
  issue: 1
  year: 2007
  article-title: Immunopathogenesis of systemic lupus erythematosus
  publication-title: Int J Clin Rheumatol
– volume: 99
  start-page: 24
  year: 2019
  end-page: 32
  article-title: PAM3 supports the generation of M2‐like macrophages from lupus patient monocytes and improves disease outcome in murine lupus
  publication-title: J Autoimmun
– start-page: 87
  year: 2021
  end-page: 105
– volume: 20
  start-page: 43
  issue: 108
  year: 2015
  end-page: 49
  article-title: Therapeutic targeting of macrophages in lupus nephritis
  publication-title: Discov Med
– volume: 53
  start-page: 95
  year: 2018
  end-page: 102
  article-title: Anti‐inflammatory effect of multistrain probiotic formulation ( , , and )
  publication-title: Nutrition
– volume: 23
  start-page: 1834
  issue: 12
  year: 2008
  end-page: 1839
  article-title: Probiotic administration alters the gut flora and attenuates colitis in mice administered dextran sodium sulfate
  publication-title: J Gastroenterol Hepatol
– volume: 9
  start-page: 71
  year: 2018
  article-title: Convenience versus biological significance: are PMA‐differentiated THP‐1 cells a reliable substitute for blood‐derived macrophages when studying in vitro polarization?
  publication-title: Front Pharmacol
– start-page: 343
  year: 2006
  end-page: 347
– volume: 9
  issue: 1
  year: 2014
  article-title: Local and systemic immune mechanisms underlying the anti‐colitis effects of the dairy bacterium
  publication-title: PLoS One
– volume: 32
  start-page: 669
  issue: 7
  year: 2015
  end-page: 676
  article-title: Study on the effects of microencapsulated  on the mouse intestinal flora
  publication-title: J Microencapsul
– volume: 110
  year: 2022
  article-title: The emerging role of microbiota‐derived short‐chain fatty acids in immunometabolism
  publication-title: Int Immunopharmacol
– volume: 18
  start-page: 1683
  issue: 10
  year: 2008
  end-page: 1688
  article-title: Antiinflammatory effect of lactic acid bacteria: inhibition of cyclooxygenase‐2 by suppressing nuclear factor‐κB in Raw264.7 macrophage cells
  publication-title: J Microbiol Biotechnol
– volume: 9
  issue: 1
  year: 2020
  article-title: Lactobacillus plantarum‐derived extracellular vesicles induce anti‐inflammatory M2 macrophage polarization in vitro
  publication-title: J Extracell Vesicles
– volume: 65
  start-page: 282
  issue: 4
  year: 2004
  end-page: 290
  article-title: Function and regulation of MHC class II molecules in T‐lymphocytes: of mice and men
  publication-title: Hum Immunol
– volume: 17
  start-page: 515
  issue: 9
  year: 2021
  end-page: 532
  article-title: Global epidemiology of systemic lupus erythematosus
  publication-title: Nat Rev Rheumatol
– volume: 8
  start-page: 235
  issue: 3
  year: 2016
  end-page: 237
  article-title: The role of HPaA protein as candidate vaccine against
  publication-title: Der Pharma Chem
– volume: 5
  issue: 1
  year: 2010
  article-title: The identification of markers of macrophage differentiation in PMA‐stimulated THP‐1 cells and monocyte‐derived macrophages
  publication-title: PLoS One
– volume: 88
  start-page: 58
  year: 2017
  end-page: 68
  article-title: THP‐1 and human peripheral blood mononuclear cell‐derived macrophages differ in their capacity to polarize in vitro
  publication-title: Mol Immunol
– volume: 15
  start-page: 338
  issue: 2
  year: 2023
  end-page: 350
  article-title: Paraprobiotic protects intestinal damage in an experimental murine model of mucositis
  publication-title: Probiotics Antimicrob Proteins
– volume: 2
  year: 2022
  article-title: Current status of probiotic and related health benefits
  publication-title: Appl Food Res
– volume: 3
  start-page: 51
  year: 2020
  end-page: 58
  article-title: Milk fermented with R0011 induces a regulatory cytokine profile in LPS‐challenged U937 and THP‐1 macrophages
  publication-title: Curr Res Food Sci
– volume: 13
  start-page: 71
  year: 2015
  end-page: 79
  article-title: Immunomodulatory effects of GG on dendritic cells, macrophages and monocytes from healthy donors
  publication-title: J Funct Foods
– volume: 79
  start-page: 305
  issue: 5
  year: 2014
  end-page: 314
  article-title: An optimized protocol for human M2 macrophages using M‐CSF and IL‐4/IL‐10/TGF‐β yields a dominant immunosuppressive phenotype
  publication-title: Scand J Immunol
– volume: 13
  start-page: 151
  issue: 69
  year: 2012
  end-page: 158
  article-title: Macrophage subpopulations in systemic lupus erythematosus
  publication-title: Discov Med
– volume: 12
  year: 2022
  article-title: Bacteriocin‐producing probiotic lactic acid bacteria in controlling dysbiosis of the gut microbiota
  publication-title: Front Cell Infect Microbiol
– volume: 56
  start-page: i55
  issue: suppl 1
  year: 2017
  end-page: i66
  article-title: Pathways leading to an immunological disease: systemic lupus erythematosus
  publication-title: Rheumatology
– volume: 244
  year: 2022
  article-title: Bidirectional crosstalk between dysbiotic gut microbiota and systemic lupus erythematosus: what is new in therapeutic approaches?
  publication-title: Clin Immunol
– volume: 12
  start-page: 12
  year: 2021
  article-title: The microbiota in systemic lupus erythematosus: an update on the potential function of probiotics
  publication-title: Front Pharmacol
– volume: 21
  start-page: 270
  issue: 1
  year: 2020
  article-title: Macrophage polarization in innate immune responses contributing to pathogenesis of chronic kidney disease
  publication-title: BMC Nephrol
– volume: 22
  start-page: 791
  issue: 1
  year: 2022
  article-title: An M0 macrophage‐related prognostic model for hepatocellular carcinoma
  publication-title: BMC Cancer
– volume: 2023
  start-page: 1
  year: 2023
  end-page: 20
  article-title: Regulatory mechanism of M1/M2 macrophage polarization in the development of autoimmune diseases
  publication-title: Mediators Inflamm
– volume: 10
  issue: 7
  year: 2022
  article-title: Paraprobiotics and postbiotics of CIDCA 133 mitigate 5‐FU‐induced intestinal inflammation
  publication-title: Microorganisms
– volume: 65
  start-page: 129
  issue: 1
  year: 1998
  end-page: 138
  article-title: Antitumour activity of yogurt: study of possible immune mechanisms
  publication-title: J Dairy Res
– volume: 18
  start-page: 90
  issue: 1
  year: 2016
  article-title: CD163+ M2c‐like macrophages predominate in renal biopsies from patients with lupus nephritis
  publication-title: Arthritis Res Ther
– volume: 52
  start-page: 975
  issue: 7
  year: 2003
  end-page: 980
  article-title: Double blind, placebo controlled trial of two probiotic strains in interleukin 10 knockout mice and mechanistic link with cytokine balance
  publication-title: Gut
– volume: 12
  issue: 6
  year: 2020
  article-title: In vitro effects of live and heat‐inactivated subsp. , BB‐12 and GG on Caco‐2 cells
  publication-title: Nutrients
– volume: 10
  start-page: S17
  issue: suppl 1
  year: 2011
  article-title: Immunomodulatory mechanisms of lactobacilli
  publication-title: Microb Cell Fact
– volume: 13
  issue: 12
  year: 2018
  article-title: Identification of alterations in macrophage activation associated with disease activity in systemic lupus erythematosus
  publication-title: PLoS One
– volume: 17
  start-page: 22508
  issue: 22
  year: 2023
  end-page: 22526
  article-title: Precisely regulating M2 subtype macrophages for renal fibrosis resolution
  publication-title: ACS Nano
– volume: 16
  start-page: 19
  issue: 1
  year: 2020
  end-page: 30
  article-title: Immunological pathogenesis and treatment of systemic lupus erythematosus
  publication-title: World J Pediatr
– volume: 234
  start-page: 9778
  issue: 6
  year: 2019
  end-page: 9786
  article-title: Amelioration of regulatory T cells by and in pristane‐induced lupus mice model
  publication-title: J Cell Physiol
– volume: 10
  start-page: 1047
  year: 2019
  article-title: Emerging health concepts in the probiotics field: streamlining the definitions
  publication-title: Front Microbiol
– volume: 207
  start-page: 53
  issue: 1
  year: 2021
  end-page: 64
  article-title: The effect of short‐chain fatty acids on M2 macrophages polarization in vitro and in vivo
  publication-title: Clin Exp Immunol
– volume: 8
  year: 2017
  article-title: Regulation of human macrophage M1‐M2 polarization balance by hypoxia and the triggering receptor expressed on myeloid cells‐1
  publication-title: Front Immunol
– volume: 195
  start-page: 4660
  issue: 10
  year: 2015
  end-page: 4667
  article-title: A central role for HLA‐DR3 in anti‐smith antibody responses and glomerulonephritis in a transgenic mouse model of spontaneous lupus
  publication-title: J Immunol
– volume: 49
  start-page: 82
  issue: 1
  year: 1999
  end-page: 87
  article-title: Differential expression and modulation of costimulatory molecules CD80 and CD86 on monocytes from patients with systemic lupus erythematosus
  publication-title: Scand J Immunol
– volume: 7
  issue: 8
  year: 2012
  article-title: In vitro generation of monocyte‐derived macrophages under serum‐free conditions improves their tumor promoting functions
  publication-title: PLoS One
– volume: 5
  start-page: 514
  year: 2014
  article-title: From monocytes to M1/M2 macrophages: phenotypical vs. functional differentiation
  publication-title: Front Immunol
– volume: 48
  start-page: 228
  year: 2018
  end-page: 233
  article-title: and ameliorate the expression of miR‐155 and miR‐181a in SLE patients
  publication-title: J Funct Foods
– volume: 2019
  start-page: 10
  year: 2019
  article-title: Monocyte differentiation and macrophage polarization
  publication-title: Vessel Plus
– volume: 12
  year: 2021
  article-title: Macrophage polarization and plasticity in systemic lupus erythematosus
  publication-title: Front Immunol
– volume: 10
  start-page: 772
  year: 2019
  article-title: Innate immune cells' contribution to systemic lupus erythematosus
  publication-title: Front Immunol
– volume: 154
  year: 2022
  article-title: SARS‐CoV‐2 triggering autoimmune diseases
  publication-title: Cytokine
– volume: 127
  start-page: 303
  issue: 2
  year: 2011
  end-page: 312
  article-title: Current and novel therapeutics in the treatment of systemic lupus erythematosus
  publication-title: J Allergy Clin Immunol
– volume: 16
  start-page: 79
  issue: 1
  year: 2017
  article-title: Beneficial effects on host energy metabolism of short‐chain fatty acids and vitamins produced by commensal and probiotic bacteria
  publication-title: Microb Cell Fact
– ident: e_1_2_11_6_1
  doi: 10.1093/rheumatology/kew427
– ident: e_1_2_11_7_1
  doi: 10.1016/j.cell.2010.02.029
– ident: e_1_2_11_67_1
  doi: 10.1186/s12882-020-01921-7
– ident: e_1_2_11_87_1
  doi: 10.3389/fimmu.2017.01063
– ident: e_1_2_11_74_1
  doi: 10.3389/fimmu.2017.01097
– ident: e_1_2_11_58_1
  doi: 10.1046/j.1365-3083.1999.00452.x
– ident: e_1_2_11_29_1
  doi: 10.1186/1475-2859-10-S1-S17
– ident: e_1_2_11_23_1
  doi: 10.1186/s13075-016-0989-y
– ident: e_1_2_11_44_1
  doi: 10.3109/02652048.2015.1057249
– ident: e_1_2_11_32_1
  doi: 10.3389/fnut.2022.931458
– ident: e_1_2_11_69_1
  doi: 10.21203/rs.3.rs-49282/v1
– ident: e_1_2_11_5_1
  doi: 10.1038/s41584-021-00668-1
– volume: 18
  start-page: 1683
  issue: 10
  year: 2008
  ident: e_1_2_11_80_1
  article-title: Antiinflammatory effect of lactic acid bacteria: inhibition of cyclooxygenase‐2 by suppressing nuclear factor‐κB in Raw264.7 macrophage cells
  publication-title: J Microbiol Biotechnol
– ident: e_1_2_11_83_1
  doi: 10.1093/cei/uxab028
– ident: e_1_2_11_28_1
  doi: 10.1002/jcp.25748
– ident: e_1_2_11_11_1
  doi: 10.1007/s12032-020-01435-0
– ident: e_1_2_11_37_1
  doi: 10.3389/fphar.2021.759095
– ident: e_1_2_11_9_1
  doi: 10.3389/fimmu.2016.00035
– ident: e_1_2_11_38_1
  doi: 10.1016/j.afres.2022.100185
– ident: e_1_2_11_35_1
  doi: 10.3390/microorganisms10071418
– ident: e_1_2_11_40_1
  doi: 10.1007/978-3-030-55035-6_6
– ident: e_1_2_11_72_1
  doi: 10.1136/annrheumdis-2018-214333
– ident: e_1_2_11_62_1
  doi: 10.1101/2022.06.13.495868
– volume: 8
  start-page: 235
  issue: 3
  year: 2016
  ident: e_1_2_11_15_1
  article-title: The role of HPaA protein as candidate vaccine against Helicobacter pylori
  publication-title: Der Pharma Chem
– ident: e_1_2_11_25_1
  doi: 10.1093/ndt/gfy195
– ident: e_1_2_11_36_1
  doi: 10.1007/s13213-015-1093-2
– ident: e_1_2_11_90_1
  doi: 10.1136/gut.2003.037325
– ident: e_1_2_11_8_1
  doi: 10.3389/fimmu.2019.00772
– ident: e_1_2_11_84_1
– volume: 13
  start-page: 13
  year: 2022
  ident: e_1_2_11_85_1
  article-title: Lactate‐driven macrophage polarization in the inflammatory microenvironment alleviates intestinal inflammation
  publication-title: Front Immunol
– ident: e_1_2_11_60_1
  doi: 10.4049/jimmunol.1501073
– ident: e_1_2_11_73_1
  doi: 10.3389/fimmu.2014.00514
– ident: e_1_2_11_4_1
  doi: 10.1002/jcb.26155
– ident: e_1_2_11_17_1
  doi: 10.1016/j.cellsig.2013.11.004
– ident: e_1_2_11_79_1
  doi: 10.1007/s12602-019-09612-y
– ident: e_1_2_11_14_1
  doi: 10.1186/s12885-022-09872-y
– ident: e_1_2_11_22_1
  doi: 10.1155/2023/8821610
– ident: e_1_2_11_39_1
  doi: 10.1111/jam.12521
– ident: e_1_2_11_43_1
  doi: 10.1111/j.1440-1746.2008.05723.x
– ident: e_1_2_11_82_1
  doi: 10.1186/s12934-017-0691-z
– volume: 13
  start-page: 151
  issue: 69
  year: 2012
  ident: e_1_2_11_18_1
  article-title: Macrophage subpopulations in systemic lupus erythematosus
  publication-title: Discov Med
– ident: e_1_2_11_26_1
  doi: 10.1021/acsnano.3c05998
– ident: e_1_2_11_78_1
  doi: 10.1155/2018/1756308
– ident: e_1_2_11_10_1
  doi: 10.1371/journal.pone.0090972
– ident: e_1_2_11_20_1
  doi: 10.1089/scd.2023.0047
– volume: 24
  start-page: 1509
  issue: 11
  year: 2021
  ident: e_1_2_11_52_1
  article-title: Inhibitory effects of tolerogenic probiotics on migratory potential of lupus patient‐derived DCs
  publication-title: Iran J Basic Med Sci
– ident: e_1_2_11_34_1
  doi: 10.3390/nu12061719
– ident: e_1_2_11_66_1
  doi: 10.1371/journal.pone.0042656
– ident: e_1_2_11_86_1
  doi: 10.3389/fcimb.2022.851140
– ident: e_1_2_11_27_1
  doi: 10.3389/fmicb.2019.01047
– ident: e_1_2_11_65_1
  doi: 10.3389/fphar.2018.00071
– ident: e_1_2_11_81_1
  doi: 10.1016/j.intimp.2022.108983
– ident: e_1_2_11_70_1
  doi: 10.3390/biom11060837
– ident: e_1_2_11_31_1
  doi: 10.1002/ibd.21834
– ident: e_1_2_11_51_1
  doi: 10.1002/jcp.27663
– ident: e_1_2_11_89_1
  doi: 10.1136/gut.52.7.975
– ident: e_1_2_11_12_1
  doi: 10.1371/journal.pone.0208132
– ident: e_1_2_11_56_1
  doi: 10.1016/j.clim.2022.109109
– ident: e_1_2_11_42_1
  doi: 10.1016/j.jff.2018.07.025
– ident: e_1_2_11_53_1
  doi: 10.1371/journal.pone.0085923
– ident: e_1_2_11_19_1
  doi: 10.4049/jimmunol.1002315
– ident: e_1_2_11_46_1
  doi: 10.1111/sji.12162
– ident: e_1_2_11_50_1
  doi: 10.1016/j.jaci.2010.12.1087
– ident: e_1_2_11_59_1
  doi: 10.1016/j.humimm.2004.01.005
– ident: e_1_2_11_75_1
  doi: 10.1016/j.nut.2018.02.005
– ident: e_1_2_11_3_1
  doi: 10.1007/s12519-019-00229-3
– ident: e_1_2_11_54_1
  doi: 10.1371/journal.pone.0008668
– ident: e_1_2_11_47_1
  doi: 10.1016/j.cyto.2022.155873
– ident: e_1_2_11_30_1
  doi: 10.3390/foods12040692
– ident: e_1_2_11_88_1
  doi: 10.1080/20013078.2020.1793514
– ident: e_1_2_11_68_1
  doi: 10.3389/fonc.2019.01512
– ident: e_1_2_11_24_1
  doi: 10.1016/j.jaut.2019.01.004
– ident: e_1_2_11_63_1
  doi: 10.1016/j.molimm.2017.05.027
– ident: e_1_2_11_55_1
  doi: 10.1016/B0-12-370879-6/00063-6
– ident: e_1_2_11_57_1
  doi: 10.1191/0961203302lu201oa
– ident: e_1_2_11_41_1
  doi: 10.1016/j.jff.2014.12.040
– ident: e_1_2_11_49_1
  doi: 10.3389/fimmu.2021.734008
– volume: 2
  start-page: 93
  issue: 1
  year: 2007
  ident: e_1_2_11_61_1
  article-title: Immunopathogenesis of systemic lupus erythematosus
  publication-title: Int J Clin Rheumatol
– ident: e_1_2_11_2_1
  doi: 10.1002/jcb.27203
– ident: e_1_2_11_21_1
  doi: 10.3389/fimmu.2022.913007
– ident: e_1_2_11_64_1
  doi: 10.1038/s41598-017-08121-8
– volume: 20
  start-page: 43
  issue: 108
  year: 2015
  ident: e_1_2_11_16_1
  article-title: Therapeutic targeting of macrophages in lupus nephritis
  publication-title: Discov Med
– ident: e_1_2_11_77_1
  doi: 10.1017/S0022029997002604
– ident: e_1_2_11_13_1
  doi: 10.3389/fimmu.2014.00603
– ident: e_1_2_11_33_1
  doi: 10.1007/s12602-021-09842-z
– ident: e_1_2_11_76_1
  doi: 10.1016/j.crfs.2020.02.002
– ident: e_1_2_11_71_1
  doi: 10.20517/2574-1209.2019.04
– ident: e_1_2_11_45_1
  doi: 10.1002/jcp.26819
– ident: e_1_2_11_48_1
  doi: 10.1007/s11926-017-0708-y
SSID ssj0009630
Score 2.4144542
Snippet Systemic lupus erythematosus (SLE) is known as an autoimmune disorder that is characterized by the breakdown of self‐tolerance, resulting in disease onset and...
Systemic lupus erythematosus (SLE) is known as an autoimmune disorder that is characterized by the breakdown of self-tolerance, resulting in disease onset and...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e3981
SubjectTerms Anti-Inflammatory Agents - pharmacology
Antigens
Autoimmune diseases
CD14 antigen
CD80 antigen
Chronic conditions
Clusters
Cytokines
Cytokines - metabolism
Differentiation
Flow cytometry
Growth factors
Histocompatibility antigen HLA
Humans
Immunological tolerance
Immunomodulation
Inflammation
Interleukin-10
Interleukin-12 - metabolism
Interleukin-12 - pharmacology
Interleukin-12 - therapeutic use
Interleukins
Lacticaseibacillus rhamnosus
Lactobacilli
Lactobacillus delbrueckii
Lactobacillus delbrueckii - metabolism
Lactobacillus rhamnosus
Leukocytes
Lipopolysaccharides
Lipopolysaccharides - pharmacology
Lupus
Lupus Erythematosus, Systemic - drug therapy
M0/M1/M2 macrophages
macrophage
Macrophages
Macrophages - metabolism
Monocytes
Monocytes - metabolism
Monocytes - pathology
Patients
Phagocytosis
Polymerase chain reaction
probiotic
Probiotics
Probiotics - pharmacology
Systemic lupus erythematosus
Transforming Growth Factor beta - metabolism
Transforming growth factor-b
Tumor Necrosis Factor-alpha - metabolism
Tumor necrosis factor-TNF
Tumor necrosis factor-α
Title Tolerogenic probiotics Lactobacillus delbrueckii and Lactobacillus rhamnosus promote anti‐inflammatory profile of macrophages‐derived monocytes of newly diagnosed patients with systemic lupus erythematosus
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcbf.3981
https://www.ncbi.nlm.nih.gov/pubmed/38509733
https://www.proquest.com/docview/2986770128
https://www.proquest.com/docview/2973101856
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3ditQwFA6yIHrjz_o3ukoE0avuzqRJ01zq4LCIeCG7sOBFSdKULdtph-lUmL3aR_AR9ln2FXwDn8RzknaW8QdEetFCTpuUfCf9kp58h5BXgkkjCqcj1CyECYqTkeIK_Cofy0LgYXy0xafk8Jh_OBEnfVQl7oUJ-hCbBTf0DD9eo4Nr0x5ci4ZaU8CE3e-6xlAt5EOfr5WjAFf98kocJTzlg-7smB0MN25_iX6jl9ts1X9uZnfJl6GhIcrkbL9bmX17_ouG4_-9yT1yp2eh9G2AzX1yw9W75GbIS7neJbemQxq4B-T7UVO5ZQM4Ky1deNUmVHa-uvyImXqMtmVVdS1Fsaxl5-xZWV5d6jqn28XLUz2vmxauFj7-z1Ho0fLHxTcAOGBy7v_10z6BOG0KOteYW-wURrsWrHLwk68up-AzjV0DO0YTmBBUa5qHWEEo7CViW4pryzRIVEObq24B1brlOujTYiMekuPZ-6PpYdRngohszNUkMimzSjLBLBBEC5cqdZNxwWziihgm2YWXrTdJyoUGguacUEo6o3OtuAVKEj8iO3VTuyeEMllIYXUSa5HzCZcGHoPbaYUCc6f0iLwZUJHZXiYds3VUWRB4Zhl0V4bdNSIvN5aLIA3yB5u9AVhZPzi0GVMoIojMAB6xKYZuxX81unZNhzYyRjE1kYzI4wDITSVxKlBkKR6R1x5Wf609m76b4fnpvxo-I7cZkLYQY7dHdlYAnOdAulbmhXevn-pgMrY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dbtMwFLamITRu-BkwCgOMhOAqW-vESSyuoFAVKLtAnbQLpMh2HC1amlRNg1SueAQeYc-yV-ANeBLOsZNO5UdCKBeJ5JPYkb_jfHaOv0PIU84ixTMjPdQshAmKiTwRCPCrtB9lHA9loy2OwvFx8O6En2yRF91eGKcPsV5wQ8-w4zU6OC5IH16qhmqVwYwdt11fwYTemL7g9cdL7ShAVrvA4nthEAed8myfHXZ3bn6LfiOYm3zVfnBGN8inrqkuzuTsoFmqA_3lFxXH_3yXm-R6S0TpS4ecW2TLlLvkqktNudolO8MuE9xt8n1aFWZRAdRyTedWuAnFnS_OJ5isR0mdF0VTU9TLWjRGn-X5xbksU7pZvDiVs7Kq4WpuQwANhU7Nf3z9BhgHWM7s737a5hCnVUZnEtOLncKAV4NVCq7y2aQU3KbSKyDIaAJzgmJFUxcuCIWtSmxNcXmZOpVqaHPRzKFas1g5iVpsxB1yPHozHY69NhmEp_1ADDwVMy0ixpkGjqjhUsRm0M-YDk3mwzw7s8r1KowDLoGjGcOFiIySqRSBBlbi3yXbZVWae4SyKIu4lqEveRoMgkjBY3BHLRdgboTskecdLBLdKqVjwo4icRrPLIHuSrC7euTJ2nLu1EH-YLPfIStpx4c6YQJ1BJEcwCPWxdCt-LtGlqZq0CbyUU-Nhz2y5xC5rsSPOeos-T3yzOLqr7Unw1cjPN__V8PHZGc8_TBJJm-P3j8g1xhwOBdyt0-2lwCih8DBluqR9bWfykw20A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVQEY8Nj0JhoICREKzSzjh2Ei_LwKhAVSHUSpVYRLbjqFEzSTSZIA2rfkI_od_SX-AP-JLeGydTDQ8JoSwSyTexI5_rHDvX5xLySrBQi9QqDzULYYJiQ09yCX6VDMNU4KHbaIv9YPeQfzwSR11UJe6FcfoQywU39Ix2vEYHr5J0-0o01OgUJuy46_o6D8BXkBB9uZKOAmB16yu-F_CI98KzQ7bd37n6KfqNX67S1fZ7M7lLvvYtdWEmJ1vNXG-Z77-IOP7fq9wjdzoaSnccbu6Ta7ZYJzdcYsrFOrk17vPAPSA_DsrczkoAWmZo1co2obTzxfkepurRymR53tQU1bJmjTUnWXZxroqErhbPjtW0KGu4qtoAQEuhS7Ofp2eAcADltP3ZT7sM4rRM6VRhcrFjGO5qsErAUb7ZhILTlGYB9BhNYEaQL2jiggWhsNOIrSkuLlOnUQ1tzpsKqrWzhROoxUY8JIeT9wfjXa9LBeEZn8uRpyNmZMgEM8AQDVzKyI6GKTOBTX2YZaetbr0OIi4UMDRrhZSh1SpRkhvgJP4GWSvKwj4mlIVpKIwKfCUSPuKhhsfgflohwdxKNSBvelTEptNJx3QdeewUnlkM3RVjdw3Iy6Vl5bRB_mCz2QMr7kaHOmYSVQSRGsAjlsXQrfizRhW2bNAm9FFNTQQD8sgBclmJHwlUWfIH5HULq7_WHo_fTvD85F8NX5Cbn99N4r0P-5-ektsMCJyLt9ska3PA0DMgYHP9vPW0SzpHNYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tolerogenic+probiotics%C2%A0+Lactobacillus+delbrueckii+%C2%A0and+Lactobacillus+rhamnosus+promote+anti%E2%80%90inflammatory+profile+of+macrophages%E2%80%90derived+monocytes+of+newly+diagnosed+patients+with+systemic+lupus+erythematosus&rft.jtitle=Cell+biochemistry+and+function&rft.au=Javanmardi%2C+Zahra&rft.au=Mahmoudi%2C+Mahmoud&rft.au=Rafatpanah%2C+Houshang&rft.au=Rezaieyazdi%2C+Zahra&rft.date=2024-03-01&rft.issn=0263-6484&rft.eissn=1099-0844&rft.volume=42&rft.issue=2&rft_id=info:doi/10.1002%2Fcbf.3981&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cbf_3981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-6484&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-6484&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-6484&client=summon