Tweedie family of generalized linear models with distribution‐free random effects for skewed longitudinal data

Generalized linear mixed models have played an important role in the analysis of longitudinal data; however, traditional approaches have limited flexibility in accommodating skewness and complex correlation structures. In addition, the existing estimation approaches generally rely heavily on the spe...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 37; no. 24; pp. 3519 - 3532
Main Authors Ma, Renjun, Yan, Guohua, Hasan, M. Tariqul
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 30.10.2018
Subjects
Online AccessGet full text
ISSN0277-6715
1097-0258
1097-0258
DOI10.1002/sim.7841

Cover

Loading…
Abstract Generalized linear mixed models have played an important role in the analysis of longitudinal data; however, traditional approaches have limited flexibility in accommodating skewness and complex correlation structures. In addition, the existing estimation approaches generally rely heavily on the specifications of random effects distributions; therefore, the corresponding inferences are sometimes sensitive to the choice of random effect distributions under certain circumstance. In this paper, we incorporate serially dependent distribution‐free random effects into Tweedie generalized linear models to accommodate a wide range of skewness and covariance structures for discrete and continuous longitudinal data. An optimal estimation of our model has been developed using the orthodox best linear unbiased predictors of random effects. Our approach unifies population‐averaged and subject‐specific inferences. Our method is illustrated through the analyses of patient‐controlled analgesia data and Framingham cholesterol data.
AbstractList Generalized linear mixed models have played an important role in the analysis of longitudinal data; however, traditional approaches have limited flexibility in accommodating skewness and complex correlation structures. In addition, the existing estimation approaches generally rely heavily on the specifications of random effects distributions; therefore, the corresponding inferences are sometimes sensitive to the choice of random effect distributions under certain circumstance. In this paper, we incorporate serially dependent distribution‐free random effects into Tweedie generalized linear models to accommodate a wide range of skewness and covariance structures for discrete and continuous longitudinal data. An optimal estimation of our model has been developed using the orthodox best linear unbiased predictors of random effects. Our approach unifies population‐averaged and subject‐specific inferences. Our method is illustrated through the analyses of patient‐controlled analgesia data and Framingham cholesterol data.
Generalized linear mixed models have played an important role in the analysis of longitudinal data; however, traditional approaches have limited flexibility in accommodating skewness and complex correlation structures. In addition, the existing estimation approaches generally rely heavily on the specifications of random effects distributions; therefore, the corresponding inferences are sometimes sensitive to the choice of random effect distributions under certain circumstance. In this paper, we incorporate serially dependent distribution-free random effects into Tweedie generalized linear models to accommodate a wide range of skewness and covariance structures for discrete and continuous longitudinal data. An optimal estimation of our model has been developed using the orthodox best linear unbiased predictors of random effects. Our approach unifies population-averaged and subject-specific inferences. Our method is illustrated through the analyses of patient-controlled analgesia data and Framingham cholesterol data.Generalized linear mixed models have played an important role in the analysis of longitudinal data; however, traditional approaches have limited flexibility in accommodating skewness and complex correlation structures. In addition, the existing estimation approaches generally rely heavily on the specifications of random effects distributions; therefore, the corresponding inferences are sometimes sensitive to the choice of random effect distributions under certain circumstance. In this paper, we incorporate serially dependent distribution-free random effects into Tweedie generalized linear models to accommodate a wide range of skewness and covariance structures for discrete and continuous longitudinal data. An optimal estimation of our model has been developed using the orthodox best linear unbiased predictors of random effects. Our approach unifies population-averaged and subject-specific inferences. Our method is illustrated through the analyses of patient-controlled analgesia data and Framingham cholesterol data.
Author Ma, Renjun
Yan, Guohua
Hasan, M. Tariqul
Author_xml – sequence: 1
  givenname: Renjun
  orcidid: 0000-0001-5243-5426
  surname: Ma
  fullname: Ma, Renjun
  email: renjun@unb.ca
  organization: University of New Brunswick
– sequence: 2
  givenname: Guohua
  surname: Yan
  fullname: Yan, Guohua
  organization: University of New Brunswick
– sequence: 3
  givenname: M. Tariqul
  surname: Hasan
  fullname: Hasan, M. Tariqul
  organization: University of New Brunswick
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29888505$$D View this record in MEDLINE/PubMed
BookMark eNp10c9qFTEUBvAgFXtbBZ9AAm7czDXJTCaZpZSqhYoL63rIn5OamkmuSYbLdeUj-Iw-iTO2KhRdhcDvfAnnO0FHMUVA6CklW0oIe1n8tBWyow_QhpJBNIRxeYQ2hAnR9ILyY3RSyg0hlHImHqFjNkgpOeEbtLvaA1gP2KnJhwNODl9DhKyC_woWBx9BZTwlC6Hgva-fsPWlZq_n6lP88e27ywA4q2jThME5MLVglzIun2G_BqR47etsfVQBW1XVY_TQqVDgyd15ij6-Pr86e9tcvn9zcfbqsjFtN9BGC86l0tqAXu5DT0HrrtOmVbp3WrXS6Z5SZ6hSg2UUJBvAStJJwQQZzNCeohe3ubucvsxQ6jj5YiAEFSHNZWSEtyulZKHP79GbNOflw4uitGcd47Rd1LM7NesJ7LjLflL5MP7e5d8XTU6lZHB_CCXjWtO41DSuNS10e48aX9W60ZqVD_8aaG4H9j7A4b_B44eLd7_8Tw5qpRg
CitedBy_id crossref_primary_10_1016_j_insmatheco_2023_12_007
crossref_primary_10_1515_ijb_2018_0090
crossref_primary_10_3390_e25060863
crossref_primary_10_1002_cjs_11801
crossref_primary_10_1214_22_EJS2090
crossref_primary_10_1093_jrsssc_qlad064
crossref_primary_10_1007_s00068_024_02577_w
Cites_doi 10.1093/biomet/92.3.717
10.1214/088342304000000305
10.1111/j.2517-6161.1987.tb01685.x
10.1093/biomet/90.2.355
10.1002/(SICI)1097-0258(19960415)15:7/9<823::AID-SIM252>3.0.CO;2-A
10.2307/2290687
10.1093/biomet/90.2.455
10.1111/sjos.12080
10.1093/biomet/86.1.169
10.1080/01621459.1996.10476971
10.1038/189732a0
10.1093/biostatistics/kxv005
10.1093/biomet/73.1.13
10.1111/biom.12551
10.1111/j.1467-9868.2006.00570.x
10.1111/rssb.12166
10.1093/biostatistics/kxu055
10.1111/j.1467-9868.2007.00603.x
10.1214/ss/1009212671
10.1007/s11222-005-4070-y
10.1093/biomet/90.1.157
10.1017/S0305004100023185
10.1093/biomet/asw006
10.1002/sim.3026
10.1111/j.2517-6161.1996.tb02105.x
10.5539/ijsp.v2n4p1
10.1007/s11222-009-9122-2
10.1093/biomet/88.4.973
10.1002/sim.7279
ContentType Journal Article
Copyright Copyright © 2018 John Wiley & Sons, Ltd.
2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2018 John Wiley & Sons, Ltd.
– notice: 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/sim.7841
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

ProQuest Health & Medical Complete (Alumni)
PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 3532
ExternalDocumentID 29888505
10_1002_sim_7841
SIM7841
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
– fundername: Atlantic Association for Research in the Mathematical Sciences
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c3491-b7558abbceb349961ebb44bc3ab6fba38fb611fc1aa9d21e829ed804872709c93
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 15:07:30 EDT 2025
Sat Jul 26 00:42:12 EDT 2025
Wed Feb 19 02:34:57 EST 2025
Tue Jul 01 03:28:13 EDT 2025
Thu Apr 24 22:57:15 EDT 2025
Wed Jan 22 16:22:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords Taylor's law
exponential dispersion model
mixed models
power family
best linear unbiased predictors
overdispersion
Language English
License Copyright © 2018 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3491-b7558abbceb349961ebb44bc3ab6fba38fb611fc1aa9d21e829ed804872709c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5243-5426
PMID 29888505
PQID 2116242513
PQPubID 48361
PageCount 14
ParticipantIDs proquest_miscellaneous_2053270910
proquest_journals_2116242513
pubmed_primary_29888505
crossref_primary_10_1002_sim_7841
crossref_citationtrail_10_1002_sim_7841
wiley_primary_10_1002_sim_7841_SIM7841
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 October 2018
PublicationDateYYYYMMDD 2018-10-30
PublicationDate_xml – month: 10
  year: 2018
  text: 30 October 2018
  day: 30
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 16
2013; 2
1986; 73
1993; 88
1997
2005
1947; 43
1999; 86
2016; 103
1996; 91
2014; 41
2001; 88
1996; 58
1996; 15
2007; 35
2017; 73
2010; 20
2003; 90
2017; 36
2006; 68
2004; 19
2000; 15
2017; 79
2008; 27
1961; 189
2017
1984
2005; 92
2005; 15
2007; 69
1988
1987; 49
Sutradhar BC (e_1_2_9_34_1) 2007; 69
Jørgensen B (e_1_2_9_30_1) 1987; 49
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_33_1
Molenberghs G (e_1_2_9_9_1) 2005
Tweedie MCK (e_1_2_9_26_1) 1984
e_1_2_9_15_1
Crow EL (e_1_2_9_19_1) 1988
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_37_1
Jørgensen B (e_1_2_9_29_1) 2007; 35
e_1_2_9_18_1
Weiss RE (e_1_2_9_35_1) 2005
e_1_2_9_20_1
Lee Y (e_1_2_9_21_1) 1996; 58
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Lee Y (e_1_2_9_10_1) 2017
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
Jørgensen B (e_1_2_9_16_1) 1997
References_xml – volume: 2
  start-page: 1
  issue: 4
  year: 2013
  end-page: 21
  article-title: On the connections between bridge distributions, marginalized multilevel models, and generalized linear mixed models
  publication-title: Int J Stat Probab
– volume: 69
  start-page: 671
  issue: 4
  year: 2007
  end-page: 699
  article-title: On generalized quasilikelihood inference in longitudinal mixed model for count data
  publication-title: Sankhyā: Indian J Stat
– volume: 19
  start-page: 219
  issue: 2
  year: 2004
  end-page: 238
  article-title: Conditional and marginal models: another view
  publication-title: Stat Sci
– volume: 92
  start-page: 717
  issue: 3
  year: 2005
  end-page: 723
  article-title: Comparison of hierarchical likelihood versus orthodox BLUP approach for frailty models
  publication-title: Biometrika
– volume: 49
  start-page: 127
  year: 1987
  end-page: 162
  article-title: Exponential dispersion models (with discussion)
  publication-title: J R Stat Soc Ser B
– volume: 90
  start-page: 157
  issue: 1
  year: 2003
  end-page: 169
  article-title: Random effects Cox models: a Poisson modelling approach
  publication-title: Biometrika
– year: 2005
– volume: 103
  start-page: 363
  issue: 2
  year: 2016
  end-page: 376
  article-title: Skew‐normal antedependence models for skewed longitudinal data
  publication-title: Biometrika
– volume: 73
  start-page: 13
  issue: 1
  year: 1986
  end-page: 22
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
– volume: 16
  start-page: 413
  issue: 3
  year: 2015
  end-page: 426
  article-title: Incorporating covariates in skewed functional data models
  publication-title: Biostatistics
– volume: 88
  start-page: 9
  issue: 421
  year: 1993
  end-page: 25
  article-title: Approximate inference in generalized linear mixed models
  publication-title: J Am Stat Assoc
– volume: 35
  start-page: 1
  issue: 4
  year: 2007
  end-page: 23
  article-title: Stationary state space models for longitudinal data
  publication-title: Can J Stat
– volume: 73
  start-page: 63
  year: 2017
  end-page: 71
  article-title: Diagnosing misspecification of the random effects distribution in mixed models
  publication-title: Biometrics
– volume: 43
  start-page: 41
  issue: 1
  year: 1947
  end-page: 49
  article-title: Functions of a statistical variate with given means, with special reference to Laplace distribution
  publication-title: Math Proc Camb Philos Soc
– start-page: 579
  year: 1984
  end-page: 604
– volume: 86
  start-page: 169
  issue: 1
  year: 1999
  end-page: 181
  article-title: A state space model for multivariate longitudinal count data
  publication-title: Biometrika
– volume: 88
  start-page: 973
  issue: 4
  year: 2001
  end-page: 985
  article-title: Misspecified maximum likelihood estimates and generalised linear mixed models
  publication-title: Biometrika
– volume: 189
  start-page: 732
  year: 1961
  end-page: 735
  article-title: Aggregation, variance and the mean
  publication-title: Nature
– volume: 15
  start-page: 823
  issue: 7‐9
  year: 1996
  end-page: 836
  article-title: A longitudinal study of emergency room visits and air pollution for Prince George, British Columbia
  publication-title: Statist Med
– volume: 36
  start-page: 2420
  issue: 15
  year: 2017
  end-page: 2434
  article-title: Interpretable inference on the mixed effect model with the Box–Cox transformation
  publication-title: Statist Med
– volume: 27
  start-page: 1490
  issue: 9
  year: 2008
  end-page: 1507
  article-title: Estimation and prediction in linear mixed models with skew‐normal random effects for longitudinal data
  publication-title: Statist Med
– volume: 41
  start-page: 1031
  issue: 4
  year: 2014
  end-page: 1050
  article-title: Semiparametric regression analysis of longitudinal skewed data
  publication-title: Scand J Stat
– volume: 68
  start-page: 859
  issue: 5
  year: 2006
  end-page: 872
  article-title: Separating between‐ and within‐cluster covariate effects by using conditional and partitioning methods
  publication-title: J R Stat Soc Ser B
– volume: 91
  start-page: 1007
  issue: 435
  year: 1996
  end-page: 1016
  article-title: Bias correction in generalized linear mixed models with multiple components of dispersion
  publication-title: J Am Stat Assoc
– volume: 90
  start-page: 355
  issue: 2
  year: 2003
  end-page: 366
  article-title: A serially correlated gamma frailty model for longitudinal count data
  publication-title: Biometrika
– year: 1988
– volume: 20
  start-page: 295
  issue: 3
  year: 2010
  end-page: 303
  article-title: Orthodox BLUP versus h‐likelihood methods for inferences about random effects in Tweedie mixed models
  publication-title: Stat Comput
– year: 1997
– volume: 15
  start-page: 267
  issue: 4
  year: 2005
  end-page: 280
  article-title: Series evaluation of Tweedie exponential dispersion model densities
  publication-title: Stat Comput
– volume: 90
  start-page: 455
  issue: 2
  year: 2003
  end-page: 463
  article-title: A family of multivariate binary distributions for simulating correlated binary variables with specified marginal means and correlations
  publication-title: Biometrika
– volume: 15
  start-page: 1
  issue: 1
  year: 2000
  end-page: 26
  article-title: Marginalized multilevel models and likelihood inference (with discussion)
  publication-title: Stat Sci
– year: 2017
– volume: 79
  start-page: 247
  issue: 1
  year: 2017
  end-page: 265
  article-title: Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions
  publication-title: J R Stat Soc Ser B Stat Methodol
– volume: 16
  start-page: 441
  issue: 3
  year: 2015
  end-page: 453
  article-title: Bayesian partial linear model for skewed longitudinal data
  publication-title: Biostatistics
– volume: 69
  start-page: 625
  issue: 4
  year: 2007
  end-page: 641
  article-title: Nested generalized linear mixed models: an orthodox best linear unbiased predictor approach
  publication-title: J R Stat Soc Ser B
– volume: 58
  start-page: 619
  issue: 4
  year: 1996
  end-page: 678
  article-title: Hierarchical generalized linear models (with discussion)
  publication-title: J R Stat Soc Ser B
– ident: e_1_2_9_13_1
  doi: 10.1093/biomet/92.3.717
– ident: e_1_2_9_31_1
  doi: 10.1214/088342304000000305
– volume: 49
  start-page: 127
  year: 1987
  ident: e_1_2_9_30_1
  article-title: Exponential dispersion models (with discussion)
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1987.tb01685.x
– ident: e_1_2_9_11_1
  doi: 10.1093/biomet/90.2.355
– volume-title: Lognormal Distributions: Theory and Applications
  year: 1988
  ident: e_1_2_9_19_1
– volume: 35
  start-page: 1
  issue: 4
  year: 2007
  ident: e_1_2_9_29_1
  article-title: Stationary state space models for longitudinal data
  publication-title: Can J Stat
– ident: e_1_2_9_27_1
  doi: 10.1002/(SICI)1097-0258(19960415)15:7/9<823::AID-SIM252>3.0.CO;2-A
– ident: e_1_2_9_20_1
  doi: 10.2307/2290687
– ident: e_1_2_9_18_1
  doi: 10.1093/biomet/90.2.455
– ident: e_1_2_9_5_1
  doi: 10.1111/sjos.12080
– ident: e_1_2_9_28_1
  doi: 10.1093/biomet/86.1.169
– ident: e_1_2_9_37_1
  doi: 10.1080/01621459.1996.10476971
– volume-title: Generalized Linear Models with Random Effects: Unified Analysis via H‐likelihood
  year: 2017
  ident: e_1_2_9_10_1
– volume-title: The Theory of Dispersion Models
  year: 1997
  ident: e_1_2_9_16_1
– ident: e_1_2_9_17_1
  doi: 10.1038/189732a0
– volume: 69
  start-page: 671
  issue: 4
  year: 2007
  ident: e_1_2_9_34_1
  article-title: On generalized quasilikelihood inference in longitudinal mixed model for count data
  publication-title: Sankhyā: Indian J Stat
– ident: e_1_2_9_3_1
  doi: 10.1093/biostatistics/kxv005
– ident: e_1_2_9_32_1
  doi: 10.1093/biomet/73.1.13
– ident: e_1_2_9_14_1
  doi: 10.1111/biom.12551
– ident: e_1_2_9_22_1
  doi: 10.1111/j.1467-9868.2006.00570.x
– ident: e_1_2_9_6_1
  doi: 10.1111/rssb.12166
– ident: e_1_2_9_4_1
  doi: 10.1093/biostatistics/kxu055
– start-page: 579
  volume-title: Proceedings of Indian Statistical Institute Golden Jubilee International Conference
  year: 1984
  ident: e_1_2_9_26_1
– volume-title: Modeling Longitudinal Data
  year: 2005
  ident: e_1_2_9_35_1
– ident: e_1_2_9_8_1
  doi: 10.1111/j.1467-9868.2007.00603.x
– ident: e_1_2_9_33_1
  doi: 10.1214/ss/1009212671
– ident: e_1_2_9_36_1
  doi: 10.1007/s11222-005-4070-y
– ident: e_1_2_9_15_1
  doi: 10.1093/biomet/90.1.157
– ident: e_1_2_9_25_1
  doi: 10.1017/S0305004100023185
– ident: e_1_2_9_2_1
  doi: 10.1093/biomet/asw006
– ident: e_1_2_9_23_1
  doi: 10.1002/sim.3026
– volume: 58
  start-page: 619
  issue: 4
  year: 1996
  ident: e_1_2_9_21_1
  article-title: Hierarchical generalized linear models (with discussion)
  publication-title: J R Stat Soc Ser B
  doi: 10.1111/j.2517-6161.1996.tb02105.x
– ident: e_1_2_9_24_1
  doi: 10.5539/ijsp.v2n4p1
– volume-title: Models for Discrete Longitudinal Data
  year: 2005
  ident: e_1_2_9_9_1
– ident: e_1_2_9_38_1
  doi: 10.1007/s11222-009-9122-2
– ident: e_1_2_9_12_1
  doi: 10.1093/biomet/88.4.973
– ident: e_1_2_9_7_1
  doi: 10.1002/sim.7279
SSID ssj0011527
Score 2.3347435
Snippet Generalized linear mixed models have played an important role in the analysis of longitudinal data; however, traditional approaches have limited flexibility in...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3519
SubjectTerms best linear unbiased predictors
exponential dispersion model
Generalized linear models
Medical research
Medical statistics
mixed models
overdispersion
power family
Regression analysis
Taylor's law
Title Tweedie family of generalized linear models with distribution‐free random effects for skewed longitudinal data
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.7841
https://www.ncbi.nlm.nih.gov/pubmed/29888505
https://www.proquest.com/docview/2116242513
https://www.proquest.com/docview/2053270910
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC7Egwiy6riP8UULsnvKOJ3XdB9FFBXGgw8Q9hD6lUVcJzKZQfDkT_A3-kusSicR1xXEUyDpdDrdXV1fVVd_BbCNKknrvjOBzNFWjUPDA6FlHiirpOIah7xy5gxP0sOL-PgyuayjKuksjOeHaB1uJBnVek0CrnS580IaWl7d9GjTDJdfCtUiPHTaMkfxJlsr7VCmA540vLP9cKd58bUmegMvX6PVSt0cLMLvpqE-yuS6N53onrn_h8Pxc3-yBF9qFMp2_bRZhhk36sDcsN5n78CC9-Yxf0ipA_OEST2l8wrcnt-RynPMO0dYkbM_nrz66t5ZRu1RY1al2CkZ-XmZJXbeOrHW08NjPnaOoY60xQ2r40kYYmdWXrs7qqCgHEpTS_m6GEWwfoWLg_3zvcOgTtwQmCiWPNCDJBFKa4OWOlpUKXdax7E2kdJprlUkcp1ynhuulLQhdyKUzgpcSxBM9aWR0TeYHRUj9wNYHgpOZ4MVUbshFMXlxiWWc-WswbuDLvxqBjEzNas5Jdf4m3k-5jDD3s2od7uw1Za89Uwe_ymz3syDrJblMkMTmQ7RJDzCKtrHKIW0taJGrphiGUqwMSDs1YXvfv60HwmlEAKBZhd-VrPg3a9nZ0dDuq5-tOAazCN-q-h5o_46zE7GU7eBGGmiNytpeAZuBA_J
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bShxBEC3UQBQkl1XjRk06EOLT7G7PbbvxKYTImrg-xBV8EIa-jYhxR_aC4FM-Id-YL0nV9MwEo0LI08BMz72q61R19zkA7zEkad1zJpA55qpxaHggtMwDZZVUXOMvL4s5w6N0cBJ_OU1OF2CvXgvj-SGaght5Rtlfk4NTQbr7hzV0enHVoVGzRXhCgt5lPvWt4Y7itV4rjVGmfZ7UzLO9sFufeTcW3QOYd_FqGXD2n8NZ_ah-nsllZz7THXP7F4vjf77LC3hWAVH20VvOS1hw4xY8HVZD7S1Y9QU95tcptWCFYKlndV6D69ENRT3HfH2EFTk79_zVF7fOMnogNWGlys6UUamXWSLorbS1fv34mU-cYxgmbXHFqiklDOEzm166G7pAQTJKc0uSXYwmsa7Dyf7n0adBUGk3BCaKJQ90P0mE0tpgso5JVcqd1nGsTaR0mmsViVynnOeGKyVtyJ0IpbMCuxPEUz1pZLQBS-Ni7DaB5aHgtDxYEbsbolHscVxiOVfOGtzbb8Nu_RczUxGbk77G98xTMocZft2Mvm4b3jUtrz2ZxwNttmtDyCp3nmaYJdM6GjQyvERzGB2RRlfU2BVzbEMaG32CX2145Q2ouUkohRCINdvwoTSDR--eHR8Mafv6Xxu-heXBaHiYHR4cfd2CFYRzJVtv1NuGpdlk7nYQMs30m9I1fgNPOhPk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFD5ohVKQVldr11YdQfQp20xuO_NYrEurbhFtoeBDmKuU2s2yFwp98if4G_0lPSeTROoFxKdAMplMZs6Z850zM98BeIEmSevYmUh69FWzxPBIaOkjZZVUXOOQ18Gc8VFxcJK9Pc1Pm12VdBYm8EN0ATfSjHq-JgWfWr_7kzR0fnYxoEWz23AnK2JBEr3_saOO4m26VlqiLIY8b4ln42S3ffOmKfoNX96Eq7W9GW3A57alYZvJ-WC50ANz9QuJ4__9yj1Yb2Ao2wtycx9uuUkPVsfNQnsP7oZwHgunlHqwRqA0cDo_gOnxJdk8x0J0hFWefQns1WdXzjJqj5qxOsfOnFGgl1mi520ya_349t3PnGNoJG11wZoNJQzBM5ufu0uqoKIkSktLCbsYbWF9CCejN8evD6Imc0Nk0kzySA_zXCitDbrq6FIV3GmdZdqkShdeq1R4XXDuDVdK2oQ7kUhnBU4miKZiaWS6CSuTauK2gPlEcDocrIjbDbEozjcut5wrZw3eHfbhVTuIpWlozSm7xtcyEDInJfZuSb3bh-ddyWmg8vhDmZ1WDspGmecl-sh0iibnKVbRPUY1pLUVNXHVEstQho0hga8-PAry030kkUIIRJp9eFlLwV-_Xn46HNP18b8WfAarH_ZH5fvDo3fbsIZYrqbqTeMdWFnMlu4J4qWFflorxjUrqxKc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tweedie+family+of+generalized+linear+models+with+distribution-free+random+effects+for+skewed+longitudinal+data&rft.jtitle=Statistics+in+medicine&rft.au=Ma%2C+Renjun&rft.au=Yan%2C+Guohua&rft.au=Hasan%2C+M+Tariqul&rft.date=2018-10-30&rft.issn=1097-0258&rft.eissn=1097-0258&rft.volume=37&rft.issue=24&rft.spage=3519&rft_id=info:doi/10.1002%2Fsim.7841&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon