Marker‐less augmented reality based on monocular vision for falx meningioma localization
Background The existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration, which causes excessive preparatory steps. Methods For fast and accurate intraoperative navigation, this work proposes a marker‐less AR system...
Saved in:
Published in | The international journal of medical robotics + computer assisted surgery Vol. 18; no. 1; pp. e2341 - n/a |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Background
The existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration, which causes excessive preparatory steps.
Methods
For fast and accurate intraoperative navigation, this work proposes a marker‐less AR system that tracks the head features with the monocular camera. After the semi‐automatic initialization process, the feature points between the captured image and the pre‐loaded keyframes are matched for obtaining correspondences. The camera pose is estimated by solving the Perspective‐n‐Point problem.
Results
The localization error of AR visualization on scalp and falx meningioma is 0.417 ± 0.057 and 1.413 ± 0.282 mm, respectively. The maximum localization error is less than 2 mm. The AR system is robust to occlusions and changes in viewpoint and scale.
Conclusions
We demonstrate that the developed system can successfully display the augmented falx meningioma with enough accuracy and provide guidance for neurosurgeons to locate the tumour in brain. |
---|---|
AbstractList | Background
The existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration, which causes excessive preparatory steps.
Methods
For fast and accurate intraoperative navigation, this work proposes a marker‐less AR system that tracks the head features with the monocular camera. After the semi‐automatic initialization process, the feature points between the captured image and the pre‐loaded keyframes are matched for obtaining correspondences. The camera pose is estimated by solving the Perspective‐n‐Point problem.
Results
The localization error of AR visualization on scalp and falx meningioma is 0.417 ± 0.057 and 1.413 ± 0.282 mm, respectively. The maximum localization error is less than 2 mm. The AR system is robust to occlusions and changes in viewpoint and scale.
Conclusions
We demonstrate that the developed system can successfully display the augmented falx meningioma with enough accuracy and provide guidance for neurosurgeons to locate the tumour in brain. Abstract Background The existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration, which causes excessive preparatory steps. Methods For fast and accurate intraoperative navigation, this work proposes a marker‐less AR system that tracks the head features with the monocular camera. After the semi‐automatic initialization process, the feature points between the captured image and the pre‐loaded keyframes are matched for obtaining correspondences. The camera pose is estimated by solving the Perspective‐n‐Point problem. Results The localization error of AR visualization on scalp and falx meningioma is 0.417 ± 0.057 and 1.413 ± 0.282 mm, respectively. The maximum localization error is less than 2 mm. The AR system is robust to occlusions and changes in viewpoint and scale. Conclusions We demonstrate that the developed system can successfully display the augmented falx meningioma with enough accuracy and provide guidance for neurosurgeons to locate the tumour in brain. BACKGROUNDThe existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration, which causes excessive preparatory steps. METHODSFor fast and accurate intraoperative navigation, this work proposes a marker-less AR system that tracks the head features with the monocular camera. After the semi-automatic initialization process, the feature points between the captured image and the pre-loaded keyframes are matched for obtaining correspondences. The camera pose is estimated by solving the Perspective-n-Point problem. RESULTSThe localization error of AR visualization on scalp and falx meningioma is 0.417 ± 0.057 and 1.413 ± 0.282 mm, respectively. The maximum localization error is less than 2 mm. The AR system is robust to occlusions and changes in viewpoint and scale. CONCLUSIONSWe demonstrate that the developed system can successfully display the augmented falx meningioma with enough accuracy and provide guidance for neurosurgeons to locate the tumour in brain. The existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration, which causes excessive preparatory steps. For fast and accurate intraoperative navigation, this work proposes a marker-less AR system that tracks the head features with the monocular camera. After the semi-automatic initialization process, the feature points between the captured image and the pre-loaded keyframes are matched for obtaining correspondences. The camera pose is estimated by solving the Perspective-n-Point problem. The localization error of AR visualization on scalp and falx meningioma is 0.417 ± 0.057 and 1.413 ± 0.282 mm, respectively. The maximum localization error is less than 2 mm. The AR system is robust to occlusions and changes in viewpoint and scale. We demonstrate that the developed system can successfully display the augmented falx meningioma with enough accuracy and provide guidance for neurosurgeons to locate the tumour in brain. |
Author | Hong, Wenyao He, Bingwei Huang, Shengyue Deng, Zhen Liu, Yuqing Shi, Jiafeng Chen, Zhongyi Yi, Zongchao |
Author_xml | – sequence: 1 givenname: Zongchao orcidid: 0000-0003-1445-4620 surname: Yi fullname: Yi, Zongchao organization: Fujian Engineering Research Center of Joint Intelligent Medical Engineering – sequence: 2 givenname: Zhen orcidid: 0000-0002-0240-0919 surname: Deng fullname: Deng, Zhen organization: Fujian Engineering Research Center of Joint Intelligent Medical Engineering – sequence: 3 givenname: Yuqing surname: Liu fullname: Liu, Yuqing organization: Fujian Provincial Hospital – sequence: 4 givenname: Bingwei orcidid: 0000-0002-4386-8542 surname: He fullname: He, Bingwei email: mebwhe@fzu.edu.cn organization: Fujian Engineering Research Center of Joint Intelligent Medical Engineering – sequence: 5 givenname: Shengyue surname: Huang fullname: Huang, Shengyue organization: Fujian Provincial Hospital – sequence: 6 givenname: Wenyao surname: Hong fullname: Hong, Wenyao organization: Fujian Provincial Hospital – sequence: 7 givenname: Jiafeng surname: Shi fullname: Shi, Jiafeng organization: Fujian Engineering Research Center of Joint Intelligent Medical Engineering – sequence: 8 givenname: Zhongyi surname: Chen fullname: Chen, Zhongyi organization: Fujian Provincial Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34647683$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kN1KwzAUx4NMdJuCTyAFb7zpzGmTLL2U4RdMBD9AvAlpezo620aTVZ1XPoLP6JOYuakgeHXOSX7nx-HfI53GNEjIDtABUBod2MwNopjBGukCG8qQJ-K289Nz2CQ956aUMs4E2yCbsS9DIeMuuTvX9h7tx9t7hc4Fup3U2MwwDyzqqpzNg1Q7P5kmqE1jsrbSNngqXekfCmODQlcvgd8om0lpah1UJvNrr3rmgS2y7r8dbq9qn9wcH12PTsPxxcnZ6HAcZjFLIIwRs0IXOegEMi7SSIok0RIlAo005DQdpjlKwdNhBDLnlBaFAORas7gQaR73yf7S-2DNY4tupurSZVhVukHTOhVxGQEAi6VH9_6gU9Paxl-nIgGSCR8c_xVm1jhnsVAPtqy1nSugapG38nmrRd4e3V0J27TG_Af8DtgD4RJ4Liuc_ytSl6OrL-En34-NMQ |
CitedBy_id | crossref_primary_10_1227_ons_0000000000001026 crossref_primary_10_1227_ons_0000000000001009 |
Cites_doi | 10.1007/s11060-010-0386-3 10.1109/ICCV.2011.6126544 10.1007/s10439-021-02834-8 10.1049/htl.2017.0062 10.1016/j.jbi.2015.04.003 10.1016/j.wneu.2015.09.091 10.3109/02688690903506093 10.1145/237170.237283 10.1007/BFb0047002 10.3390/s20051444 10.1055/s-0032-1333415 10.1007/s11263-019-01280-3 10.1007/s11060-016-2283-x 10.1016/j.jcms.2014.09.001 10.1097/00020840-200502000-00008 10.1097/SCS.0000000000000633 10.3171/2014.9.JNS141001 10.2147/OTT.S162274 10.1007/s00586-019-06054-6 10.1007/s11263-008-0152-6 10.1007/s00701-013-1668-2 10.1093/ons/opx279 10.1109/ISMAR.2006.297795 10.1109/ISMAR.2007.4538837 10.1007/11744023_34 10.3171/2021.5.FOCUS21184 10.1016/j.crad.2017.05.002 10.1007/978-3-030-59716-0_7 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons Ltd. 2022 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2022 John Wiley & Sons Ltd. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 K9. L7M L~C L~D 7X8 |
DOI | 10.1002/rcs.2341 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Technology Research Database MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1478-596X |
EndPage | n/a |
ExternalDocumentID | 10_1002_rcs_2341 34647683 RCS2341 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of Fujian Province funderid: 2019H0042; 2019I0023; 2020I0028; 2020J01455 – fundername: National Natural Science Foundation of China funderid: 62003089 – fundername: Natural Science Foundation of Fujian Province grantid: 2019H0042 – fundername: National Natural Science Foundation of China grantid: 62003089 – fundername: Natural Science Foundation of Fujian Province grantid: 2019I0023 – fundername: Natural Science Foundation of Fujian Province grantid: 2020I0028 – fundername: Natural Science Foundation of Fujian Province grantid: 2020J01455 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACIWK ACMXC ACPOU ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HVGLF HZ~ IX1 J0M JPC KBYEO LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SJN SUPJJ SV3 TEORI UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WQJ WRC WVDHM WXI WXSBR XG1 XV2 ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7SC 7SP 7TB 8FD F28 FR3 JQ2 K9. L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c3491-3eecfafd1a91c56b28699a8e8e102a1d0b7bde865b7218d500ff61e5aa43f6bd3 |
IEDL.DBID | DR2 |
ISSN | 1478-5951 |
IngestDate | Fri Aug 16 20:50:14 EDT 2024 Thu Oct 10 18:45:10 EDT 2024 Fri Aug 23 02:15:48 EDT 2024 Sat Sep 28 08:33:46 EDT 2024 Sat Aug 24 00:58:12 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | augmented reality registration camera pose estimation falx meningioma localization |
Language | English |
License | 2021 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3491-3eecfafd1a91c56b28699a8e8e102a1d0b7bde865b7218d500ff61e5aa43f6bd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0240-0919 0000-0002-4386-8542 0000-0003-1445-4620 |
PMID | 34647683 |
PQID | 2618465965 |
PQPubID | 1026349 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2582111438 proquest_journals_2618465965 crossref_primary_10_1002_rcs_2341 pubmed_primary_34647683 wiley_primary_10_1002_rcs_2341_RCS2341 |
PublicationCentury | 2000 |
PublicationDate | February 2022 2022-Feb 2022-02-00 20220201 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Hamilton |
PublicationTitle | The international journal of medical robotics + computer assisted surgery |
PublicationTitleAlternate | Int J Med Robot |
PublicationYear | 2022 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 99 2021; 49 2017; 4 2009; 81 2020; 20 2011 2015; 123 2015; 55 1996 2014; 25 2007 2006 2019; 128 2021; 51 2014; 42 2017; 72 2010; 24 2020 2013; 74 2013; 155 2018 2016; 85 2018; 11 2016; 130 2018; 15 2005; 13 2020; 29 e_1_2_9_30_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 Li Y (e_1_2_9_12_1) 2018 |
References_xml | – start-page: 56 year: 2006 end-page: 65 – volume: 72 start-page: 722 issue: 9 year: 2017 end-page: 728 article-title: Meningioma mimics: five key imaging features to differentiate them from meningiomas publication-title: Clin Radiol – volume: 29 start-page: 1580 issue: 7 year: 2020 end-page: 1589 article-title: Augmented reality and artificial intelligence‐based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial publication-title: Eur Spine J – start-page: 591 year: 1996 end-page: 600 – volume: 20 start-page: 1444 issue: 5 year: 2020 article-title: Ambiguity‐free optical–inertial tracking for augmented reality headsets publication-title: Sensors – volume: 4 start-page: 188 issue: 5 year: 2017 end-page: 192 article-title: Quantifying attention shifts in augmented reality image‐guided neurosurgery publication-title: Healthc Technol Lett – start-page: 430 year: 2006 end-page: 443 – volume: 42 start-page: 1970 issue: 8 year: 2014 end-page: 1976 article-title: Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning publication-title: J Craniomaxillofac Surg – volume: 49 start-page: 2590 issue: 9 year: 2021 end-page: 2605 article-title: Evaluation of a wearable AR platform for guiding complex craniotomies in neurosurgery publication-title: Ann Biomed Eng – volume: 11 start-page: 5279 year: 2018 end-page: 5285 article-title: Microsurgical treatment of parafalcine meningiomas: a retrospective study of 126 cases publication-title: Onco Targets Ther – volume: 123 start-page: 206 issue: 1 year: 2015 end-page: 211 article-title: Augmented reality‐guided neurosurgery: accuracy and intraoperative application of an image projection technique publication-title: J Neurosurg – volume: 15 start-page: 551 issue: 5 year: 2018 end-page: 556 article-title: Smart glasses for neurosurgical navigation by augmented reality publication-title: Oper Neurosurg (Hagerstown) – start-page: 129 year: 2007 end-page: 138 – volume: 130 start-page: 253 issue: 2 year: 2016 end-page: 262 article-title: Resection of falx and parasagittal meningioma: complication avoidance publication-title: J Neurooncol – volume: 51 start-page: E21 issue: 2 year: 2021 article-title: Development of an inside‐out augmented reality technique for neurosurgical navigation publication-title: Neurosurg Focus – start-page: 2564 year: 2011 end-page: 2571 – volume: 85 start-page: 359 year: 2016 end-page: 363 article-title: A smartphone app to assist scalp localization of superficial supratentorial lesions‐‐technical note publication-title: World Neurosurg – volume: 13 start-page: 27 issue: 1 year: 2005 end-page: 31 article-title: Image‐guided surgery: what is the accuracy? publication-title: Curr Opin Otolaryngol Head Neck Surg – volume: 25 start-page: 1095 issue: 3 year: 2014 end-page: 1099 article-title: The accuracy of image‐guided navigation for maxillary positioning in bimaxillary surgery publication-title: J Craniofacial Surg – volume: 81 start-page: 155 issue: 2 year: 2009 end-page: 166 article-title: Epnp: an accurate o (n) solution to the pnp problem publication-title: Int J Comput Vis – volume: 155 start-page: 943 issue: 5 year: 2013 end-page: 947 article-title: A novel augmented reality system of image projection for image‐guided neurosurgery publication-title: Acta Neurochir (Wien) – volume: 99 start-page: 307 issue: 3 year: 2010 end-page: 314 article-title: Epidemiology and etiology of meningioma publication-title: J Neurooncol – start-page: 65 year: 2020 end-page: 75 – volume: 74 start-page: 71 issue: 2 year: 2013 end-page: 76 article-title: Preliminary study on the clinical application of augmented reality neuronavigation publication-title: J Neurol Surg A Cent Eur Neurosurg – volume: 24 start-page: 69 issue: 1 year: 2010 end-page: 74 article-title: Augmented reality neurosurgical planning and navigation for surgical excision of parasagittal, falcine and convexity meningiomas publication-title: Br J Neurosurg – start-page: 439 year: 1996 end-page: 446 – volume: 55 start-page: 124 year: 2015 end-page: 131 article-title: Development of a surgical navigation system based on augmented reality using an optical see‐through head‐mounted display publication-title: J Biomed Inform – volume: 128 start-page: 1580 issue: 6 year: 2019 end-page: 1593 article-title: GMS: grid‐based motion statistics for fast, ultra‐robust feature correspondence publication-title: Int J Comput Vis – start-page: 1 year: 2018 end-page: 8 article-title: A wearable mixed‐reality holographic computer for guiding external ventricular drain insertion at the bedside publication-title: J Neurosurg – ident: e_1_2_9_3_1 doi: 10.1007/s11060-010-0386-3 – ident: e_1_2_9_15_1 doi: 10.1109/ICCV.2011.6126544 – ident: e_1_2_9_27_1 doi: 10.1007/s10439-021-02834-8 – ident: e_1_2_9_7_1 doi: 10.1049/htl.2017.0062 – ident: e_1_2_9_11_1 doi: 10.1016/j.jbi.2015.04.003 – ident: e_1_2_9_18_1 doi: 10.1016/j.wneu.2015.09.091 – ident: e_1_2_9_5_1 doi: 10.3109/02688690903506093 – ident: e_1_2_9_23_1 doi: 10.1145/237170.237283 – ident: e_1_2_9_22_1 doi: 10.1007/BFb0047002 – ident: e_1_2_9_24_1 doi: 10.3390/s20051444 – ident: e_1_2_9_10_1 doi: 10.1055/s-0032-1333415 – ident: e_1_2_9_17_1 doi: 10.1007/s11263-019-01280-3 – ident: e_1_2_9_6_1 doi: 10.1007/s11060-016-2283-x – ident: e_1_2_9_25_1 doi: 10.1016/j.jcms.2014.09.001 – ident: e_1_2_9_28_1 doi: 10.1097/00020840-200502000-00008 – ident: e_1_2_9_29_1 doi: 10.1097/SCS.0000000000000633 – ident: e_1_2_9_19_1 doi: 10.3171/2014.9.JNS141001 – ident: e_1_2_9_4_1 doi: 10.2147/OTT.S162274 – ident: e_1_2_9_8_1 doi: 10.1007/s00586-019-06054-6 – ident: e_1_2_9_13_1 doi: 10.1007/s11263-008-0152-6 – ident: e_1_2_9_20_1 doi: 10.1007/s00701-013-1668-2 – ident: e_1_2_9_26_1 doi: 10.1093/ons/opx279 – ident: e_1_2_9_16_1 doi: 10.1109/ISMAR.2006.297795 – ident: e_1_2_9_30_1 doi: 10.1109/ISMAR.2007.4538837 – start-page: 1 year: 2018 ident: e_1_2_9_12_1 article-title: A wearable mixed‐reality holographic computer for guiding external ventricular drain insertion at the bedside publication-title: J Neurosurg contributor: fullname: Li Y – ident: e_1_2_9_14_1 doi: 10.1007/11744023_34 – ident: e_1_2_9_21_1 doi: 10.3171/2021.5.FOCUS21184 – ident: e_1_2_9_2_1 doi: 10.1016/j.crad.2017.05.002 – ident: e_1_2_9_9_1 doi: 10.1007/978-3-030-59716-0_7 |
SSID | ssj0045464 |
Score | 2.323436 |
Snippet | Background
The existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration,... The existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration, which... Abstract Background The existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model... BackgroundThe existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration,... BACKGROUNDThe existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration,... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | e2341 |
SubjectTerms | Augmented Reality Brain cancer camera pose estimation Cameras falx meningioma localization Humans Imaging, Three-Dimensional Localization Markers Meningeal Neoplasms Meningioma Monocular vision Neuronavigation registration Surgery, Computer-Assisted Tracking devices Vision, Monocular |
Title | Marker‐less augmented reality based on monocular vision for falx meningioma localization |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frcs.2341 https://www.ncbi.nlm.nih.gov/pubmed/34647683 https://www.proquest.com/docview/2618465965 https://search.proquest.com/docview/2582111438 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQT3Dg_2ehICMhbtnGju04R1SoKiQ4FCpVcIjG8ZgDbYK2uxLixCPwjDwJM06yUBAS4pSD4zjxzHg-OzPfCPHEmM5brGOhHWmwQWuLUHsovE3MLmWgAT7Qf_XaHR6blyf2ZIqq5FyYkR9ie-DGlpHXazZwCOd7P0lDV935Ulc5Z11VNUdzPT_aMkcZazJzlDK0SbKEImbe2VLvzR0veqI_4OVFtJrdzcE18X5-0THK5ONysw7L7stvHI7_9yXXxdUJhcpno9rcEJewvymu_MJNeEu84yweXH3_-u2UFkMJmw-ZvjNKQpkM3SX7vyiHXpIiDzmaVY6J6pJwsExw-llSD66HNJyBzD5zyvm8LY4PXrzdPyymQgxFV5lGFRVilyBFBY3qrAvau6YBjx4JnoCKZahDRO9soP2kj7YsU3IKLYCpkguxuiN2-qHHe0J6jKFTocSySSYmAxpB64QueQw1xIV4PAul_TTybbQjs7JuaZ5anqeF2J2l1U4WRw1cucbZxll6xLaZbIV_gECPw4bu4axgxQXfF-LuKOXtIBUpDG29qoV4mmX119Hbo_03fL3_rzc-EJc150zkUO9dsbNebfAhIZl1eJR19gdsdvKh |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5V5QAcKP9sKWAkxC3bxLG9jjihQrVA20NppQohRXY85kBJ0LIroZ76CDwjT8KMs1koCAlxysF2HHtmPJ8dzzcAT5RqrMZJyKQhDVaodeYn1mVWR2aXUq5yfKC_f2Cmx-r1iT5Zg2dDLEzPD7E6cGPLSOs1GzgfSG__ZA2dNV_GsuSg9Utk7SXnbXhxuOKOUlol7qhC0TZJE44YmGdzuT20vOiL_gCYF_Fqcji7G_B--NT-nsnH8WLux83ZbyyO_zmW63BtCUTF815zbsAatjfh6i_0hLfgHQfy4Oz7-bdTWg-FW3xIDJ5BENBk9C7YBQbRtYJ0uUsXWkUfqy4ICovoTr8KasEpkbpPTiS3uQz7vA3Huy-PdqbZMhdD1pSqKrISsYkuhsJVRaONl9ZUlbNokRCKK0LuJz6gNdrTltIGnecxmgK1c6qMxofyDqy3XYv3QFgMvil8jnkVVYjKSXRSRjTRop-4MILHg1Tqzz3lRt2TK8ua5qnmeRrB1iCueml0VMDJa4yujKZXrIrJXPgfiGuxW1AdDgwuOOf7CO72Yl51UpLG0O6rHMHTJKy_9l4f7rzl5-a_VnwEl6dH-3v13quDN_fhiuQQinTzewvW57MFPiBgM_cPkwL_AHs49rk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6hIiE48E9ZKGAkxC3bxLG9zhEVVuWvQoVKFRwiOx5zoE2q7a6EOPEIPCNPwoyTLBSEhDjl4DhOPDOez87MNwCPlGqsxlnIpCENVqh15mfWZVZHZpdSrnJ8oP96z-weqBeH-nCIquRcmJ4fYn3gxpaR1ms28JMQt3-Shi6a06ksOWf9vDIEfBkQ7a-po5RWiTqqULRL0gQjRuLZXG6PPc-6oj_w5Vm4mvzN_Ap8GN-0DzP5NF0t_bT58huJ4_99ylW4PMBQ8aTXm2twDtvrcOkXcsIb8J7TeHDx_eu3I1oNhVt9TPydQRDMZOwu2AEG0bWCNLlL4ayiz1QXBIRFdEefBfXggkjdsRPJaQ5JnzfhYP7s3c5uNlRiyJpSVUVWIjbRxVC4qmi08dKaqnIWLRI-cUXI_cwHtEZ72lDaoPM8RlOgdk6V0fhQ3oKNtmvxNgiLwTeFzzGvogpROYlOyogmWvQzFybwcBRKfdITbtQ9tbKsaZ5qnqcJbI3SqgeTowYuXWN0ZTQ9Yt1MxsJ_QFyL3Yru4bTggiu-T2Czl_J6kJIUhvZe5QQeJ1n9dfR6f-ctX-_8640P4MKbp_P61fO9l3fhouT8iRT2vQUby8UK7xGqWfr7SX1_AK_69Wg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Marker%E2%80%90less+augmented+reality+based+on+monocular+vision+for+falx+meningioma+localization&rft.jtitle=The+international+journal+of+medical+robotics+%2B+computer+assisted+surgery&rft.au=Yi%2C+Zongchao&rft.au=Deng%2C+Zhen&rft.au=Liu%2C+Yuqing&rft.au=He%2C+Bingwei&rft.date=2022-02-01&rft.issn=1478-5951&rft.eissn=1478-596X&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1002%2Frcs.2341&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rcs_2341 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1478-5951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1478-5951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1478-5951&client=summon |