Marker‐less augmented reality based on monocular vision for falx meningioma localization

Background The existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration, which causes excessive preparatory steps. Methods For fast and accurate intraoperative navigation, this work proposes a marker‐less AR system...

Full description

Saved in:
Bibliographic Details
Published inThe international journal of medical robotics + computer assisted surgery Vol. 18; no. 1; pp. e2341 - n/a
Main Authors Yi, Zongchao, Deng, Zhen, Liu, Yuqing, He, Bingwei, Huang, Shengyue, Hong, Wenyao, Shi, Jiafeng, Chen, Zhongyi
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.02.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Background The existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration, which causes excessive preparatory steps. Methods For fast and accurate intraoperative navigation, this work proposes a marker‐less AR system that tracks the head features with the monocular camera. After the semi‐automatic initialization process, the feature points between the captured image and the pre‐loaded keyframes are matched for obtaining correspondences. The camera pose is estimated by solving the Perspective‐n‐Point problem. Results The localization error of AR visualization on scalp and falx meningioma is 0.417 ± 0.057 and 1.413 ± 0.282 mm, respectively. The maximum localization error is less than 2 mm. The AR system is robust to occlusions and changes in viewpoint and scale. Conclusions We demonstrate that the developed system can successfully display the augmented falx meningioma with enough accuracy and provide guidance for neurosurgeons to locate the tumour in brain.
AbstractList Background The existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration, which causes excessive preparatory steps. Methods For fast and accurate intraoperative navigation, this work proposes a marker‐less AR system that tracks the head features with the monocular camera. After the semi‐automatic initialization process, the feature points between the captured image and the pre‐loaded keyframes are matched for obtaining correspondences. The camera pose is estimated by solving the Perspective‐n‐Point problem. Results The localization error of AR visualization on scalp and falx meningioma is 0.417 ± 0.057 and 1.413 ± 0.282 mm, respectively. The maximum localization error is less than 2 mm. The AR system is robust to occlusions and changes in viewpoint and scale. Conclusions We demonstrate that the developed system can successfully display the augmented falx meningioma with enough accuracy and provide guidance for neurosurgeons to locate the tumour in brain.
Abstract Background The existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration, which causes excessive preparatory steps. Methods For fast and accurate intraoperative navigation, this work proposes a marker‐less AR system that tracks the head features with the monocular camera. After the semi‐automatic initialization process, the feature points between the captured image and the pre‐loaded keyframes are matched for obtaining correspondences. The camera pose is estimated by solving the Perspective‐n‐Point problem. Results The localization error of AR visualization on scalp and falx meningioma is 0.417 ± 0.057 and 1.413 ± 0.282 mm, respectively. The maximum localization error is less than 2 mm. The AR system is robust to occlusions and changes in viewpoint and scale. Conclusions We demonstrate that the developed system can successfully display the augmented falx meningioma with enough accuracy and provide guidance for neurosurgeons to locate the tumour in brain.
BACKGROUNDThe existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration, which causes excessive preparatory steps. METHODSFor fast and accurate intraoperative navigation, this work proposes a marker-less AR system that tracks the head features with the monocular camera. After the semi-automatic initialization process, the feature points between the captured image and the pre-loaded keyframes are matched for obtaining correspondences. The camera pose is estimated by solving the Perspective-n-Point problem. RESULTSThe localization error of AR visualization on scalp and falx meningioma is 0.417 ± 0.057 and 1.413 ± 0.282 mm, respectively. The maximum localization error is less than 2 mm. The AR system is robust to occlusions and changes in viewpoint and scale. CONCLUSIONSWe demonstrate that the developed system can successfully display the augmented falx meningioma with enough accuracy and provide guidance for neurosurgeons to locate the tumour in brain.
The existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration, which causes excessive preparatory steps. For fast and accurate intraoperative navigation, this work proposes a marker-less AR system that tracks the head features with the monocular camera. After the semi-automatic initialization process, the feature points between the captured image and the pre-loaded keyframes are matched for obtaining correspondences. The camera pose is estimated by solving the Perspective-n-Point problem. The localization error of AR visualization on scalp and falx meningioma is 0.417 ± 0.057 and 1.413 ± 0.282 mm, respectively. The maximum localization error is less than 2 mm. The AR system is robust to occlusions and changes in viewpoint and scale. We demonstrate that the developed system can successfully display the augmented falx meningioma with enough accuracy and provide guidance for neurosurgeons to locate the tumour in brain.
Author Hong, Wenyao
He, Bingwei
Huang, Shengyue
Deng, Zhen
Liu, Yuqing
Shi, Jiafeng
Chen, Zhongyi
Yi, Zongchao
Author_xml – sequence: 1
  givenname: Zongchao
  orcidid: 0000-0003-1445-4620
  surname: Yi
  fullname: Yi, Zongchao
  organization: Fujian Engineering Research Center of Joint Intelligent Medical Engineering
– sequence: 2
  givenname: Zhen
  orcidid: 0000-0002-0240-0919
  surname: Deng
  fullname: Deng, Zhen
  organization: Fujian Engineering Research Center of Joint Intelligent Medical Engineering
– sequence: 3
  givenname: Yuqing
  surname: Liu
  fullname: Liu, Yuqing
  organization: Fujian Provincial Hospital
– sequence: 4
  givenname: Bingwei
  orcidid: 0000-0002-4386-8542
  surname: He
  fullname: He, Bingwei
  email: mebwhe@fzu.edu.cn
  organization: Fujian Engineering Research Center of Joint Intelligent Medical Engineering
– sequence: 5
  givenname: Shengyue
  surname: Huang
  fullname: Huang, Shengyue
  organization: Fujian Provincial Hospital
– sequence: 6
  givenname: Wenyao
  surname: Hong
  fullname: Hong, Wenyao
  organization: Fujian Provincial Hospital
– sequence: 7
  givenname: Jiafeng
  surname: Shi
  fullname: Shi, Jiafeng
  organization: Fujian Engineering Research Center of Joint Intelligent Medical Engineering
– sequence: 8
  givenname: Zhongyi
  surname: Chen
  fullname: Chen, Zhongyi
  organization: Fujian Provincial Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34647683$$D View this record in MEDLINE/PubMed
BookMark eNp1kN1KwzAUx4NMdJuCTyAFb7zpzGmTLL2U4RdMBD9AvAlpezo620aTVZ1XPoLP6JOYuakgeHXOSX7nx-HfI53GNEjIDtABUBod2MwNopjBGukCG8qQJ-K289Nz2CQ956aUMs4E2yCbsS9DIeMuuTvX9h7tx9t7hc4Fup3U2MwwDyzqqpzNg1Q7P5kmqE1jsrbSNngqXekfCmODQlcvgd8om0lpah1UJvNrr3rmgS2y7r8dbq9qn9wcH12PTsPxxcnZ6HAcZjFLIIwRs0IXOegEMi7SSIok0RIlAo005DQdpjlKwdNhBDLnlBaFAORas7gQaR73yf7S-2DNY4tupurSZVhVukHTOhVxGQEAi6VH9_6gU9Paxl-nIgGSCR8c_xVm1jhnsVAPtqy1nSugapG38nmrRd4e3V0J27TG_Af8DtgD4RJ4Liuc_ytSl6OrL-En34-NMQ
CitedBy_id crossref_primary_10_1227_ons_0000000000001026
crossref_primary_10_1227_ons_0000000000001009
Cites_doi 10.1007/s11060-010-0386-3
10.1109/ICCV.2011.6126544
10.1007/s10439-021-02834-8
10.1049/htl.2017.0062
10.1016/j.jbi.2015.04.003
10.1016/j.wneu.2015.09.091
10.3109/02688690903506093
10.1145/237170.237283
10.1007/BFb0047002
10.3390/s20051444
10.1055/s-0032-1333415
10.1007/s11263-019-01280-3
10.1007/s11060-016-2283-x
10.1016/j.jcms.2014.09.001
10.1097/00020840-200502000-00008
10.1097/SCS.0000000000000633
10.3171/2014.9.JNS141001
10.2147/OTT.S162274
10.1007/s00586-019-06054-6
10.1007/s11263-008-0152-6
10.1007/s00701-013-1668-2
10.1093/ons/opx279
10.1109/ISMAR.2006.297795
10.1109/ISMAR.2007.4538837
10.1007/11744023_34
10.3171/2021.5.FOCUS21184
10.1016/j.crad.2017.05.002
10.1007/978-3-030-59716-0_7
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2022 John Wiley & Sons Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2022 John Wiley & Sons Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
K9.
L7M
L~C
L~D
7X8
DOI 10.1002/rcs.2341
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE - Academic
Technology Research Database
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1478-596X
EndPage n/a
ExternalDocumentID 10_1002_rcs_2341
34647683
RCS2341
Genre article
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of Fujian Province
  funderid: 2019H0042; 2019I0023; 2020I0028; 2020J01455
– fundername: National Natural Science Foundation of China
  funderid: 62003089
– fundername: Natural Science Foundation of Fujian Province
  grantid: 2019H0042
– fundername: National Natural Science Foundation of China
  grantid: 62003089
– fundername: Natural Science Foundation of Fujian Province
  grantid: 2019I0023
– fundername: Natural Science Foundation of Fujian Province
  grantid: 2020I0028
– fundername: Natural Science Foundation of Fujian Province
  grantid: 2020J01455
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SJN
SUPJJ
SV3
TEORI
UB1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WOHZO
WQJ
WRC
WVDHM
WXI
WXSBR
XG1
XV2
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7SC
7SP
7TB
8FD
F28
FR3
JQ2
K9.
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c3491-3eecfafd1a91c56b28699a8e8e102a1d0b7bde865b7218d500ff61e5aa43f6bd3
IEDL.DBID DR2
ISSN 1478-5951
IngestDate Fri Aug 16 20:50:14 EDT 2024
Thu Oct 10 18:45:10 EDT 2024
Fri Aug 23 02:15:48 EDT 2024
Sat Sep 28 08:33:46 EDT 2024
Sat Aug 24 00:58:12 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords augmented reality
registration
camera pose estimation
falx meningioma localization
Language English
License 2021 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3491-3eecfafd1a91c56b28699a8e8e102a1d0b7bde865b7218d500ff61e5aa43f6bd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0240-0919
0000-0002-4386-8542
0000-0003-1445-4620
PMID 34647683
PQID 2618465965
PQPubID 1026349
PageCount 9
ParticipantIDs proquest_miscellaneous_2582111438
proquest_journals_2618465965
crossref_primary_10_1002_rcs_2341
pubmed_primary_34647683
wiley_primary_10_1002_rcs_2341_RCS2341
PublicationCentury 2000
PublicationDate February 2022
2022-Feb
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Hamilton
PublicationTitle The international journal of medical robotics + computer assisted surgery
PublicationTitleAlternate Int J Med Robot
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 99
2021; 49
2017; 4
2009; 81
2020; 20
2011
2015; 123
2015; 55
1996
2014; 25
2007
2006
2019; 128
2021; 51
2014; 42
2017; 72
2010; 24
2020
2013; 74
2013; 155
2018
2016; 85
2018; 11
2016; 130
2018; 15
2005; 13
2020; 29
e_1_2_9_30_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
Li Y (e_1_2_9_12_1) 2018
References_xml – start-page: 56
  year: 2006
  end-page: 65
– volume: 72
  start-page: 722
  issue: 9
  year: 2017
  end-page: 728
  article-title: Meningioma mimics: five key imaging features to differentiate them from meningiomas
  publication-title: Clin Radiol
– volume: 29
  start-page: 1580
  issue: 7
  year: 2020
  end-page: 1589
  article-title: Augmented reality and artificial intelligence‐based navigation during percutaneous vertebroplasty: a pilot randomised clinical trial
  publication-title: Eur Spine J
– start-page: 591
  year: 1996
  end-page: 600
– volume: 20
  start-page: 1444
  issue: 5
  year: 2020
  article-title: Ambiguity‐free optical–inertial tracking for augmented reality headsets
  publication-title: Sensors
– volume: 4
  start-page: 188
  issue: 5
  year: 2017
  end-page: 192
  article-title: Quantifying attention shifts in augmented reality image‐guided neurosurgery
  publication-title: Healthc Technol Lett
– start-page: 430
  year: 2006
  end-page: 443
– volume: 42
  start-page: 1970
  issue: 8
  year: 2014
  end-page: 1976
  article-title: Augmented reality as an aid in maxillofacial surgery: validation of a wearable system allowing maxillary repositioning
  publication-title: J Craniomaxillofac Surg
– volume: 49
  start-page: 2590
  issue: 9
  year: 2021
  end-page: 2605
  article-title: Evaluation of a wearable AR platform for guiding complex craniotomies in neurosurgery
  publication-title: Ann Biomed Eng
– volume: 11
  start-page: 5279
  year: 2018
  end-page: 5285
  article-title: Microsurgical treatment of parafalcine meningiomas: a retrospective study of 126 cases
  publication-title: Onco Targets Ther
– volume: 123
  start-page: 206
  issue: 1
  year: 2015
  end-page: 211
  article-title: Augmented reality‐guided neurosurgery: accuracy and intraoperative application of an image projection technique
  publication-title: J Neurosurg
– volume: 15
  start-page: 551
  issue: 5
  year: 2018
  end-page: 556
  article-title: Smart glasses for neurosurgical navigation by augmented reality
  publication-title: Oper Neurosurg (Hagerstown)
– start-page: 129
  year: 2007
  end-page: 138
– volume: 130
  start-page: 253
  issue: 2
  year: 2016
  end-page: 262
  article-title: Resection of falx and parasagittal meningioma: complication avoidance
  publication-title: J Neurooncol
– volume: 51
  start-page: E21
  issue: 2
  year: 2021
  article-title: Development of an inside‐out augmented reality technique for neurosurgical navigation
  publication-title: Neurosurg Focus
– start-page: 2564
  year: 2011
  end-page: 2571
– volume: 85
  start-page: 359
  year: 2016
  end-page: 363
  article-title: A smartphone app to assist scalp localization of superficial supratentorial lesions‐‐technical note
  publication-title: World Neurosurg
– volume: 13
  start-page: 27
  issue: 1
  year: 2005
  end-page: 31
  article-title: Image‐guided surgery: what is the accuracy?
  publication-title: Curr Opin Otolaryngol Head Neck Surg
– volume: 25
  start-page: 1095
  issue: 3
  year: 2014
  end-page: 1099
  article-title: The accuracy of image‐guided navigation for maxillary positioning in bimaxillary surgery
  publication-title: J Craniofacial Surg
– volume: 81
  start-page: 155
  issue: 2
  year: 2009
  end-page: 166
  article-title: Epnp: an accurate o (n) solution to the pnp problem
  publication-title: Int J Comput Vis
– volume: 155
  start-page: 943
  issue: 5
  year: 2013
  end-page: 947
  article-title: A novel augmented reality system of image projection for image‐guided neurosurgery
  publication-title: Acta Neurochir (Wien)
– volume: 99
  start-page: 307
  issue: 3
  year: 2010
  end-page: 314
  article-title: Epidemiology and etiology of meningioma
  publication-title: J Neurooncol
– start-page: 65
  year: 2020
  end-page: 75
– volume: 74
  start-page: 71
  issue: 2
  year: 2013
  end-page: 76
  article-title: Preliminary study on the clinical application of augmented reality neuronavigation
  publication-title: J Neurol Surg A Cent Eur Neurosurg
– volume: 24
  start-page: 69
  issue: 1
  year: 2010
  end-page: 74
  article-title: Augmented reality neurosurgical planning and navigation for surgical excision of parasagittal, falcine and convexity meningiomas
  publication-title: Br J Neurosurg
– start-page: 439
  year: 1996
  end-page: 446
– volume: 55
  start-page: 124
  year: 2015
  end-page: 131
  article-title: Development of a surgical navigation system based on augmented reality using an optical see‐through head‐mounted display
  publication-title: J Biomed Inform
– volume: 128
  start-page: 1580
  issue: 6
  year: 2019
  end-page: 1593
  article-title: GMS: grid‐based motion statistics for fast, ultra‐robust feature correspondence
  publication-title: Int J Comput Vis
– start-page: 1
  year: 2018
  end-page: 8
  article-title: A wearable mixed‐reality holographic computer for guiding external ventricular drain insertion at the bedside
  publication-title: J Neurosurg
– ident: e_1_2_9_3_1
  doi: 10.1007/s11060-010-0386-3
– ident: e_1_2_9_15_1
  doi: 10.1109/ICCV.2011.6126544
– ident: e_1_2_9_27_1
  doi: 10.1007/s10439-021-02834-8
– ident: e_1_2_9_7_1
  doi: 10.1049/htl.2017.0062
– ident: e_1_2_9_11_1
  doi: 10.1016/j.jbi.2015.04.003
– ident: e_1_2_9_18_1
  doi: 10.1016/j.wneu.2015.09.091
– ident: e_1_2_9_5_1
  doi: 10.3109/02688690903506093
– ident: e_1_2_9_23_1
  doi: 10.1145/237170.237283
– ident: e_1_2_9_22_1
  doi: 10.1007/BFb0047002
– ident: e_1_2_9_24_1
  doi: 10.3390/s20051444
– ident: e_1_2_9_10_1
  doi: 10.1055/s-0032-1333415
– ident: e_1_2_9_17_1
  doi: 10.1007/s11263-019-01280-3
– ident: e_1_2_9_6_1
  doi: 10.1007/s11060-016-2283-x
– ident: e_1_2_9_25_1
  doi: 10.1016/j.jcms.2014.09.001
– ident: e_1_2_9_28_1
  doi: 10.1097/00020840-200502000-00008
– ident: e_1_2_9_29_1
  doi: 10.1097/SCS.0000000000000633
– ident: e_1_2_9_19_1
  doi: 10.3171/2014.9.JNS141001
– ident: e_1_2_9_4_1
  doi: 10.2147/OTT.S162274
– ident: e_1_2_9_8_1
  doi: 10.1007/s00586-019-06054-6
– ident: e_1_2_9_13_1
  doi: 10.1007/s11263-008-0152-6
– ident: e_1_2_9_20_1
  doi: 10.1007/s00701-013-1668-2
– ident: e_1_2_9_26_1
  doi: 10.1093/ons/opx279
– ident: e_1_2_9_16_1
  doi: 10.1109/ISMAR.2006.297795
– ident: e_1_2_9_30_1
  doi: 10.1109/ISMAR.2007.4538837
– start-page: 1
  year: 2018
  ident: e_1_2_9_12_1
  article-title: A wearable mixed‐reality holographic computer for guiding external ventricular drain insertion at the bedside
  publication-title: J Neurosurg
  contributor:
    fullname: Li Y
– ident: e_1_2_9_14_1
  doi: 10.1007/11744023_34
– ident: e_1_2_9_21_1
  doi: 10.3171/2021.5.FOCUS21184
– ident: e_1_2_9_2_1
  doi: 10.1016/j.crad.2017.05.002
– ident: e_1_2_9_9_1
  doi: 10.1007/978-3-030-59716-0_7
SSID ssj0045464
Score 2.323436
Snippet Background The existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration,...
The existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration, which...
Abstract Background The existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model...
BackgroundThe existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration,...
BACKGROUNDThe existing augmented reality (AR) based neuronavigation systems typically require markers and additional tracking devices for model registration,...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e2341
SubjectTerms Augmented Reality
Brain cancer
camera pose estimation
Cameras
falx meningioma localization
Humans
Imaging, Three-Dimensional
Localization
Markers
Meningeal Neoplasms
Meningioma
Monocular vision
Neuronavigation
registration
Surgery, Computer-Assisted
Tracking devices
Vision, Monocular
Title Marker‐less augmented reality based on monocular vision for falx meningioma localization
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Frcs.2341
https://www.ncbi.nlm.nih.gov/pubmed/34647683
https://www.proquest.com/docview/2618465965
https://search.proquest.com/docview/2582111438
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQT3Dg_2ehICMhbtnGju04R1SoKiQ4FCpVcIjG8ZgDbYK2uxLixCPwjDwJM06yUBAS4pSD4zjxzHg-OzPfCPHEmM5brGOhHWmwQWuLUHsovE3MLmWgAT7Qf_XaHR6blyf2ZIqq5FyYkR9ie-DGlpHXazZwCOd7P0lDV935Ulc5Z11VNUdzPT_aMkcZazJzlDK0SbKEImbe2VLvzR0veqI_4OVFtJrdzcE18X5-0THK5ONysw7L7stvHI7_9yXXxdUJhcpno9rcEJewvymu_MJNeEu84yweXH3_-u2UFkMJmw-ZvjNKQpkM3SX7vyiHXpIiDzmaVY6J6pJwsExw-llSD66HNJyBzD5zyvm8LY4PXrzdPyymQgxFV5lGFRVilyBFBY3qrAvau6YBjx4JnoCKZahDRO9soP2kj7YsU3IKLYCpkguxuiN2-qHHe0J6jKFTocSySSYmAxpB64QueQw1xIV4PAul_TTybbQjs7JuaZ5anqeF2J2l1U4WRw1cucbZxll6xLaZbIV_gECPw4bu4axgxQXfF-LuKOXtIBUpDG29qoV4mmX119Hbo_03fL3_rzc-EJc150zkUO9dsbNebfAhIZl1eJR19gdsdvKh
link.rule.ids 315,783,787,1378,27936,27937,46306,46730
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB5V5QAcKP9sKWAkxC3bxLG9jjihQrVA20NppQohRXY85kBJ0LIroZ76CDwjT8KMs1koCAlxysF2HHtmPJ8dzzcAT5RqrMZJyKQhDVaodeYn1mVWR2aXUq5yfKC_f2Cmx-r1iT5Zg2dDLEzPD7E6cGPLSOs1GzgfSG__ZA2dNV_GsuSg9Utk7SXnbXhxuOKOUlol7qhC0TZJE44YmGdzuT20vOiL_gCYF_Fqcji7G_B--NT-nsnH8WLux83ZbyyO_zmW63BtCUTF815zbsAatjfh6i_0hLfgHQfy4Oz7-bdTWg-FW3xIDJ5BENBk9C7YBQbRtYJ0uUsXWkUfqy4ICovoTr8KasEpkbpPTiS3uQz7vA3Huy-PdqbZMhdD1pSqKrISsYkuhsJVRaONl9ZUlbNokRCKK0LuJz6gNdrTltIGnecxmgK1c6qMxofyDqy3XYv3QFgMvil8jnkVVYjKSXRSRjTRop-4MILHg1Tqzz3lRt2TK8ua5qnmeRrB1iCueml0VMDJa4yujKZXrIrJXPgfiGuxW1AdDgwuOOf7CO72Yl51UpLG0O6rHMHTJKy_9l4f7rzl5-a_VnwEl6dH-3v13quDN_fhiuQQinTzewvW57MFPiBgM_cPkwL_AHs49rk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwEB6hIiE48E9ZKGAkxC3bxLG9zhEVVuWvQoVKFRwiOx5zoE2q7a6EOPEIPCNPwoyTLBSEhDjl4DhOPDOez87MNwCPlGqsxlnIpCENVqh15mfWZVZHZpdSrnJ8oP96z-weqBeH-nCIquRcmJ4fYn3gxpaR1ms28JMQt3-Shi6a06ksOWf9vDIEfBkQ7a-po5RWiTqqULRL0gQjRuLZXG6PPc-6oj_w5Vm4mvzN_Ap8GN-0DzP5NF0t_bT58huJ4_99ylW4PMBQ8aTXm2twDtvrcOkXcsIb8J7TeHDx_eu3I1oNhVt9TPydQRDMZOwu2AEG0bWCNLlL4ayiz1QXBIRFdEefBfXggkjdsRPJaQ5JnzfhYP7s3c5uNlRiyJpSVUVWIjbRxVC4qmi08dKaqnIWLRI-cUXI_cwHtEZ72lDaoPM8RlOgdk6V0fhQ3oKNtmvxNgiLwTeFzzGvogpROYlOyogmWvQzFybwcBRKfdITbtQ9tbKsaZ5qnqcJbI3SqgeTowYuXWN0ZTQ9Yt1MxsJ_QFyL3Yru4bTggiu-T2Czl_J6kJIUhvZe5QQeJ1n9dfR6f-ctX-_8640P4MKbp_P61fO9l3fhouT8iRT2vQUby8UK7xGqWfr7SX1_AK_69Wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Marker%E2%80%90less+augmented+reality+based+on+monocular+vision+for+falx+meningioma+localization&rft.jtitle=The+international+journal+of+medical+robotics+%2B+computer+assisted+surgery&rft.au=Yi%2C+Zongchao&rft.au=Deng%2C+Zhen&rft.au=Liu%2C+Yuqing&rft.au=He%2C+Bingwei&rft.date=2022-02-01&rft.issn=1478-5951&rft.eissn=1478-596X&rft.volume=18&rft.issue=1&rft_id=info:doi/10.1002%2Frcs.2341&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_rcs_2341
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1478-5951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1478-5951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1478-5951&client=summon