Conditional validation sampling for consistent risk estimation with binary outcome data subject to misclassification

Purpose Misclassification of a binary outcome can introduce bias in estimation of the odds‐ratio associated with an exposure of interest in pharmacoepidemiology research. It has been previously demonstrated that utilizing information from an internal randomly selected validation sample can help miti...

Full description

Saved in:
Bibliographic Details
Published inPharmacoepidemiology and drug safety Vol. 28; no. 2; pp. 227 - 233
Main Authors Gravel, Christopher A., Farrell, Patrick J., Krewski, Daniel
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 01.02.2019
Subjects
Online AccessGet full text
ISSN1053-8569
1099-1557
1099-1557
DOI10.1002/pds.4701

Cover

Loading…
Abstract Purpose Misclassification of a binary outcome can introduce bias in estimation of the odds‐ratio associated with an exposure of interest in pharmacoepidemiology research. It has been previously demonstrated that utilizing information from an internal randomly selected validation sample can help mitigate this bias. Methods Using a Monte Carlo simulation‐based approach, we study the properties of misclassification bias‐adjusted odds‐ratio estimators in a contingency table setting. We consider two methods of internal validation sampling; namely, simple random sampling and sampling conditional on the original (possibly incorrect) outcome status. Additional simulation studies are conducted to investigate these sampling approaches in a multi‐table setting. Results We demonstrate that conditional validation sampling, across a range of subsampling fractions, can produce better estimates than those based on an unconditional simple random sample. This approach allows for greater flexibility in the chosen categorical composition of the validation data, as well as the potential for obtaining a more efficient estimator of the odds‐ratio. We further demonstrate that this relationship holds for the Mantel‐Haenszel misclassification bias‐adjusted odds‐ratio in stratified samples. Recommendations for the choice of validation subsampling fraction are also provided. Conclusions Careful consideration when choosing the sampling scheme used to draw internal validation samples can improve the properties of the outcome misclassification bias‐adjusted odds‐ratio estimator in a (multiple) contingency table.
AbstractList Purpose Misclassification of a binary outcome can introduce bias in estimation of the odds‐ratio associated with an exposure of interest in pharmacoepidemiology research. It has been previously demonstrated that utilizing information from an internal randomly selected validation sample can help mitigate this bias. Methods Using a Monte Carlo simulation‐based approach, we study the properties of misclassification bias‐adjusted odds‐ratio estimators in a contingency table setting. We consider two methods of internal validation sampling; namely, simple random sampling and sampling conditional on the original (possibly incorrect) outcome status. Additional simulation studies are conducted to investigate these sampling approaches in a multi‐table setting. Results We demonstrate that conditional validation sampling, across a range of subsampling fractions, can produce better estimates than those based on an unconditional simple random sample. This approach allows for greater flexibility in the chosen categorical composition of the validation data, as well as the potential for obtaining a more efficient estimator of the odds‐ratio. We further demonstrate that this relationship holds for the Mantel‐Haenszel misclassification bias‐adjusted odds‐ratio in stratified samples. Recommendations for the choice of validation subsampling fraction are also provided. Conclusions Careful consideration when choosing the sampling scheme used to draw internal validation samples can improve the properties of the outcome misclassification bias‐adjusted odds‐ratio estimator in a (multiple) contingency table.
PurposeMisclassification of a binary outcome can introduce bias in estimation of the odds‐ratio associated with an exposure of interest in pharmacoepidemiology research. It has been previously demonstrated that utilizing information from an internal randomly selected validation sample can help mitigate this bias.MethodsUsing a Monte Carlo simulation‐based approach, we study the properties of misclassification bias‐adjusted odds‐ratio estimators in a contingency table setting. We consider two methods of internal validation sampling; namely, simple random sampling and sampling conditional on the original (possibly incorrect) outcome status. Additional simulation studies are conducted to investigate these sampling approaches in a multi‐table setting.ResultsWe demonstrate that conditional validation sampling, across a range of subsampling fractions, can produce better estimates than those based on an unconditional simple random sample. This approach allows for greater flexibility in the chosen categorical composition of the validation data, as well as the potential for obtaining a more efficient estimator of the odds‐ratio. We further demonstrate that this relationship holds for the Mantel‐Haenszel misclassification bias‐adjusted odds‐ratio in stratified samples. Recommendations for the choice of validation subsampling fraction are also provided.ConclusionsCareful consideration when choosing the sampling scheme used to draw internal validation samples can improve the properties of the outcome misclassification bias‐adjusted odds‐ratio estimator in a (multiple) contingency table.
Misclassification of a binary outcome can introduce bias in estimation of the odds-ratio associated with an exposure of interest in pharmacoepidemiology research. It has been previously demonstrated that utilizing information from an internal randomly selected validation sample can help mitigate this bias. Using a Monte Carlo simulation-based approach, we study the properties of misclassification bias-adjusted odds-ratio estimators in a contingency table setting. We consider two methods of internal validation sampling; namely, simple random sampling and sampling conditional on the original (possibly incorrect) outcome status. Additional simulation studies are conducted to investigate these sampling approaches in a multi-table setting. We demonstrate that conditional validation sampling, across a range of subsampling fractions, can produce better estimates than those based on an unconditional simple random sample. This approach allows for greater flexibility in the chosen categorical composition of the validation data, as well as the potential for obtaining a more efficient estimator of the odds-ratio. We further demonstrate that this relationship holds for the Mantel-Haenszel misclassification bias-adjusted odds-ratio in stratified samples. Recommendations for the choice of validation subsampling fraction are also provided. Careful consideration when choosing the sampling scheme used to draw internal validation samples can improve the properties of the outcome misclassification bias-adjusted odds-ratio estimator in a (multiple) contingency table.
Misclassification of a binary outcome can introduce bias in estimation of the odds-ratio associated with an exposure of interest in pharmacoepidemiology research. It has been previously demonstrated that utilizing information from an internal randomly selected validation sample can help mitigate this bias.PURPOSEMisclassification of a binary outcome can introduce bias in estimation of the odds-ratio associated with an exposure of interest in pharmacoepidemiology research. It has been previously demonstrated that utilizing information from an internal randomly selected validation sample can help mitigate this bias.Using a Monte Carlo simulation-based approach, we study the properties of misclassification bias-adjusted odds-ratio estimators in a contingency table setting. We consider two methods of internal validation sampling; namely, simple random sampling and sampling conditional on the original (possibly incorrect) outcome status. Additional simulation studies are conducted to investigate these sampling approaches in a multi-table setting.METHODSUsing a Monte Carlo simulation-based approach, we study the properties of misclassification bias-adjusted odds-ratio estimators in a contingency table setting. We consider two methods of internal validation sampling; namely, simple random sampling and sampling conditional on the original (possibly incorrect) outcome status. Additional simulation studies are conducted to investigate these sampling approaches in a multi-table setting.We demonstrate that conditional validation sampling, across a range of subsampling fractions, can produce better estimates than those based on an unconditional simple random sample. This approach allows for greater flexibility in the chosen categorical composition of the validation data, as well as the potential for obtaining a more efficient estimator of the odds-ratio. We further demonstrate that this relationship holds for the Mantel-Haenszel misclassification bias-adjusted odds-ratio in stratified samples. Recommendations for the choice of validation subsampling fraction are also provided.RESULTSWe demonstrate that conditional validation sampling, across a range of subsampling fractions, can produce better estimates than those based on an unconditional simple random sample. This approach allows for greater flexibility in the chosen categorical composition of the validation data, as well as the potential for obtaining a more efficient estimator of the odds-ratio. We further demonstrate that this relationship holds for the Mantel-Haenszel misclassification bias-adjusted odds-ratio in stratified samples. Recommendations for the choice of validation subsampling fraction are also provided.Careful consideration when choosing the sampling scheme used to draw internal validation samples can improve the properties of the outcome misclassification bias-adjusted odds-ratio estimator in a (multiple) contingency table.CONCLUSIONSCareful consideration when choosing the sampling scheme used to draw internal validation samples can improve the properties of the outcome misclassification bias-adjusted odds-ratio estimator in a (multiple) contingency table.
Author Krewski, Daniel
Gravel, Christopher A.
Farrell, Patrick J.
Author_xml – sequence: 1
  givenname: Christopher A.
  orcidid: 0000-0002-7780-3392
  surname: Gravel
  fullname: Gravel, Christopher A.
  email: christopher.gravel2@mail.mcgill.ca
  organization: Risk Sciences International
– sequence: 2
  givenname: Patrick J.
  surname: Farrell
  fullname: Farrell, Patrick J.
  organization: University of Ottawa
– sequence: 3
  givenname: Daniel
  surname: Krewski
  fullname: Krewski, Daniel
  organization: Risk Sciences International
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30746841$$D View this record in MEDLINE/PubMed
BookMark eNp1kV1rHCEYhaUkNMm20F8QhN7kZrY66sx4GTbNBwQaSHotjjqtW0c36jTsv4-zm7QQ2isVn_dw3nNOwIEP3gDwCaMlRqj-stFpSVuE34FjjDivMGPtwXxnpOpYw4_ASUprhMofp-_BEUEtbTqKj0FeBa9ttsFLB39LZ7WcHzDJceOs_wGHEKEKPtmUjc8w2vQLmpTtuOeebP4Je-tl3MIwZRVGA4uEhGnq10ZlmAMcbVJOpmQHq3ZTH8DhIF0yH1_OBfh--fVhdV3dfru6WZ3fVopQjiuimeaGGsZ6zpsWK8MQ1ZQzYhrcI0U1bqgZ2obJrqeyG1CvDdN1rYkcWkTJApztdTcxPE7FtZitGOekN2FKoq5rjjpKSkwL8PkNug5TLKEUivCON5zhtlCnL9TUj0aLTSw5xK14zbMAyz2gYkgpmkEom3c75yitExiJuTBRChNzYX8t_hl41fwHWu3RJ-vM9r-cuLu43_HPViul3w
CitedBy_id crossref_primary_10_1002_pds_5537
crossref_primary_10_1097_EDE_0000000000001717
crossref_primary_10_1002_pds_5601
crossref_primary_10_1097_EDE_0000000000001253
Cites_doi 10.2307/2531052
10.1515/em-2013-0008
10.1002/0471249688
10.1016/j.annepidem.2013.02.005
10.1016/j.jspi.2007.06.012
10.1111/j.0006-341X.2002.1034_1.x
10.1186/1471-2334-13-171
10.1093/ije/dyu149
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
K9.
7X8
DOI 10.1002/pds.4701
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList
ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1099-1557
EndPage 233
ExternalDocumentID 30746841
10_1002_pds_4701
PDS4701
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Mitacs
  funderid: IT02782
– fundername: Natural Sciences and Engineering Research Council (NSERC) of Canada
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
GWYGA
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LSO
LUTES
LW6
LYRES
M6Q
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
UB1
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WWP
WXI
WXSBR
XG1
XV2
YCJ
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c3491-3d5d9e4e55b99671ce504d4953e61b0c4d164ef765a8b4a8f0bde5d22d3af7043
IEDL.DBID DR2
ISSN 1053-8569
1099-1557
IngestDate Thu Jul 10 22:38:34 EDT 2025
Fri Jul 25 18:54:34 EDT 2025
Wed Feb 19 02:30:52 EST 2025
Tue Jul 01 04:29:22 EDT 2025
Thu Apr 24 23:05:12 EDT 2025
Wed Jan 22 16:15:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords contingency tables
validation sampling
misclassification bias
misclassified binary data
pharmacoepidemiology
Language English
License 2019 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3491-3d5d9e4e55b99671ce504d4953e61b0c4d164ef765a8b4a8f0bde5d22d3af7043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7780-3392
PMID 30746841
PQID 2398969517
PQPubID 105383
PageCount 7
ParticipantIDs proquest_miscellaneous_2229084305
proquest_journals_2398969517
pubmed_primary_30746841
crossref_citationtrail_10_1002_pds_4701
crossref_primary_10_1002_pds_4701
wiley_primary_10_1002_pds_4701_PDS4701
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2019
2019-02-00
20190201
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: February 2019
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Bethesda
PublicationTitle Pharmacoepidemiology and drug safety
PublicationTitleAlternate Pharmacoepidemiol Drug Saf
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2002; 58
2008; 138
2015
2002
2013; 2
1986; 42
2013; 13
2013; 23
1959; 22
2014; 43
e_1_2_11_6_1
e_1_2_11_5_1
e_1_2_11_4_1
e_1_2_11_3_1
e_1_2_11_2_1
Mantel N (e_1_2_11_7_1) 1959; 22
e_1_2_11_10_1
e_1_2_11_9_1
e_1_2_11_8_1
e_1_2_11_11_1
References_xml – volume: 43
  start-page: 1969
  issue: 6
  year: 2014
  end-page: 1985
  article-title: Good practices for quantitative bias analysis
  publication-title: Int J Epidemiol
– volume: 22
  start-page: 719
  issue: 4
  year: 1959
  end-page: 748
  article-title: Statistical aspects of the analysis of data from retrospective studies of disease
  publication-title: JNCI
– volume: 42
  start-page: 311
  issue: 2
  year: 1986
  end-page: 323
  article-title: Estimators of the Mantel‐Haenszel variance consistent in both sparse data and large‐strata limiting models
  publication-title: Biometrics
– volume: 2
  start-page: 49
  issue: 1
  year: 2013
  end-page: 66
  article-title: Extended matrix and inverse matrix methods utilizing internal validation data when both disease and exposure status are misclassified
  publication-title: Epidemiol Methods
– volume: 58
  start-page: 1034
  issue: 4
  year: 2002
  end-page: 1037
  article-title: Note on estimating crude odds ratios in case‐control studies with differentially misclassified exposure
  publication-title: Biometrics
– volume: 13
  start-page: 171
  issue: 1
  year: 2013
  article-title: Use of electronic health record data to identify skin and soft tissue infections in primary care settings: a validation study
  publication-title: BMC Infect Dis
– year: 2002
– volume: 23
  start-page: 291
  issue: 5
  year: 2013
  end-page: 293
  article-title: Accuracy of ICD‐9‐CM codes in identifying infections of pneumonia and herpes simplex virus in administrative data
  publication-title: Ann Epidemiol
– year: 2015
– volume: 138
  start-page: 528
  issue: 2
  year: 2008
  end-page: 538
  article-title: Maximum‐likelihood and closed‐form estimators of epidemiologic measures under misclassification
  publication-title: J Statist Plann Inference
– ident: e_1_2_11_10_1
  doi: 10.2307/2531052
– ident: e_1_2_11_11_1
  doi: 10.1515/em-2013-0008
– ident: e_1_2_11_9_1
  doi: 10.1002/0471249688
– ident: e_1_2_11_3_1
  doi: 10.1016/j.annepidem.2013.02.005
– volume: 22
  start-page: 719
  issue: 4
  year: 1959
  ident: e_1_2_11_7_1
  article-title: Statistical aspects of the analysis of data from retrospective studies of disease
  publication-title: JNCI
– ident: e_1_2_11_5_1
  doi: 10.1016/j.jspi.2007.06.012
– ident: e_1_2_11_6_1
  doi: 10.1111/j.0006-341X.2002.1034_1.x
– ident: e_1_2_11_4_1
  doi: 10.1186/1471-2334-13-171
– ident: e_1_2_11_8_1
– ident: e_1_2_11_2_1
  doi: 10.1093/ije/dyu149
SSID ssj0009994
Score 2.2429726
Snippet Purpose Misclassification of a binary outcome can introduce bias in estimation of the odds‐ratio associated with an exposure of interest in...
Misclassification of a binary outcome can introduce bias in estimation of the odds-ratio associated with an exposure of interest in pharmacoepidemiology...
PurposeMisclassification of a binary outcome can introduce bias in estimation of the odds‐ratio associated with an exposure of interest in pharmacoepidemiology...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 227
SubjectTerms Bias
Computer Simulation
Contingency tables
Data Accuracy
Data Interpretation, Statistical
Information processing
Logistic Models
misclassification bias
misclassified binary data
Monte Carlo Method
Monte Carlo simulation
Odds Ratio
Outcome Assessment, Health Care - methods
pharmacoepidemiology
Pharmacoepidemiology - methods
Risk Assessment
Statistical analysis
Statistical sampling
validation sampling
Validation Studies as Topic
Title Conditional validation sampling for consistent risk estimation with binary outcome data subject to misclassification
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpds.4701
https://www.ncbi.nlm.nih.gov/pubmed/30746841
https://www.proquest.com/docview/2398969517
https://www.proquest.com/docview/2229084305
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9VAFB6kKzfWR61Xq5xCuW6a2zxmMpmlqKUIykVbKHQR5hUpldxikkX99Z4zk9xLtYJ0lUXmkUy-yXyZfOc7jB24rDR55WzCESwJdwVPlPQmEVaLQnufNSFryecv5ckZ_3QuzkdVJcXCRH-I9YYbzYzwvqYJrk13tDENvXbdgssQukVSLeJDXzfOUch7wg9lxFhSiVJNvrNpfjRVvL0S_UUvb7PVsNwcb7OL6UKjyuRqMfRmYX_94eF4vzt5zB6NLBTeRdg8YQ98-5TNl9HG-uYQTjdRWd0hzGG5Mbi-ecYoR7W7jJuIgEi9jHmZoNMkT2-_AxJhsKS8RQi1PZB8HcjNI4ZJAu39ggmBwLAaerxcD6RUhW4wtC0E_QoQfpaIPSmZQq0ddnb88fT9STJmb0hswVWWFE445bkXwuA3lcysFyl3JGf1ZWZSyxEm3DeyFLoyXFdNapwXLs9doRuZ8uI522pXrX_BgDdSeimVzwrNSXSmuGxkpqRunEYSMmNvpydZ29HanDJs_KijKXNe4xDXNMQztr8ueR3tPO4oszeBoR4ndFeTTaIqkY5KbGJ9msaCRGqtXw1YhrzzK_JQm7HdCKJ1JwXldak4Nj4PUPhn7_Xywzc6vvzfgq_YQyRxKirJ99hW_3Pwr5Eo9eZNmBK_AbKNEqc
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcoAL39AtBQYJLZdmNx92HIsTAqoF2moFW6kHpMiOnaqiylYkOZRfz4y92VX5kBCnHOLYifOcvEzevGHspU1ykxa2ijiCJeI245GSzkSi0iLTziW1r1pydJzPTvjHU3G6xV4PuTDBH2IdcKOV4Z_XtMApID3duIZe2nbCJeVu3aCC3v576vPGOwqZj_-ljCiLCpGrwXk2TqfDkdffRb8RzOt81b9wDu6wr8OpBp3Jt0nfmUn14xcXx_-8lrvs9oqIwpuAnHtsyzX32XgenKyv9mGxScxq92EM843H9dUDRmWq7XmIIwKC9TyUZoJWk0K9OQPkwlCR-BZR1HRACnYgQ4-QKQkU_gXjc4Fh2Xd4vg5IrAptbygyBN0SEIEVcXsSM_mjHrKTg_eLt7NoVcAhqjKukiizwirHnRAGP6tkUjkRc0uKVpcnJq44IoW7WuZCF4broo6NdcKmqc10LWOePWLbzbJxOwx4LaWTUrkk05x0Z4rLWiZK6tpq5CEj9mq4lWW1cjenIhsXZfBlTkuc4pKmeMRerFteBkePP7TZG9BQrtZ0W5JTosqRkUrsYr2b5oJ0ao1b9tiG7PMLslEbsccBRetBMirtUnDsfOyx8NfRy_m7L7Td_deGz9nN2eLosDz8cPzpCbuFnE4FYfke2-6-9-4p8qbOPPPr4ye8FhbC
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZQkRAXduiUAg8JDZdmmsWO4yNiGJWtGkErVeIQeQuqQJlRkxzKr-e9OJlRWSTEKYd4SZzP8Rfne99j7IVLcpMWzkYcwRJxl_FISW8iYbXItPdJ1Wct-XicH53yd2fibFBVUixM8IfYbLjRzOjf1zTB16463JqGrl0z45JCt67zPC4I0fNPW-soJD79H2UEWVSIXI3Gs3F6ONa8uhT9xi-v0tV-vVncZl_GKw0yk2-zrjUz--MXE8f_u5U77NZAQ-FVwM1dds3X99h0GXysLw_gZBuW1RzAFJZbh-vL-4ySVLvzsIsICNXzkJgJGk369PorIBMGS9JbxFDdAunXgew8Qpwk0OYvmD4SGFZdi5frgaSq0HSG9oWgXQHizxKzJylTX-sBO128OXl9FA3pGyKbcZVEmRNOee6FMPhRJRPrRcwd6Vl9npjYcsQJ95XMhS4M10UVG-eFS1OX6UrGPHvIdupV7XcZ8EpKL6XySaY5qc4Ul5VMlNSV08hCJuzl-CRLO3ibU4qN72VwZU5LHOKShnjCnm9KroOfxx_K7I9gKIcZ3ZTkk6hy5KMSm9icprEglVrtVx2WIfP8gkzUJuxRANGmk4wSuxQcG5_2UPhr7-Vy_pmOe_9a8Bm7sZwvyg9vj98_ZjeR0KmgKt9nO-1F558gaWrN0352_ASRDhV6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditional+validation+sampling+for+consistent+risk+estimation+with+binary+outcome+data+subject+to+misclassification&rft.jtitle=Pharmacoepidemiology+and+drug+safety&rft.au=Gravel%2C+Christopher+A.&rft.au=Farrell%2C+Patrick+J.&rft.au=Krewski%2C+Daniel&rft.date=2019-02-01&rft.issn=1053-8569&rft.eissn=1099-1557&rft.volume=28&rft.issue=2&rft.spage=227&rft.epage=233&rft_id=info:doi/10.1002%2Fpds.4701&rft.externalDBID=10.1002%252Fpds.4701&rft.externalDocID=PDS4701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8569&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8569&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8569&client=summon