Conditional validation sampling for consistent risk estimation with binary outcome data subject to misclassification
Purpose Misclassification of a binary outcome can introduce bias in estimation of the odds‐ratio associated with an exposure of interest in pharmacoepidemiology research. It has been previously demonstrated that utilizing information from an internal randomly selected validation sample can help miti...
Saved in:
Published in | Pharmacoepidemiology and drug safety Vol. 28; no. 2; pp. 227 - 233 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
01.02.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1053-8569 1099-1557 1099-1557 |
DOI | 10.1002/pds.4701 |
Cover
Loading…
Abstract | Purpose
Misclassification of a binary outcome can introduce bias in estimation of the odds‐ratio associated with an exposure of interest in pharmacoepidemiology research. It has been previously demonstrated that utilizing information from an internal randomly selected validation sample can help mitigate this bias.
Methods
Using a Monte Carlo simulation‐based approach, we study the properties of misclassification bias‐adjusted odds‐ratio estimators in a contingency table setting. We consider two methods of internal validation sampling; namely, simple random sampling and sampling conditional on the original (possibly incorrect) outcome status. Additional simulation studies are conducted to investigate these sampling approaches in a multi‐table setting.
Results
We demonstrate that conditional validation sampling, across a range of subsampling fractions, can produce better estimates than those based on an unconditional simple random sample. This approach allows for greater flexibility in the chosen categorical composition of the validation data, as well as the potential for obtaining a more efficient estimator of the odds‐ratio. We further demonstrate that this relationship holds for the Mantel‐Haenszel misclassification bias‐adjusted odds‐ratio in stratified samples. Recommendations for the choice of validation subsampling fraction are also provided.
Conclusions
Careful consideration when choosing the sampling scheme used to draw internal validation samples can improve the properties of the outcome misclassification bias‐adjusted odds‐ratio estimator in a (multiple) contingency table. |
---|---|
AbstractList | Purpose
Misclassification of a binary outcome can introduce bias in estimation of the odds‐ratio associated with an exposure of interest in pharmacoepidemiology research. It has been previously demonstrated that utilizing information from an internal randomly selected validation sample can help mitigate this bias.
Methods
Using a Monte Carlo simulation‐based approach, we study the properties of misclassification bias‐adjusted odds‐ratio estimators in a contingency table setting. We consider two methods of internal validation sampling; namely, simple random sampling and sampling conditional on the original (possibly incorrect) outcome status. Additional simulation studies are conducted to investigate these sampling approaches in a multi‐table setting.
Results
We demonstrate that conditional validation sampling, across a range of subsampling fractions, can produce better estimates than those based on an unconditional simple random sample. This approach allows for greater flexibility in the chosen categorical composition of the validation data, as well as the potential for obtaining a more efficient estimator of the odds‐ratio. We further demonstrate that this relationship holds for the Mantel‐Haenszel misclassification bias‐adjusted odds‐ratio in stratified samples. Recommendations for the choice of validation subsampling fraction are also provided.
Conclusions
Careful consideration when choosing the sampling scheme used to draw internal validation samples can improve the properties of the outcome misclassification bias‐adjusted odds‐ratio estimator in a (multiple) contingency table. PurposeMisclassification of a binary outcome can introduce bias in estimation of the odds‐ratio associated with an exposure of interest in pharmacoepidemiology research. It has been previously demonstrated that utilizing information from an internal randomly selected validation sample can help mitigate this bias.MethodsUsing a Monte Carlo simulation‐based approach, we study the properties of misclassification bias‐adjusted odds‐ratio estimators in a contingency table setting. We consider two methods of internal validation sampling; namely, simple random sampling and sampling conditional on the original (possibly incorrect) outcome status. Additional simulation studies are conducted to investigate these sampling approaches in a multi‐table setting.ResultsWe demonstrate that conditional validation sampling, across a range of subsampling fractions, can produce better estimates than those based on an unconditional simple random sample. This approach allows for greater flexibility in the chosen categorical composition of the validation data, as well as the potential for obtaining a more efficient estimator of the odds‐ratio. We further demonstrate that this relationship holds for the Mantel‐Haenszel misclassification bias‐adjusted odds‐ratio in stratified samples. Recommendations for the choice of validation subsampling fraction are also provided.ConclusionsCareful consideration when choosing the sampling scheme used to draw internal validation samples can improve the properties of the outcome misclassification bias‐adjusted odds‐ratio estimator in a (multiple) contingency table. Misclassification of a binary outcome can introduce bias in estimation of the odds-ratio associated with an exposure of interest in pharmacoepidemiology research. It has been previously demonstrated that utilizing information from an internal randomly selected validation sample can help mitigate this bias. Using a Monte Carlo simulation-based approach, we study the properties of misclassification bias-adjusted odds-ratio estimators in a contingency table setting. We consider two methods of internal validation sampling; namely, simple random sampling and sampling conditional on the original (possibly incorrect) outcome status. Additional simulation studies are conducted to investigate these sampling approaches in a multi-table setting. We demonstrate that conditional validation sampling, across a range of subsampling fractions, can produce better estimates than those based on an unconditional simple random sample. This approach allows for greater flexibility in the chosen categorical composition of the validation data, as well as the potential for obtaining a more efficient estimator of the odds-ratio. We further demonstrate that this relationship holds for the Mantel-Haenszel misclassification bias-adjusted odds-ratio in stratified samples. Recommendations for the choice of validation subsampling fraction are also provided. Careful consideration when choosing the sampling scheme used to draw internal validation samples can improve the properties of the outcome misclassification bias-adjusted odds-ratio estimator in a (multiple) contingency table. Misclassification of a binary outcome can introduce bias in estimation of the odds-ratio associated with an exposure of interest in pharmacoepidemiology research. It has been previously demonstrated that utilizing information from an internal randomly selected validation sample can help mitigate this bias.PURPOSEMisclassification of a binary outcome can introduce bias in estimation of the odds-ratio associated with an exposure of interest in pharmacoepidemiology research. It has been previously demonstrated that utilizing information from an internal randomly selected validation sample can help mitigate this bias.Using a Monte Carlo simulation-based approach, we study the properties of misclassification bias-adjusted odds-ratio estimators in a contingency table setting. We consider two methods of internal validation sampling; namely, simple random sampling and sampling conditional on the original (possibly incorrect) outcome status. Additional simulation studies are conducted to investigate these sampling approaches in a multi-table setting.METHODSUsing a Monte Carlo simulation-based approach, we study the properties of misclassification bias-adjusted odds-ratio estimators in a contingency table setting. We consider two methods of internal validation sampling; namely, simple random sampling and sampling conditional on the original (possibly incorrect) outcome status. Additional simulation studies are conducted to investigate these sampling approaches in a multi-table setting.We demonstrate that conditional validation sampling, across a range of subsampling fractions, can produce better estimates than those based on an unconditional simple random sample. This approach allows for greater flexibility in the chosen categorical composition of the validation data, as well as the potential for obtaining a more efficient estimator of the odds-ratio. We further demonstrate that this relationship holds for the Mantel-Haenszel misclassification bias-adjusted odds-ratio in stratified samples. Recommendations for the choice of validation subsampling fraction are also provided.RESULTSWe demonstrate that conditional validation sampling, across a range of subsampling fractions, can produce better estimates than those based on an unconditional simple random sample. This approach allows for greater flexibility in the chosen categorical composition of the validation data, as well as the potential for obtaining a more efficient estimator of the odds-ratio. We further demonstrate that this relationship holds for the Mantel-Haenszel misclassification bias-adjusted odds-ratio in stratified samples. Recommendations for the choice of validation subsampling fraction are also provided.Careful consideration when choosing the sampling scheme used to draw internal validation samples can improve the properties of the outcome misclassification bias-adjusted odds-ratio estimator in a (multiple) contingency table.CONCLUSIONSCareful consideration when choosing the sampling scheme used to draw internal validation samples can improve the properties of the outcome misclassification bias-adjusted odds-ratio estimator in a (multiple) contingency table. |
Author | Krewski, Daniel Gravel, Christopher A. Farrell, Patrick J. |
Author_xml | – sequence: 1 givenname: Christopher A. orcidid: 0000-0002-7780-3392 surname: Gravel fullname: Gravel, Christopher A. email: christopher.gravel2@mail.mcgill.ca organization: Risk Sciences International – sequence: 2 givenname: Patrick J. surname: Farrell fullname: Farrell, Patrick J. organization: University of Ottawa – sequence: 3 givenname: Daniel surname: Krewski fullname: Krewski, Daniel organization: Risk Sciences International |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30746841$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kV1rHCEYhaUkNMm20F8QhN7kZrY66sx4GTbNBwQaSHotjjqtW0c36jTsv4-zm7QQ2isVn_dw3nNOwIEP3gDwCaMlRqj-stFpSVuE34FjjDivMGPtwXxnpOpYw4_ASUprhMofp-_BEUEtbTqKj0FeBa9ttsFLB39LZ7WcHzDJceOs_wGHEKEKPtmUjc8w2vQLmpTtuOeebP4Je-tl3MIwZRVGA4uEhGnq10ZlmAMcbVJOpmQHq3ZTH8DhIF0yH1_OBfh--fVhdV3dfru6WZ3fVopQjiuimeaGGsZ6zpsWK8MQ1ZQzYhrcI0U1bqgZ2obJrqeyG1CvDdN1rYkcWkTJApztdTcxPE7FtZitGOekN2FKoq5rjjpKSkwL8PkNug5TLKEUivCON5zhtlCnL9TUj0aLTSw5xK14zbMAyz2gYkgpmkEom3c75yitExiJuTBRChNzYX8t_hl41fwHWu3RJ-vM9r-cuLu43_HPViul3w |
CitedBy_id | crossref_primary_10_1002_pds_5537 crossref_primary_10_1097_EDE_0000000000001717 crossref_primary_10_1002_pds_5601 crossref_primary_10_1097_EDE_0000000000001253 |
Cites_doi | 10.2307/2531052 10.1515/em-2013-0008 10.1002/0471249688 10.1016/j.annepidem.2013.02.005 10.1016/j.jspi.2007.06.012 10.1111/j.0006-341X.2002.1034_1.x 10.1186/1471-2334-13-171 10.1093/ije/dyu149 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK K9. 7X8 |
DOI | 10.1002/pds.4701 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1099-1557 |
EndPage | 233 |
ExternalDocumentID | 30746841 10_1002_pds_4701 PDS4701 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Mitacs funderid: IT02782 – fundername: Natural Sciences and Engineering Research Council (NSERC) of Canada |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA GWYGA H.X HF~ HGLYW HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LSO LUTES LW6 LYRES M6Q MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WRC WUP WVDHM WWP WXI WXSBR XG1 XV2 YCJ ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c3491-3d5d9e4e55b99671ce504d4953e61b0c4d164ef765a8b4a8f0bde5d22d3af7043 |
IEDL.DBID | DR2 |
ISSN | 1053-8569 1099-1557 |
IngestDate | Thu Jul 10 22:38:34 EDT 2025 Fri Jul 25 18:54:34 EDT 2025 Wed Feb 19 02:30:52 EST 2025 Tue Jul 01 04:29:22 EDT 2025 Thu Apr 24 23:05:12 EDT 2025 Wed Jan 22 16:15:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | contingency tables validation sampling misclassification bias misclassified binary data pharmacoepidemiology |
Language | English |
License | 2019 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3491-3d5d9e4e55b99671ce504d4953e61b0c4d164ef765a8b4a8f0bde5d22d3af7043 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7780-3392 |
PMID | 30746841 |
PQID | 2398969517 |
PQPubID | 105383 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_2229084305 proquest_journals_2398969517 pubmed_primary_30746841 crossref_citationtrail_10_1002_pds_4701 crossref_primary_10_1002_pds_4701 wiley_primary_10_1002_pds_4701_PDS4701 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2019 2019-02-00 20190201 |
PublicationDateYYYYMMDD | 2019-02-01 |
PublicationDate_xml | – month: 02 year: 2019 text: February 2019 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Bethesda |
PublicationTitle | Pharmacoepidemiology and drug safety |
PublicationTitleAlternate | Pharmacoepidemiol Drug Saf |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2002; 58 2008; 138 2015 2002 2013; 2 1986; 42 2013; 13 2013; 23 1959; 22 2014; 43 e_1_2_11_6_1 e_1_2_11_5_1 e_1_2_11_4_1 e_1_2_11_3_1 e_1_2_11_2_1 Mantel N (e_1_2_11_7_1) 1959; 22 e_1_2_11_10_1 e_1_2_11_9_1 e_1_2_11_8_1 e_1_2_11_11_1 |
References_xml | – volume: 43 start-page: 1969 issue: 6 year: 2014 end-page: 1985 article-title: Good practices for quantitative bias analysis publication-title: Int J Epidemiol – volume: 22 start-page: 719 issue: 4 year: 1959 end-page: 748 article-title: Statistical aspects of the analysis of data from retrospective studies of disease publication-title: JNCI – volume: 42 start-page: 311 issue: 2 year: 1986 end-page: 323 article-title: Estimators of the Mantel‐Haenszel variance consistent in both sparse data and large‐strata limiting models publication-title: Biometrics – volume: 2 start-page: 49 issue: 1 year: 2013 end-page: 66 article-title: Extended matrix and inverse matrix methods utilizing internal validation data when both disease and exposure status are misclassified publication-title: Epidemiol Methods – volume: 58 start-page: 1034 issue: 4 year: 2002 end-page: 1037 article-title: Note on estimating crude odds ratios in case‐control studies with differentially misclassified exposure publication-title: Biometrics – volume: 13 start-page: 171 issue: 1 year: 2013 article-title: Use of electronic health record data to identify skin and soft tissue infections in primary care settings: a validation study publication-title: BMC Infect Dis – year: 2002 – volume: 23 start-page: 291 issue: 5 year: 2013 end-page: 293 article-title: Accuracy of ICD‐9‐CM codes in identifying infections of pneumonia and herpes simplex virus in administrative data publication-title: Ann Epidemiol – year: 2015 – volume: 138 start-page: 528 issue: 2 year: 2008 end-page: 538 article-title: Maximum‐likelihood and closed‐form estimators of epidemiologic measures under misclassification publication-title: J Statist Plann Inference – ident: e_1_2_11_10_1 doi: 10.2307/2531052 – ident: e_1_2_11_11_1 doi: 10.1515/em-2013-0008 – ident: e_1_2_11_9_1 doi: 10.1002/0471249688 – ident: e_1_2_11_3_1 doi: 10.1016/j.annepidem.2013.02.005 – volume: 22 start-page: 719 issue: 4 year: 1959 ident: e_1_2_11_7_1 article-title: Statistical aspects of the analysis of data from retrospective studies of disease publication-title: JNCI – ident: e_1_2_11_5_1 doi: 10.1016/j.jspi.2007.06.012 – ident: e_1_2_11_6_1 doi: 10.1111/j.0006-341X.2002.1034_1.x – ident: e_1_2_11_4_1 doi: 10.1186/1471-2334-13-171 – ident: e_1_2_11_8_1 – ident: e_1_2_11_2_1 doi: 10.1093/ije/dyu149 |
SSID | ssj0009994 |
Score | 2.2429726 |
Snippet | Purpose
Misclassification of a binary outcome can introduce bias in estimation of the odds‐ratio associated with an exposure of interest in... Misclassification of a binary outcome can introduce bias in estimation of the odds-ratio associated with an exposure of interest in pharmacoepidemiology... PurposeMisclassification of a binary outcome can introduce bias in estimation of the odds‐ratio associated with an exposure of interest in pharmacoepidemiology... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 227 |
SubjectTerms | Bias Computer Simulation Contingency tables Data Accuracy Data Interpretation, Statistical Information processing Logistic Models misclassification bias misclassified binary data Monte Carlo Method Monte Carlo simulation Odds Ratio Outcome Assessment, Health Care - methods pharmacoepidemiology Pharmacoepidemiology - methods Risk Assessment Statistical analysis Statistical sampling validation sampling Validation Studies as Topic |
Title | Conditional validation sampling for consistent risk estimation with binary outcome data subject to misclassification |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpds.4701 https://www.ncbi.nlm.nih.gov/pubmed/30746841 https://www.proquest.com/docview/2398969517 https://www.proquest.com/docview/2229084305 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9VAFB6kKzfWR61Xq5xCuW6a2zxmMpmlqKUIykVbKHQR5hUpldxikkX99Z4zk9xLtYJ0lUXmkUy-yXyZfOc7jB24rDR55WzCESwJdwVPlPQmEVaLQnufNSFryecv5ckZ_3QuzkdVJcXCRH-I9YYbzYzwvqYJrk13tDENvXbdgssQukVSLeJDXzfOUch7wg9lxFhSiVJNvrNpfjRVvL0S_UUvb7PVsNwcb7OL6UKjyuRqMfRmYX_94eF4vzt5zB6NLBTeRdg8YQ98-5TNl9HG-uYQTjdRWd0hzGG5Mbi-ecYoR7W7jJuIgEi9jHmZoNMkT2-_AxJhsKS8RQi1PZB8HcjNI4ZJAu39ggmBwLAaerxcD6RUhW4wtC0E_QoQfpaIPSmZQq0ddnb88fT9STJmb0hswVWWFE445bkXwuA3lcysFyl3JGf1ZWZSyxEm3DeyFLoyXFdNapwXLs9doRuZ8uI522pXrX_BgDdSeimVzwrNSXSmuGxkpqRunEYSMmNvpydZ29HanDJs_KijKXNe4xDXNMQztr8ueR3tPO4oszeBoR4ndFeTTaIqkY5KbGJ9msaCRGqtXw1YhrzzK_JQm7HdCKJ1JwXldak4Nj4PUPhn7_Xywzc6vvzfgq_YQyRxKirJ99hW_3Pwr5Eo9eZNmBK_AbKNEqc |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWqcoAL39AtBQYJLZdmNx92HIsTAqoF2moFW6kHpMiOnaqiylYkOZRfz4y92VX5kBCnHOLYifOcvEzevGHspU1ykxa2ijiCJeI245GSzkSi0iLTziW1r1pydJzPTvjHU3G6xV4PuTDBH2IdcKOV4Z_XtMApID3duIZe2nbCJeVu3aCC3v576vPGOwqZj_-ljCiLCpGrwXk2TqfDkdffRb8RzOt81b9wDu6wr8OpBp3Jt0nfmUn14xcXx_-8lrvs9oqIwpuAnHtsyzX32XgenKyv9mGxScxq92EM843H9dUDRmWq7XmIIwKC9TyUZoJWk0K9OQPkwlCR-BZR1HRACnYgQ4-QKQkU_gXjc4Fh2Xd4vg5IrAptbygyBN0SEIEVcXsSM_mjHrKTg_eLt7NoVcAhqjKukiizwirHnRAGP6tkUjkRc0uKVpcnJq44IoW7WuZCF4broo6NdcKmqc10LWOePWLbzbJxOwx4LaWTUrkk05x0Z4rLWiZK6tpq5CEj9mq4lWW1cjenIhsXZfBlTkuc4pKmeMRerFteBkePP7TZG9BQrtZ0W5JTosqRkUrsYr2b5oJ0ao1b9tiG7PMLslEbsccBRetBMirtUnDsfOyx8NfRy_m7L7Td_deGz9nN2eLosDz8cPzpCbuFnE4FYfke2-6-9-4p8qbOPPPr4ye8FhbC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLZQkRAXduiUAg8JDZdmmsWO4yNiGJWtGkErVeIQeQuqQJlRkxzKr-e9OJlRWSTEKYd4SZzP8Rfne99j7IVLcpMWzkYcwRJxl_FISW8iYbXItPdJ1Wct-XicH53yd2fibFBVUixM8IfYbLjRzOjf1zTB16463JqGrl0z45JCt67zPC4I0fNPW-soJD79H2UEWVSIXI3Gs3F6ONa8uhT9xi-v0tV-vVncZl_GKw0yk2-zrjUz--MXE8f_u5U77NZAQ-FVwM1dds3X99h0GXysLw_gZBuW1RzAFJZbh-vL-4ySVLvzsIsICNXzkJgJGk369PorIBMGS9JbxFDdAunXgew8Qpwk0OYvmD4SGFZdi5frgaSq0HSG9oWgXQHizxKzJylTX-sBO128OXl9FA3pGyKbcZVEmRNOee6FMPhRJRPrRcwd6Vl9npjYcsQJ95XMhS4M10UVG-eFS1OX6UrGPHvIdupV7XcZ8EpKL6XySaY5qc4Ul5VMlNSV08hCJuzl-CRLO3ibU4qN72VwZU5LHOKShnjCnm9KroOfxx_K7I9gKIcZ3ZTkk6hy5KMSm9icprEglVrtVx2WIfP8gkzUJuxRANGmk4wSuxQcG5_2UPhr7-Vy_pmOe_9a8Bm7sZwvyg9vj98_ZjeR0KmgKt9nO-1F558gaWrN0352_ASRDhV6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Conditional+validation+sampling+for+consistent+risk+estimation+with+binary+outcome+data+subject+to+misclassification&rft.jtitle=Pharmacoepidemiology+and+drug+safety&rft.au=Gravel%2C+Christopher+A.&rft.au=Farrell%2C+Patrick+J.&rft.au=Krewski%2C+Daniel&rft.date=2019-02-01&rft.issn=1053-8569&rft.eissn=1099-1557&rft.volume=28&rft.issue=2&rft.spage=227&rft.epage=233&rft_id=info:doi/10.1002%2Fpds.4701&rft.externalDBID=10.1002%252Fpds.4701&rft.externalDocID=PDS4701 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-8569&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-8569&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-8569&client=summon |