Shared random parameter models: A legacy of the biostatistics program at the National Heart, Lung, and Blood Institute

Shared random parameter models (SRPMs) were first introduced by researchers at the National Heart Lung and Blood Institute (NHLBI) Biostatistics Branch for analyzing longitudinal data with informative dropout (Wu and Carroll, 1987; Wu and Bailey, 1988; Follmann and Wu, 1995; Albert and Follmann, 200...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 38; no. 4; pp. 501 - 511
Main Author Albert, Paul S.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 20.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Shared random parameter models (SRPMs) were first introduced by researchers at the National Heart Lung and Blood Institute (NHLBI) Biostatistics Branch for analyzing longitudinal data with informative dropout (Wu and Carroll, 1987; Wu and Bailey, 1988; Follmann and Wu, 1995; Albert and Follmann, 2000; Albert et al, 2002). This work was all focused on characterizing the longitudinal data process in the presence of an informative missing data mechanism that is treated as a nuisance. Shared random parameter modeling approaches have also been developed from the perspective of characterizing the relationship between longitudinal data and a subsequent outcome that may be an event time, a dichotomous measurement, or another longitudinal outcome. This article will review the early contributions of the NHLBI biostatisticians on SRPMs for analyzing longitudinal data with dropout and demonstrate how these ideas have, more recently, been applied in these other areas of biostatistics. Rather than focus on technical details or specific analyses, this article presents a conceptual framework for SRPMs within a historical context.
AbstractList Shared random parameter models (SRPMs) were first introduced by researchers at the National Heart Lung and Blood Institute (NHLBI) Biostatistics Branch for analyzing longitudinal data with informative dropout (Wu and Carroll, 1987; Wu and Bailey, 1988; Follmann and Wu, 1995; Albert and Follmann, 2000; Albert et al, 2002). This work was all focused on characterizing the longitudinal data process in the presence of an informative missing data mechanism that is treated as a nuisance. Shared random parameter modeling approaches have also been developed from the perspective of characterizing the relationship between longitudinal data and a subsequent outcome that may be an event time, a dichotomous measurement, or another longitudinal outcome. This article will review the early contributions of the NHLBI biostatisticians on SRPMs for analyzing longitudinal data with dropout and demonstrate how these ideas have, more recently, been applied in these other areas of biostatistics. Rather than focus on technical details or specific analyses, this article presents a conceptual framework for SRPMs within a historical context.
Shared random parameter models (SRPMs) were first introduced by researchers at the National Heart Lung and Blood Institute (NHLBI) Biostatistics Branch for analyzing longitudinal data with informative dropout (Wu and Carroll, 1987; Wu and Bailey, 1988; Follmann and Wu, 1995; Albert and Follmann, 2000; Albert et al, 2002). This work was all focused on characterizing the longitudinal data process in the presence of an informative missing data mechanism that is treated as a nuisance. Shared random parameter modeling approaches have also been developed from the perspective of characterizing the relationship between longitudinal data and a subsequent outcome that may be an event time, a dichotomous measurement, or another longitudinal outcome. This article will review the early contributions of the NHLBI biostatisticians on SRPMs for analyzing longitudinal data with dropout and demonstrate how these ideas have, more recently, been applied in these other areas of biostatistics. Rather than focus on technical details or specific analyses, this article presents a conceptual framework for SRPMs within a historical context.Shared random parameter models (SRPMs) were first introduced by researchers at the National Heart Lung and Blood Institute (NHLBI) Biostatistics Branch for analyzing longitudinal data with informative dropout (Wu and Carroll, 1987; Wu and Bailey, 1988; Follmann and Wu, 1995; Albert and Follmann, 2000; Albert et al, 2002). This work was all focused on characterizing the longitudinal data process in the presence of an informative missing data mechanism that is treated as a nuisance. Shared random parameter modeling approaches have also been developed from the perspective of characterizing the relationship between longitudinal data and a subsequent outcome that may be an event time, a dichotomous measurement, or another longitudinal outcome. This article will review the early contributions of the NHLBI biostatisticians on SRPMs for analyzing longitudinal data with dropout and demonstrate how these ideas have, more recently, been applied in these other areas of biostatistics. Rather than focus on technical details or specific analyses, this article presents a conceptual framework for SRPMs within a historical context.
Author Albert, Paul S.
Author_xml – sequence: 1
  givenname: Paul S.
  orcidid: 0000-0003-1658-1068
  surname: Albert
  fullname: Albert, Paul S.
  email: albertp@mail.nih.gov
  organization: National Cancer Institute
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30376693$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtvEzEUhS1URNOCxC9Altiw6KS2Z2yP2bVVH5FSWBTWI8e-k7ryjIPtAeXf46QtSBWs7uJ-59zHOUIHYxgBofeUzCkh7DS5Yd4SSl-hGSVKVoTx9gDNCJOyEpLyQ3SU0gMpBGfyDTqsSS2FUPUM_by71xEsjnq0YcAbHfUAGSIeggWfPuMz7GGtzRaHHud7wCsXUtbZpexMwpsY1kWBdd43v5RGGLXHN6BjPsHLaVyf4GKNz30IFi_GIstThrfoda99gndP9Rh9v7r8dnFTLb9eLy7OlpWpG0UrJqi1punLPZYpSXhLCbd01Yu6IYY1PV0p01JmmeiNUqrRrQbKWkOJVIyT-hh9evQti_6YIOVucMmA93qEMKWOUSYFV4Kzgn58gT6EKZZjdpSQivOm2Rl-eKKm1QC220Q36Ljtnj_6d6KJIaUI_R-Ekm4XVlfC6nZhFXT-AjUu7z-Yo3b-X4LqUfDLedj-17i7W9zu-d_eD6KU
CitedBy_id crossref_primary_10_1002_sim_8443
crossref_primary_10_1214_23_AOAS1788
crossref_primary_10_1007_s10260_021_00570_w
crossref_primary_10_3233_JAD_181131
crossref_primary_10_1177_0962280220927720
crossref_primary_10_1155_2022_4452158
crossref_primary_10_1002_bimj_201900027
crossref_primary_10_1214_24_AOAS1889
crossref_primary_10_1002_sim_10219
Cites_doi 10.1080/01621459.1997.10473613
10.1111/j.1541-0420.2009.01324_2.x
10.1177/0962280206075308
10.1093/biostatistics/kxu020
10.2307/2533195
10.1016/j.csda.2008.09.011
10.2307/2533322
10.1002/1097-0258(20010115)20:1<93::AID-SIM655>3.0.CO;2-2
10.2307/2534023
10.1093/biomet/88.2.447
10.1111/rssa.12312
10.1002/sim.4405
10.1002/sim.4780140307
10.2307/2533118
10.1080/01621459.1995.10476485
10.1111/1467-9574.00223
10.1002/sim.720
10.1002/sim.2249
10.2307/2531694
10.1080/01621459.1993.10594302
10.1111/rssb.12060
10.1111/j.1541-0420.2009.01324_1.x
10.1111/j.0006-341X.2000.00667.x
10.2307/2531905
10.1111/j.0006-341X.1999.00075.x
10.1214/10-AOAS326
10.3109/00016349309068037
10.1002/sim.1710
10.1111/biom.12463
10.1093/biostatistics/3.4.459
10.1111/rssc.12210
10.2307/2529876
10.1002/sim.4780111408
10.1111/j.0006-341X.2002.00631.x
10.2307/2533439
10.1111/biom.12862
10.1111/j.1467-9876.2005.05515.x
10.1016/j.spasta.2017.08.001
10.1214/10-AOAS339
10.1002/9781119013563
10.1093/biostatistics/kxq084
ContentType Journal Article
Copyright Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
– notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1002/sim.8011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 511
ExternalDocumentID 30376693
10_1002_sim_8011
SIM8011
Genre article
Journal Article
Research Support, N.I.H., Extramural
GeographicLocations United States
GeographicLocations_xml – name: United States
GrantInformation_xml – fundername: National Cancer Institute
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c3491-261ddc4f025d297058105d1bf6340c24f1b9c812d26fc9994a8ae128c10792503
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 07:46:13 EDT 2025
Sun Jul 13 04:54:01 EDT 2025
Wed Feb 19 02:31:30 EST 2025
Thu Apr 24 23:01:11 EDT 2025
Tue Jul 01 03:28:14 EDT 2025
Wed Jan 22 16:32:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords random effects
joint models
risk prediction
nonignorable missing data
repeated measures
Language English
License Published 2018. This article is a U.S. Government work and is in the public domain in the USA.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3491-261ddc4f025d297058105d1bf6340c24f1b9c812d26fc9994a8ae128c10792503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1658-1068
PMID 30376693
PQID 2167955440
PQPubID 48361
PageCount 11
ParticipantIDs proquest_miscellaneous_2127659652
proquest_journals_2167955440
pubmed_primary_30376693
crossref_primary_10_1002_sim_8011
crossref_citationtrail_10_1002_sim_8011
wiley_primary_10_1002_sim_8011_SIM8011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20 February 2019
PublicationDateYYYYMMDD 2019-02-20
PublicationDate_xml – month: 02
  year: 2019
  text: 20 February 2019
  day: 20
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1995; 51
2002; 58
1982; 38
1989; 45
2018; 181
1995; 90
1995; 14
1993; 88
2017; 22
2004; 23
2017; 67
2003; 57
2009
2002; 3
2016; 72
2004
2011; 12
2002
2001; 88
1992; 11
2012; 31
2001; 20
2007; 16
2010; 66
1997; 92
2009; 53
2000; 56
1997; 53
2004; 14
2006; 25
1988; 44
2014; 15
1999; 55
2005; 54
2018; 74
1998; 54
1994; 50
2014; 72
2010; 4
2014; 77
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
Rizopoulos D (e_1_2_7_35_1) 2004
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
Albert PS (e_1_2_7_26_1) 2009
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_12_1
Tsiatis AA (e_1_2_7_34_1) 2004; 14
e_1_2_7_44_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Tsiatis AA (e_1_2_7_20_1) 2004; 14
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – volume: 20
  start-page: 93
  issue: 1
  year: 2001
  end-page: 108
  article-title: Adjusting for drop‐out in clinical trials with repeated measures: design and analysis issues
  publication-title: Statist Med
– volume: 50
  start-page: 39
  issue: 1
  year: 1994
  end-page: 50
  article-title: Slope estimation in the presence of informative right censoring: modeling the number of observations as a geometric random variable
  publication-title: Biometrics
– volume: 88
  start-page: 125
  issue: 421
  year: 1993
  end-page: 134
  article-title: Pattern‐mixture models for multivariate incomplete data
  publication-title: J Am Stat Assoc
– volume: 74
  start-page: 1112
  issue: 3
  year: 2018
  end-page: 1119
  article-title: An approximate joint model for multiple paired longitudinal outcomes and survival
  publication-title: Biometrics
– volume: 181
  start-page: 825
  issue: 3
  year: 2018
  end-page: 842
  article-title: Estimating onset time from longitudinal and cross‐sectional data with an application to estimating gestational age from longitudinal maternal anthropometry during pregnancy and neonatal anthropometry at birth
  publication-title: J R Stat Soc Ser A
– volume: 12
  start-page: 737
  issue: 4
  year: 2011
  end-page: 749
  article-title: A shared parameter model for the estimation of longitudinal concomitant intervention effects
  publication-title: Biostatistics
– volume: 90
  start-page: 27
  issue: 429
  year: 1995
  end-page: 37
  article-title: Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS
  publication-title: J Am Stat Assoc
– volume: 14
  start-page: 283
  issue: 3
  year: 1995
  end-page: 297
  article-title: A simulation study of estimators for rates of change in longitudinal studies with attrition
  publication-title: Statist Med
– volume: 88
  start-page: 447
  issue: 2
  year: 2001
  end-page: 458
  article-title: A semiparametric estimator to the proportional hazards model with longitudinal covariates measured with error
  publication-title: Biometrika
– volume: 66
  start-page: 987
  year: 2010
  article-title: Response to “On estimating the relationship between longitudinal measurements and time‐to‐event data using a simple two‐stage procedure”
  publication-title: Biometrics
– volume: 56
  start-page: 667
  issue: 3
  year: 2000
  end-page: 677
  article-title: Modeling repeated count data subject to informative dropout
  publication-title: Biometrics
– volume: 53
  start-page: 699
  issue: 3
  year: 2009
  end-page: 706
  article-title: A Bayesian analysis for longitudinal semicontinuous data to an application to an acupuncture clinical trial
  publication-title: Comput Stat Data Anal
– volume: 14
  start-page: 809
  year: 2004
  end-page: 834
  article-title: Joint modeling of longitudinal and time‐to‐event data: a review
  publication-title: Stat Sinica
– volume: 72
  start-page: 273
  year: 2014
  end-page: 279
  article-title: Pre‐pregnancy risk factors of small‐for‐gestational age births among parous women in Scandinavia
  publication-title: Acta Obstet Gynecol Scan
– volume: 4
  start-page: 1476
  issue: 3
  year: 2010
  end-page: 1497
  article-title: Prediction based classification for longitudinal biomarkers
  publication-title: Ann Appl Stat
– volume: 38
  start-page: 963
  issue: 4
  year: 1982
  end-page: 974
  article-title: Random‐effects models for longitudinal data
  publication-title: Biometrics
– volume: 53
  start-page: 330
  issue: 1
  year: 1997
  end-page: 339
  article-title: A joint model for survival and longitudinal data measured with error
  publication-title: Biometrics
– volume: 31
  start-page: 143
  issue: 2
  year: 2012
  end-page: 154
  article-title: A linear mixed model for predicting a binary event from longitudinal data under random effects misspecification
  publication-title: Statist Med
– volume: 16
  start-page: 417
  issue: 5
  year: 2007
  end-page: 439
  article-title: Random effects and latent processes approaches for analyzing binary longitudinal data with missingness: a comparison of approaches using opiate clinical trial data
  publication-title: Stat Methods Med Res
– volume: 3
  start-page: 459
  issue: 4
  year: 2002
  end-page: 475
  article-title: General growth mixture modeling for randomized preventive interventions
  publication-title: Biostatistics
– volume: 72
  start-page: 917
  issue: 3
  year: 2016
  end-page: 925
  article-title: A class of joint models for multivariate longitudinal measurements and a binary event
  publication-title: Biometrics
– volume: 25
  start-page: 143
  issue: 1
  year: 2006
  end-page: 163
  article-title: Shared parameter models for the joint analysis of longitudinal data and even times
  publication-title: Statist Med
– volume: 23
  start-page: 211
  year: 2004
  end-page: 219
  article-title: A shared random parameter effect parameter approach for longitudinal dementia data with non‐ignorable missing data
  publication-title: Statist Med
– volume: 77
  start-page: 131
  issue: 1
  year: 2014
  end-page: 148
  article-title: Joint modelling of repeated measurements and time‐to‐event outcomes: flexible model specification and exact likelihood inference
  publication-title: J R Stat Soc Ser B Stat Methodol
– volume: 51
  start-page: 151
  issue: 1
  year: 1995
  end-page: 168
  article-title: An approximate generalized linear model with random effects for informative missing data
  publication-title: Biometrics
– volume: 4
  start-page: 1517
  issue: 3
  year: 2010
  end-page: 1532
  article-title: An approach for jointly modeling multivariate longitudinal and discrete time‐to‐event data
  publication-title: Ann Appl Stat
– volume: 20
  start-page: 989
  issue: 7
  year: 2001
  end-page: 1007
  article-title: Analysis of change in the presence of informative censoring: application to a longitudinal clinical trial of progressive renal disease
  publication-title: Statist Med
– volume: 67
  start-page: 145
  issue: 1
  year: 2017
  end-page: 163
  article-title: Accommodating informative dropout and death: a joint modelling approach for longitudinal and semicompeting risks data
  publication-title: J R Stat Soc Ser C Appl Stat
– volume: 66
  start-page: 983
  issue: 3
  year: 2010
  end-page: 987
  article-title: On estimating the relationship between longitudinal measurements and time‐to‐event data using a simple two‐stage procedure
  publication-title: Biometrics
– volume: 54
  start-page: 707
  issue: 4
  year: 2005
  end-page: 720
  article-title: Modelling longitudinal semicontinuous emesis volume data with serial correlation in an acupuncture clinical trial
  publication-title: J R Stat Soc Ser C Appl Stat
– year: 2002
– volume: 54
  start-page: 367
  issue: 1
  year: 1998
  end-page: 383
  article-title: Mixed effects logistic regression models for longitudinal binary response data with informative‐dropout
  publication-title: Biometrics
– year: 2004
– volume: 22
  start-page: 434
  year: 2017
  end-page: 450
  article-title: Spatio‐temporal model structures with shared components for semi‐continuous species distributions modelling
  publication-title: Spatial Stat
– volume: 55
  start-page: 75
  issue: 1
  year: 1999
  end-page: 84
  article-title: Use of summary measures to adjust for informative missingness in repeated measures data with random effects
  publication-title: Biometrics
– volume: 15
  start-page: 706
  issue: 4
  year: 2014
  end-page: 718
  article-title: Combination of longitudinal biomarkers in predicting binary events
  publication-title: Biostatistics
– volume: 45
  start-page: 939
  issue: 3
  year: 1989
  end-page: 955
  article-title: Estimation and comparison of changes in the presence of informative right censoring: conditional linear model
  publication-title: Biometrics
– volume: 44
  start-page: 175
  issue: 1
  year: 1988
  end-page: 188
  article-title: Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process
  publication-title: Biometrics
– volume: 58
  start-page: 631
  issue: 3
  year: 2002
  end-page: 642
  article-title: A latent autoregressive model for longitudinal binary data subject to informative missingness
  publication-title: Biometrics
– volume: 57
  start-page: 100
  issue: 1
  year: 2003
  end-page: 111
  article-title: A random effects transition model for longitudinal binary data with informative missingness
  publication-title: Statistica Neerlandica
– volume: 14
  start-page: 809
  issue: 3
  year: 2004
  end-page: 834
  article-title: Joint modeling of longitudinal and time‐to‐event data: an overview
  publication-title: Stat Sin
– volume: 92
  start-page: 162
  issue: 437
  year: 1997
  end-page: 170
  article-title: Maximum likelihood algorithms for generalized linear mixed models
  publication-title: J Am Stat Assoc
– start-page: 433
  year: 2009
  end-page: 452
– volume: 11
  start-page: 1861
  issue: 14‐15
  year: 1992
  end-page: 1870
  article-title: Methods for the analysis of informatively censored longitudinal data
  publication-title: Statist Med
– volume: 50
  start-page: 1003
  issue: 4
  year: 1994
  end-page: 1014
  article-title: Modeling progression of CD4‐Lymphocyte count and its relationship with survival time
  publication-title: Biometrics
– ident: e_1_2_7_21_1
  doi: 10.1080/01621459.1997.10473613
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1541-0420.2009.01324_2.x
– ident: e_1_2_7_25_1
  doi: 10.1177/0962280206075308
– ident: e_1_2_7_31_1
  doi: 10.1093/biostatistics/kxu020
– ident: e_1_2_7_14_1
  doi: 10.2307/2533195
– ident: e_1_2_7_44_1
  doi: 10.1016/j.csda.2008.09.011
– ident: e_1_2_7_4_1
  doi: 10.2307/2533322
– ident: e_1_2_7_6_1
  doi: 10.1002/1097-0258(20010115)20:1<93::AID-SIM655>3.0.CO;2-2
– ident: e_1_2_7_13_1
  doi: 10.2307/2534023
– ident: e_1_2_7_33_1
  doi: 10.1093/biomet/88.2.447
– ident: e_1_2_7_42_1
  doi: 10.1111/rssa.12312
– ident: e_1_2_7_27_1
  doi: 10.1002/sim.4405
– ident: e_1_2_7_23_1
  doi: 10.1002/sim.4780140307
– ident: e_1_2_7_19_1
  doi: 10.2307/2533118
– ident: e_1_2_7_18_1
  doi: 10.1080/01621459.1995.10476485
– ident: e_1_2_7_9_1
  doi: 10.1111/1467-9574.00223
– ident: e_1_2_7_16_1
  doi: 10.1002/sim.720
– volume-title: Joint Models for Longitudinal and Time‐to‐Event Data: With Applications in R
  year: 2004
  ident: e_1_2_7_35_1
– ident: e_1_2_7_11_1
  doi: 10.1002/sim.2249
– ident: e_1_2_7_3_1
  doi: 10.2307/2531694
– ident: e_1_2_7_24_1
  doi: 10.1080/01621459.1993.10594302
– ident: e_1_2_7_36_1
  doi: 10.1111/rssb.12060
– ident: e_1_2_7_38_1
  doi: 10.1111/j.1541-0420.2009.01324_1.x
– ident: e_1_2_7_7_1
  doi: 10.1111/j.0006-341X.2000.00667.x
– ident: e_1_2_7_2_1
  doi: 10.2307/2531905
– ident: e_1_2_7_5_1
  doi: 10.1111/j.0006-341X.1999.00075.x
– ident: e_1_2_7_29_1
  doi: 10.1214/10-AOAS326
– ident: e_1_2_7_32_1
  doi: 10.3109/00016349309068037
– ident: e_1_2_7_22_1
  doi: 10.1002/sim.1710
– ident: e_1_2_7_30_1
  doi: 10.1111/biom.12463
– volume: 14
  start-page: 809
  year: 2004
  ident: e_1_2_7_34_1
  article-title: Joint modeling of longitudinal and time‐to‐event data: a review
  publication-title: Stat Sinica
– ident: e_1_2_7_28_1
  doi: 10.1093/biostatistics/3.4.459
– ident: e_1_2_7_37_1
  doi: 10.1111/rssc.12210
– ident: e_1_2_7_12_1
  doi: 10.2307/2529876
– ident: e_1_2_7_15_1
  doi: 10.1002/sim.4780111408
– ident: e_1_2_7_8_1
  doi: 10.1111/j.0006-341X.2002.00631.x
– ident: e_1_2_7_17_1
  doi: 10.2307/2533439
– start-page: 433
  volume-title: Longitudinal Data Analysis
  year: 2009
  ident: e_1_2_7_26_1
– ident: e_1_2_7_41_1
  doi: 10.1111/biom.12862
– ident: e_1_2_7_43_1
  doi: 10.1111/j.1467-9876.2005.05515.x
– ident: e_1_2_7_45_1
  doi: 10.1016/j.spasta.2017.08.001
– volume: 14
  start-page: 809
  issue: 3
  year: 2004
  ident: e_1_2_7_20_1
  article-title: Joint modeling of longitudinal and time‐to‐event data: an overview
  publication-title: Stat Sin
– ident: e_1_2_7_40_1
  doi: 10.1214/10-AOAS339
– ident: e_1_2_7_10_1
  doi: 10.1002/9781119013563
– ident: e_1_2_7_46_1
  doi: 10.1093/biostatistics/kxq084
SSID ssj0011527
Score 2.3232226
Snippet Shared random parameter models (SRPMs) were first introduced by researchers at the National Heart Lung and Blood Institute (NHLBI) Biostatistics Branch for...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 501
SubjectTerms Biostatistics
Health risk assessment
Humans
joint models
Longitudinal Studies
Missing data
Models, Statistical
National Heart, Lung, and Blood Institute (U.S.)
nonignorable missing data
Patient Dropouts
random effects
repeated measures
risk prediction
United States
Within-subjects design
Title Shared random parameter models: A legacy of the biostatistics program at the National Heart, Lung, and Blood Institute
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8011
https://www.ncbi.nlm.nih.gov/pubmed/30376693
https://www.proquest.com/docview/2167955440
https://www.proquest.com/docview/2127659652
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC5kD7IgPsbX6CotiF42s0mn00l7W8VlFceDurDgIfRTFmcmsskI-uutSieR9QHiKYd-JZ2q6q-6q78CeJxXoUwrq5KUO5MIW-ikKix6KQFNn-fG8v5S2PKtPD4Rr0-L0yGqku7CRH6IacONNKO316Tg2rQHP0lD27P1As0reT4UqkV46N3EHJWN2VrphFKWWTHyzqb8YGx4cSX6DV5eRKv9cnN0DT6OLxqjTD4vtp1Z2O-_cDj-35dch6sDCmWHUWxuwCW_mcHl5XDOPoMrcTePxUtKM9glTBopnW_CVyJ59o7hKueaNSPy8DUF1bA-q077jB2ylf-k7TfWBIb4kpmzpp3asyEijOmuLxyIuVc01nm3z96g9dln2DV7TjH1bIpmuAUnRy8_vDhOhvQNic2FyhL0zZyzIiCqclyVaVEhlnOZCTIXqeUiZEZZxBeOy2ARpwpdaY_LpUWPVCEyy2_DzqbZ-LvAnEMv0drCaMogqJWRPKTBqCCM8aos5vB0_JW1HbjNKcXGqo6szLzGOa5pjufwaKr5JfJ5_KHO3igN9aDRbc3pvAqxl0ixi6kYdZEOWPTGN1uqw0tZKFnwOdyJUjQNglChlFLlc3jSy8JfR6_fv1rS896_VrwPu4jiVH_PPt2Dne586x8gUurMw14nfgDQig4N
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRYJKFY8FypYCRkJwabaJYzsxnAqi2sJuD9BKPSBF8auqurtB3Wwl-PWM4ySoPCTEKQeP7cTxeL6xx98AvEhzl8W5llFMjYqY5mWUc41eisOlz1KlaXMpbHokxifswyk_XYM33V2YwA_Rb7h5zWjWa6_gfkN67ydr6PJ8PsL1FV2fGz6hd-NPfeq5o5IuX6s_oxRZwjvm2ZjudTWv26LfAOZ1vNoYnIM78KV71RBncjFa1Wqkv__C4vif33IXbrdAlOyHmXMP1uxiADen7VH7ADbDhh4J95QGsOFhaWB1vg9XnufZGoKGzlRz4vnD5z6uhjSJdZavyT6Z2bNSfyOVIwgxiTqvln190gaFkbJuCltu7pnv67LeJRNcgHYJNk3e-rB60gc0PICTg_fH78ZRm8Eh0imTSYTumTGaOQRWhsos5jnCOZMoJ1IWa8pcoqRGiGGocBqhKivz0qLF1OiUSgRn6UNYX1QL-wiIMegoas1V6ZMIllIJ6mKnpGNKWZnxIbzq_mWhW3pzn2VjVgRiZlrgGBd-jIfwvJf8Gig9_iCz002HolXqZUH9kRXCLxZjE30xqqM_YykXtlp5GZoJLgWnQ9gK06jvBNFCJoRMh_CymQx_7b34fDj1z-1_FXwGt8bH00kxOTz6-Bg2ENTJ5tp9vAPr9eXKPkHgVKunjYL8AKLwEig
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB-khVIQW8-vq1VXEH1prpvNZpP1rVqPVntF1EKhDyH7JaV3l9LLCfrXdzabROoHiE952K9kM7P7m53Z3wC8SHKX0VzLiDKjIq7TMspTjVaKw6XPMqVZcylsciwOTvj70_S0jar0d2ECP0R_4OY1o1mvvYJfGrf7kzR0cT4b4fKKls8qFzT3Er3_qaeOirt0rd5FKbI47YhnKdvtWt7cin7DlzfharPfjDfgrHvTEGZyMVrWaqR__ELi-H-fsgl3WhhK9oLc3IVbdj6AtUnraB_A7XCcR8ItpQGse1AaOJ3vwTfP8mwNwW3OVDPi2cNnPqqGNGl1Fq_JHpnar6X-TipHEGASdV4t-vakDQkjZd0UtszcUz_WVb1DjnD52SHYNXnjg-pJH85wH07G7768PYja_A2RTriMIzTOjNHcIawyTGY0zRHMmVg5kXCqGXexkhoBhmHCaQSqvMxLi_ulRpNUIjRLHsDKvJrbR0CMQTNR61SVPoVgKZVgjjolHVfKyiwdwqvuVxa6JTf3OTamRaBlZgXOceHneAjP-5qXgdDjD3W2O2koWpVeFMw7rBB8cYpd9MWojN7DUs5ttfR1WCZSKVI2hIdBivpBECtkQshkCC8bWfjr6MXnw4l_bv1rxWew9nF_XBwdHn94DOuI6GRz555uw0p9tbRPEDXV6mmjHtd8UhDg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shared+random+parameter+models%3A+A+legacy+of+the+biostatistics+program+at+the+National+Heart%2C+Lung%2C+and+Blood+Institute&rft.jtitle=Statistics+in+medicine&rft.au=Albert%2C+Paul+S&rft.date=2019-02-20&rft.issn=1097-0258&rft.eissn=1097-0258&rft.volume=38&rft.issue=4&rft.spage=501&rft_id=info:doi/10.1002%2Fsim.8011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon