Shared random parameter models: A legacy of the biostatistics program at the National Heart, Lung, and Blood Institute
Shared random parameter models (SRPMs) were first introduced by researchers at the National Heart Lung and Blood Institute (NHLBI) Biostatistics Branch for analyzing longitudinal data with informative dropout (Wu and Carroll, 1987; Wu and Bailey, 1988; Follmann and Wu, 1995; Albert and Follmann, 200...
Saved in:
Published in | Statistics in medicine Vol. 38; no. 4; pp. 501 - 511 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
20.02.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Shared random parameter models (SRPMs) were first introduced by researchers at the National Heart Lung and Blood Institute (NHLBI) Biostatistics Branch for analyzing longitudinal data with informative dropout (Wu and Carroll, 1987; Wu and Bailey, 1988; Follmann and Wu, 1995; Albert and Follmann, 2000; Albert et al, 2002). This work was all focused on characterizing the longitudinal data process in the presence of an informative missing data mechanism that is treated as a nuisance. Shared random parameter modeling approaches have also been developed from the perspective of characterizing the relationship between longitudinal data and a subsequent outcome that may be an event time, a dichotomous measurement, or another longitudinal outcome. This article will review the early contributions of the NHLBI biostatisticians on SRPMs for analyzing longitudinal data with dropout and demonstrate how these ideas have, more recently, been applied in these other areas of biostatistics. Rather than focus on technical details or specific analyses, this article presents a conceptual framework for SRPMs within a historical context. |
---|---|
AbstractList | Shared random parameter models (SRPMs) were first introduced by researchers at the National Heart Lung and Blood Institute (NHLBI) Biostatistics Branch for analyzing longitudinal data with informative dropout (Wu and Carroll, 1987; Wu and Bailey, 1988; Follmann and Wu, 1995; Albert and Follmann, 2000; Albert et al, 2002). This work was all focused on characterizing the longitudinal data process in the presence of an informative missing data mechanism that is treated as a nuisance. Shared random parameter modeling approaches have also been developed from the perspective of characterizing the relationship between longitudinal data and a subsequent outcome that may be an event time, a dichotomous measurement, or another longitudinal outcome. This article will review the early contributions of the NHLBI biostatisticians on SRPMs for analyzing longitudinal data with dropout and demonstrate how these ideas have, more recently, been applied in these other areas of biostatistics. Rather than focus on technical details or specific analyses, this article presents a conceptual framework for SRPMs within a historical context. Shared random parameter models (SRPMs) were first introduced by researchers at the National Heart Lung and Blood Institute (NHLBI) Biostatistics Branch for analyzing longitudinal data with informative dropout (Wu and Carroll, 1987; Wu and Bailey, 1988; Follmann and Wu, 1995; Albert and Follmann, 2000; Albert et al, 2002). This work was all focused on characterizing the longitudinal data process in the presence of an informative missing data mechanism that is treated as a nuisance. Shared random parameter modeling approaches have also been developed from the perspective of characterizing the relationship between longitudinal data and a subsequent outcome that may be an event time, a dichotomous measurement, or another longitudinal outcome. This article will review the early contributions of the NHLBI biostatisticians on SRPMs for analyzing longitudinal data with dropout and demonstrate how these ideas have, more recently, been applied in these other areas of biostatistics. Rather than focus on technical details or specific analyses, this article presents a conceptual framework for SRPMs within a historical context.Shared random parameter models (SRPMs) were first introduced by researchers at the National Heart Lung and Blood Institute (NHLBI) Biostatistics Branch for analyzing longitudinal data with informative dropout (Wu and Carroll, 1987; Wu and Bailey, 1988; Follmann and Wu, 1995; Albert and Follmann, 2000; Albert et al, 2002). This work was all focused on characterizing the longitudinal data process in the presence of an informative missing data mechanism that is treated as a nuisance. Shared random parameter modeling approaches have also been developed from the perspective of characterizing the relationship between longitudinal data and a subsequent outcome that may be an event time, a dichotomous measurement, or another longitudinal outcome. This article will review the early contributions of the NHLBI biostatisticians on SRPMs for analyzing longitudinal data with dropout and demonstrate how these ideas have, more recently, been applied in these other areas of biostatistics. Rather than focus on technical details or specific analyses, this article presents a conceptual framework for SRPMs within a historical context. |
Author | Albert, Paul S. |
Author_xml | – sequence: 1 givenname: Paul S. orcidid: 0000-0003-1658-1068 surname: Albert fullname: Albert, Paul S. email: albertp@mail.nih.gov organization: National Cancer Institute |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30376693$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtvEzEUhS1URNOCxC9Altiw6KS2Z2yP2bVVH5FSWBTWI8e-k7ryjIPtAeXf46QtSBWs7uJ-59zHOUIHYxgBofeUzCkh7DS5Yd4SSl-hGSVKVoTx9gDNCJOyEpLyQ3SU0gMpBGfyDTqsSS2FUPUM_by71xEsjnq0YcAbHfUAGSIeggWfPuMz7GGtzRaHHud7wCsXUtbZpexMwpsY1kWBdd43v5RGGLXHN6BjPsHLaVyf4GKNz30IFi_GIstThrfoda99gndP9Rh9v7r8dnFTLb9eLy7OlpWpG0UrJqi1punLPZYpSXhLCbd01Yu6IYY1PV0p01JmmeiNUqrRrQbKWkOJVIyT-hh9evQti_6YIOVucMmA93qEMKWOUSYFV4Kzgn58gT6EKZZjdpSQivOm2Rl-eKKm1QC220Q36Ljtnj_6d6KJIaUI_R-Ekm4XVlfC6nZhFXT-AjUu7z-Yo3b-X4LqUfDLedj-17i7W9zu-d_eD6KU |
CitedBy_id | crossref_primary_10_1002_sim_8443 crossref_primary_10_1214_23_AOAS1788 crossref_primary_10_1007_s10260_021_00570_w crossref_primary_10_3233_JAD_181131 crossref_primary_10_1177_0962280220927720 crossref_primary_10_1155_2022_4452158 crossref_primary_10_1002_bimj_201900027 crossref_primary_10_1214_24_AOAS1889 crossref_primary_10_1002_sim_10219 |
Cites_doi | 10.1080/01621459.1997.10473613 10.1111/j.1541-0420.2009.01324_2.x 10.1177/0962280206075308 10.1093/biostatistics/kxu020 10.2307/2533195 10.1016/j.csda.2008.09.011 10.2307/2533322 10.1002/1097-0258(20010115)20:1<93::AID-SIM655>3.0.CO;2-2 10.2307/2534023 10.1093/biomet/88.2.447 10.1111/rssa.12312 10.1002/sim.4405 10.1002/sim.4780140307 10.2307/2533118 10.1080/01621459.1995.10476485 10.1111/1467-9574.00223 10.1002/sim.720 10.1002/sim.2249 10.2307/2531694 10.1080/01621459.1993.10594302 10.1111/rssb.12060 10.1111/j.1541-0420.2009.01324_1.x 10.1111/j.0006-341X.2000.00667.x 10.2307/2531905 10.1111/j.0006-341X.1999.00075.x 10.1214/10-AOAS326 10.3109/00016349309068037 10.1002/sim.1710 10.1111/biom.12463 10.1093/biostatistics/3.4.459 10.1111/rssc.12210 10.2307/2529876 10.1002/sim.4780111408 10.1111/j.0006-341X.2002.00631.x 10.2307/2533439 10.1111/biom.12862 10.1111/j.1467-9876.2005.05515.x 10.1016/j.spasta.2017.08.001 10.1214/10-AOAS339 10.1002/9781119013563 10.1093/biostatistics/kxq084 |
ContentType | Journal Article |
Copyright | Published 2018. This article is a U.S. Government work and is in the public domain in the USA. 2019 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Published 2018. This article is a U.S. Government work and is in the public domain in the USA. – notice: 2019 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. 7X8 |
DOI | 10.1002/sim.8011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 511 |
ExternalDocumentID | 30376693 10_1002_sim_8011 SIM8011 |
Genre | article Journal Article Research Support, N.I.H., Extramural |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GrantInformation_xml | – fundername: National Cancer Institute |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION CGR CUY CVF ECM EIF NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c3491-261ddc4f025d297058105d1bf6340c24f1b9c812d26fc9994a8ae128c10792503 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Fri Jul 11 07:46:13 EDT 2025 Sun Jul 13 04:54:01 EDT 2025 Wed Feb 19 02:31:30 EST 2025 Thu Apr 24 23:01:11 EDT 2025 Tue Jul 01 03:28:14 EDT 2025 Wed Jan 22 16:32:48 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | random effects joint models risk prediction nonignorable missing data repeated measures |
Language | English |
License | Published 2018. This article is a U.S. Government work and is in the public domain in the USA. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3491-261ddc4f025d297058105d1bf6340c24f1b9c812d26fc9994a8ae128c10792503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1658-1068 |
PMID | 30376693 |
PQID | 2167955440 |
PQPubID | 48361 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2127659652 proquest_journals_2167955440 pubmed_primary_30376693 crossref_primary_10_1002_sim_8011 crossref_citationtrail_10_1002_sim_8011 wiley_primary_10_1002_sim_8011_SIM8011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20 February 2019 |
PublicationDateYYYYMMDD | 2019-02-20 |
PublicationDate_xml | – month: 02 year: 2019 text: 20 February 2019 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1995; 51 2002; 58 1982; 38 1989; 45 2018; 181 1995; 90 1995; 14 1993; 88 2017; 22 2004; 23 2017; 67 2003; 57 2009 2002; 3 2016; 72 2004 2011; 12 2002 2001; 88 1992; 11 2012; 31 2001; 20 2007; 16 2010; 66 1997; 92 2009; 53 2000; 56 1997; 53 2004; 14 2006; 25 1988; 44 2014; 15 1999; 55 2005; 54 2018; 74 1998; 54 1994; 50 2014; 72 2010; 4 2014; 77 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 Rizopoulos D (e_1_2_7_35_1) 2004 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 Albert PS (e_1_2_7_26_1) 2009 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_12_1 Tsiatis AA (e_1_2_7_34_1) 2004; 14 e_1_2_7_44_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Tsiatis AA (e_1_2_7_20_1) 2004; 14 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – volume: 20 start-page: 93 issue: 1 year: 2001 end-page: 108 article-title: Adjusting for drop‐out in clinical trials with repeated measures: design and analysis issues publication-title: Statist Med – volume: 50 start-page: 39 issue: 1 year: 1994 end-page: 50 article-title: Slope estimation in the presence of informative right censoring: modeling the number of observations as a geometric random variable publication-title: Biometrics – volume: 88 start-page: 125 issue: 421 year: 1993 end-page: 134 article-title: Pattern‐mixture models for multivariate incomplete data publication-title: J Am Stat Assoc – volume: 74 start-page: 1112 issue: 3 year: 2018 end-page: 1119 article-title: An approximate joint model for multiple paired longitudinal outcomes and survival publication-title: Biometrics – volume: 181 start-page: 825 issue: 3 year: 2018 end-page: 842 article-title: Estimating onset time from longitudinal and cross‐sectional data with an application to estimating gestational age from longitudinal maternal anthropometry during pregnancy and neonatal anthropometry at birth publication-title: J R Stat Soc Ser A – volume: 12 start-page: 737 issue: 4 year: 2011 end-page: 749 article-title: A shared parameter model for the estimation of longitudinal concomitant intervention effects publication-title: Biostatistics – volume: 90 start-page: 27 issue: 429 year: 1995 end-page: 37 article-title: Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS publication-title: J Am Stat Assoc – volume: 14 start-page: 283 issue: 3 year: 1995 end-page: 297 article-title: A simulation study of estimators for rates of change in longitudinal studies with attrition publication-title: Statist Med – volume: 88 start-page: 447 issue: 2 year: 2001 end-page: 458 article-title: A semiparametric estimator to the proportional hazards model with longitudinal covariates measured with error publication-title: Biometrika – volume: 66 start-page: 987 year: 2010 article-title: Response to “On estimating the relationship between longitudinal measurements and time‐to‐event data using a simple two‐stage procedure” publication-title: Biometrics – volume: 56 start-page: 667 issue: 3 year: 2000 end-page: 677 article-title: Modeling repeated count data subject to informative dropout publication-title: Biometrics – volume: 53 start-page: 699 issue: 3 year: 2009 end-page: 706 article-title: A Bayesian analysis for longitudinal semicontinuous data to an application to an acupuncture clinical trial publication-title: Comput Stat Data Anal – volume: 14 start-page: 809 year: 2004 end-page: 834 article-title: Joint modeling of longitudinal and time‐to‐event data: a review publication-title: Stat Sinica – volume: 72 start-page: 273 year: 2014 end-page: 279 article-title: Pre‐pregnancy risk factors of small‐for‐gestational age births among parous women in Scandinavia publication-title: Acta Obstet Gynecol Scan – volume: 4 start-page: 1476 issue: 3 year: 2010 end-page: 1497 article-title: Prediction based classification for longitudinal biomarkers publication-title: Ann Appl Stat – volume: 38 start-page: 963 issue: 4 year: 1982 end-page: 974 article-title: Random‐effects models for longitudinal data publication-title: Biometrics – volume: 53 start-page: 330 issue: 1 year: 1997 end-page: 339 article-title: A joint model for survival and longitudinal data measured with error publication-title: Biometrics – volume: 31 start-page: 143 issue: 2 year: 2012 end-page: 154 article-title: A linear mixed model for predicting a binary event from longitudinal data under random effects misspecification publication-title: Statist Med – volume: 16 start-page: 417 issue: 5 year: 2007 end-page: 439 article-title: Random effects and latent processes approaches for analyzing binary longitudinal data with missingness: a comparison of approaches using opiate clinical trial data publication-title: Stat Methods Med Res – volume: 3 start-page: 459 issue: 4 year: 2002 end-page: 475 article-title: General growth mixture modeling for randomized preventive interventions publication-title: Biostatistics – volume: 72 start-page: 917 issue: 3 year: 2016 end-page: 925 article-title: A class of joint models for multivariate longitudinal measurements and a binary event publication-title: Biometrics – volume: 25 start-page: 143 issue: 1 year: 2006 end-page: 163 article-title: Shared parameter models for the joint analysis of longitudinal data and even times publication-title: Statist Med – volume: 23 start-page: 211 year: 2004 end-page: 219 article-title: A shared random parameter effect parameter approach for longitudinal dementia data with non‐ignorable missing data publication-title: Statist Med – volume: 77 start-page: 131 issue: 1 year: 2014 end-page: 148 article-title: Joint modelling of repeated measurements and time‐to‐event outcomes: flexible model specification and exact likelihood inference publication-title: J R Stat Soc Ser B Stat Methodol – volume: 51 start-page: 151 issue: 1 year: 1995 end-page: 168 article-title: An approximate generalized linear model with random effects for informative missing data publication-title: Biometrics – volume: 4 start-page: 1517 issue: 3 year: 2010 end-page: 1532 article-title: An approach for jointly modeling multivariate longitudinal and discrete time‐to‐event data publication-title: Ann Appl Stat – volume: 20 start-page: 989 issue: 7 year: 2001 end-page: 1007 article-title: Analysis of change in the presence of informative censoring: application to a longitudinal clinical trial of progressive renal disease publication-title: Statist Med – volume: 67 start-page: 145 issue: 1 year: 2017 end-page: 163 article-title: Accommodating informative dropout and death: a joint modelling approach for longitudinal and semicompeting risks data publication-title: J R Stat Soc Ser C Appl Stat – volume: 66 start-page: 983 issue: 3 year: 2010 end-page: 987 article-title: On estimating the relationship between longitudinal measurements and time‐to‐event data using a simple two‐stage procedure publication-title: Biometrics – volume: 54 start-page: 707 issue: 4 year: 2005 end-page: 720 article-title: Modelling longitudinal semicontinuous emesis volume data with serial correlation in an acupuncture clinical trial publication-title: J R Stat Soc Ser C Appl Stat – year: 2002 – volume: 54 start-page: 367 issue: 1 year: 1998 end-page: 383 article-title: Mixed effects logistic regression models for longitudinal binary response data with informative‐dropout publication-title: Biometrics – year: 2004 – volume: 22 start-page: 434 year: 2017 end-page: 450 article-title: Spatio‐temporal model structures with shared components for semi‐continuous species distributions modelling publication-title: Spatial Stat – volume: 55 start-page: 75 issue: 1 year: 1999 end-page: 84 article-title: Use of summary measures to adjust for informative missingness in repeated measures data with random effects publication-title: Biometrics – volume: 15 start-page: 706 issue: 4 year: 2014 end-page: 718 article-title: Combination of longitudinal biomarkers in predicting binary events publication-title: Biostatistics – volume: 45 start-page: 939 issue: 3 year: 1989 end-page: 955 article-title: Estimation and comparison of changes in the presence of informative right censoring: conditional linear model publication-title: Biometrics – volume: 44 start-page: 175 issue: 1 year: 1988 end-page: 188 article-title: Estimation and comparison of changes in the presence of informative right censoring by modeling the censoring process publication-title: Biometrics – volume: 58 start-page: 631 issue: 3 year: 2002 end-page: 642 article-title: A latent autoregressive model for longitudinal binary data subject to informative missingness publication-title: Biometrics – volume: 57 start-page: 100 issue: 1 year: 2003 end-page: 111 article-title: A random effects transition model for longitudinal binary data with informative missingness publication-title: Statistica Neerlandica – volume: 14 start-page: 809 issue: 3 year: 2004 end-page: 834 article-title: Joint modeling of longitudinal and time‐to‐event data: an overview publication-title: Stat Sin – volume: 92 start-page: 162 issue: 437 year: 1997 end-page: 170 article-title: Maximum likelihood algorithms for generalized linear mixed models publication-title: J Am Stat Assoc – start-page: 433 year: 2009 end-page: 452 – volume: 11 start-page: 1861 issue: 14‐15 year: 1992 end-page: 1870 article-title: Methods for the analysis of informatively censored longitudinal data publication-title: Statist Med – volume: 50 start-page: 1003 issue: 4 year: 1994 end-page: 1014 article-title: Modeling progression of CD4‐Lymphocyte count and its relationship with survival time publication-title: Biometrics – ident: e_1_2_7_21_1 doi: 10.1080/01621459.1997.10473613 – ident: e_1_2_7_39_1 doi: 10.1111/j.1541-0420.2009.01324_2.x – ident: e_1_2_7_25_1 doi: 10.1177/0962280206075308 – ident: e_1_2_7_31_1 doi: 10.1093/biostatistics/kxu020 – ident: e_1_2_7_14_1 doi: 10.2307/2533195 – ident: e_1_2_7_44_1 doi: 10.1016/j.csda.2008.09.011 – ident: e_1_2_7_4_1 doi: 10.2307/2533322 – ident: e_1_2_7_6_1 doi: 10.1002/1097-0258(20010115)20:1<93::AID-SIM655>3.0.CO;2-2 – ident: e_1_2_7_13_1 doi: 10.2307/2534023 – ident: e_1_2_7_33_1 doi: 10.1093/biomet/88.2.447 – ident: e_1_2_7_42_1 doi: 10.1111/rssa.12312 – ident: e_1_2_7_27_1 doi: 10.1002/sim.4405 – ident: e_1_2_7_23_1 doi: 10.1002/sim.4780140307 – ident: e_1_2_7_19_1 doi: 10.2307/2533118 – ident: e_1_2_7_18_1 doi: 10.1080/01621459.1995.10476485 – ident: e_1_2_7_9_1 doi: 10.1111/1467-9574.00223 – ident: e_1_2_7_16_1 doi: 10.1002/sim.720 – volume-title: Joint Models for Longitudinal and Time‐to‐Event Data: With Applications in R year: 2004 ident: e_1_2_7_35_1 – ident: e_1_2_7_11_1 doi: 10.1002/sim.2249 – ident: e_1_2_7_3_1 doi: 10.2307/2531694 – ident: e_1_2_7_24_1 doi: 10.1080/01621459.1993.10594302 – ident: e_1_2_7_36_1 doi: 10.1111/rssb.12060 – ident: e_1_2_7_38_1 doi: 10.1111/j.1541-0420.2009.01324_1.x – ident: e_1_2_7_7_1 doi: 10.1111/j.0006-341X.2000.00667.x – ident: e_1_2_7_2_1 doi: 10.2307/2531905 – ident: e_1_2_7_5_1 doi: 10.1111/j.0006-341X.1999.00075.x – ident: e_1_2_7_29_1 doi: 10.1214/10-AOAS326 – ident: e_1_2_7_32_1 doi: 10.3109/00016349309068037 – ident: e_1_2_7_22_1 doi: 10.1002/sim.1710 – ident: e_1_2_7_30_1 doi: 10.1111/biom.12463 – volume: 14 start-page: 809 year: 2004 ident: e_1_2_7_34_1 article-title: Joint modeling of longitudinal and time‐to‐event data: a review publication-title: Stat Sinica – ident: e_1_2_7_28_1 doi: 10.1093/biostatistics/3.4.459 – ident: e_1_2_7_37_1 doi: 10.1111/rssc.12210 – ident: e_1_2_7_12_1 doi: 10.2307/2529876 – ident: e_1_2_7_15_1 doi: 10.1002/sim.4780111408 – ident: e_1_2_7_8_1 doi: 10.1111/j.0006-341X.2002.00631.x – ident: e_1_2_7_17_1 doi: 10.2307/2533439 – start-page: 433 volume-title: Longitudinal Data Analysis year: 2009 ident: e_1_2_7_26_1 – ident: e_1_2_7_41_1 doi: 10.1111/biom.12862 – ident: e_1_2_7_43_1 doi: 10.1111/j.1467-9876.2005.05515.x – ident: e_1_2_7_45_1 doi: 10.1016/j.spasta.2017.08.001 – volume: 14 start-page: 809 issue: 3 year: 2004 ident: e_1_2_7_20_1 article-title: Joint modeling of longitudinal and time‐to‐event data: an overview publication-title: Stat Sin – ident: e_1_2_7_40_1 doi: 10.1214/10-AOAS339 – ident: e_1_2_7_10_1 doi: 10.1002/9781119013563 – ident: e_1_2_7_46_1 doi: 10.1093/biostatistics/kxq084 |
SSID | ssj0011527 |
Score | 2.3232226 |
Snippet | Shared random parameter models (SRPMs) were first introduced by researchers at the National Heart Lung and Blood Institute (NHLBI) Biostatistics Branch for... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 501 |
SubjectTerms | Biostatistics Health risk assessment Humans joint models Longitudinal Studies Missing data Models, Statistical National Heart, Lung, and Blood Institute (U.S.) nonignorable missing data Patient Dropouts random effects repeated measures risk prediction United States Within-subjects design |
Title | Shared random parameter models: A legacy of the biostatistics program at the National Heart, Lung, and Blood Institute |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8011 https://www.ncbi.nlm.nih.gov/pubmed/30376693 https://www.proquest.com/docview/2167955440 https://www.proquest.com/docview/2127659652 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Li9RAEC5kD7IgPsbX6CotiF42s0mn00l7W8VlFceDurDgIfRTFmcmsskI-uutSieR9QHiKYd-JZ2q6q-6q78CeJxXoUwrq5KUO5MIW-ikKix6KQFNn-fG8v5S2PKtPD4Rr0-L0yGqku7CRH6IacONNKO316Tg2rQHP0lD27P1As0reT4UqkV46N3EHJWN2VrphFKWWTHyzqb8YGx4cSX6DV5eRKv9cnN0DT6OLxqjTD4vtp1Z2O-_cDj-35dch6sDCmWHUWxuwCW_mcHl5XDOPoMrcTePxUtKM9glTBopnW_CVyJ59o7hKueaNSPy8DUF1bA-q077jB2ylf-k7TfWBIb4kpmzpp3asyEijOmuLxyIuVc01nm3z96g9dln2DV7TjH1bIpmuAUnRy8_vDhOhvQNic2FyhL0zZyzIiCqclyVaVEhlnOZCTIXqeUiZEZZxBeOy2ARpwpdaY_LpUWPVCEyy2_DzqbZ-LvAnEMv0drCaMogqJWRPKTBqCCM8aos5vB0_JW1HbjNKcXGqo6szLzGOa5pjufwaKr5JfJ5_KHO3igN9aDRbc3pvAqxl0ixi6kYdZEOWPTGN1uqw0tZKFnwOdyJUjQNglChlFLlc3jSy8JfR6_fv1rS896_VrwPu4jiVH_PPt2Dne586x8gUurMw14nfgDQig4N |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRYJKFY8FypYCRkJwabaJYzsxnAqi2sJuD9BKPSBF8auqurtB3Wwl-PWM4ySoPCTEKQeP7cTxeL6xx98AvEhzl8W5llFMjYqY5mWUc41eisOlz1KlaXMpbHokxifswyk_XYM33V2YwA_Rb7h5zWjWa6_gfkN67ydr6PJ8PsL1FV2fGz6hd-NPfeq5o5IuX6s_oxRZwjvm2ZjudTWv26LfAOZ1vNoYnIM78KV71RBncjFa1Wqkv__C4vif33IXbrdAlOyHmXMP1uxiADen7VH7ADbDhh4J95QGsOFhaWB1vg9XnufZGoKGzlRz4vnD5z6uhjSJdZavyT6Z2bNSfyOVIwgxiTqvln190gaFkbJuCltu7pnv67LeJRNcgHYJNk3e-rB60gc0PICTg_fH78ZRm8Eh0imTSYTumTGaOQRWhsos5jnCOZMoJ1IWa8pcoqRGiGGocBqhKivz0qLF1OiUSgRn6UNYX1QL-wiIMegoas1V6ZMIllIJ6mKnpGNKWZnxIbzq_mWhW3pzn2VjVgRiZlrgGBd-jIfwvJf8Gig9_iCz002HolXqZUH9kRXCLxZjE30xqqM_YykXtlp5GZoJLgWnQ9gK06jvBNFCJoRMh_CymQx_7b34fDj1z-1_FXwGt8bH00kxOTz6-Bg2ENTJ5tp9vAPr9eXKPkHgVKunjYL8AKLwEig |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB-khVIQW8-vq1VXEH1prpvNZpP1rVqPVntF1EKhDyH7JaV3l9LLCfrXdzabROoHiE952K9kM7P7m53Z3wC8SHKX0VzLiDKjIq7TMspTjVaKw6XPMqVZcylsciwOTvj70_S0jar0d2ECP0R_4OY1o1mvvYJfGrf7kzR0cT4b4fKKls8qFzT3Er3_qaeOirt0rd5FKbI47YhnKdvtWt7cin7DlzfharPfjDfgrHvTEGZyMVrWaqR__ELi-H-fsgl3WhhK9oLc3IVbdj6AtUnraB_A7XCcR8ItpQGse1AaOJ3vwTfP8mwNwW3OVDPi2cNnPqqGNGl1Fq_JHpnar6X-TipHEGASdV4t-vakDQkjZd0UtszcUz_WVb1DjnD52SHYNXnjg-pJH85wH07G7768PYja_A2RTriMIzTOjNHcIawyTGY0zRHMmVg5kXCqGXexkhoBhmHCaQSqvMxLi_ulRpNUIjRLHsDKvJrbR0CMQTNR61SVPoVgKZVgjjolHVfKyiwdwqvuVxa6JTf3OTamRaBlZgXOceHneAjP-5qXgdDjD3W2O2koWpVeFMw7rBB8cYpd9MWojN7DUs5ttfR1WCZSKVI2hIdBivpBECtkQshkCC8bWfjr6MXnw4l_bv1rxWew9nF_XBwdHn94DOuI6GRz555uw0p9tbRPEDXV6mmjHtd8UhDg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Shared+random+parameter+models%3A+A+legacy+of+the+biostatistics+program+at+the+National+Heart%2C+Lung%2C+and+Blood+Institute&rft.jtitle=Statistics+in+medicine&rft.au=Albert%2C+Paul+S&rft.date=2019-02-20&rft.issn=1097-0258&rft.eissn=1097-0258&rft.volume=38&rft.issue=4&rft.spage=501&rft_id=info:doi/10.1002%2Fsim.8011&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |