Group testing regression analysis with covariates and specimens subject to missingness
We develop parametric estimators of a conditional prevalence in the group testing context. Group testing is applied when a binary outcome variable, often a disease indicator, is assessed by testing a specimen for the presence of the disease. Instead of testing all individual specimens separately, th...
Saved in:
Published in | Statistics in medicine Vol. 42; no. 6; pp. 731 - 744 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
15.03.2023
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We develop parametric estimators of a conditional prevalence in the group testing context. Group testing is applied when a binary outcome variable, often a disease indicator, is assessed by testing a specimen for the presence of the disease. Instead of testing all individual specimens separately, these are pooled in groups and the grouped specimens are tested for the disease, which permits to significantly reduce the number of tests to be performed. Various techniques have been developed in the literature for estimating a conditional prevalence from group testing data, but most of them are not valid when the data are subject to missingness. We consider this problem in the case where the specimen and the covariates are subject to nonmonotone missingness. We propose parametric estimators of the conditional prevalence, establish identifiability conditions for a logistic missing not at random model, and introduce an ignorable missing at random model. In theory, our estimators could be applied with multiple covariates missing, but in practice, they face numerical challenges when more than one covariate is missing for given individuals. We illustrate the method on simulated data and on a dataset from the Demographics and Health Survey. |
---|---|
AbstractList | We develop parametric estimators of a conditional prevalence in the group testing context. Group testing is applied when a binary outcome variable, often a disease indicator, is assessed by testing a specimen for the presence of the disease. Instead of testing all individual specimens separately, these are pooled in groups and the grouped specimens are tested for the disease, which permits to significantly reduce the number of tests to be performed. Various techniques have been developed in the literature for estimating a conditional prevalence from group testing data, but most of them are not valid when the data are subject to missingness. We consider this problem in the case where the specimen and the covariates are subject to nonmonotone missingness. We propose parametric estimators of the conditional prevalence, establish identifiability conditions for a logistic missing not at random model, and introduce an ignorable missing at random model. In theory, our estimators could be applied with multiple covariates missing, but in practice, they face numerical challenges when more than one covariate is missing for given individuals. We illustrate the method on simulated data and on a dataset from the Demographics and Health Survey. We develop parametric estimators of a conditional prevalence in the group testing context. Group testing is applied when a binary outcome variable, often a disease indicator, is assessed by testing a specimen for the presence of the disease. Instead of testing all individual specimens separately, these are pooled in groups and the grouped specimens are tested for the disease, which permits to significantly reduce the number of tests to be performed. Various techniques have been developed in the literature for estimating a conditional prevalence from group testing data, but most of them are not valid when the data are subject to missingness. We consider this problem in the case where the specimen and the covariates are subject to nonmonotone missingness. We propose parametric estimators of the conditional prevalence, establish identifiability conditions for a logistic missing not at random model, and introduce an ignorable missing at random model. In theory, our estimators could be applied with multiple covariates missing, but in practice, they face numerical challenges when more than one covariate is missing for given individuals. We illustrate the method on simulated data and on a dataset from the Demographics and Health Survey.We develop parametric estimators of a conditional prevalence in the group testing context. Group testing is applied when a binary outcome variable, often a disease indicator, is assessed by testing a specimen for the presence of the disease. Instead of testing all individual specimens separately, these are pooled in groups and the grouped specimens are tested for the disease, which permits to significantly reduce the number of tests to be performed. Various techniques have been developed in the literature for estimating a conditional prevalence from group testing data, but most of them are not valid when the data are subject to missingness. We consider this problem in the case where the specimen and the covariates are subject to nonmonotone missingness. We propose parametric estimators of the conditional prevalence, establish identifiability conditions for a logistic missing not at random model, and introduce an ignorable missing at random model. In theory, our estimators could be applied with multiple covariates missing, but in practice, they face numerical challenges when more than one covariate is missing for given individuals. We illustrate the method on simulated data and on a dataset from the Demographics and Health Survey. |
Author | Tan, Ruoxu Delaigle, Aurore |
Author_xml | – sequence: 1 givenname: Aurore surname: Delaigle fullname: Delaigle, Aurore organization: University of Melbourne, 3010, Victoria – sequence: 2 givenname: Ruoxu orcidid: 0000-0002-2046-4377 surname: Tan fullname: Tan, Ruoxu email: ruoxut@outlook.com organization: University of Hong Kong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36646446$$D View this record in MEDLINE/PubMed |
BookMark | eNp10U1PGzEQBmCrCiIJReovQJZ66WXD-GM_fKwQTZFAHGh7tRyvHRzt2qm9S5R_X6eBIqFy8sHPjGbmnaOJD94g9InAggDQy-T6hag4fEAzAqIugJbNBM2A1nVR1aSconlKGwBCSlqfoimrKl5xXs3Qr2UM4xYPJg3Or3E062hScsFj5VW3Ty7hnRsesQ5PKjqVXf5ocdoa7XrjE07jamP0gIeAe5cr_drnBh_RiVVdMufP7xn6-e36x9X34vZ-eXP19bbQjAsomGpso7S1QnFGGmVJC7q1AmhLmdHaloYqbjmYSjelykqUetXqSmiwTDB2hr4c-25j-D3mJWQeQpuuU96EMUla500Z1BQy_fyGbsIY85IHVXNCGkpFVhfPalz1ppXb6HoV9_LlYhksjkDHkFI0Vmo3qCFfbIjKdZKAPEQicyTyEMnriP8KXnr-hxZHunOd2b_r5MPN3V__Bwajm20 |
CitedBy_id | crossref_primary_10_1002_sim_70052 crossref_primary_10_1002_sim_10319 |
Cites_doi | 10.1214/11-AOS952 10.1038/d41586-020-02053-6 10.1214/009053606000001389 10.1080/10485252.2018.1483501 10.1080/10485252.2012.750726 10.1080/00949650701608990 10.1111/sjos.12184 10.1097/01.aids.0000131338.61042.b8 10.1016/0378-3758(89)90061-X 10.1016/j.jviromet.2013.04.003 10.1093/biomet/asu025 10.1093/biomet/asv049 10.1002/(SICI)1097-0258(19970115)16:1<39::AID-SIM535>3.0.CO;2-D 10.1080/01621459.1993.10594302 10.1038/s41586-020-2885-5 10.1080/01621459.2016.1256814 10.1017/CBO9780511802256 10.1002/9781119013563 10.1111/j.0006-341X.2000.01126.x 10.1080/01621459.2019.1566071 10.1080/00031305.2017.1366367 10.5705/ss.202021.0382 10.1198/jasa.2011.tm10520 10.1111/1740-9713.01399 10.1371/journal.pone.0077101 10.1214/aoms/1177731363 10.1111/j.1541-0420.2008.01183.x 10.1002/sim.817 10.1080/01621459.2015.1054491 10.1002/sim.5858 |
ContentType | Journal Article |
Copyright | 2023 John Wiley & Sons Ltd. 2023 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. – notice: 2023 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1002/sim.9640 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 744 |
ExternalDocumentID | 36646446 10_1002_sim_9640 SIM9640 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Australian Research Council funderid: DP170102434; DP230100147 – fundername: Australian Research Council grantid: DP170102434 – fundername: Australian Research Council grantid: DP230100147 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY NPM K9. 7X8 |
ID | FETCH-LOGICAL-c3490-3a8f8acff9a4318af1d0cdf902d23eccf5e2a4f40e6c85a9a495cbdc69c0f3933 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Thu Jul 10 19:30:25 EDT 2025 Fri Jul 25 23:29:31 EDT 2025 Mon Jul 21 06:07:53 EDT 2025 Tue Jul 01 03:28:18 EDT 2025 Thu Apr 24 23:10:55 EDT 2025 Wed Jan 22 16:24:06 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | prevalence estimation pooling data fast screening cost saving |
Language | English |
License | 2023 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3490-3a8f8acff9a4318af1d0cdf902d23eccf5e2a4f40e6c85a9a495cbdc69c0f3933 |
Notes | Funding information Australian Research Council, Grant/Award Numbers: DP170102434; DP230100147 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2046-4377 |
PMID | 36646446 |
PQID | 2774118229 |
PQPubID | 48361 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2766430720 proquest_journals_2774118229 pubmed_primary_36646446 crossref_citationtrail_10_1002_sim_9640 crossref_primary_10_1002_sim_9640 wiley_primary_10_1002_sim_9640_SIM9640 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 March 2023 |
PublicationDateYYYYMMDD | 2023-03-15 |
PublicationDate_xml | – month: 03 year: 2023 text: 15 March 2023 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2023 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2018; 28 1989; 22 2013; 25 2019; 73 2009; 65 2020; 583 2015; 102 1993; 88 1943; 14 2021; 589 2020; 17 1998 2002 2013; 8 2007; 35 2001; 20 2009; 79 2011; 106 2023 2004; 18 2013; 32 2000; 56 2018; 113 2015; 110 2019; 115 2016; 43 1997; 16 2017 2018; 30 2013; 192 2014; 101 2012; 40 e_1_2_10_24_1 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_30_1 Maheu‐Giroux M (e_1_2_10_28_1) 2017 Tchetgen Tchetgen EJ (e_1_2_10_23_1) 2018; 28 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_26_1 |
References_xml | – volume: 113 start-page: 369 issue: 521 year: 2018 end-page: 379 article-title: On inverse probability weighting for nonmonotone missing at random data publication-title: J Am Stat Assoc. – volume: 88 start-page: 125 issue: 421 year: 1993 end-page: 134 article-title: Pattern‐mixture models for multivariate incomplete data publication-title: J Am Stat Assoc. – volume: 65 start-page: 1270 issue: 4 year: 2009 end-page: 1278 article-title: Group testing regression models with fixed and random effects publication-title: Biometrics. – volume: 583 start-page: 504 issue: 7817 year: 2020 end-page: 505 article-title: The mathematical strategy that could transform coronavirus testing publication-title: Nature. – volume: 28 start-page: 2069 issue: 4 year: 2018 end-page: 2088 article-title: Discrete choice models for nonmonotone nonignorable missing data: identification and inference publication-title: Stat Sin. – volume: 32 start-page: 4954 issue: 28 year: 2013 end-page: 4966 article-title: Regression analysis for multiple‐disease group testing data publication-title: Stat Med. – volume: 101 start-page: 567 issue: 3 year: 2014 end-page: 585 article-title: New approaches to nonparametric and semiparametric regression for univariate and multivariate group testing data publication-title: Biometrika. – volume: 30 start-page: 813 issue: 4 year: 2018 end-page: 833 article-title: Single‐index regression for pooled biomarker data publication-title: J Nonparametr Stat. – volume: 18 start-page: 1435 issue: 10 year: 2004 end-page: 1442 article-title: Early age of first sex: a risk factor for HIV infection among women in Zimbabwe publication-title: Aids. – volume: 14 start-page: 436 issue: 4 year: 1943 end-page: 440 article-title: The detection of defective members of large populations publication-title: Ann Math Stat. – year: 2023 article-title: Group testing regression analysis with missing data and imperfect tests publication-title: Stat Sin – volume: 106 start-page: 640 issue: 494 year: 2011 end-page: 650 article-title: Nonparametric regression analysis for group testing data publication-title: J Am Stat Assoc. – year: 1998 – volume: 22 start-page: 15 issue: 1 year: 1989 end-page: 27 article-title: Estimation of the prevalence of a rare disease, preserving the anonymity of the subjects by group testing: Application to estimating the prevalence of AIDS antibodies in blood donors publication-title: J Stat Plan Inference. – volume: 35 start-page: 990 issue: 3 year: 2007 end-page: 1011 article-title: Monte Carlo likelihood inference for missing data models publication-title: Ann Stat. – volume: 589 start-page: 276 issue: 7841 year: 2021 end-page: 280 article-title: A pooled testing strategy for identifying SARS‐CoV‐2 at low prevalence publication-title: Nature. – volume: 73 start-page: 117 issue: 2 year: 2019 end-page: 125 article-title: Revisiting nested group testing procedures: new results, comparisons, and robustness publication-title: Am Stat. – volume: 79 start-page: 67 issue: 1 year: 2009 end-page: 80 article-title: Bias, efficiency, and agreement for group‐testing regression models publication-title: J Stat Comput Simul. – volume: 17 start-page: 15 issue: 3 year: 2020 article-title: Tests in short supply? Try group testing publication-title: Signif (Oxf). – volume: 102 start-page: 871 issue: 4 year: 2015 end-page: 887 article-title: Nonparametric methods for group testing data, taking dilution into account publication-title: Biometrika. – volume: 115 start-page: 467 year: 2019 end-page: 480 article-title: Estimation of conditional prevalence from group testing data with missing covariates publication-title: J Am Stat Assoc. – volume: 16 start-page: 39 issue: 1 year: 1997 end-page: 56 article-title: Non‐response models for the analysis of non‐monotone ignorable missing data publication-title: Stat Med. – volume: 192 start-page: 25 issue: 1‐2 year: 2013 end-page: 27 article-title: Evaluation of current rapid HIV test algorithms in Rakai, Uganda publication-title: J Virol Methods. – volume: 8 issue: 10 year: 2013 article-title: Recent patterns in population‐based HIV prevalence in Swaziland publication-title: PLoS One. – year: 2002 – volume: 56 start-page: 1126 issue: 4 year: 2000 end-page: 1133 article-title: Regression models for disease prevalence with diagnostic tests on pools of serum samples publication-title: Biometrics. – volume: 20 start-page: 1957 issue: 13 year: 2001 end-page: 1969 article-title: Regression analysis of group testing samples publication-title: Stat Med. – volume: 40 start-page: 131 issue: 1 year: 2012 end-page: 158 article-title: Nonparametric regression with homogeneous group testing data publication-title: Ann Stat. – volume: 43 start-page: 436 issue: 2 year: 2016 end-page: 454 article-title: Likelihood‐based inference with missing data under missing‐at‐random publication-title: Scand. J. Statist. – volume: 25 start-page: 209 issue: 1 year: 2013 end-page: 221 article-title: A semi‐local likelihood regression estimator of the proportion based on group testing data publication-title: J Nonparametr Stat. – year: 2017 – volume: 110 start-page: 1785 issue: 512 year: 2015 end-page: 1796 article-title: Nonparametric and parametric estimators of prevalence from group testing data with aggregated covariates publication-title: J Am Stat Assoc. – ident: e_1_2_10_13_1 doi: 10.1214/11-AOS952 – ident: e_1_2_10_3_1 doi: 10.1038/d41586-020-02053-6 – ident: e_1_2_10_32_1 doi: 10.1214/009053606000001389 – volume-title: Assessing the impact of imperfect immunoassays on HIV prevalence estimates from surveys conducted by the DHS Program year: 2017 ident: e_1_2_10_28_1 – ident: e_1_2_10_18_1 doi: 10.1080/10485252.2018.1483501 – ident: e_1_2_10_14_1 doi: 10.1080/10485252.2012.750726 – ident: e_1_2_10_10_1 doi: 10.1080/00949650701608990 – ident: e_1_2_10_33_1 doi: 10.1111/sjos.12184 – ident: e_1_2_10_30_1 doi: 10.1097/01.aids.0000131338.61042.b8 – ident: e_1_2_10_7_1 doi: 10.1016/0378-3758(89)90061-X – ident: e_1_2_10_29_1 doi: 10.1016/j.jviromet.2013.04.003 – ident: e_1_2_10_15_1 doi: 10.1093/biomet/asu025 – ident: e_1_2_10_16_1 doi: 10.1093/biomet/asv049 – ident: e_1_2_10_26_1 doi: 10.1002/(SICI)1097-0258(19970115)16:1<39::AID-SIM535>3.0.CO;2-D – ident: e_1_2_10_24_1 doi: 10.1080/01621459.1993.10594302 – ident: e_1_2_10_4_1 doi: 10.1038/s41586-020-2885-5 – ident: e_1_2_10_25_1 doi: 10.1080/01621459.2016.1256814 – ident: e_1_2_10_22_1 doi: 10.1017/CBO9780511802256 – ident: e_1_2_10_21_1 doi: 10.1002/9781119013563 – ident: e_1_2_10_9_1 doi: 10.1111/j.0006-341X.2000.01126.x – ident: e_1_2_10_19_1 doi: 10.1080/01621459.2019.1566071 – volume: 28 start-page: 2069 issue: 4 year: 2018 ident: e_1_2_10_23_1 article-title: Discrete choice models for nonmonotone nonignorable missing data: identification and inference publication-title: Stat Sin. – ident: e_1_2_10_8_1 doi: 10.1080/00031305.2017.1366367 – ident: e_1_2_10_20_1 doi: 10.5705/ss.202021.0382 – ident: e_1_2_10_12_1 doi: 10.1198/jasa.2011.tm10520 – ident: e_1_2_10_6_1 doi: 10.1111/1740-9713.01399 – ident: e_1_2_10_31_1 doi: 10.1371/journal.pone.0077101 – ident: e_1_2_10_2_1 doi: 10.1214/aoms/1177731363 – ident: e_1_2_10_11_1 doi: 10.1111/j.1541-0420.2008.01183.x – ident: e_1_2_10_5_1 doi: 10.1002/sim.817 – ident: e_1_2_10_17_1 doi: 10.1080/01621459.2015.1054491 – ident: e_1_2_10_27_1 doi: 10.1002/sim.5858 |
SSID | ssj0011527 |
Score | 2.4074745 |
Snippet | We develop parametric estimators of a conditional prevalence in the group testing context. Group testing is applied when a binary outcome variable, often a... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 731 |
SubjectTerms | cost saving fast screening Medical research Medical statistics pooling data prevalence estimation Statistical analysis |
Title | Group testing regression analysis with covariates and specimens subject to missingness |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.9640 https://www.ncbi.nlm.nih.gov/pubmed/36646446 https://www.proquest.com/docview/2774118229 https://www.proquest.com/docview/2766430720 |
Volume | 42 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2hHqpKVSlLP5YWZCRET7v12olrH6uKqiAtB6CoUg-R7dgVos1WTZYDv74zcRJUKBLilMNM7MQe28_j8RuANyYX3Ck6YcXFEzcomZjYULqJM1oba6SKjm4jzz-qs_Psw0V-0UVV0l2YxA8xONxoZLTzNQ1w6-rDX6Sh9bebqVEZbdcpVIvw0KeBOWrWZ2ulE0p1NMt73lkuDvsXH65Ef8DLh2i1XW5On8Jl_6EpyuT7dNm4qf_5G4fj__3JJmx0KJQdJ7N5Bk9CNYLVeXfOPoL15M1j6ZLSCNYIkyZK5-fwtfVXsYb4OaordheuUixtxWzHcMLIu8v84gduxAnLoqBkdKeTUgnUrF468v6wZsHQyshZQfPtFpyfvvtycjbp0jNMvMwMzt5WR219jMYiCtE2zkruy2i4KIVEy4h5EDaLGQ_K69yilsm9K70ynkdppNyGlWpRhV1giCK0lU5zZXUWDApLl5fSSbQvya0cw0HfVYXvuMsphcZ1kViXRYFtWFAbjuH1oHmb-Doe0dnve7voRmxdoKFktNkSBosYxNgKdIBiq7BYko5CAMePBBaxk6xkqESiCLGlGsPbtq__Wnvx-f2cni_-VXEP1ijHPQW-zfJ9WGnuluElIqHGvWpt_h6YzwYq |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRYJKiMfyWihgJB6n3XrtxI0PHBCl2qXdHqBFvaW2Y1cIyKImC4K_xF_hRzETJ0HlIXHpgVMOHjmJPeP5PB5_A_BQp4JbRSes6Dxxg5KIkfGFHVmdZdpoqYKl28jzPTU9SF4epocr8K27CxP5IfqAG1lGs16TgVNAeuMna2j19sNYq4S3GZU7_stn3K9VT2dbOLmPhNh-sf98OmpLCoycTDSuOCYLmXEhaIOeMzNhUnBXBM1FIST-TUi9MElIuFcuSw1K6dTZwinteJCaop-43p-jAuJE1L_1queqmnT1YelMVG1O0o7plouN7ktP-77fAO1pfNw4uO3L8L0bmpjX8m68rO3Yff2FNfI_GbsrcKkF2uxZtIyrsOLLAZyft6kEA7gYA5Ys3sMawBrB7shafQ3eNCE5VhMFSXnMTvxxTBcumWlJXBgFsJlbfDJowSiHDQWja6tULaFi1dJSgIvVC4aGRPEYcinX4eBMfvkGrJaL0t8ChkApM9JmXJks8RobC5sW0ko0IcmNHMKTTjdy19KzU5WQ93kklhY5zllOczaEB73kx0hJ8geZ9U698nZRqnLUzIT2k0JjF30zjgKdEZnSL5YkoxCj8k2BXdyMatm_RGITwmc1hMeNcv317fnr2Zyet_9V8D5cmO7Pd_Pd2d7OHVgTCCQpz2-SrsNqfbL0dxH41fZeY3AMjs5aS38AQDdnYA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRaoqIR7La6GAkXicduu1Ezc-cEAsqy5lKwQU9Zbajl2hlmzVzYLgJ_FX-FPMxElQeUhceuCUg0dOYs94Po_H3wA81KngVtEJKzpP3KAkYmB8YQdWZ5k2Wqpg6TbybFdt7yUv99P9FfjW3oWJ_BBdwI0so16vycBPirD5kzR08eHjUKuENwmVO_7LZ9yuLZ5Oxzi3j4SYvHj3fHvQVBQYOJloXHBMFjLjQtAGHWdmwqjgrgiai0JI_JmQemGSkHCvXJYalNKps4VT2vEgNQU_cbm_kCiuqUzE-E1HVTVqy8PSkajaGqUt0S0Xm-2XnnV9v-HZs_C49m-Ty_C9HZmY1nI0XFZ26L7-Qhr5fwzdFbjUwGz2LNrFVVjxZQ_WZk0iQQ8uxnAli7ewerBOoDtyVl-D93VAjlVEQFIeslN_GJOFS2YaChdG4Wvm5p8M2i_KYUPB6NIq1UpYsMXSUniLVXOGZkTRGHIo12HvXH75BqyW89LfAoYwKTPSZlyZLPEaGwubFtJKNCDJjezDk1Y1cteQs1ONkOM80kqLHOcspznrw4NO8iQSkvxBZqPVrrxZkhY5KmZCu0mhsYuuGUeBTohM6edLklGIUPmWwC5uRq3sXiKxCcGz6sPjWrf--vb87XRGz9v_Kngf1l6PJ_mr6e7OHVgXiCIpyW-UbsBqdbr0dxH1VfZebW4MDs5bSX8AnO5mDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+testing+regression+analysis+with+covariates+and+specimens+subject+to+missingness&rft.jtitle=Statistics+in+medicine&rft.au=Delaigle%2C+Aurore&rft.au=Tan%2C+Ruoxu&rft.date=2023-03-15&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=42&rft.issue=6&rft.spage=731&rft.epage=744&rft_id=info:doi/10.1002%2Fsim.9640&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_9640 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |