Group testing regression analysis with covariates and specimens subject to missingness

We develop parametric estimators of a conditional prevalence in the group testing context. Group testing is applied when a binary outcome variable, often a disease indicator, is assessed by testing a specimen for the presence of the disease. Instead of testing all individual specimens separately, th...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 42; no. 6; pp. 731 - 744
Main Authors Delaigle, Aurore, Tan, Ruoxu
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 15.03.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We develop parametric estimators of a conditional prevalence in the group testing context. Group testing is applied when a binary outcome variable, often a disease indicator, is assessed by testing a specimen for the presence of the disease. Instead of testing all individual specimens separately, these are pooled in groups and the grouped specimens are tested for the disease, which permits to significantly reduce the number of tests to be performed. Various techniques have been developed in the literature for estimating a conditional prevalence from group testing data, but most of them are not valid when the data are subject to missingness. We consider this problem in the case where the specimen and the covariates are subject to nonmonotone missingness. We propose parametric estimators of the conditional prevalence, establish identifiability conditions for a logistic missing not at random model, and introduce an ignorable missing at random model. In theory, our estimators could be applied with multiple covariates missing, but in practice, they face numerical challenges when more than one covariate is missing for given individuals. We illustrate the method on simulated data and on a dataset from the Demographics and Health Survey.
AbstractList We develop parametric estimators of a conditional prevalence in the group testing context. Group testing is applied when a binary outcome variable, often a disease indicator, is assessed by testing a specimen for the presence of the disease. Instead of testing all individual specimens separately, these are pooled in groups and the grouped specimens are tested for the disease, which permits to significantly reduce the number of tests to be performed. Various techniques have been developed in the literature for estimating a conditional prevalence from group testing data, but most of them are not valid when the data are subject to missingness. We consider this problem in the case where the specimen and the covariates are subject to nonmonotone missingness. We propose parametric estimators of the conditional prevalence, establish identifiability conditions for a logistic missing not at random model, and introduce an ignorable missing at random model. In theory, our estimators could be applied with multiple covariates missing, but in practice, they face numerical challenges when more than one covariate is missing for given individuals. We illustrate the method on simulated data and on a dataset from the Demographics and Health Survey.
We develop parametric estimators of a conditional prevalence in the group testing context. Group testing is applied when a binary outcome variable, often a disease indicator, is assessed by testing a specimen for the presence of the disease. Instead of testing all individual specimens separately, these are pooled in groups and the grouped specimens are tested for the disease, which permits to significantly reduce the number of tests to be performed. Various techniques have been developed in the literature for estimating a conditional prevalence from group testing data, but most of them are not valid when the data are subject to missingness. We consider this problem in the case where the specimen and the covariates are subject to nonmonotone missingness. We propose parametric estimators of the conditional prevalence, establish identifiability conditions for a logistic missing not at random model, and introduce an ignorable missing at random model. In theory, our estimators could be applied with multiple covariates missing, but in practice, they face numerical challenges when more than one covariate is missing for given individuals. We illustrate the method on simulated data and on a dataset from the Demographics and Health Survey.We develop parametric estimators of a conditional prevalence in the group testing context. Group testing is applied when a binary outcome variable, often a disease indicator, is assessed by testing a specimen for the presence of the disease. Instead of testing all individual specimens separately, these are pooled in groups and the grouped specimens are tested for the disease, which permits to significantly reduce the number of tests to be performed. Various techniques have been developed in the literature for estimating a conditional prevalence from group testing data, but most of them are not valid when the data are subject to missingness. We consider this problem in the case where the specimen and the covariates are subject to nonmonotone missingness. We propose parametric estimators of the conditional prevalence, establish identifiability conditions for a logistic missing not at random model, and introduce an ignorable missing at random model. In theory, our estimators could be applied with multiple covariates missing, but in practice, they face numerical challenges when more than one covariate is missing for given individuals. We illustrate the method on simulated data and on a dataset from the Demographics and Health Survey.
Author Tan, Ruoxu
Delaigle, Aurore
Author_xml – sequence: 1
  givenname: Aurore
  surname: Delaigle
  fullname: Delaigle, Aurore
  organization: University of Melbourne, 3010, Victoria
– sequence: 2
  givenname: Ruoxu
  orcidid: 0000-0002-2046-4377
  surname: Tan
  fullname: Tan, Ruoxu
  email: ruoxut@outlook.com
  organization: University of Hong Kong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36646446$$D View this record in MEDLINE/PubMed
BookMark eNp10U1PGzEQBmCrCiIJReovQJZ66WXD-GM_fKwQTZFAHGh7tRyvHRzt2qm9S5R_X6eBIqFy8sHPjGbmnaOJD94g9InAggDQy-T6hag4fEAzAqIugJbNBM2A1nVR1aSconlKGwBCSlqfoimrKl5xXs3Qr2UM4xYPJg3Or3E062hScsFj5VW3Ty7hnRsesQ5PKjqVXf5ocdoa7XrjE07jamP0gIeAe5cr_drnBh_RiVVdMufP7xn6-e36x9X34vZ-eXP19bbQjAsomGpso7S1QnFGGmVJC7q1AmhLmdHaloYqbjmYSjelykqUetXqSmiwTDB2hr4c-25j-D3mJWQeQpuuU96EMUla500Z1BQy_fyGbsIY85IHVXNCGkpFVhfPalz1ppXb6HoV9_LlYhksjkDHkFI0Vmo3qCFfbIjKdZKAPEQicyTyEMnriP8KXnr-hxZHunOd2b_r5MPN3V__Bwajm20
CitedBy_id crossref_primary_10_1002_sim_70052
crossref_primary_10_1002_sim_10319
Cites_doi 10.1214/11-AOS952
10.1038/d41586-020-02053-6
10.1214/009053606000001389
10.1080/10485252.2018.1483501
10.1080/10485252.2012.750726
10.1080/00949650701608990
10.1111/sjos.12184
10.1097/01.aids.0000131338.61042.b8
10.1016/0378-3758(89)90061-X
10.1016/j.jviromet.2013.04.003
10.1093/biomet/asu025
10.1093/biomet/asv049
10.1002/(SICI)1097-0258(19970115)16:1<39::AID-SIM535>3.0.CO;2-D
10.1080/01621459.1993.10594302
10.1038/s41586-020-2885-5
10.1080/01621459.2016.1256814
10.1017/CBO9780511802256
10.1002/9781119013563
10.1111/j.0006-341X.2000.01126.x
10.1080/01621459.2019.1566071
10.1080/00031305.2017.1366367
10.5705/ss.202021.0382
10.1198/jasa.2011.tm10520
10.1111/1740-9713.01399
10.1371/journal.pone.0077101
10.1214/aoms/1177731363
10.1111/j.1541-0420.2008.01183.x
10.1002/sim.817
10.1080/01621459.2015.1054491
10.1002/sim.5858
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/sim.9640
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

PubMed
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 744
ExternalDocumentID 36646446
10_1002_sim_9640
SIM9640
Genre article
Journal Article
GrantInformation_xml – fundername: Australian Research Council
  funderid: DP170102434; DP230100147
– fundername: Australian Research Council
  grantid: DP170102434
– fundername: Australian Research Council
  grantid: DP230100147
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
NPM
K9.
7X8
ID FETCH-LOGICAL-c3490-3a8f8acff9a4318af1d0cdf902d23eccf5e2a4f40e6c85a9a495cbdc69c0f3933
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Thu Jul 10 19:30:25 EDT 2025
Fri Jul 25 23:29:31 EDT 2025
Mon Jul 21 06:07:53 EDT 2025
Tue Jul 01 03:28:18 EDT 2025
Thu Apr 24 23:10:55 EDT 2025
Wed Jan 22 16:24:06 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords prevalence estimation
pooling data
fast screening
cost saving
Language English
License 2023 John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3490-3a8f8acff9a4318af1d0cdf902d23eccf5e2a4f40e6c85a9a495cbdc69c0f3933
Notes Funding information
Australian Research Council, Grant/Award Numbers: DP170102434; DP230100147
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2046-4377
PMID 36646446
PQID 2774118229
PQPubID 48361
PageCount 14
ParticipantIDs proquest_miscellaneous_2766430720
proquest_journals_2774118229
pubmed_primary_36646446
crossref_citationtrail_10_1002_sim_9640
crossref_primary_10_1002_sim_9640
wiley_primary_10_1002_sim_9640_SIM9640
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 March 2023
PublicationDateYYYYMMDD 2023-03-15
PublicationDate_xml – month: 03
  year: 2023
  text: 15 March 2023
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2023
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2018; 28
1989; 22
2013; 25
2019; 73
2009; 65
2020; 583
2015; 102
1993; 88
1943; 14
2021; 589
2020; 17
1998
2002
2013; 8
2007; 35
2001; 20
2009; 79
2011; 106
2023
2004; 18
2013; 32
2000; 56
2018; 113
2015; 110
2019; 115
2016; 43
1997; 16
2017
2018; 30
2013; 192
2014; 101
2012; 40
e_1_2_10_24_1
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_30_1
Maheu‐Giroux M (e_1_2_10_28_1) 2017
Tchetgen Tchetgen EJ (e_1_2_10_23_1) 2018; 28
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 113
  start-page: 369
  issue: 521
  year: 2018
  end-page: 379
  article-title: On inverse probability weighting for nonmonotone missing at random data
  publication-title: J Am Stat Assoc.
– volume: 88
  start-page: 125
  issue: 421
  year: 1993
  end-page: 134
  article-title: Pattern‐mixture models for multivariate incomplete data
  publication-title: J Am Stat Assoc.
– volume: 65
  start-page: 1270
  issue: 4
  year: 2009
  end-page: 1278
  article-title: Group testing regression models with fixed and random effects
  publication-title: Biometrics.
– volume: 583
  start-page: 504
  issue: 7817
  year: 2020
  end-page: 505
  article-title: The mathematical strategy that could transform coronavirus testing
  publication-title: Nature.
– volume: 28
  start-page: 2069
  issue: 4
  year: 2018
  end-page: 2088
  article-title: Discrete choice models for nonmonotone nonignorable missing data: identification and inference
  publication-title: Stat Sin.
– volume: 32
  start-page: 4954
  issue: 28
  year: 2013
  end-page: 4966
  article-title: Regression analysis for multiple‐disease group testing data
  publication-title: Stat Med.
– volume: 101
  start-page: 567
  issue: 3
  year: 2014
  end-page: 585
  article-title: New approaches to nonparametric and semiparametric regression for univariate and multivariate group testing data
  publication-title: Biometrika.
– volume: 30
  start-page: 813
  issue: 4
  year: 2018
  end-page: 833
  article-title: Single‐index regression for pooled biomarker data
  publication-title: J Nonparametr Stat.
– volume: 18
  start-page: 1435
  issue: 10
  year: 2004
  end-page: 1442
  article-title: Early age of first sex: a risk factor for HIV infection among women in Zimbabwe
  publication-title: Aids.
– volume: 14
  start-page: 436
  issue: 4
  year: 1943
  end-page: 440
  article-title: The detection of defective members of large populations
  publication-title: Ann Math Stat.
– year: 2023
  article-title: Group testing regression analysis with missing data and imperfect tests
  publication-title: Stat Sin
– volume: 106
  start-page: 640
  issue: 494
  year: 2011
  end-page: 650
  article-title: Nonparametric regression analysis for group testing data
  publication-title: J Am Stat Assoc.
– year: 1998
– volume: 22
  start-page: 15
  issue: 1
  year: 1989
  end-page: 27
  article-title: Estimation of the prevalence of a rare disease, preserving the anonymity of the subjects by group testing: Application to estimating the prevalence of AIDS antibodies in blood donors
  publication-title: J Stat Plan Inference.
– volume: 35
  start-page: 990
  issue: 3
  year: 2007
  end-page: 1011
  article-title: Monte Carlo likelihood inference for missing data models
  publication-title: Ann Stat.
– volume: 589
  start-page: 276
  issue: 7841
  year: 2021
  end-page: 280
  article-title: A pooled testing strategy for identifying SARS‐CoV‐2 at low prevalence
  publication-title: Nature.
– volume: 73
  start-page: 117
  issue: 2
  year: 2019
  end-page: 125
  article-title: Revisiting nested group testing procedures: new results, comparisons, and robustness
  publication-title: Am Stat.
– volume: 79
  start-page: 67
  issue: 1
  year: 2009
  end-page: 80
  article-title: Bias, efficiency, and agreement for group‐testing regression models
  publication-title: J Stat Comput Simul.
– volume: 17
  start-page: 15
  issue: 3
  year: 2020
  article-title: Tests in short supply? Try group testing
  publication-title: Signif (Oxf).
– volume: 102
  start-page: 871
  issue: 4
  year: 2015
  end-page: 887
  article-title: Nonparametric methods for group testing data, taking dilution into account
  publication-title: Biometrika.
– volume: 115
  start-page: 467
  year: 2019
  end-page: 480
  article-title: Estimation of conditional prevalence from group testing data with missing covariates
  publication-title: J Am Stat Assoc.
– volume: 16
  start-page: 39
  issue: 1
  year: 1997
  end-page: 56
  article-title: Non‐response models for the analysis of non‐monotone ignorable missing data
  publication-title: Stat Med.
– volume: 192
  start-page: 25
  issue: 1‐2
  year: 2013
  end-page: 27
  article-title: Evaluation of current rapid HIV test algorithms in Rakai, Uganda
  publication-title: J Virol Methods.
– volume: 8
  issue: 10
  year: 2013
  article-title: Recent patterns in population‐based HIV prevalence in Swaziland
  publication-title: PLoS One.
– year: 2002
– volume: 56
  start-page: 1126
  issue: 4
  year: 2000
  end-page: 1133
  article-title: Regression models for disease prevalence with diagnostic tests on pools of serum samples
  publication-title: Biometrics.
– volume: 20
  start-page: 1957
  issue: 13
  year: 2001
  end-page: 1969
  article-title: Regression analysis of group testing samples
  publication-title: Stat Med.
– volume: 40
  start-page: 131
  issue: 1
  year: 2012
  end-page: 158
  article-title: Nonparametric regression with homogeneous group testing data
  publication-title: Ann Stat.
– volume: 43
  start-page: 436
  issue: 2
  year: 2016
  end-page: 454
  article-title: Likelihood‐based inference with missing data under missing‐at‐random
  publication-title: Scand. J. Statist.
– volume: 25
  start-page: 209
  issue: 1
  year: 2013
  end-page: 221
  article-title: A semi‐local likelihood regression estimator of the proportion based on group testing data
  publication-title: J Nonparametr Stat.
– year: 2017
– volume: 110
  start-page: 1785
  issue: 512
  year: 2015
  end-page: 1796
  article-title: Nonparametric and parametric estimators of prevalence from group testing data with aggregated covariates
  publication-title: J Am Stat Assoc.
– ident: e_1_2_10_13_1
  doi: 10.1214/11-AOS952
– ident: e_1_2_10_3_1
  doi: 10.1038/d41586-020-02053-6
– ident: e_1_2_10_32_1
  doi: 10.1214/009053606000001389
– volume-title: Assessing the impact of imperfect immunoassays on HIV prevalence estimates from surveys conducted by the DHS Program
  year: 2017
  ident: e_1_2_10_28_1
– ident: e_1_2_10_18_1
  doi: 10.1080/10485252.2018.1483501
– ident: e_1_2_10_14_1
  doi: 10.1080/10485252.2012.750726
– ident: e_1_2_10_10_1
  doi: 10.1080/00949650701608990
– ident: e_1_2_10_33_1
  doi: 10.1111/sjos.12184
– ident: e_1_2_10_30_1
  doi: 10.1097/01.aids.0000131338.61042.b8
– ident: e_1_2_10_7_1
  doi: 10.1016/0378-3758(89)90061-X
– ident: e_1_2_10_29_1
  doi: 10.1016/j.jviromet.2013.04.003
– ident: e_1_2_10_15_1
  doi: 10.1093/biomet/asu025
– ident: e_1_2_10_16_1
  doi: 10.1093/biomet/asv049
– ident: e_1_2_10_26_1
  doi: 10.1002/(SICI)1097-0258(19970115)16:1<39::AID-SIM535>3.0.CO;2-D
– ident: e_1_2_10_24_1
  doi: 10.1080/01621459.1993.10594302
– ident: e_1_2_10_4_1
  doi: 10.1038/s41586-020-2885-5
– ident: e_1_2_10_25_1
  doi: 10.1080/01621459.2016.1256814
– ident: e_1_2_10_22_1
  doi: 10.1017/CBO9780511802256
– ident: e_1_2_10_21_1
  doi: 10.1002/9781119013563
– ident: e_1_2_10_9_1
  doi: 10.1111/j.0006-341X.2000.01126.x
– ident: e_1_2_10_19_1
  doi: 10.1080/01621459.2019.1566071
– volume: 28
  start-page: 2069
  issue: 4
  year: 2018
  ident: e_1_2_10_23_1
  article-title: Discrete choice models for nonmonotone nonignorable missing data: identification and inference
  publication-title: Stat Sin.
– ident: e_1_2_10_8_1
  doi: 10.1080/00031305.2017.1366367
– ident: e_1_2_10_20_1
  doi: 10.5705/ss.202021.0382
– ident: e_1_2_10_12_1
  doi: 10.1198/jasa.2011.tm10520
– ident: e_1_2_10_6_1
  doi: 10.1111/1740-9713.01399
– ident: e_1_2_10_31_1
  doi: 10.1371/journal.pone.0077101
– ident: e_1_2_10_2_1
  doi: 10.1214/aoms/1177731363
– ident: e_1_2_10_11_1
  doi: 10.1111/j.1541-0420.2008.01183.x
– ident: e_1_2_10_5_1
  doi: 10.1002/sim.817
– ident: e_1_2_10_17_1
  doi: 10.1080/01621459.2015.1054491
– ident: e_1_2_10_27_1
  doi: 10.1002/sim.5858
SSID ssj0011527
Score 2.4074745
Snippet We develop parametric estimators of a conditional prevalence in the group testing context. Group testing is applied when a binary outcome variable, often a...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 731
SubjectTerms cost saving
fast screening
Medical research
Medical statistics
pooling data
prevalence estimation
Statistical analysis
Title Group testing regression analysis with covariates and specimens subject to missingness
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.9640
https://www.ncbi.nlm.nih.gov/pubmed/36646446
https://www.proquest.com/docview/2774118229
https://www.proquest.com/docview/2766430720
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2hHqpKVSlLP5YWZCRET7v12olrH6uKqiAtB6CoUg-R7dgVos1WTZYDv74zcRJUKBLilMNM7MQe28_j8RuANyYX3Ck6YcXFEzcomZjYULqJM1oba6SKjm4jzz-qs_Psw0V-0UVV0l2YxA8xONxoZLTzNQ1w6-rDX6Sh9bebqVEZbdcpVIvw0KeBOWrWZ2ulE0p1NMt73lkuDvsXH65Ef8DLh2i1XW5On8Jl_6EpyuT7dNm4qf_5G4fj__3JJmx0KJQdJ7N5Bk9CNYLVeXfOPoL15M1j6ZLSCNYIkyZK5-fwtfVXsYb4OaordheuUixtxWzHcMLIu8v84gduxAnLoqBkdKeTUgnUrF468v6wZsHQyshZQfPtFpyfvvtycjbp0jNMvMwMzt5WR219jMYiCtE2zkruy2i4KIVEy4h5EDaLGQ_K69yilsm9K70ynkdppNyGlWpRhV1giCK0lU5zZXUWDApLl5fSSbQvya0cw0HfVYXvuMsphcZ1kViXRYFtWFAbjuH1oHmb-Doe0dnve7voRmxdoKFktNkSBosYxNgKdIBiq7BYko5CAMePBBaxk6xkqESiCLGlGsPbtq__Wnvx-f2cni_-VXEP1ijHPQW-zfJ9WGnuluElIqHGvWpt_h6YzwYq
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRYJKiMfyWihgJB6n3XrtxI0PHBCl2qXdHqBFvaW2Y1cIyKImC4K_xF_hRzETJ0HlIXHpgVMOHjmJPeP5PB5_A_BQp4JbRSes6Dxxg5KIkfGFHVmdZdpoqYKl28jzPTU9SF4epocr8K27CxP5IfqAG1lGs16TgVNAeuMna2j19sNYq4S3GZU7_stn3K9VT2dbOLmPhNh-sf98OmpLCoycTDSuOCYLmXEhaIOeMzNhUnBXBM1FIST-TUi9MElIuFcuSw1K6dTZwinteJCaop-43p-jAuJE1L_1queqmnT1YelMVG1O0o7plouN7ktP-77fAO1pfNw4uO3L8L0bmpjX8m68rO3Yff2FNfI_GbsrcKkF2uxZtIyrsOLLAZyft6kEA7gYA5Ys3sMawBrB7shafQ3eNCE5VhMFSXnMTvxxTBcumWlJXBgFsJlbfDJowSiHDQWja6tULaFi1dJSgIvVC4aGRPEYcinX4eBMfvkGrJaL0t8ChkApM9JmXJks8RobC5sW0ko0IcmNHMKTTjdy19KzU5WQ93kklhY5zllOczaEB73kx0hJ8geZ9U698nZRqnLUzIT2k0JjF30zjgKdEZnSL5YkoxCj8k2BXdyMatm_RGITwmc1hMeNcv317fnr2Zyet_9V8D5cmO7Pd_Pd2d7OHVgTCCQpz2-SrsNqfbL0dxH41fZeY3AMjs5aS38AQDdnYA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB5VRaoqIR7La6GAkXicduu1Ezc-cEAsqy5lKwQU9Zbajl2hlmzVzYLgJ_FX-FPMxElQeUhceuCUg0dOYs94Po_H3wA81KngVtEJKzpP3KAkYmB8YQdWZ5k2Wqpg6TbybFdt7yUv99P9FfjW3oWJ_BBdwI0so16vycBPirD5kzR08eHjUKuENwmVO_7LZ9yuLZ5Oxzi3j4SYvHj3fHvQVBQYOJloXHBMFjLjQtAGHWdmwqjgrgiai0JI_JmQemGSkHCvXJYalNKps4VT2vEgNQU_cbm_kCiuqUzE-E1HVTVqy8PSkajaGqUt0S0Xm-2XnnV9v-HZs_C49m-Ty_C9HZmY1nI0XFZ26L7-Qhr5fwzdFbjUwGz2LNrFVVjxZQ_WZk0iQQ8uxnAli7ewerBOoDtyVl-D93VAjlVEQFIeslN_GJOFS2YaChdG4Wvm5p8M2i_KYUPB6NIq1UpYsMXSUniLVXOGZkTRGHIo12HvXH75BqyW89LfAoYwKTPSZlyZLPEaGwubFtJKNCDJjezDk1Y1cteQs1ONkOM80kqLHOcspznrw4NO8iQSkvxBZqPVrrxZkhY5KmZCu0mhsYuuGUeBTohM6edLklGIUPmWwC5uRq3sXiKxCcGz6sPjWrf--vb87XRGz9v_Kngf1l6PJ_mr6e7OHVgXiCIpyW-UbsBqdbr0dxH1VfZebW4MDs5bSX8AnO5mDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+testing+regression+analysis+with+covariates+and+specimens+subject+to+missingness&rft.jtitle=Statistics+in+medicine&rft.au=Delaigle%2C+Aurore&rft.au=Tan%2C+Ruoxu&rft.date=2023-03-15&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=42&rft.issue=6&rft.spage=731&rft.epage=744&rft_id=info:doi/10.1002%2Fsim.9640&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_sim_9640
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon