Scale mixture of skew‐normal linear mixed models with within‐subject serial dependence
In longitudinal studies, repeated measures are collected over time and hence they tend to be serially correlated. These studies are commonly analyzed using linear mixed models (LMMs), and in this article we consider an extension of the skew‐normal/independent LMM, where the error term has a dependen...
Saved in:
Published in | Statistics in medicine Vol. 40; no. 7; pp. 1790 - 1810 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
30.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In longitudinal studies, repeated measures are collected over time and hence they tend to be serially correlated. These studies are commonly analyzed using linear mixed models (LMMs), and in this article we consider an extension of the skew‐normal/independent LMM, where the error term has a dependence structure, such as damped exponential correlation or autoregressive correlation of order p. The proposed model provides flexibility in capturing the effects of skewness and heavy tails simultaneously when continuous repeated measures are serially correlated. For this robust model, we present an efficient EM‐type algorithm for parameters estimation via maximum likelihood and the observed information matrix is derived analytically to account for standard errors. The methodology is illustrated through an application to schizophrenia data and some simulation studies. The proposed algorithm and methods are implemented in the new R package skewlmm. |
---|---|
AbstractList | In longitudinal studies, repeated measures are collected over time and hence they tend to be serially correlated. These studies are commonly analyzed using linear mixed models (LMMs), and in this article we consider an extension of the skew-normal/independent LMM, where the error term has a dependence structure, such as damped exponential correlation or autoregressive correlation of order p. The proposed model provides flexibility in capturing the effects of skewness and heavy tails simultaneously when continuous repeated measures are serially correlated. For this robust model, we present an efficient EM-type algorithm for parameters estimation via maximum likelihood and the observed information matrix is derived analytically to account for standard errors. The methodology is illustrated through an application to schizophrenia data and some simulation studies. The proposed algorithm and methods are implemented in the new R package skewlmm.In longitudinal studies, repeated measures are collected over time and hence they tend to be serially correlated. These studies are commonly analyzed using linear mixed models (LMMs), and in this article we consider an extension of the skew-normal/independent LMM, where the error term has a dependence structure, such as damped exponential correlation or autoregressive correlation of order p. The proposed model provides flexibility in capturing the effects of skewness and heavy tails simultaneously when continuous repeated measures are serially correlated. For this robust model, we present an efficient EM-type algorithm for parameters estimation via maximum likelihood and the observed information matrix is derived analytically to account for standard errors. The methodology is illustrated through an application to schizophrenia data and some simulation studies. The proposed algorithm and methods are implemented in the new R package skewlmm. In longitudinal studies, repeated measures are collected over time and hence they tend to be serially correlated. These studies are commonly analyzed using linear mixed models (LMMs), and in this article we consider an extension of the skew‐normal/independent LMM, where the error term has a dependence structure, such as damped exponential correlation or autoregressive correlation of order p . The proposed model provides flexibility in capturing the effects of skewness and heavy tails simultaneously when continuous repeated measures are serially correlated. For this robust model, we present an efficient EM‐type algorithm for parameters estimation via maximum likelihood and the observed information matrix is derived analytically to account for standard errors. The methodology is illustrated through an application to schizophrenia data and some simulation studies. The proposed algorithm and methods are implemented in the new R package skewlmm . In longitudinal studies, repeated measures are collected over time and hence they tend to be serially correlated. These studies are commonly analyzed using linear mixed models (LMMs), and in this article we consider an extension of the skew‐normal/independent LMM, where the error term has a dependence structure, such as damped exponential correlation or autoregressive correlation of order p. The proposed model provides flexibility in capturing the effects of skewness and heavy tails simultaneously when continuous repeated measures are serially correlated. For this robust model, we present an efficient EM‐type algorithm for parameters estimation via maximum likelihood and the observed information matrix is derived analytically to account for standard errors. The methodology is illustrated through an application to schizophrenia data and some simulation studies. The proposed algorithm and methods are implemented in the new R package skewlmm. |
Author | Schumacher, Fernanda L. Lachos, Victor H. Matos, Larissa A. |
Author_xml | – sequence: 1 givenname: Fernanda L. orcidid: 0000-0002-5724-8918 surname: Schumacher fullname: Schumacher, Fernanda L. organization: Universidade Estadual de Campinas – sequence: 2 givenname: Victor H. orcidid: 0000-0002-7239-2459 surname: Lachos fullname: Lachos, Victor H. organization: University of Connecticut – sequence: 3 givenname: Larissa A. orcidid: 0000-0002-2635-0901 surname: Matos fullname: Matos, Larissa A. email: larissam@unicamp.br organization: Universidade Estadual de Campinas |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33438305$$D View this record in MEDLINE/PubMed |
BookMark | eNp10c1u1DAQB3ALFdFti8QToEhcuGQZf62dI6pKqVTEoXDpxXKcifDi2IudaOmNR-gz8iRkuy1IqL2MD_Ob0cj_I3IQU0RCXlFYUgD2rvhhqbWCZ2RBoVE1MKkPyAKYUvVKUXlIjkpZA1AqmXpBDjkXXHOQC3J95WzAavA_xyljlfqqfMft71-3MeXBhir4iDbv-thVQ-owlGrrx293xccZlqldoxurgtnPAx1uMHYYHZ6Q570NBV_ev8fk64ezL6cf68vP5xen7y9rx0UDNeu5050QiLxtWmEltq2Sne5c0ynnHAAyiqK3mjY95-A4VZqt2n6loAVl-TF5u9-7yenHhGU0gy8OQ7AR01QME0pJEFquZvrmP7pOU47zdbNqdEOZFHJWr-_V1A7YmU32g8035uHXZrDcA5dTKRl74_xoR5_imK0PhoLZxWLmWMwuln8n_h142PkIrfd06wPePOnM1cWnO_8HJjGdnQ |
CitedBy_id | crossref_primary_10_1016_j_jmva_2021_104851 crossref_primary_10_1002_sim_10295 crossref_primary_10_1007_s11222_024_10512_7 crossref_primary_10_1016_j_jmva_2021_104856 crossref_primary_10_1007_s00357_024_09470_6 crossref_primary_10_1007_s10936_024_10110_8 crossref_primary_10_1002_sta4_602 crossref_primary_10_3390_math10152820 crossref_primary_10_1111_anzs_12423 crossref_primary_10_1007_s42519_021_00172_5 crossref_primary_10_1111_anzs_12374 crossref_primary_10_1080_03610918_2025_2453469 crossref_primary_10_1111_stan_70002 crossref_primary_10_1212_WNL_0000000000207247 crossref_primary_10_1002_sam_70011 |
Cites_doi | 10.1111/j.1751-5823.2007.00016.x 10.1002/sim.3026 10.2307/2532340 10.1006/jmva.2000.1960 10.1177/0962280215620229 10.1002/bimj.200390034 10.1007/s11749-018-0590-6 10.1016/j.jspi.2005.12.010 10.1111/rssc.12405 10.32614/CRAN.package.skewlmm 10.1111/j.1600-0447.1990.tb05293.x 10.1016/j.csda.2009.11.008 10.1007/978-1-4419-0318-1 10.1111/1467-842X.00282 10.1002/cjs.11246 10.1002/pst.1981 10.6339/JDS.2005.03(4).238 10.1080/02664763.2018.1557122 10.1177/0962280219857103 10.1111/1467-9868.00391 10.1111/j.2517-6161.1977.tb01600.x 10.1093/biomet/81.4.633 10.1111/j.1467-9574.2012.00530.x 10.2307/2985678 10.1080/10618600.1993.10474606 10.1007/978-3-319-98029-4 10.1002/sim.2384 10.1111/biom.12551 10.1093/biomet/83.4.715 10.1016/0047-259X(73)90030-4 10.1093/biomet/asw006 10.1002/bimj.200900184 10.1002/sim.8017 10.1111/1467-9868.00194 10.1002/cjs.11338 10.1198/10618600152628059 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1002/sim.8870 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Health & Medical Complete (Alumni) PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 1810 |
ExternalDocumentID | 33438305 10_1002_sim_8870 SIM8870 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior funderid: 001 – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior grantid: 001 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c3490-2f3c8d44ee3b9b4a5ebb75d8dc9d7ccc00e21e4fa819f330c317826bf670b07a3 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Fri Jul 11 13:08:07 EDT 2025 Fri Jul 25 10:52:39 EDT 2025 Wed Feb 19 02:29:29 EST 2025 Thu Apr 24 23:07:00 EDT 2025 Tue Jul 01 03:28:16 EDT 2025 Wed Jan 22 16:31:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | autoregressive AR(p) linear mixed models damped exponential correlation scale mixtures of skew-normal distributions EM-algorithm irregularly observed longitudinal data |
Language | English |
License | 2021 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3490-2f3c8d44ee3b9b4a5ebb75d8dc9d7ccc00e21e4fa819f330c317826bf670b07a3 |
Notes | Funding information Conselho Nacional de Desenvolvimento Científico e Tecnológico, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, 001 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7239-2459 0000-0002-2635-0901 0000-0002-5724-8918 |
PMID | 33438305 |
PQID | 2498912545 |
PQPubID | 48361 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2477504856 proquest_journals_2498912545 pubmed_primary_33438305 crossref_citationtrail_10_1002_sim_8870 crossref_primary_10_1002_sim_8870 wiley_primary_10_1002_sim_8870_SIM8870 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 30 March 2021 |
PublicationDateYYYYMMDD | 2021-03-30 |
PublicationDate_xml | – month: 03 year: 2021 text: 30 March 2021 day: 30 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2010; 54 2017; 45 1976 2019; 38 2019; 19 2008; 76 1950 2016; 103 1999; 61 1994; 81 1993; 2 2018; 27 1990; 82 2017; 73 2007; 137 2010; 20 1968; 17 2000 1977; 39 2020 2019; 46 2006; 25 2008; 27 2015; 43 1996; 83 2019; 28 2019 2018 2020; 69 2017; 18 2005; 3 1992; 48 2001; 79 2012; 66 2010; 52 2003; 65 1973; 3 2001; 10 2003; 45 2020; 29 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 Lachos VH (e_1_2_8_12_1) 2010; 20 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 Lange KL (e_1_2_8_22_1) 1993; 2 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Box GEP (e_1_2_8_20_1) 1976 Dempster A (e_1_2_8_29_1) 1977; 39 e_1_2_8_32_1 Mood AM (e_1_2_8_33_1) 1950 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 Lin TI (e_1_2_8_41_1) 2017; 18 e_1_2_8_30_1 R Core Team (e_1_2_8_39_1) 2019 |
References_xml | – volume: 66 start-page: 217 issue: 3 year: 2012 end-page: 236 article-title: “All models are wrong…”: an introduction to model uncertainty publication-title: Stat Neerl – volume: 29 start-page: 1288 issue: 5 year: 2020 end-page: 1304 article-title: Multivariate‐t linear mixed models with censored responses, intermittent missing values and heavy tails publication-title: Stat Methods Med Res – volume: 52 start-page: 449 issue: 4 year: 2010 end-page: 469 article-title: Robust linear mixed models using the skew t distribution with application to schizophrenia data publication-title: Biom J – volume: 79 start-page: 99 year: 2001 end-page: 113 article-title: A general class of multivariate skew‐elliptical distributions publication-title: J Multivar Anal – volume: 19 start-page: 187 issue: 3 year: 2019 end-page: 201 article-title: Nonlinear mixed‐effects models with misspecified random‐effects distribution publication-title: Pharm Stat – volume: 45 start-page: 573 issue: 5 year: 2003 end-page: 590 article-title: Robust linear mixed models with normal/independent distributions and Bayesian MCMC implementation publication-title: Biom J – volume: 20 start-page: 303 year: 2010 end-page: 322 article-title: Likelihood based inference for skew–normal independent linear mixed models publication-title: Stat Sin – volume: 28 start-page: 543 issue: 2 year: 2019 end-page: 564 article-title: A flexible class of parametric distributions for Bayesian linear mixed models publication-title: Test – volume: 76 start-page: 1490 year: 2008 end-page: 1507 article-title: Robust likelihood methods based on the skew‐t and related distributions publication-title: Int Stat Rev – volume: 103 start-page: 363 issue: 2 year: 2016 end-page: 376 article-title: Skew‐normal antedependence models for skewed longitudinal data publication-title: Biometrika – year: 2000 – volume: 69 start-page: 1015 issue: 5 year: 2020 end-page: 1065 article-title: Linear mixed effects models for non‐Gaussian continuous repeated measurement data publication-title: J Royal Stat Soc Ser C (Appl Stat) – volume: 83 start-page: 715 issue: 4 year: 1996 end-page: 726 article-title: The multivariate skew‐normal distribution publication-title: Biometrika – volume: 3 start-page: 415 year: 2005 end-page: 438 article-title: Skew‐normal linear mixed models publication-title: J Data Sci – year: 1950 – volume: 27 start-page: 1490 issue: 9 year: 2008 end-page: 1507 article-title: Estimation and prediction in linear mixed models with skew‐normal random effects for longitudinal data publication-title: Stat Med – volume: 25 start-page: 1397 issue: 8 year: 2006 end-page: 1412 article-title: A robust approach to t linear mixed models applied to multiple sclerosis data publication-title: Stat Med – volume: 27 start-page: 48 issue: 1 year: 2018 end-page: 64 article-title: Extending multivariate‐t linear mixed models for multiple longitudinal data with censored responses and heavy tails publication-title: Stat Methods Med Res – year: 2018 – volume: 61 start-page: 579 issue: 3 year: 1999 end-page: 602 article-title: Statistical applications of the multivariate skew normal distribution publication-title: J Royal Stat Soc Ser B (Stat Methodol) – volume: 46 start-page: 1602 issue: 9 year: 2019 end-page: 1620 article-title: Nonlinear mixed‐effects models with scale mixture of skew‐normal distributions publication-title: J Appl Stat – volume: 43 start-page: 176 issue: 2 year: 2015 end-page: 198 article-title: A mixture of generalized hyperbolic distributions publication-title: Can J Stat – volume: 45 start-page: 375 issue: 4 year: 2017 end-page: 392 article-title: Censored regression models with autoregressive errors: a likelihood‐based perspective publication-title: Can J Stat – volume: 10 start-page: 249 year: 2001 end-page: 276 article-title: Efficient algorithms for robust estimation in linear mixed‐effects models using a multivariate t‐distribution publication-title: J Comput Graph Stat – volume: 81 start-page: 633 issue: 4 year: 1994 end-page: 648 article-title: The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence publication-title: Biometrika – volume: 48 start-page: 733 year: 1992 end-page: 742 article-title: A parametric family of correlation structures for the analysis of longitudinal data publication-title: Biometrics – volume: 39 start-page: 1 issue: 1 year: 1977 end-page: 38 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J Royal Stat Soc Ser B (Methodol) – volume: 65 start-page: 367 issue: 2 year: 2003 end-page: 389 article-title: Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution publication-title: J Royal Stat Soc Ser B (Stat Methodol) – volume: 137 start-page: 484 issue: 2 year: 2007 end-page: 495 article-title: Bayesian analysis of hierarchical linear mixed modeling using the multivariate t distribution publication-title: J Stat Plan Infer – year: 2020 – volume: 82 start-page: 72 issue: S358 year: 1990 end-page: 77 article-title: A controlled dose‐ranging study of remoxipride and haloperidol in schizophrenia‐a Canadian multicentre trial publication-title: Acta Psychiatr Scand – volume: 3 start-page: 408 issue: 4 year: 1973 end-page: 419 article-title: On the parametrization of autoregressive models by partial autocorrelations publication-title: J Multivar Anal – volume: 45 start-page: 257 issue: 3 year: 2003 end-page: 270 article-title: On modelling data from degradation sample paths over time publication-title: Aust N Z J Stat – volume: 73 start-page: 63 issue: 1 year: 2017 end-page: 71 article-title: Diagnosing misspecification of the random‐effects distribution in mixed models publication-title: Biometrics – volume: 18 start-page: 666 issue: 4 year: 2017 end-page: 681 article-title: Multivariate‐t nonlinear mixed models with application to censored multi‐outcome AIDS studies publication-title: Biostatistics – volume: 2 start-page: 175 year: 1993 end-page: 198 article-title: Normal/independent distributions and their applications in robust regression publication-title: J Comput Graph Stat – year: 1976 – volume: 54 start-page: 1266 issue: 5 year: 2010 end-page: 1280 article-title: Influence analyses of skew‐normal/independent linear mixed models publication-title: Comput Stat Data Anal – year: 2019 – volume: 38 start-page: 1074 issue: 6 year: 2019 end-page: 1102 article-title: Flexible longitudinal linear mixed models for multiple censored responses data publication-title: Stat Med – volume: 17 start-page: 157 issue: 2 year: 1968 end-page: 161 article-title: Multivariate normal plotting publication-title: J Royal Stat Soc Ser C (Appl Stat) – volume: 20 start-page: 303 year: 2010 ident: e_1_2_8_12_1 article-title: Likelihood based inference for skew–normal independent linear mixed models publication-title: Stat Sin – ident: e_1_2_8_24_1 doi: 10.1111/j.1751-5823.2007.00016.x – ident: e_1_2_8_9_1 doi: 10.1002/sim.3026 – ident: e_1_2_8_37_1 – ident: e_1_2_8_19_1 doi: 10.2307/2532340 – ident: e_1_2_8_13_1 doi: 10.1006/jmva.2000.1960 – ident: e_1_2_8_43_1 doi: 10.1177/0962280215620229 – ident: e_1_2_8_6_1 doi: 10.1002/bimj.200390034 – ident: e_1_2_8_15_1 doi: 10.1007/s11749-018-0590-6 – ident: e_1_2_8_28_1 doi: 10.1016/j.jspi.2005.12.010 – ident: e_1_2_8_17_1 doi: 10.1111/rssc.12405 – ident: e_1_2_8_21_1 doi: 10.32614/CRAN.package.skewlmm – ident: e_1_2_8_38_1 doi: 10.1111/j.1600-0447.1990.tb05293.x – ident: e_1_2_8_35_1 doi: 10.1016/j.csda.2009.11.008 – ident: e_1_2_8_36_1 doi: 10.1007/978-1-4419-0318-1 – ident: e_1_2_8_27_1 doi: 10.1111/1467-842X.00282 – ident: e_1_2_8_40_1 doi: 10.1002/cjs.11246 – ident: e_1_2_8_3_1 doi: 10.1002/pst.1981 – ident: e_1_2_8_7_1 doi: 10.6339/JDS.2005.03(4).238 – ident: e_1_2_8_14_1 doi: 10.1080/02664763.2018.1557122 – ident: e_1_2_8_42_1 doi: 10.1177/0962280219857103 – ident: e_1_2_8_11_1 doi: 10.1111/1467-9868.00391 – volume: 39 start-page: 1 issue: 1 year: 1977 ident: e_1_2_8_29_1 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J Royal Stat Soc Ser B (Methodol) doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: e_1_2_8_30_1 doi: 10.1093/biomet/81.4.633 – ident: e_1_2_8_31_1 doi: 10.1111/j.1467-9574.2012.00530.x – ident: e_1_2_8_34_1 doi: 10.2307/2985678 – volume: 2 start-page: 175 year: 1993 ident: e_1_2_8_22_1 article-title: Normal/independent distributions and their applications in robust regression publication-title: J Comput Graph Stat doi: 10.1080/10618600.1993.10474606 – ident: e_1_2_8_23_1 doi: 10.1007/978-3-319-98029-4 – ident: e_1_2_8_5_1 doi: 10.1002/sim.2384 – ident: e_1_2_8_2_1 doi: 10.1111/biom.12551 – volume-title: Introduction to the Theory of Statistics year: 1950 ident: e_1_2_8_33_1 – volume-title: R: A Language and Environment for Statistical Computing year: 2019 ident: e_1_2_8_39_1 – ident: e_1_2_8_8_1 doi: 10.1093/biomet/83.4.715 – ident: e_1_2_8_25_1 doi: 10.1016/0047-259X(73)90030-4 – volume: 18 start-page: 666 issue: 4 year: 2017 ident: e_1_2_8_41_1 article-title: Multivariate‐t nonlinear mixed models with application to censored multi‐outcome AIDS studies publication-title: Biostatistics – ident: e_1_2_8_16_1 doi: 10.1093/biomet/asw006 – volume-title: Time Series Analysis: Forecasting and Control year: 1976 ident: e_1_2_8_20_1 – ident: e_1_2_8_10_1 doi: 10.1002/bimj.200900184 – ident: e_1_2_8_18_1 doi: 10.1002/sim.8017 – ident: e_1_2_8_32_1 doi: 10.1111/1467-9868.00194 – ident: e_1_2_8_26_1 doi: 10.1002/cjs.11338 – ident: e_1_2_8_4_1 doi: 10.1198/10618600152628059 |
SSID | ssj0011527 |
Score | 2.4253087 |
Snippet | In longitudinal studies, repeated measures are collected over time and hence they tend to be serially correlated. These studies are commonly analyzed using... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1790 |
SubjectTerms | autoregressive AR(p) damped exponential correlation EM‐algorithm irregularly observed longitudinal data linear mixed models Medical statistics scale mixtures of skew‐normal distributions |
Title | Scale mixture of skew‐normal linear mixed models with within‐subject serial dependence |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8870 https://www.ncbi.nlm.nih.gov/pubmed/33438305 https://www.proquest.com/docview/2498912545 https://www.proquest.com/docview/2477504856 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iQRbEx_p2lQiip2ra9HkUUVRYDz5A9FCaFyyrXbG7KJ78Cf5Gf4kzTVvxBeKlPXTSpJlJ802S-YaQzSCBOcBLpAPTQeZgKKQjVGiciMeeYW5mjIuxw93T8OjSP7kKrqpTlRgLY_khmgU3HBnl_xoHeCaK3Q_S0KJ3B1qO0F3Ho1qIh84a5ii3ztaKO5Rh5AY17yzzduuCn2eib_DyM1otp5vDaXJTN9SeMunvjIZiRz5_4XD835fMkKkKhdI9azazZEznbTLRrfbZ22TSruZRG6TUJi3EpJbSeY5cn4NeNb3rPeHuAx0YWvT149vLa47495Zig7IHfK4VLTPtFBSXe8tLLwfBYiRw-Yda86d1Il6p58nl4cHF_pFTpWhwJPcT5niGy1j5vtZcJMLPAi1EFKhYyURFUkrGtOdq32QAPAznTAJcAYdGmDBigkUZXyDj-SDXS4SGUrquMQn4l8oXLphOKGIEtEqxMDbhMtmu1ZXKir8c02jcppZ52UuhH1Psx2Wy0UjeW86OH2Q6tcbTatQWKbiicQKIzw_gFc1jGG-4iZLlejBCmQgZ8eMAGrRoLaWphHMkfmVQeqvU96-1p-fHXbyv_FVwlbQ8PEyDwZCsQ8aHDyO9BmhoKNZLu38H4D0IXQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS91AEB5EwQpi9fTita5Q2qfoJpsrfSpFOVaPD1VBSiFkb3BQc8Scg6VP_gR_o7_EmWwS0bZQ-pI8ZDa7yexkv5nNfAPwPspwDQgy5eFyUHiUCulJHVsvEWlguV9Y61Pu8OAo7p-GX8-isyn41ObCOH6ILuBGllF_r8nAKSC988gaWg0vUc0J-uszVNC79qe-ddxRfluvlfYo48SPWuZZHuy0LZ-uRb8BzKd4tV5w9l7Cj3ao7j-T8-3JWG6rX89YHP_zWRZhoQGi7LObOUswZcoezA6arfYezLuAHnN5Sj2YI1jqWJ1fwfdjVK1hl8OftAHBRpZV5-bm_vauJAh8wWhExTVdN5rVxXYqRhHf-jAsUbCaSIoAMWcBrK3Fq8xrON3bPfnS95oqDZ4SYca9wAqV6jA0RshMhkVkpEwinWqV6UQpxbkJfBPaArGHFYIrRCzo00gbJ1zypBBvYLoclWYZWKyU71uboYupQ-nj7IllSphWax6nNl6Bj62-ctVQmFMljYvckS8HOb7HnN7jCmx1kleOtuMPMuutyvPGcKscvdE0Q9AXRniL7jKaHO2jFKUZTUgmIVL8NMIBvXVTpetECOJ-5dj6Q63wv_aeH-8P6Lz6r4Kb8KJ_MjjMD_ePDtZgLqB_ayg3kq_D9Ph6YjYQHI3lu9oIHgBM8gx4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB6khVKQVo-31qoriD6l3WQ3m-RRrIdWPUWshaIPIXuDQ9uc0pyD4pM_wd_YX9KZbBKpFxBfkofMZjc7M9lvL_MNwLO0wDEgKUyEw0EVUShkpK3yUSbyxPO48j6m2OHJgdo7km-O0-PuVCXFwgR-iGHBjTyj_V-Tg59bv_OTNLSZnqGWM5yuL0vFc7Lo3Q8DdVTcp2ulLUqVxWlPPMuTnb7k9aHoN3x5Ha624814HT73LQ3HTE62F3O9bb79QuL4f59yC9Y6GMpeBru5DTdcPYKVSbfRPoKbYTmPhSilEawSKA2cznfg0yEq1rGz6VfafmAzz5oT9-Xy-4-aAPApowZVF_TcWdam2mkYrfe2l2mNgs1C0_oPC_bP-ky8xt2Fo_Hrj6_2oi5HQ2SELHiUeGFyK6VzQhdaVqnTOkttbk1hM2MM5y6JnfQVIg8vBDeIV3BGo73KuOZZJe7BUj2r3QNgypg49r7ACaaVOkbbUTonRGstV7lXG_CiV1dpOgJzyqNxWgbq5aTEfiypHzfg6SB5Hkg7_iCz1Wu87Ny2KXEumhcI-WSKrxgeo8PRLkpVu9mCZDKixM9TbND9YClDJUIQ8yvH0s9bff-19vJwf0L3zX8VfAIr73fH5bv9g7cPYTWhgzUUGMm3YGl-sXCPEBnN9ePWBa4ARgULMA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scale+mixture+of+skew%E2%80%90normal+linear+mixed+models+with+within%E2%80%90subject+serial+dependence&rft.jtitle=Statistics+in+medicine&rft.au=Schumacher%2C+Fernanda+L&rft.au=Lachos%2C+Victor+H&rft.au=Matos%2C+Larissa+A&rft.date=2021-03-30&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=40&rft.issue=7&rft.spage=1790&rft.epage=1810&rft_id=info:doi/10.1002%2Fsim.8870&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |