Scale mixture of skew‐normal linear mixed models with within‐subject serial dependence

In longitudinal studies, repeated measures are collected over time and hence they tend to be serially correlated. These studies are commonly analyzed using linear mixed models (LMMs), and in this article we consider an extension of the skew‐normal/independent LMM, where the error term has a dependen...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 40; no. 7; pp. 1790 - 1810
Main Authors Schumacher, Fernanda L., Lachos, Victor H., Matos, Larissa A.
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 30.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In longitudinal studies, repeated measures are collected over time and hence they tend to be serially correlated. These studies are commonly analyzed using linear mixed models (LMMs), and in this article we consider an extension of the skew‐normal/independent LMM, where the error term has a dependence structure, such as damped exponential correlation or autoregressive correlation of order p. The proposed model provides flexibility in capturing the effects of skewness and heavy tails simultaneously when continuous repeated measures are serially correlated. For this robust model, we present an efficient EM‐type algorithm for parameters estimation via maximum likelihood and the observed information matrix is derived analytically to account for standard errors. The methodology is illustrated through an application to schizophrenia data and some simulation studies. The proposed algorithm and methods are implemented in the new R package skewlmm.
AbstractList In longitudinal studies, repeated measures are collected over time and hence they tend to be serially correlated. These studies are commonly analyzed using linear mixed models (LMMs), and in this article we consider an extension of the skew-normal/independent LMM, where the error term has a dependence structure, such as damped exponential correlation or autoregressive correlation of order p. The proposed model provides flexibility in capturing the effects of skewness and heavy tails simultaneously when continuous repeated measures are serially correlated. For this robust model, we present an efficient EM-type algorithm for parameters estimation via maximum likelihood and the observed information matrix is derived analytically to account for standard errors. The methodology is illustrated through an application to schizophrenia data and some simulation studies. The proposed algorithm and methods are implemented in the new R package skewlmm.In longitudinal studies, repeated measures are collected over time and hence they tend to be serially correlated. These studies are commonly analyzed using linear mixed models (LMMs), and in this article we consider an extension of the skew-normal/independent LMM, where the error term has a dependence structure, such as damped exponential correlation or autoregressive correlation of order p. The proposed model provides flexibility in capturing the effects of skewness and heavy tails simultaneously when continuous repeated measures are serially correlated. For this robust model, we present an efficient EM-type algorithm for parameters estimation via maximum likelihood and the observed information matrix is derived analytically to account for standard errors. The methodology is illustrated through an application to schizophrenia data and some simulation studies. The proposed algorithm and methods are implemented in the new R package skewlmm.
In longitudinal studies, repeated measures are collected over time and hence they tend to be serially correlated. These studies are commonly analyzed using linear mixed models (LMMs), and in this article we consider an extension of the skew‐normal/independent LMM, where the error term has a dependence structure, such as damped exponential correlation or autoregressive correlation of order p . The proposed model provides flexibility in capturing the effects of skewness and heavy tails simultaneously when continuous repeated measures are serially correlated. For this robust model, we present an efficient EM‐type algorithm for parameters estimation via maximum likelihood and the observed information matrix is derived analytically to account for standard errors. The methodology is illustrated through an application to schizophrenia data and some simulation studies. The proposed algorithm and methods are implemented in the new R package skewlmm .
In longitudinal studies, repeated measures are collected over time and hence they tend to be serially correlated. These studies are commonly analyzed using linear mixed models (LMMs), and in this article we consider an extension of the skew‐normal/independent LMM, where the error term has a dependence structure, such as damped exponential correlation or autoregressive correlation of order p. The proposed model provides flexibility in capturing the effects of skewness and heavy tails simultaneously when continuous repeated measures are serially correlated. For this robust model, we present an efficient EM‐type algorithm for parameters estimation via maximum likelihood and the observed information matrix is derived analytically to account for standard errors. The methodology is illustrated through an application to schizophrenia data and some simulation studies. The proposed algorithm and methods are implemented in the new R package skewlmm.
Author Schumacher, Fernanda L.
Lachos, Victor H.
Matos, Larissa A.
Author_xml – sequence: 1
  givenname: Fernanda L.
  orcidid: 0000-0002-5724-8918
  surname: Schumacher
  fullname: Schumacher, Fernanda L.
  organization: Universidade Estadual de Campinas
– sequence: 2
  givenname: Victor H.
  orcidid: 0000-0002-7239-2459
  surname: Lachos
  fullname: Lachos, Victor H.
  organization: University of Connecticut
– sequence: 3
  givenname: Larissa A.
  orcidid: 0000-0002-2635-0901
  surname: Matos
  fullname: Matos, Larissa A.
  email: larissam@unicamp.br
  organization: Universidade Estadual de Campinas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33438305$$D View this record in MEDLINE/PubMed
BookMark eNp10c1u1DAQB3ALFdFti8QToEhcuGQZf62dI6pKqVTEoXDpxXKcifDi2IudaOmNR-gz8iRkuy1IqL2MD_Ob0cj_I3IQU0RCXlFYUgD2rvhhqbWCZ2RBoVE1MKkPyAKYUvVKUXlIjkpZA1AqmXpBDjkXXHOQC3J95WzAavA_xyljlfqqfMft71-3MeXBhir4iDbv-thVQ-owlGrrx293xccZlqldoxurgtnPAx1uMHYYHZ6Q570NBV_ev8fk64ezL6cf68vP5xen7y9rx0UDNeu5050QiLxtWmEltq2Sne5c0ynnHAAyiqK3mjY95-A4VZqt2n6loAVl-TF5u9-7yenHhGU0gy8OQ7AR01QME0pJEFquZvrmP7pOU47zdbNqdEOZFHJWr-_V1A7YmU32g8035uHXZrDcA5dTKRl74_xoR5_imK0PhoLZxWLmWMwuln8n_h142PkIrfd06wPePOnM1cWnO_8HJjGdnQ
CitedBy_id crossref_primary_10_1016_j_jmva_2021_104851
crossref_primary_10_1002_sim_10295
crossref_primary_10_1007_s11222_024_10512_7
crossref_primary_10_1016_j_jmva_2021_104856
crossref_primary_10_1007_s00357_024_09470_6
crossref_primary_10_1007_s10936_024_10110_8
crossref_primary_10_1002_sta4_602
crossref_primary_10_3390_math10152820
crossref_primary_10_1111_anzs_12423
crossref_primary_10_1007_s42519_021_00172_5
crossref_primary_10_1111_anzs_12374
crossref_primary_10_1080_03610918_2025_2453469
crossref_primary_10_1111_stan_70002
crossref_primary_10_1212_WNL_0000000000207247
crossref_primary_10_1002_sam_70011
Cites_doi 10.1111/j.1751-5823.2007.00016.x
10.1002/sim.3026
10.2307/2532340
10.1006/jmva.2000.1960
10.1177/0962280215620229
10.1002/bimj.200390034
10.1007/s11749-018-0590-6
10.1016/j.jspi.2005.12.010
10.1111/rssc.12405
10.32614/CRAN.package.skewlmm
10.1111/j.1600-0447.1990.tb05293.x
10.1016/j.csda.2009.11.008
10.1007/978-1-4419-0318-1
10.1111/1467-842X.00282
10.1002/cjs.11246
10.1002/pst.1981
10.6339/JDS.2005.03(4).238
10.1080/02664763.2018.1557122
10.1177/0962280219857103
10.1111/1467-9868.00391
10.1111/j.2517-6161.1977.tb01600.x
10.1093/biomet/81.4.633
10.1111/j.1467-9574.2012.00530.x
10.2307/2985678
10.1080/10618600.1993.10474606
10.1007/978-3-319-98029-4
10.1002/sim.2384
10.1111/biom.12551
10.1093/biomet/83.4.715
10.1016/0047-259X(73)90030-4
10.1093/biomet/asw006
10.1002/bimj.200900184
10.1002/sim.8017
10.1111/1467-9868.00194
10.1002/cjs.11338
10.1198/10618600152628059
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/sim.8870
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

ProQuest Health & Medical Complete (Alumni)
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 1810
ExternalDocumentID 33438305
10_1002_sim_8870
SIM8870
Genre article
Journal Article
GrantInformation_xml – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  funderid: 001
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  grantid: 001
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c3490-2f3c8d44ee3b9b4a5ebb75d8dc9d7ccc00e21e4fa819f330c317826bf670b07a3
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 13:08:07 EDT 2025
Fri Jul 25 10:52:39 EDT 2025
Wed Feb 19 02:29:29 EST 2025
Thu Apr 24 23:07:00 EDT 2025
Tue Jul 01 03:28:16 EDT 2025
Wed Jan 22 16:31:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords autoregressive AR(p)
linear mixed models
damped exponential correlation
scale mixtures of skew-normal distributions
EM-algorithm
irregularly observed longitudinal data
Language English
License 2021 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3490-2f3c8d44ee3b9b4a5ebb75d8dc9d7ccc00e21e4fa819f330c317826bf670b07a3
Notes Funding information
Conselho Nacional de Desenvolvimento Científico e Tecnológico, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, 001
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7239-2459
0000-0002-2635-0901
0000-0002-5724-8918
PMID 33438305
PQID 2498912545
PQPubID 48361
PageCount 21
ParticipantIDs proquest_miscellaneous_2477504856
proquest_journals_2498912545
pubmed_primary_33438305
crossref_citationtrail_10_1002_sim_8870
crossref_primary_10_1002_sim_8870
wiley_primary_10_1002_sim_8870_SIM8870
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 30 March 2021
PublicationDateYYYYMMDD 2021-03-30
PublicationDate_xml – month: 03
  year: 2021
  text: 30 March 2021
  day: 30
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 54
2017; 45
1976
2019; 38
2019; 19
2008; 76
1950
2016; 103
1999; 61
1994; 81
1993; 2
2018; 27
1990; 82
2017; 73
2007; 137
2010; 20
1968; 17
2000
1977; 39
2020
2019; 46
2006; 25
2008; 27
2015; 43
1996; 83
2019; 28
2019
2018
2020; 69
2017; 18
2005; 3
1992; 48
2001; 79
2012; 66
2010; 52
2003; 65
1973; 3
2001; 10
2003; 45
2020; 29
e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_43_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
Lachos VH (e_1_2_8_12_1) 2010; 20
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
Lange KL (e_1_2_8_22_1) 1993; 2
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Box GEP (e_1_2_8_20_1) 1976
Dempster A (e_1_2_8_29_1) 1977; 39
e_1_2_8_32_1
Mood AM (e_1_2_8_33_1) 1950
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
Lin TI (e_1_2_8_41_1) 2017; 18
e_1_2_8_30_1
R Core Team (e_1_2_8_39_1) 2019
References_xml – volume: 66
  start-page: 217
  issue: 3
  year: 2012
  end-page: 236
  article-title: “All models are wrong…”: an introduction to model uncertainty
  publication-title: Stat Neerl
– volume: 29
  start-page: 1288
  issue: 5
  year: 2020
  end-page: 1304
  article-title: Multivariate‐t linear mixed models with censored responses, intermittent missing values and heavy tails
  publication-title: Stat Methods Med Res
– volume: 52
  start-page: 449
  issue: 4
  year: 2010
  end-page: 469
  article-title: Robust linear mixed models using the skew t distribution with application to schizophrenia data
  publication-title: Biom J
– volume: 79
  start-page: 99
  year: 2001
  end-page: 113
  article-title: A general class of multivariate skew‐elliptical distributions
  publication-title: J Multivar Anal
– volume: 19
  start-page: 187
  issue: 3
  year: 2019
  end-page: 201
  article-title: Nonlinear mixed‐effects models with misspecified random‐effects distribution
  publication-title: Pharm Stat
– volume: 45
  start-page: 573
  issue: 5
  year: 2003
  end-page: 590
  article-title: Robust linear mixed models with normal/independent distributions and Bayesian MCMC implementation
  publication-title: Biom J
– volume: 20
  start-page: 303
  year: 2010
  end-page: 322
  article-title: Likelihood based inference for skew–normal independent linear mixed models
  publication-title: Stat Sin
– volume: 28
  start-page: 543
  issue: 2
  year: 2019
  end-page: 564
  article-title: A flexible class of parametric distributions for Bayesian linear mixed models
  publication-title: Test
– volume: 76
  start-page: 1490
  year: 2008
  end-page: 1507
  article-title: Robust likelihood methods based on the skew‐t and related distributions
  publication-title: Int Stat Rev
– volume: 103
  start-page: 363
  issue: 2
  year: 2016
  end-page: 376
  article-title: Skew‐normal antedependence models for skewed longitudinal data
  publication-title: Biometrika
– year: 2000
– volume: 69
  start-page: 1015
  issue: 5
  year: 2020
  end-page: 1065
  article-title: Linear mixed effects models for non‐Gaussian continuous repeated measurement data
  publication-title: J Royal Stat Soc Ser C (Appl Stat)
– volume: 83
  start-page: 715
  issue: 4
  year: 1996
  end-page: 726
  article-title: The multivariate skew‐normal distribution
  publication-title: Biometrika
– volume: 3
  start-page: 415
  year: 2005
  end-page: 438
  article-title: Skew‐normal linear mixed models
  publication-title: J Data Sci
– year: 1950
– volume: 27
  start-page: 1490
  issue: 9
  year: 2008
  end-page: 1507
  article-title: Estimation and prediction in linear mixed models with skew‐normal random effects for longitudinal data
  publication-title: Stat Med
– volume: 25
  start-page: 1397
  issue: 8
  year: 2006
  end-page: 1412
  article-title: A robust approach to t linear mixed models applied to multiple sclerosis data
  publication-title: Stat Med
– volume: 27
  start-page: 48
  issue: 1
  year: 2018
  end-page: 64
  article-title: Extending multivariate‐t linear mixed models for multiple longitudinal data with censored responses and heavy tails
  publication-title: Stat Methods Med Res
– year: 2018
– volume: 61
  start-page: 579
  issue: 3
  year: 1999
  end-page: 602
  article-title: Statistical applications of the multivariate skew normal distribution
  publication-title: J Royal Stat Soc Ser B (Stat Methodol)
– volume: 46
  start-page: 1602
  issue: 9
  year: 2019
  end-page: 1620
  article-title: Nonlinear mixed‐effects models with scale mixture of skew‐normal distributions
  publication-title: J Appl Stat
– volume: 43
  start-page: 176
  issue: 2
  year: 2015
  end-page: 198
  article-title: A mixture of generalized hyperbolic distributions
  publication-title: Can J Stat
– volume: 45
  start-page: 375
  issue: 4
  year: 2017
  end-page: 392
  article-title: Censored regression models with autoregressive errors: a likelihood‐based perspective
  publication-title: Can J Stat
– volume: 10
  start-page: 249
  year: 2001
  end-page: 276
  article-title: Efficient algorithms for robust estimation in linear mixed‐effects models using a multivariate t‐distribution
  publication-title: J Comput Graph Stat
– volume: 81
  start-page: 633
  issue: 4
  year: 1994
  end-page: 648
  article-title: The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence
  publication-title: Biometrika
– volume: 48
  start-page: 733
  year: 1992
  end-page: 742
  article-title: A parametric family of correlation structures for the analysis of longitudinal data
  publication-title: Biometrics
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  end-page: 38
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Royal Stat Soc Ser B (Methodol)
– volume: 65
  start-page: 367
  issue: 2
  year: 2003
  end-page: 389
  article-title: Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution
  publication-title: J Royal Stat Soc Ser B (Stat Methodol)
– volume: 137
  start-page: 484
  issue: 2
  year: 2007
  end-page: 495
  article-title: Bayesian analysis of hierarchical linear mixed modeling using the multivariate t distribution
  publication-title: J Stat Plan Infer
– year: 2020
– volume: 82
  start-page: 72
  issue: S358
  year: 1990
  end-page: 77
  article-title: A controlled dose‐ranging study of remoxipride and haloperidol in schizophrenia‐a Canadian multicentre trial
  publication-title: Acta Psychiatr Scand
– volume: 3
  start-page: 408
  issue: 4
  year: 1973
  end-page: 419
  article-title: On the parametrization of autoregressive models by partial autocorrelations
  publication-title: J Multivar Anal
– volume: 45
  start-page: 257
  issue: 3
  year: 2003
  end-page: 270
  article-title: On modelling data from degradation sample paths over time
  publication-title: Aust N Z J Stat
– volume: 73
  start-page: 63
  issue: 1
  year: 2017
  end-page: 71
  article-title: Diagnosing misspecification of the random‐effects distribution in mixed models
  publication-title: Biometrics
– volume: 18
  start-page: 666
  issue: 4
  year: 2017
  end-page: 681
  article-title: Multivariate‐t nonlinear mixed models with application to censored multi‐outcome AIDS studies
  publication-title: Biostatistics
– volume: 2
  start-page: 175
  year: 1993
  end-page: 198
  article-title: Normal/independent distributions and their applications in robust regression
  publication-title: J Comput Graph Stat
– year: 1976
– volume: 54
  start-page: 1266
  issue: 5
  year: 2010
  end-page: 1280
  article-title: Influence analyses of skew‐normal/independent linear mixed models
  publication-title: Comput Stat Data Anal
– year: 2019
– volume: 38
  start-page: 1074
  issue: 6
  year: 2019
  end-page: 1102
  article-title: Flexible longitudinal linear mixed models for multiple censored responses data
  publication-title: Stat Med
– volume: 17
  start-page: 157
  issue: 2
  year: 1968
  end-page: 161
  article-title: Multivariate normal plotting
  publication-title: J Royal Stat Soc Ser C (Appl Stat)
– volume: 20
  start-page: 303
  year: 2010
  ident: e_1_2_8_12_1
  article-title: Likelihood based inference for skew–normal independent linear mixed models
  publication-title: Stat Sin
– ident: e_1_2_8_24_1
  doi: 10.1111/j.1751-5823.2007.00016.x
– ident: e_1_2_8_9_1
  doi: 10.1002/sim.3026
– ident: e_1_2_8_37_1
– ident: e_1_2_8_19_1
  doi: 10.2307/2532340
– ident: e_1_2_8_13_1
  doi: 10.1006/jmva.2000.1960
– ident: e_1_2_8_43_1
  doi: 10.1177/0962280215620229
– ident: e_1_2_8_6_1
  doi: 10.1002/bimj.200390034
– ident: e_1_2_8_15_1
  doi: 10.1007/s11749-018-0590-6
– ident: e_1_2_8_28_1
  doi: 10.1016/j.jspi.2005.12.010
– ident: e_1_2_8_17_1
  doi: 10.1111/rssc.12405
– ident: e_1_2_8_21_1
  doi: 10.32614/CRAN.package.skewlmm
– ident: e_1_2_8_38_1
  doi: 10.1111/j.1600-0447.1990.tb05293.x
– ident: e_1_2_8_35_1
  doi: 10.1016/j.csda.2009.11.008
– ident: e_1_2_8_36_1
  doi: 10.1007/978-1-4419-0318-1
– ident: e_1_2_8_27_1
  doi: 10.1111/1467-842X.00282
– ident: e_1_2_8_40_1
  doi: 10.1002/cjs.11246
– ident: e_1_2_8_3_1
  doi: 10.1002/pst.1981
– ident: e_1_2_8_7_1
  doi: 10.6339/JDS.2005.03(4).238
– ident: e_1_2_8_14_1
  doi: 10.1080/02664763.2018.1557122
– ident: e_1_2_8_42_1
  doi: 10.1177/0962280219857103
– ident: e_1_2_8_11_1
  doi: 10.1111/1467-9868.00391
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: e_1_2_8_29_1
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J Royal Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: e_1_2_8_30_1
  doi: 10.1093/biomet/81.4.633
– ident: e_1_2_8_31_1
  doi: 10.1111/j.1467-9574.2012.00530.x
– ident: e_1_2_8_34_1
  doi: 10.2307/2985678
– volume: 2
  start-page: 175
  year: 1993
  ident: e_1_2_8_22_1
  article-title: Normal/independent distributions and their applications in robust regression
  publication-title: J Comput Graph Stat
  doi: 10.1080/10618600.1993.10474606
– ident: e_1_2_8_23_1
  doi: 10.1007/978-3-319-98029-4
– ident: e_1_2_8_5_1
  doi: 10.1002/sim.2384
– ident: e_1_2_8_2_1
  doi: 10.1111/biom.12551
– volume-title: Introduction to the Theory of Statistics
  year: 1950
  ident: e_1_2_8_33_1
– volume-title: R: A Language and Environment for Statistical Computing
  year: 2019
  ident: e_1_2_8_39_1
– ident: e_1_2_8_8_1
  doi: 10.1093/biomet/83.4.715
– ident: e_1_2_8_25_1
  doi: 10.1016/0047-259X(73)90030-4
– volume: 18
  start-page: 666
  issue: 4
  year: 2017
  ident: e_1_2_8_41_1
  article-title: Multivariate‐t nonlinear mixed models with application to censored multi‐outcome AIDS studies
  publication-title: Biostatistics
– ident: e_1_2_8_16_1
  doi: 10.1093/biomet/asw006
– volume-title: Time Series Analysis: Forecasting and Control
  year: 1976
  ident: e_1_2_8_20_1
– ident: e_1_2_8_10_1
  doi: 10.1002/bimj.200900184
– ident: e_1_2_8_18_1
  doi: 10.1002/sim.8017
– ident: e_1_2_8_32_1
  doi: 10.1111/1467-9868.00194
– ident: e_1_2_8_26_1
  doi: 10.1002/cjs.11338
– ident: e_1_2_8_4_1
  doi: 10.1198/10618600152628059
SSID ssj0011527
Score 2.4253087
Snippet In longitudinal studies, repeated measures are collected over time and hence they tend to be serially correlated. These studies are commonly analyzed using...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1790
SubjectTerms autoregressive AR(p)
damped exponential correlation
EM‐algorithm
irregularly observed longitudinal data
linear mixed models
Medical statistics
scale mixtures of skew‐normal distributions
Title Scale mixture of skew‐normal linear mixed models with within‐subject serial dependence
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8870
https://www.ncbi.nlm.nih.gov/pubmed/33438305
https://www.proquest.com/docview/2498912545
https://www.proquest.com/docview/2477504856
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iQRbEx_p2lQiip2ra9HkUUVRYDz5A9FCaFyyrXbG7KJ78Cf5Gf4kzTVvxBeKlPXTSpJlJ802S-YaQzSCBOcBLpAPTQeZgKKQjVGiciMeeYW5mjIuxw93T8OjSP7kKrqpTlRgLY_khmgU3HBnl_xoHeCaK3Q_S0KJ3B1qO0F3Ho1qIh84a5ii3ztaKO5Rh5AY17yzzduuCn2eib_DyM1otp5vDaXJTN9SeMunvjIZiRz5_4XD835fMkKkKhdI9azazZEznbTLRrfbZ22TSruZRG6TUJi3EpJbSeY5cn4NeNb3rPeHuAx0YWvT149vLa47495Zig7IHfK4VLTPtFBSXe8tLLwfBYiRw-Yda86d1Il6p58nl4cHF_pFTpWhwJPcT5niGy1j5vtZcJMLPAi1EFKhYyURFUkrGtOdq32QAPAznTAJcAYdGmDBigkUZXyDj-SDXS4SGUrquMQn4l8oXLphOKGIEtEqxMDbhMtmu1ZXKir8c02jcppZ52UuhH1Psx2Wy0UjeW86OH2Q6tcbTatQWKbiicQKIzw_gFc1jGG-4iZLlejBCmQgZ8eMAGrRoLaWphHMkfmVQeqvU96-1p-fHXbyv_FVwlbQ8PEyDwZCsQ8aHDyO9BmhoKNZLu38H4D0IXQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS91AEB5EwQpi9fTita5Q2qfoJpsrfSpFOVaPD1VBSiFkb3BQc8Scg6VP_gR_o7_EmWwS0bZQ-pI8ZDa7yexkv5nNfAPwPspwDQgy5eFyUHiUCulJHVsvEWlguV9Y61Pu8OAo7p-GX8-isyn41ObCOH6ILuBGllF_r8nAKSC988gaWg0vUc0J-uszVNC79qe-ddxRfluvlfYo48SPWuZZHuy0LZ-uRb8BzKd4tV5w9l7Cj3ao7j-T8-3JWG6rX89YHP_zWRZhoQGi7LObOUswZcoezA6arfYezLuAHnN5Sj2YI1jqWJ1fwfdjVK1hl8OftAHBRpZV5-bm_vauJAh8wWhExTVdN5rVxXYqRhHf-jAsUbCaSIoAMWcBrK3Fq8xrON3bPfnS95oqDZ4SYca9wAqV6jA0RshMhkVkpEwinWqV6UQpxbkJfBPaArGHFYIrRCzo00gbJ1zypBBvYLoclWYZWKyU71uboYupQ-nj7IllSphWax6nNl6Bj62-ctVQmFMljYvckS8HOb7HnN7jCmx1kleOtuMPMuutyvPGcKscvdE0Q9AXRniL7jKaHO2jFKUZTUgmIVL8NMIBvXVTpetECOJ-5dj6Q63wv_aeH-8P6Lz6r4Kb8KJ_MjjMD_ePDtZgLqB_ayg3kq_D9Ph6YjYQHI3lu9oIHgBM8gx4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB6khVKQVo-31qoriD6l3WQ3m-RRrIdWPUWshaIPIXuDQ9uc0pyD4pM_wd_YX9KZbBKpFxBfkofMZjc7M9lvL_MNwLO0wDEgKUyEw0EVUShkpK3yUSbyxPO48j6m2OHJgdo7km-O0-PuVCXFwgR-iGHBjTyj_V-Tg59bv_OTNLSZnqGWM5yuL0vFc7Lo3Q8DdVTcp2ulLUqVxWlPPMuTnb7k9aHoN3x5Ha624814HT73LQ3HTE62F3O9bb79QuL4f59yC9Y6GMpeBru5DTdcPYKVSbfRPoKbYTmPhSilEawSKA2cznfg0yEq1rGz6VfafmAzz5oT9-Xy-4-aAPApowZVF_TcWdam2mkYrfe2l2mNgs1C0_oPC_bP-ky8xt2Fo_Hrj6_2oi5HQ2SELHiUeGFyK6VzQhdaVqnTOkttbk1hM2MM5y6JnfQVIg8vBDeIV3BGo73KuOZZJe7BUj2r3QNgypg49r7ACaaVOkbbUTonRGstV7lXG_CiV1dpOgJzyqNxWgbq5aTEfiypHzfg6SB5Hkg7_iCz1Wu87Ny2KXEumhcI-WSKrxgeo8PRLkpVu9mCZDKixM9TbND9YClDJUIQ8yvH0s9bff-19vJwf0L3zX8VfAIr73fH5bv9g7cPYTWhgzUUGMm3YGl-sXCPEBnN9ePWBa4ARgULMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Scale+mixture+of+skew%E2%80%90normal+linear+mixed+models+with+within%E2%80%90subject+serial+dependence&rft.jtitle=Statistics+in+medicine&rft.au=Schumacher%2C+Fernanda+L&rft.au=Lachos%2C+Victor+H&rft.au=Matos%2C+Larissa+A&rft.date=2021-03-30&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0277-6715&rft.eissn=1097-0258&rft.volume=40&rft.issue=7&rft.spage=1790&rft.epage=1810&rft_id=info:doi/10.1002%2Fsim.8870&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon