MEBoost: Variable selection in the presence of measurement error
We present a novel method for variable selection in regression models when covariates are measured with error. The iterative algorithm we propose, Measurement Error Boosting (MEBoost), follows a path defined by estimating equations that correct for covariate measurement error. We illustrate the use...
Saved in:
Published in | Statistics in medicine Vol. 38; no. 15; pp. 2705 - 2718 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Wiley Subscription Services, Inc
10.07.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We present a novel method for variable selection in regression models when covariates are measured with error. The iterative algorithm we propose, Measurement Error Boosting (MEBoost), follows a path defined by estimating equations that correct for covariate measurement error. We illustrate the use of MEBoost in practice by analyzing data from the Box Lunch Study, a clinical trial in nutrition where several variables are based on self‐report and, hence, measured with error, where we are interested in performing model selection from a large data set to select variables that are related to the number of times a subject binge ate in the last 28 days. Furthermore, we evaluated our method and compared its performance to the recently proposed Convex Conditioned Lasso and to the “naive” Lasso, which does not correct for measurement error through a simulation study. Increasing the degree of measurement error increased prediction error and decreased the probability of accurate covariate selection, but this loss of accuracy occurred to a lesser degree when using MEBoost. Through simulations, we also make a case for the consistency of the model selected. |
---|---|
AbstractList | We present a novel method for variable selection in regression models when covariates are measured with error. The iterative algorithm we propose, Measurement Error Boosting (MEBoost), follows a path defined by estimating equations that correct for covariate measurement error. We illustrate the use of MEBoost in practice by analyzing data from the Box Lunch Study, a clinical trial in nutrition where several variables are based on self-report and, hence, measured with error, where we are interested in performing model selection from a large data set to select variables that are related to the number of times a subject binge ate in the last 28 days. Furthermore, we evaluated our method and compared its performance to the recently proposed Convex Conditioned Lasso and to the "naive" Lasso, which does not correct for measurement error through a simulation study. Increasing the degree of measurement error increased prediction error and decreased the probability of accurate covariate selection, but this loss of accuracy occurred to a lesser degree when using MEBoost. Through simulations, we also make a case for the consistency of the model selected. We present a novel method for variable selection in regression models when covariates are measured with error. The iterative algorithm we propose, Measurement Error Boosting (MEBoost), follows a path defined by estimating equations that correct for covariate measurement error. We illustrate the use of MEBoost in practice by analyzing data from the Box Lunch Study, a clinical trial in nutrition where several variables are based on self-report and, hence, measured with error, where we are interested in performing model selection from a large data set to select variables that are related to the number of times a subject binge ate in the last 28 days. Furthermore, we evaluated our method and compared its performance to the recently proposed Convex Conditioned Lasso and to the "naive" Lasso, which does not correct for measurement error through a simulation study. Increasing the degree of measurement error increased prediction error and decreased the probability of accurate covariate selection, but this loss of accuracy occurred to a lesser degree when using MEBoost. Through simulations, we also make a case for the consistency of the model selected.We present a novel method for variable selection in regression models when covariates are measured with error. The iterative algorithm we propose, Measurement Error Boosting (MEBoost), follows a path defined by estimating equations that correct for covariate measurement error. We illustrate the use of MEBoost in practice by analyzing data from the Box Lunch Study, a clinical trial in nutrition where several variables are based on self-report and, hence, measured with error, where we are interested in performing model selection from a large data set to select variables that are related to the number of times a subject binge ate in the last 28 days. Furthermore, we evaluated our method and compared its performance to the recently proposed Convex Conditioned Lasso and to the "naive" Lasso, which does not correct for measurement error through a simulation study. Increasing the degree of measurement error increased prediction error and decreased the probability of accurate covariate selection, but this loss of accuracy occurred to a lesser degree when using MEBoost. Through simulations, we also make a case for the consistency of the model selected. We present a novel method for variable selection in regression models when covariates are measured with error. The iterative algorithm we propose, M easurement E rror Boost ing (MEBoost), follows a path defined by estimating equations that correct for covariate measurement error. We illustrate the use of MEBoost in practice by analyzing data from the Box Lunch Study, a clinical trial in nutrition where several variables are based on self‐report and, hence, measured with error, where we are interested in performing model selection from a large data set to select variables that are related to the number of times a subject binge ate in the last 28 days. Furthermore, we evaluated our method and compared its performance to the recently proposed Convex Conditioned Lasso and to the “naive” Lasso, which does not correct for measurement error through a simulation study. Increasing the degree of measurement error increased prediction error and decreased the probability of accurate covariate selection, but this loss of accuracy occurred to a lesser degree when using MEBoost. Through simulations, we also make a case for the consistency of the model selected. |
Author | Brown, Ben Wolfson, Julian Weaver, Timothy |
Author_xml | – sequence: 1 givenname: Ben orcidid: 0000-0003-2240-5626 surname: Brown fullname: Brown, Ben email: bbrown@namsa.com organization: NAMSA – sequence: 2 givenname: Timothy surname: Weaver fullname: Weaver, Timothy organization: Minneapolis Medical Research Foundation – sequence: 3 givenname: Julian orcidid: 0000-0002-2032-0875 surname: Wolfson fullname: Wolfson, Julian organization: University of Minnesota |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30856279$$D View this record in MEDLINE/PubMed |
BookMark | eNp10EtLxDAQwPEgiu6q4CeQghcvXSdpk7SefOALdvHg4xrSdIqRtlmTFtlvb9d1FURPOeQ3w_Afk83WtUjIAYUJBWAnwTaTjCawQUYUchkD49kmGQGTMhaS8h0yDuEVgFLO5DbZSSDjgsl8RM5mVxfOhe40etbe6qLGKGCNprOujWwbdS8YzT0GbA1Grooa1KH32GDbRei983tkq9J1wP2vd5c8XV89Xt7G0_ubu8vzaWySNIeYFqmWuiyELhnTaQFpZfJMC42ixEKy4V8UjCZGcMMZLY1hWaF5RUVWZQnIZJccr_bOvXvrMXSqscFgXesWXR8Uozmk-SCzgR79oq-u9-1wnWIs4ZxBksOgDr9UXzRYqrm3jfYLtW4zgMkKGO9C8FgpYzu9DNN5bWtFQS3jqyG-Wsb_OfF7YL3zDxqv6LutcfGvUw93s0__AcolkPQ |
CitedBy_id | crossref_primary_10_1002_gepi_22430 crossref_primary_10_1016_j_ejor_2025_02_005 crossref_primary_10_1111_biom_13628 crossref_primary_10_1186_s12876_021_02057_0 crossref_primary_10_1080_10618600_2023_2218428 crossref_primary_10_1080_00401706_2019_1668856 crossref_primary_10_1007_s11222_023_10209_3 crossref_primary_10_1371_journal_pone_0276664 crossref_primary_10_3390_math11143202 crossref_primary_10_1016_j_envres_2020_109492 crossref_primary_10_1016_j_compbiomed_2022_106154 crossref_primary_10_1016_j_brat_2019_103530 crossref_primary_10_1214_22_AOS2248 crossref_primary_10_1007_s11222_023_10312_5 crossref_primary_10_1186_s12920_022_01411_9 |
Cites_doi | 10.1002/oby.20720 10.1198/jasa.2011.tm10098 10.1093/aje/kwr316 10.1201/9781420066586 10.1093/ajcn/65.4.1179S 10.2307/2533288 10.1093/oxfordjournals.aje.a116453 10.1111/j.1467-9868.2010.00740.x 10.1198/016214507000001355 10.1214/16-AOS1527 10.1002/9780470316665 10.1111/biom.12014 10.3150/09-BEJ205 10.1093/biomet/77.1.127 10.1111/j.2517-6161.1996.tb02080.x 10.1214/aos/1176349741 10.1214/12-AOS1018 10.1093/aje/kwg091 10.1080/10618600.2016.1247005 |
ContentType | Journal Article |
Copyright | 2019 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2019 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION NPM K9. 7X8 |
DOI | 10.1002/sim.8130 |
DatabaseName | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Statistics Public Health |
EISSN | 1097-0258 |
EndPage | 2718 |
ExternalDocumentID | 30856279 10_1002_sim_8130 SIM8130 |
Genre | article Journal Article |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAWTL AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABOCM ABPVW ACAHQ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWI RX1 RYL SUPJJ SV3 TN5 UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WUP WWH WXSBR WYISQ XBAML XG1 XV2 ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION NPM AAMMB AEFGJ AGXDD AIDQK AIDYY K9. 7X8 |
ID | FETCH-LOGICAL-c3490-1b4a7adb6ad22a4b04fc98a6ae6deb721b46b213c65c521dcc28ba5f168f83073 |
IEDL.DBID | DR2 |
ISSN | 0277-6715 1097-0258 |
IngestDate | Fri Jul 11 06:34:46 EDT 2025 Fri Jul 25 23:42:46 EDT 2025 Wed Feb 19 02:30:47 EST 2025 Tue Jul 01 03:28:14 EDT 2025 Thu Apr 24 22:56:51 EDT 2025 Wed Jan 22 16:41:38 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 15 |
Keywords | measurement error variable selection boosting machine learning high-dimensional data |
Language | English |
License | 2019 John Wiley & Sons, Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3490-1b4a7adb6ad22a4b04fc98a6ae6deb721b46b213c65c521dcc28ba5f168f83073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2240-5626 0000-0002-2032-0875 |
PMID | 30856279 |
PQID | 2235520390 |
PQPubID | 48361 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_2190493078 proquest_journals_2235520390 pubmed_primary_30856279 crossref_citationtrail_10_1002_sim_8130 crossref_primary_10_1002_sim_8130 wiley_primary_10_1002_sim_8130_SIM8130 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 10 July 2019 |
PublicationDateYYYYMMDD | 2019-07-10 |
PublicationDate_xml | – month: 07 year: 2019 text: 10 July 2019 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: New York |
PublicationTitle | Statistics in medicine |
PublicationTitleAlternate | Stat Med |
PublicationYear | 2019 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1995; 51 2012; 175 2015; 25 1990; 77 2010; 16 2013; 69 2011; 106 2017; 26 1997; 65 2010 1992; 136 2017; 45 1987 2004; 5 2008; 103 1996; 58 2003; 158 2014; 22 1985; 13 2010; 72 2012; 40 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_22_1 e_1_2_7_10_1 e_1_2_7_21_1 Sørensen Ø (e_1_2_7_5_1) 2015; 25 e_1_2_7_20_1 Rosset S (e_1_2_7_16_1) 2004; 5 |
References_xml | – volume: 58 start-page: 267 year: 1996 end-page: 288 article-title: Regression shrinkage and selection via the Lasso publication-title: J R Stat Soc Series B Stat Methodol – volume: 25 start-page: 809 issue: 2 year: 2015 end-page: 829 article-title: Measurement error in Lasso: impact and likelihood bias correction publication-title: Stat Sin – volume: 69 start-page: 301 issue: 2 year: 2013 end-page: 309 article-title: Design and estimation for evaluating principal surrogate markers in vaccine trials publication-title: Biometrics – volume: 22 start-page: 1400 issue: 6 year: 2014 end-page: 1405 article-title: Portion size effects on weight gain in a free living setting publication-title: Obesity – volume: 103 start-page: 280 issue: 481 year: 2008 end-page: 287 article-title: Using SIMEX for smoothing‐parameter choice in errors‐in‐variables problems publication-title: J Am Stat Assoc – volume: 77 start-page: 127 issue: 1 year: 1990 end-page: 137 article-title: Corrected score function for errors‐in‐variables models: methodology and application to generalized linear models publication-title: Biometrika – volume: 106 start-page: 296 issue: 493 year: 2011 end-page: 305 article-title: EEBoost: a general method for prediction and variable selection based on estimating equations publication-title: J Am Stat Assoc – year: 1987 – volume: 72 start-page: 417 issue: 4 year: 2010 end-page: 473 article-title: Stability selection publication-title: J R Stat Soc Series B Stat Methodol – volume: 5 start-page: 941 year: 2004 end-page: 973 article-title: Boosting as a regularized path to a maximum margin classifier publication-title: J Mach Learn Res – volume: 40 start-page: 1637 issue: 3 year: 2012 end-page: 1664 article-title: High‐dimensional regression with noisy and missing data: provable guarantees with nonconvexity publication-title: Ann Stat – volume: 65 start-page: 1179S issue: 4 year: 1997 end-page: 1186S article-title: Regression calibration method for correcting measurement‐error bias in nutritional epidemiology publication-title: Am J Clin Nutr – volume: 16 start-page: 274 issue: 1 year: 2010 end-page: 300 article-title: Variable selection in measurement error models publication-title: Bernoulli – volume: 13 start-page: 1335 issue: 4 year: 1985 end-page: 1351 article-title: Covariate measurement error in logistic regression publication-title: Ann Stat – volume: 136 start-page: 1400 issue: 11 year: 1992 end-page: 1413 article-title: Correction of logistic regression relative risk estimates and confidence intervals for random within‐person measurement error publication-title: Am J Epidemiol – volume: 175 start-page: 325 issue: 4 year: 2012 end-page: 331 article-title: Regression calibration when foods (measured with error) are the variables of interest: markedly non‐Gaussian data with many zeroes publication-title: Am J Epidemiol – volume: 26 start-page: 579 issue: 3 year: 2017 end-page: 588 article-title: ThrEEBoost: thresholded boosting for variable selection and prediction via estimating equations publication-title: J Comput Graph Stat – volume: 51 start-page: 1562 issue: 4 year: 1995 end-page: 1569 article-title: Prediction in the presence of measurement error: general discussion and an example prediction in the presence of measurement error: general discussion and an example predicting defoliation publication-title: Biometrics – year: 2010 – volume: 45 start-page: 2400 issue: 6 year: 2017 end-page: 2426 article-title: CoCoLasso for high‐dimensional error‐in‐variables regression publication-title: Ann Stat – volume: 158 start-page: 14 issue: 1 year: 2003 end-page: 21 article-title: Structure of dietary measurement error: results of the OPEN biomarker study publication-title: Am J Epidemiol – ident: e_1_2_7_20_1 doi: 10.1002/oby.20720 – ident: e_1_2_7_15_1 doi: 10.1198/jasa.2011.tm10098 – volume: 25 start-page: 809 issue: 2 year: 2015 ident: e_1_2_7_5_1 article-title: Measurement error in Lasso: impact and likelihood bias correction publication-title: Stat Sin – ident: e_1_2_7_3_1 doi: 10.1093/aje/kwr316 – ident: e_1_2_7_11_1 doi: 10.1201/9781420066586 – ident: e_1_2_7_2_1 doi: 10.1093/ajcn/65.4.1179S – ident: e_1_2_7_22_1 doi: 10.2307/2533288 – ident: e_1_2_7_4_1 doi: 10.1093/oxfordjournals.aje.a116453 – ident: e_1_2_7_19_1 doi: 10.1111/j.1467-9868.2010.00740.x – ident: e_1_2_7_17_1 doi: 10.1198/016214507000001355 – ident: e_1_2_7_6_1 doi: 10.1214/16-AOS1527 – ident: e_1_2_7_8_1 doi: 10.1002/9780470316665 – ident: e_1_2_7_18_1 doi: 10.1111/biom.12014 – ident: e_1_2_7_12_1 doi: 10.3150/09-BEJ205 – ident: e_1_2_7_9_1 doi: 10.1093/biomet/77.1.127 – ident: e_1_2_7_10_1 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: e_1_2_7_7_1 doi: 10.1214/aos/1176349741 – ident: e_1_2_7_13_1 doi: 10.1214/12-AOS1018 – volume: 5 start-page: 941 year: 2004 ident: e_1_2_7_16_1 article-title: Boosting as a regularized path to a maximum margin classifier publication-title: J Mach Learn Res – ident: e_1_2_7_21_1 doi: 10.1093/aje/kwg091 – ident: e_1_2_7_14_1 doi: 10.1080/10618600.2016.1247005 |
SSID | ssj0011527 |
Score | 2.3860693 |
Snippet | We present a novel method for variable selection in regression models when covariates are measured with error. The iterative algorithm we propose, Measurement... We present a novel method for variable selection in regression models when covariates are measured with error. The iterative algorithm we propose, M easurement... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2705 |
SubjectTerms | Algorithms boosting high‐dimensional data machine learning measurement error Measurement errors Medical statistics Regression analysis variable selection Variables |
Title | MEBoost: Variable selection in the presence of measurement error |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8130 https://www.ncbi.nlm.nih.gov/pubmed/30856279 https://www.proquest.com/docview/2235520390 https://www.proquest.com/docview/2190493078 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5VHNBKVQtbWrYsyJWqcsqSh-11OPEQiFZaDrRUSD1EtuNICEjQZvfSX9-ZOAmigFT1lEMmtmPPjD8_5huAz6kKCym5CNxU5bhACcNAcRcFxmgE0KlM8yZ1wuxcnl3yb1fiqr1VSbEwnh-i33Ajy2j8NRm4NvXeA2lofX03UeiB0f3SVS3CQxc9c1TUZWulE0o5jUTHOxvGe92Hj2eiJ_DyMVptppvTt_Cra6i_ZXIzWS7MxP7-i8Px__5kDd60KJQderVZh1euHMLqrD1nH8Jrv5vHfJDSEAaEST2l8zs4mJ0cVVW92Gc_caFNoVesbrLp4BCz65IhpGT3TVSTdawq2N3DNiRz83k134DL05Mfx2dBm4ghsAlPwyAyXE91bqTO41hzE_LCpkpL7WTuDK4hDZcmjhIrhUU4kFsbK6NFEUlVKHIi72GlrEq3CaxARRAcCwrzhLIeq0LSmbJxzopIGT6C3W5QMtuylFOyjNvM8yvHGfZWRr01gk-95L1n5nhGZtyNa9baZp0hIBIiDpOUiuhfo1XRUYkuXbVEGcRJPMWmqxF88PrQV5IgSpXxNB3Bl2ZUX6w9-_51Rs-P_yq4BQPEYxRUhrPjGFYW86XbRsyzMDuNdv8BwRn7EQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkFokBO2WxwItrlTRU5Y8bK8DF6ACLZRwKA9xQIpsx5EQkKB9XPj1jOMkCGilqqccMrETe8b-Zpz5BuB7LPycc8o80xcZOii-7wlqAk8piQA65nFWlU5ITvnggh5fsasp2GlyYRw_RBtws5ZRrdfWwG1AeuuZNXR0c98TuAS_gxlb0Lvyp3633FFBU6_VnlHyfsAa5lk_3GqefLkXvQGYL_FqteEcLsB186ruP5Pb3mSsevrxFYvjf37LR5ivgSjZc5rzCaZM0YH3SX3U3oE5F9AjLk-pA7MWljpW58-wmxzsl-VovE0u0de22VdkVBXUwVkmNwVBVEkeqsQmbUiZk_vnSCQxw2E5XISLw4PznwOvrsXg6YjGvhcoKvsyU1xmYSip8mmuYyG5NDwzCt1IRbkKg0hzphERZFqHQkmWB1zkwq4jSzBdlIVZAZKjLjCKDflZZAsfi5zbY2VljGaBULQLP5pZSXVNVG7rZdyljmI5THG0UjtaXfjWSj44co4_yKw3E5vW5jlKERMxFvpRbJtob6Nh2dMSWZhygjIIlWiMry66sOwUou0kQqDKw37chc1qWv_ae3p2lNjr6r8KbsCHwXlykp4cnf5ag1mEZzbHDDfLdZgeDyfmC0KgsfpaqfoTbjz_LA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkBASArotsDxaV6raUxYnsb0OJ54raLuoakuF1ENkO46EgGS1jwu_nnGcBNEWqeophzi245mxP3s83wC8TyTNhWA8sH2Z4QaF0kAyGwZaKwTQiUiyKnXC8EKcXbJPV_yqvlXpYmE8P0R74OYso5qvnYGPsnzvkTR0cn3XkzgDv4AFJqh0Gn3yraWOCpt0rc5FKfohb4hnabTXfPl0KfoDXz6Fq9V6M1iFX01P_TWTm95sqnvm_jcSx__7lTVYqWEoOfR68xLmbNGBxWHtaO_Asj_OIz5KqQNLDpR6TudXcDA8PSrLyXSf_MSdtou9IpMqnQ7KmFwXBDElGVVhTcaSMid3j-eQxI7H5fg1XA5OfxyfBXUmhsDELKFBqJnqq0wLlUWRYpqy3CRSCWVFZjVuIjUTOgpjI7hBPJAZE0mteB4KmUs3i6zDfFEWdhNIjprAGVZEs9ilPZa5cE5lba3hodSsCx8boaSmpil32TJuU0-wHKU4WqkbrS68a0uOPDXHX8rsNHJNa-OcpIiIOI9onLgq2tdoVs5XogpbzrAMAiWWYNdlFza8PrSNxAhTRdRPuvChkuqzraffz4fuufWvBd_C4teTQfrl_OLzNiwhNnMBZrhS7sD8dDyzu4h_pvpNpegPjWP95A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MEBoost%3A+Variable+selection+in+the+presence+of+measurement+error&rft.jtitle=Statistics+in+medicine&rft.au=Brown%2C+Ben&rft.au=Weaver%2C+Timothy&rft.au=Wolfson%2C+Julian&rft.date=2019-07-10&rft.eissn=1097-0258&rft.volume=38&rft.issue=15&rft.spage=2705&rft_id=info:doi/10.1002%2Fsim.8130&rft_id=info%3Apmid%2F30856279&rft.externalDocID=30856279 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon |