MEBoost: Variable selection in the presence of measurement error

We present a novel method for variable selection in regression models when covariates are measured with error. The iterative algorithm we propose, Measurement Error Boosting (MEBoost), follows a path defined by estimating equations that correct for covariate measurement error. We illustrate the use...

Full description

Saved in:
Bibliographic Details
Published inStatistics in medicine Vol. 38; no. 15; pp. 2705 - 2718
Main Authors Brown, Ben, Weaver, Timothy, Wolfson, Julian
Format Journal Article
LanguageEnglish
Published England Wiley Subscription Services, Inc 10.07.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present a novel method for variable selection in regression models when covariates are measured with error. The iterative algorithm we propose, Measurement Error Boosting (MEBoost), follows a path defined by estimating equations that correct for covariate measurement error. We illustrate the use of MEBoost in practice by analyzing data from the Box Lunch Study, a clinical trial in nutrition where several variables are based on self‐report and, hence, measured with error, where we are interested in performing model selection from a large data set to select variables that are related to the number of times a subject binge ate in the last 28 days. Furthermore, we evaluated our method and compared its performance to the recently proposed Convex Conditioned Lasso and to the “naive” Lasso, which does not correct for measurement error through a simulation study. Increasing the degree of measurement error increased prediction error and decreased the probability of accurate covariate selection, but this loss of accuracy occurred to a lesser degree when using MEBoost. Through simulations, we also make a case for the consistency of the model selected.
AbstractList We present a novel method for variable selection in regression models when covariates are measured with error. The iterative algorithm we propose, Measurement Error Boosting (MEBoost), follows a path defined by estimating equations that correct for covariate measurement error. We illustrate the use of MEBoost in practice by analyzing data from the Box Lunch Study, a clinical trial in nutrition where several variables are based on self-report and, hence, measured with error, where we are interested in performing model selection from a large data set to select variables that are related to the number of times a subject binge ate in the last 28 days. Furthermore, we evaluated our method and compared its performance to the recently proposed Convex Conditioned Lasso and to the "naive" Lasso, which does not correct for measurement error through a simulation study. Increasing the degree of measurement error increased prediction error and decreased the probability of accurate covariate selection, but this loss of accuracy occurred to a lesser degree when using MEBoost. Through simulations, we also make a case for the consistency of the model selected.
We present a novel method for variable selection in regression models when covariates are measured with error. The iterative algorithm we propose, Measurement Error Boosting (MEBoost), follows a path defined by estimating equations that correct for covariate measurement error. We illustrate the use of MEBoost in practice by analyzing data from the Box Lunch Study, a clinical trial in nutrition where several variables are based on self-report and, hence, measured with error, where we are interested in performing model selection from a large data set to select variables that are related to the number of times a subject binge ate in the last 28 days. Furthermore, we evaluated our method and compared its performance to the recently proposed Convex Conditioned Lasso and to the "naive" Lasso, which does not correct for measurement error through a simulation study. Increasing the degree of measurement error increased prediction error and decreased the probability of accurate covariate selection, but this loss of accuracy occurred to a lesser degree when using MEBoost. Through simulations, we also make a case for the consistency of the model selected.We present a novel method for variable selection in regression models when covariates are measured with error. The iterative algorithm we propose, Measurement Error Boosting (MEBoost), follows a path defined by estimating equations that correct for covariate measurement error. We illustrate the use of MEBoost in practice by analyzing data from the Box Lunch Study, a clinical trial in nutrition where several variables are based on self-report and, hence, measured with error, where we are interested in performing model selection from a large data set to select variables that are related to the number of times a subject binge ate in the last 28 days. Furthermore, we evaluated our method and compared its performance to the recently proposed Convex Conditioned Lasso and to the "naive" Lasso, which does not correct for measurement error through a simulation study. Increasing the degree of measurement error increased prediction error and decreased the probability of accurate covariate selection, but this loss of accuracy occurred to a lesser degree when using MEBoost. Through simulations, we also make a case for the consistency of the model selected.
We present a novel method for variable selection in regression models when covariates are measured with error. The iterative algorithm we propose, M easurement E rror Boost ing (MEBoost), follows a path defined by estimating equations that correct for covariate measurement error. We illustrate the use of MEBoost in practice by analyzing data from the Box Lunch Study, a clinical trial in nutrition where several variables are based on self‐report and, hence, measured with error, where we are interested in performing model selection from a large data set to select variables that are related to the number of times a subject binge ate in the last 28 days. Furthermore, we evaluated our method and compared its performance to the recently proposed Convex Conditioned Lasso and to the “naive” Lasso, which does not correct for measurement error through a simulation study. Increasing the degree of measurement error increased prediction error and decreased the probability of accurate covariate selection, but this loss of accuracy occurred to a lesser degree when using MEBoost. Through simulations, we also make a case for the consistency of the model selected.
Author Brown, Ben
Wolfson, Julian
Weaver, Timothy
Author_xml – sequence: 1
  givenname: Ben
  orcidid: 0000-0003-2240-5626
  surname: Brown
  fullname: Brown, Ben
  email: bbrown@namsa.com
  organization: NAMSA
– sequence: 2
  givenname: Timothy
  surname: Weaver
  fullname: Weaver, Timothy
  organization: Minneapolis Medical Research Foundation
– sequence: 3
  givenname: Julian
  orcidid: 0000-0002-2032-0875
  surname: Wolfson
  fullname: Wolfson, Julian
  organization: University of Minnesota
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30856279$$D View this record in MEDLINE/PubMed
BookMark eNp10EtLxDAQwPEgiu6q4CeQghcvXSdpk7SefOALdvHg4xrSdIqRtlmTFtlvb9d1FURPOeQ3w_Afk83WtUjIAYUJBWAnwTaTjCawQUYUchkD49kmGQGTMhaS8h0yDuEVgFLO5DbZSSDjgsl8RM5mVxfOhe40etbe6qLGKGCNprOujWwbdS8YzT0GbA1Grooa1KH32GDbRei983tkq9J1wP2vd5c8XV89Xt7G0_ubu8vzaWySNIeYFqmWuiyELhnTaQFpZfJMC42ixEKy4V8UjCZGcMMZLY1hWaF5RUVWZQnIZJccr_bOvXvrMXSqscFgXesWXR8Uozmk-SCzgR79oq-u9-1wnWIs4ZxBksOgDr9UXzRYqrm3jfYLtW4zgMkKGO9C8FgpYzu9DNN5bWtFQS3jqyG-Wsb_OfF7YL3zDxqv6LutcfGvUw93s0__AcolkPQ
CitedBy_id crossref_primary_10_1002_gepi_22430
crossref_primary_10_1016_j_ejor_2025_02_005
crossref_primary_10_1111_biom_13628
crossref_primary_10_1186_s12876_021_02057_0
crossref_primary_10_1080_10618600_2023_2218428
crossref_primary_10_1080_00401706_2019_1668856
crossref_primary_10_1007_s11222_023_10209_3
crossref_primary_10_1371_journal_pone_0276664
crossref_primary_10_3390_math11143202
crossref_primary_10_1016_j_envres_2020_109492
crossref_primary_10_1016_j_compbiomed_2022_106154
crossref_primary_10_1016_j_brat_2019_103530
crossref_primary_10_1214_22_AOS2248
crossref_primary_10_1007_s11222_023_10312_5
crossref_primary_10_1186_s12920_022_01411_9
Cites_doi 10.1002/oby.20720
10.1198/jasa.2011.tm10098
10.1093/aje/kwr316
10.1201/9781420066586
10.1093/ajcn/65.4.1179S
10.2307/2533288
10.1093/oxfordjournals.aje.a116453
10.1111/j.1467-9868.2010.00740.x
10.1198/016214507000001355
10.1214/16-AOS1527
10.1002/9780470316665
10.1111/biom.12014
10.3150/09-BEJ205
10.1093/biomet/77.1.127
10.1111/j.2517-6161.1996.tb02080.x
10.1214/aos/1176349741
10.1214/12-AOS1018
10.1093/aje/kwg091
10.1080/10618600.2016.1247005
ContentType Journal Article
Copyright 2019 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2019 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
NPM
K9.
7X8
DOI 10.1002/sim.8130
DatabaseName CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Statistics
Public Health
EISSN 1097-0258
EndPage 2718
ExternalDocumentID 30856279
10_1002_sim_8130
SIM8130
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABOCM
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
RYL
SUPJJ
SV3
TN5
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WUP
WWH
WXSBR
WYISQ
XBAML
XG1
XV2
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
NPM
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
K9.
7X8
ID FETCH-LOGICAL-c3490-1b4a7adb6ad22a4b04fc98a6ae6deb721b46b213c65c521dcc28ba5f168f83073
IEDL.DBID DR2
ISSN 0277-6715
1097-0258
IngestDate Fri Jul 11 06:34:46 EDT 2025
Fri Jul 25 23:42:46 EDT 2025
Wed Feb 19 02:30:47 EST 2025
Tue Jul 01 03:28:14 EDT 2025
Thu Apr 24 22:56:51 EDT 2025
Wed Jan 22 16:41:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords measurement error
variable selection
boosting
machine learning
high-dimensional data
Language English
License 2019 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3490-1b4a7adb6ad22a4b04fc98a6ae6deb721b46b213c65c521dcc28ba5f168f83073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2240-5626
0000-0002-2032-0875
PMID 30856279
PQID 2235520390
PQPubID 48361
PageCount 1
ParticipantIDs proquest_miscellaneous_2190493078
proquest_journals_2235520390
pubmed_primary_30856279
crossref_citationtrail_10_1002_sim_8130
crossref_primary_10_1002_sim_8130
wiley_primary_10_1002_sim_8130_SIM8130
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 10 July 2019
PublicationDateYYYYMMDD 2019-07-10
PublicationDate_xml – month: 07
  year: 2019
  text: 10 July 2019
  day: 10
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: New York
PublicationTitle Statistics in medicine
PublicationTitleAlternate Stat Med
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1995; 51
2012; 175
2015; 25
1990; 77
2010; 16
2013; 69
2011; 106
2017; 26
1997; 65
2010
1992; 136
2017; 45
1987
2004; 5
2008; 103
1996; 58
2003; 158
2014; 22
1985; 13
2010; 72
2012; 40
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_22_1
e_1_2_7_10_1
e_1_2_7_21_1
Sørensen Ø (e_1_2_7_5_1) 2015; 25
e_1_2_7_20_1
Rosset S (e_1_2_7_16_1) 2004; 5
References_xml – volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  article-title: Regression shrinkage and selection via the Lasso
  publication-title: J R Stat Soc Series B Stat Methodol
– volume: 25
  start-page: 809
  issue: 2
  year: 2015
  end-page: 829
  article-title: Measurement error in Lasso: impact and likelihood bias correction
  publication-title: Stat Sin
– volume: 69
  start-page: 301
  issue: 2
  year: 2013
  end-page: 309
  article-title: Design and estimation for evaluating principal surrogate markers in vaccine trials
  publication-title: Biometrics
– volume: 22
  start-page: 1400
  issue: 6
  year: 2014
  end-page: 1405
  article-title: Portion size effects on weight gain in a free living setting
  publication-title: Obesity
– volume: 103
  start-page: 280
  issue: 481
  year: 2008
  end-page: 287
  article-title: Using SIMEX for smoothing‐parameter choice in errors‐in‐variables problems
  publication-title: J Am Stat Assoc
– volume: 77
  start-page: 127
  issue: 1
  year: 1990
  end-page: 137
  article-title: Corrected score function for errors‐in‐variables models: methodology and application to generalized linear models
  publication-title: Biometrika
– volume: 106
  start-page: 296
  issue: 493
  year: 2011
  end-page: 305
  article-title: EEBoost: a general method for prediction and variable selection based on estimating equations
  publication-title: J Am Stat Assoc
– year: 1987
– volume: 72
  start-page: 417
  issue: 4
  year: 2010
  end-page: 473
  article-title: Stability selection
  publication-title: J R Stat Soc Series B Stat Methodol
– volume: 5
  start-page: 941
  year: 2004
  end-page: 973
  article-title: Boosting as a regularized path to a maximum margin classifier
  publication-title: J Mach Learn Res
– volume: 40
  start-page: 1637
  issue: 3
  year: 2012
  end-page: 1664
  article-title: High‐dimensional regression with noisy and missing data: provable guarantees with nonconvexity
  publication-title: Ann Stat
– volume: 65
  start-page: 1179S
  issue: 4
  year: 1997
  end-page: 1186S
  article-title: Regression calibration method for correcting measurement‐error bias in nutritional epidemiology
  publication-title: Am J Clin Nutr
– volume: 16
  start-page: 274
  issue: 1
  year: 2010
  end-page: 300
  article-title: Variable selection in measurement error models
  publication-title: Bernoulli
– volume: 13
  start-page: 1335
  issue: 4
  year: 1985
  end-page: 1351
  article-title: Covariate measurement error in logistic regression
  publication-title: Ann Stat
– volume: 136
  start-page: 1400
  issue: 11
  year: 1992
  end-page: 1413
  article-title: Correction of logistic regression relative risk estimates and confidence intervals for random within‐person measurement error
  publication-title: Am J Epidemiol
– volume: 175
  start-page: 325
  issue: 4
  year: 2012
  end-page: 331
  article-title: Regression calibration when foods (measured with error) are the variables of interest: markedly non‐Gaussian data with many zeroes
  publication-title: Am J Epidemiol
– volume: 26
  start-page: 579
  issue: 3
  year: 2017
  end-page: 588
  article-title: ThrEEBoost: thresholded boosting for variable selection and prediction via estimating equations
  publication-title: J Comput Graph Stat
– volume: 51
  start-page: 1562
  issue: 4
  year: 1995
  end-page: 1569
  article-title: Prediction in the presence of measurement error: general discussion and an example prediction in the presence of measurement error: general discussion and an example predicting defoliation
  publication-title: Biometrics
– year: 2010
– volume: 45
  start-page: 2400
  issue: 6
  year: 2017
  end-page: 2426
  article-title: CoCoLasso for high‐dimensional error‐in‐variables regression
  publication-title: Ann Stat
– volume: 158
  start-page: 14
  issue: 1
  year: 2003
  end-page: 21
  article-title: Structure of dietary measurement error: results of the OPEN biomarker study
  publication-title: Am J Epidemiol
– ident: e_1_2_7_20_1
  doi: 10.1002/oby.20720
– ident: e_1_2_7_15_1
  doi: 10.1198/jasa.2011.tm10098
– volume: 25
  start-page: 809
  issue: 2
  year: 2015
  ident: e_1_2_7_5_1
  article-title: Measurement error in Lasso: impact and likelihood bias correction
  publication-title: Stat Sin
– ident: e_1_2_7_3_1
  doi: 10.1093/aje/kwr316
– ident: e_1_2_7_11_1
  doi: 10.1201/9781420066586
– ident: e_1_2_7_2_1
  doi: 10.1093/ajcn/65.4.1179S
– ident: e_1_2_7_22_1
  doi: 10.2307/2533288
– ident: e_1_2_7_4_1
  doi: 10.1093/oxfordjournals.aje.a116453
– ident: e_1_2_7_19_1
  doi: 10.1111/j.1467-9868.2010.00740.x
– ident: e_1_2_7_17_1
  doi: 10.1198/016214507000001355
– ident: e_1_2_7_6_1
  doi: 10.1214/16-AOS1527
– ident: e_1_2_7_8_1
  doi: 10.1002/9780470316665
– ident: e_1_2_7_18_1
  doi: 10.1111/biom.12014
– ident: e_1_2_7_12_1
  doi: 10.3150/09-BEJ205
– ident: e_1_2_7_9_1
  doi: 10.1093/biomet/77.1.127
– ident: e_1_2_7_10_1
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_2_7_7_1
  doi: 10.1214/aos/1176349741
– ident: e_1_2_7_13_1
  doi: 10.1214/12-AOS1018
– volume: 5
  start-page: 941
  year: 2004
  ident: e_1_2_7_16_1
  article-title: Boosting as a regularized path to a maximum margin classifier
  publication-title: J Mach Learn Res
– ident: e_1_2_7_21_1
  doi: 10.1093/aje/kwg091
– ident: e_1_2_7_14_1
  doi: 10.1080/10618600.2016.1247005
SSID ssj0011527
Score 2.3860693
Snippet We present a novel method for variable selection in regression models when covariates are measured with error. The iterative algorithm we propose, Measurement...
We present a novel method for variable selection in regression models when covariates are measured with error. The iterative algorithm we propose, M easurement...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2705
SubjectTerms Algorithms
boosting
high‐dimensional data
machine learning
measurement error
Measurement errors
Medical statistics
Regression analysis
variable selection
Variables
Title MEBoost: Variable selection in the presence of measurement error
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsim.8130
https://www.ncbi.nlm.nih.gov/pubmed/30856279
https://www.proquest.com/docview/2235520390
https://www.proquest.com/docview/2190493078
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5VHNBKVQtbWrYsyJWqcsqSh-11OPEQiFZaDrRUSD1EtuNICEjQZvfSX9-ZOAmigFT1lEMmtmPPjD8_5huAz6kKCym5CNxU5bhACcNAcRcFxmgE0KlM8yZ1wuxcnl3yb1fiqr1VSbEwnh-i33Ajy2j8NRm4NvXeA2lofX03UeiB0f3SVS3CQxc9c1TUZWulE0o5jUTHOxvGe92Hj2eiJ_DyMVptppvTt_Cra6i_ZXIzWS7MxP7-i8Px__5kDd60KJQderVZh1euHMLqrD1nH8Jrv5vHfJDSEAaEST2l8zs4mJ0cVVW92Gc_caFNoVesbrLp4BCz65IhpGT3TVSTdawq2N3DNiRz83k134DL05Mfx2dBm4ghsAlPwyAyXE91bqTO41hzE_LCpkpL7WTuDK4hDZcmjhIrhUU4kFsbK6NFEUlVKHIi72GlrEq3CaxARRAcCwrzhLIeq0LSmbJxzopIGT6C3W5QMtuylFOyjNvM8yvHGfZWRr01gk-95L1n5nhGZtyNa9baZp0hIBIiDpOUiuhfo1XRUYkuXbVEGcRJPMWmqxF88PrQV5IgSpXxNB3Bl2ZUX6w9-_51Rs-P_yq4BQPEYxRUhrPjGFYW86XbRsyzMDuNdv8BwRn7EQ
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkFokBO2WxwItrlTRU5Y8bK8DF6ACLZRwKA9xQIpsx5EQkKB9XPj1jOMkCGilqqccMrETe8b-Zpz5BuB7LPycc8o80xcZOii-7wlqAk8piQA65nFWlU5ITvnggh5fsasp2GlyYRw_RBtws5ZRrdfWwG1AeuuZNXR0c98TuAS_gxlb0Lvyp3633FFBU6_VnlHyfsAa5lk_3GqefLkXvQGYL_FqteEcLsB186ruP5Pb3mSsevrxFYvjf37LR5ivgSjZc5rzCaZM0YH3SX3U3oE5F9AjLk-pA7MWljpW58-wmxzsl-VovE0u0de22VdkVBXUwVkmNwVBVEkeqsQmbUiZk_vnSCQxw2E5XISLw4PznwOvrsXg6YjGvhcoKvsyU1xmYSip8mmuYyG5NDwzCt1IRbkKg0hzphERZFqHQkmWB1zkwq4jSzBdlIVZAZKjLjCKDflZZAsfi5zbY2VljGaBULQLP5pZSXVNVG7rZdyljmI5THG0UjtaXfjWSj44co4_yKw3E5vW5jlKERMxFvpRbJtob6Nh2dMSWZhygjIIlWiMry66sOwUou0kQqDKw37chc1qWv_ae3p2lNjr6r8KbsCHwXlykp4cnf5ag1mEZzbHDDfLdZgeDyfmC0KgsfpaqfoTbjz_LA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RkBASArotsDxaV6raUxYnsb0OJ54raLuoakuF1ENkO46EgGS1jwu_nnGcBNEWqeophzi245mxP3s83wC8TyTNhWA8sH2Z4QaF0kAyGwZaKwTQiUiyKnXC8EKcXbJPV_yqvlXpYmE8P0R74OYso5qvnYGPsnzvkTR0cn3XkzgDv4AFJqh0Gn3yraWOCpt0rc5FKfohb4hnabTXfPl0KfoDXz6Fq9V6M1iFX01P_TWTm95sqnvm_jcSx__7lTVYqWEoOfR68xLmbNGBxWHtaO_Asj_OIz5KqQNLDpR6TudXcDA8PSrLyXSf_MSdtou9IpMqnQ7KmFwXBDElGVVhTcaSMid3j-eQxI7H5fg1XA5OfxyfBXUmhsDELKFBqJnqq0wLlUWRYpqy3CRSCWVFZjVuIjUTOgpjI7hBPJAZE0mteB4KmUs3i6zDfFEWdhNIjprAGVZEs9ilPZa5cE5lba3hodSsCx8boaSmpil32TJuU0-wHKU4WqkbrS68a0uOPDXHX8rsNHJNa-OcpIiIOI9onLgq2tdoVs5XogpbzrAMAiWWYNdlFza8PrSNxAhTRdRPuvChkuqzraffz4fuufWvBd_C4teTQfrl_OLzNiwhNnMBZrhS7sD8dDyzu4h_pvpNpegPjWP95A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MEBoost%3A+Variable+selection+in+the+presence+of+measurement+error&rft.jtitle=Statistics+in+medicine&rft.au=Brown%2C+Ben&rft.au=Weaver%2C+Timothy&rft.au=Wolfson%2C+Julian&rft.date=2019-07-10&rft.eissn=1097-0258&rft.volume=38&rft.issue=15&rft.spage=2705&rft_id=info:doi/10.1002%2Fsim.8130&rft_id=info%3Apmid%2F30856279&rft.externalDocID=30856279
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0277-6715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0277-6715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0277-6715&client=summon