Design of multiple-frequency-band terahertz metamaterial absorbers with adjustable absorption peaks using toothed resonator

[Display omitted] •A new strategy is presented to design multiple-band terahertz metamaterial absorber.•Quad-band absorption is realized, the number of absorption peaks could be manipulated by reshaping resonator without increasing any design complexity.•Introduction of temperature-controlled vanadi...

Full description

Saved in:
Bibliographic Details
Published inMaterials & design Vol. 225; p. 111586
Main Authors Wang, Ben-Xin, Duan, Guiyuan, Xu, Chongyang, Jiang, Jieying, Xu, Wei, Pi, Fuwei
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Elsevier
Subjects
Online AccessGet full text
ISSN0264-1275
1873-4197
DOI10.1016/j.matdes.2023.111586

Cover

Loading…
Abstract [Display omitted] •A new strategy is presented to design multiple-band terahertz metamaterial absorber.•Quad-band absorption is realized, the number of absorption peaks could be manipulated by reshaping resonator without increasing any design complexity.•Introduction of temperature-controlled vanadium dioxide into the absorption system actively tunes the absorption peaks.•This work opens a new space for the design and application of multiple-band metamaterial absorbers. Multiple-frequency-band metamaterial absorbers possess great application prospects, which are usually achieved by vertically stacking or coplanar arranging several sub-resonators. Obtaining more absorption peaks requires further sacrifice of the number of sub-resonators. More importantly, these two design methods are difficult to control or adjust the number of absorption peaks without changing the number of sub-resonators. Therefore, new scheme using simplified structure without increasing any design complexity to realize multiple-frequency-band absorption with adjustable resonance features is urgently needed. In this paper, a multiple-frequency-band terahertz metamaterial absorber using surface structure of toothed resonator is demonstrated, it has the ability to control (increase or decrease) the number of absorption peaks without increasing its design complexity, which is different from previous works that need to sacrifice the design complexity of metamaterials. Furthermore, the introduction of temperature-controlled vanadium dioxide into the surface structure of multiple-frequency-band absorber can dynamically tune its resonance performance. It is proved that when vanadium dioxide changes from metallic state to insulating state, its absorption peaks can be actively adjusted from dual- to triple-, quad- and even penta-frequency-band absorption. These efforts could provide meaningful guidance for the design of multiple-frequency-band metamaterial absorbers, and could have broad application prospects in terahertz technology-related areas.
AbstractList Multiple-frequency-band metamaterial absorbers possess great application prospects, which are usually achieved by vertically stacking or coplanar arranging several sub-resonators. Obtaining more absorption peaks requires further sacrifice of the number of sub-resonators. More importantly, these two design methods are difficult to control or adjust the number of absorption peaks without changing the number of sub-resonators. Therefore, new scheme using simplified structure without increasing any design complexity to realize multiple-frequency-band absorption with adjustable resonance features is urgently needed. In this paper, a multiple-frequency-band terahertz metamaterial absorber using surface structure of toothed resonator is demonstrated, it has the ability to control (increase or decrease) the number of absorption peaks without increasing its design complexity, which is different from previous works that need to sacrifice the design complexity of metamaterials. Furthermore, the introduction of temperature-controlled vanadium dioxide into the surface structure of multiple-frequency-band absorber can dynamically tune its resonance performance. It is proved that when vanadium dioxide changes from metallic state to insulating state, its absorption peaks can be actively adjusted from dual- to triple-, quad- and even penta-frequency-band absorption. These efforts could provide meaningful guidance for the design of multiple-frequency-band metamaterial absorbers, and could have broad application prospects in terahertz technology-related areas.
[Display omitted] •A new strategy is presented to design multiple-band terahertz metamaterial absorber.•Quad-band absorption is realized, the number of absorption peaks could be manipulated by reshaping resonator without increasing any design complexity.•Introduction of temperature-controlled vanadium dioxide into the absorption system actively tunes the absorption peaks.•This work opens a new space for the design and application of multiple-band metamaterial absorbers. Multiple-frequency-band metamaterial absorbers possess great application prospects, which are usually achieved by vertically stacking or coplanar arranging several sub-resonators. Obtaining more absorption peaks requires further sacrifice of the number of sub-resonators. More importantly, these two design methods are difficult to control or adjust the number of absorption peaks without changing the number of sub-resonators. Therefore, new scheme using simplified structure without increasing any design complexity to realize multiple-frequency-band absorption with adjustable resonance features is urgently needed. In this paper, a multiple-frequency-band terahertz metamaterial absorber using surface structure of toothed resonator is demonstrated, it has the ability to control (increase or decrease) the number of absorption peaks without increasing its design complexity, which is different from previous works that need to sacrifice the design complexity of metamaterials. Furthermore, the introduction of temperature-controlled vanadium dioxide into the surface structure of multiple-frequency-band absorber can dynamically tune its resonance performance. It is proved that when vanadium dioxide changes from metallic state to insulating state, its absorption peaks can be actively adjusted from dual- to triple-, quad- and even penta-frequency-band absorption. These efforts could provide meaningful guidance for the design of multiple-frequency-band metamaterial absorbers, and could have broad application prospects in terahertz technology-related areas.
ArticleNumber 111586
Author Pi, Fuwei
Xu, Chongyang
Jiang, Jieying
Wang, Ben-Xin
Duan, Guiyuan
Xu, Wei
Author_xml – sequence: 1
  givenname: Ben-Xin
  surname: Wang
  fullname: Wang, Ben-Xin
  email: wangbenxin@jiangnan.edu.cn
  organization: School of Science, Jiangnan University, Wuxi 214122, China
– sequence: 2
  givenname: Guiyuan
  surname: Duan
  fullname: Duan, Guiyuan
  organization: School of Science, Jiangnan University, Wuxi 214122, China
– sequence: 3
  givenname: Chongyang
  surname: Xu
  fullname: Xu, Chongyang
  organization: School of Science, Jiangnan University, Wuxi 214122, China
– sequence: 4
  givenname: Jieying
  surname: Jiang
  fullname: Jiang, Jieying
  organization: School of Science, Jiangnan University, Wuxi 214122, China
– sequence: 5
  givenname: Wei
  surname: Xu
  fullname: Xu, Wei
  organization: School of Science, Jiangnan University, Wuxi 214122, China
– sequence: 6
  givenname: Fuwei
  surname: Pi
  fullname: Pi, Fuwei
  organization: State Key Laboratory of Food Science and Technology, School of Food Science and Technology, JiangnanUniversity, Wuxi, 214122, China
BookMark eNqFkcFu1DAQhi1UJLaFN-DgF8hiO04cc0BChUKlSlzgbI3t8a5DNl5sL6jw8mQJ6oFDOY3k0f_NeL5LcjGnGQl5ydmWM96_GrcHqB7LVjDRbjnn3dA_IRs-qLaRXKsLsmGilw0XqntGLksZGRNCtXJDfr3DEnczTYEeTlONxwmbkPHbCWd331iYPa2YYY-5_qQHrLBMwhxhomBLyhZzoT9i3VPw46lUsBOunWONaaZHhK-Fnkqcd7SmVPfoacaSZqgpPydPA0wFX_ytV-TLzfvP1x-bu08fbq_f3jWulUNtglcA2vMeWbDBS-uZVp0VtpWIg9IgufIt90IJ7rrQe-baoGzvxeCEVF17RW5Xrk8wmmOOB8j3JkE0fx5S3hnINboJDdNWBulRMxakFlZbPlguNEe27KL1wpIry-VUSsbwwOPMnGWY0awyzFmGWWUssdf_xFyscD5RzRCn_4XfrGFcjvQ9YjbFxcUP-pjR1eUX8XHAb6XArZo
CitedBy_id crossref_primary_10_1016_j_diamond_2024_111234
crossref_primary_10_1016_j_mssp_2023_107622
crossref_primary_10_1016_j_photonics_2023_101211
crossref_primary_10_1016_j_optlastec_2024_110829
crossref_primary_10_1016_j_matdes_2024_112703
crossref_primary_10_3788_LOP240937
crossref_primary_10_1002_adfm_202402068
crossref_primary_10_1364_OE_550452
crossref_primary_10_1063_5_0175798
crossref_primary_10_1016_j_optcom_2024_130266
crossref_primary_10_1088_1402_4896_aceb39
crossref_primary_10_1063_5_0153206
crossref_primary_10_1016_j_asej_2024_102829
crossref_primary_10_1016_j_optcom_2023_129906
crossref_primary_10_1016_j_matdes_2023_112460
crossref_primary_10_1016_j_matdes_2025_113871
crossref_primary_10_1016_j_snb_2024_136446
crossref_primary_10_1016_j_optlastec_2024_111928
crossref_primary_10_1007_s11082_023_04622_1
crossref_primary_10_1016_j_optlastec_2023_110134
crossref_primary_10_1016_j_optmat_2023_114655
crossref_primary_10_1002_adts_202300918
crossref_primary_10_1364_AO_499641
crossref_primary_10_1016_j_surfin_2024_104868
crossref_primary_10_1016_j_mtcomm_2024_108229
crossref_primary_10_1117_1_APN_3_5_056012
crossref_primary_10_1007_s00542_024_05611_4
crossref_primary_10_1007_s11664_024_11608_6
crossref_primary_10_1016_j_optcom_2023_129532
crossref_primary_10_1016_j_matdes_2025_113683
crossref_primary_10_1016_j_diamond_2023_110306
crossref_primary_10_1016_j_optmat_2024_114838
crossref_primary_10_3390_photonics11090784
crossref_primary_10_1002_mop_33826
crossref_primary_10_1039_D4DT01158A
crossref_primary_10_1007_s11468_023_01989_5
crossref_primary_10_1016_j_colsurfa_2024_134043
crossref_primary_10_1117_1_OE_63_11_115102
crossref_primary_10_1088_1402_4896_acd6c7
crossref_primary_10_1016_j_optlastec_2024_111210
crossref_primary_10_1016_j_physleta_2024_129589
crossref_primary_10_1007_s11468_024_02219_2
crossref_primary_10_3390_coatings14070799
crossref_primary_10_1016_j_cjph_2024_06_021
crossref_primary_10_1007_s11664_024_10999_w
crossref_primary_10_1016_j_optlastec_2023_109526
crossref_primary_10_1016_j_icheatmasstransfer_2024_108107
crossref_primary_10_1016_j_optlastec_2023_110113
crossref_primary_10_1021_acsanm_3c04908
crossref_primary_10_1016_j_solener_2024_112847
crossref_primary_10_1088_1402_4896_acc3c9
crossref_primary_10_1007_s11082_023_04756_2
crossref_primary_10_1016_j_fmre_2024_11_008
crossref_primary_10_1016_j_physe_2023_115740
crossref_primary_10_1016_j_sna_2023_114839
crossref_primary_10_1016_j_matdes_2024_112631
crossref_primary_10_1142_S0217979224504228
crossref_primary_10_1016_j_jfca_2024_107034
crossref_primary_10_1016_j_optcom_2023_129950
crossref_primary_10_1038_s41598_023_49202_1
Cites_doi 10.1364/JOSAB.30.000656
10.1016/j.carbon.2020.12.001
10.3390/nano11051110
10.1186/s11671-019-2876-3
10.1016/j.optmat.2021.111739
10.1364/OE.433364
10.1364/PRJ.4.000A16
10.1364/JOSAA.447229
10.1021/acsphotonics.8b01644
10.1063/5.0053648
10.1364/OE.27.022190
10.1063/1.4757879
10.1364/OME.447855
10.1016/j.optlastec.2021.107409
10.1109/ACCESS.2020.3009904
10.1016/j.rinp.2021.104301
10.1364/OE.27.031435
10.1364/OE.27.007393
10.1364/AO.57.006916
10.1039/D0NA00787K
10.1016/j.matdes.2022.111079
10.1364/OE.388066
10.1016/j.rinp.2022.105741
10.1002/admt.202101171
10.1063/1.4809655
10.1364/OE.26.007148
10.3389/fphy.2020.00308
10.1063/1.4938110
10.1088/2053-1591/abc3a3
10.1002/adom.201800995
10.1103/PhysRevLett.100.207402
10.1002/mop.33281
10.1364/OME.444899
10.1038/s41598-018-29896-4
10.3390/s22082892
10.1016/j.physe.2021.114621
10.1088/1361-6463/aad7e1
10.1364/OE.24.001518
10.1016/j.matdes.2022.110920
10.1364/OE.25.032280
10.1103/PhysRevApplied.14.054021
10.1364/OE.376085
10.1109/ACCESS.2017.2675439
10.1364/OE.27.005217
10.1364/OE.474847
10.1364/OE.432967
10.1063/1.4975687
10.1088/2053-1591/ab7e4d
10.1088/0022-3727/49/5/055104
10.1016/j.matdes.2022.111260
10.1364/OE.26.016769
10.1016/j.photonics.2018.10.008
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.matdes.2023.111586
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4197
ExternalDocumentID oai_doaj_org_article_09b4f4de900f492b9b18b1291e034899
10_1016_j_matdes_2023_111586
S0264127523000011
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
1B1
1~.
29M
4.4
457
4G.
5GY
5VS
6I.
7-5
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BJAXD
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
NCXOZ
O9-
OAUVE
OK1
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SEW
SMS
SPC
SSM
SST
SSZ
T5K
WUQ
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c348t-fd7aa9d16e0fbfd4bd0975b2b34ee879a417d31d2721c5f6d0c3f7b6d28c24753
IEDL.DBID DOA
ISSN 0264-1275
IngestDate Wed Aug 27 01:33:12 EDT 2025
Tue Jul 01 02:24:13 EDT 2025
Thu Apr 24 23:04:21 EDT 2025
Fri Feb 23 02:38:50 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Terahertz metamaterials
Toothed resonator
Multiple-band absorption
Tunable properties
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-fd7aa9d16e0fbfd4bd0975b2b34ee879a417d31d2721c5f6d0c3f7b6d28c24753
OpenAccessLink https://doaj.org/article/09b4f4de900f492b9b18b1291e034899
ParticipantIDs doaj_primary_oai_doaj_org_article_09b4f4de900f492b9b18b1291e034899
crossref_primary_10_1016_j_matdes_2023_111586
crossref_citationtrail_10_1016_j_matdes_2023_111586
elsevier_sciencedirect_doi_10_1016_j_matdes_2023_111586
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Materials & design
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Singh, Gupta, Sharma, Tyagi, Gupta, Yadaw (b0180) 2020; 7
Song, Chen, Zhang (b0260) 2020; 28
Zhao, Huang, Cai, Lin, He, Ma, Lu (b0070) 2019; 27
Huang, Yang, Yu, Wang, Li, Ye (b0165) 2013; 113
Chen, Can, Schalch, Zhao, Duan, Averitt, Zhang (b0150) 2020; 14
Chen, Cao, He, Tian (b0275) 2022; 223
Li, Gan, Guo, Liu, Xu, Yi (b0030) 2018; 26
Khuyen, Tung, Kim, Hwang, Kim, Rhee, Lam, Kim, Lee (b0110) 2018; 8
Zhu, Wang (b0215) 2022; 32
Xie, Sun, Wang, Feng, Luo, Xie, Guo, Zhang, Sun, Zhao, Yun (b0040) 2022; 64
Bao, Wang, Hu, Balmakou, Khakhomov, Tang, Zhang (b0200) 2019; 27
Zhang, Hendrickson, Guo (b0155) 2013; 30
Hu, Huang, Li, Yang (b0175) 2022; 39
Shen, Yang, Zang, Gu, Han, Zhang, Cui (b0160) 2012; 101
Wang, Tang, Niu, He, Chen (b0080) 2019; 14
Mohanty, Acharya, Appasani, Mohapatra (b0205) 2018; 32
Takashima, Nagamatsu, Haraguchi, Naoi (b0025) 2022; 30
Liu, Zhuge, Ma, Chen, Bao, He, Zhou, Cui (b0095) 2015; 118
Esfandiari, Lalbakhsh, Shehni, Jarchi, Ghaffari-Miab, Mahtaj, Reisenfeld, Alibakhshikenari, Koziel, Szczepanski (b0220) 2022; 221
Yang, Wang, Song, Pei, Purushothama, Zhang (b0035) 2022; 222
Watts, Liu, Padilla (b0005) 2012; 24, OP98
Abdulkarim, Xiao, Awl, Muhammadsharif, Lang, Saeed, Alkurt, Bakir, Karaaslan, Dong (b0170) 2022; 12
Astorino, Frezza, Tedeschi (b0100) 2017; 121
Hokmabadi, Wilbert, Kung, Kim (b0085) 2014; 1
Zhao, Zhang, Fan, Duan, Metcalfe, Wraback, Zhang, Averitt (b0235) 2016; 4
Zhao, Wang, Schalch, Duan, Cremin, Zhang, Chen, Averitt, Zhang (b0240) 2019; 6
Edries, Mohamed, Hekal, Elmorsy, Mansour (b0185) 2020; 8
Wang, Lang, Hong, Xiao, Yu (b0140) 2021; 11
Song, Wang, Li, Liu (b0245) 2018; 26
Yu, Besteiro, Huang, Wu, Fu, Tan, Jagadish, Wiederrecht, Govorov, Wang (b0010) 2019; 7
Mishra, Choudhary, Chowdhury, Kumari, Chaudhary (b0210) 2017; 5
Wang, Huang, Li, Chen, Xie (b0130) 2018; 57
Dinh, Le, Ngo, Huynh, Tung (b0050) 2021; 130
Du, Yan, Wang, Zhang, Bai, Zhou, Hou (b0055) 2021; 144
Chen, Chai, Jin, He (b0015) 2022; 7
Jia, Yin, Yao, Wang, Fan (b0195) 2021; 25
Zamzam, Rezaei, Khatami (b0090) 2021; 128
Chen, Song (b0250) 2020; 28
Liu, Yin, Zhao (b0060) 2022; 39
Vafapour (b0190) 2022; 22
Kajtar, Kafesaki, Economou, Soukoulis (b0075) 2016; 49
Cui, Zhu, Yue, Hu, Chen, Wang, Wang (b0120) 2019; 27
Deng, Hu, Mo, Xu, Yin, Lu, Hu, Li, Yang (b0230) 2021; 11
Liu, Zhong, Huang, Lv, Han, Liu (b0065) 2019; 27
Song, Wang, Li, Dong (b0115) 2018; 51
Zhang, Song (b0270) 2021; 29
Liu, Xu, Song (b0255) 2021; 29
Landy, Sajuyigbe, Mock, Smith, Padilla (b0020) 2008; 100
Wang, He, Lou, Xu, Wang, Wang, Cao (b0125) 2020; 8
Li, Shen, Yin, Zhang, Chen (b0105) 2021; 122
Yao, Ling, Yue, Luo, Ji, Yao (b0135) 2016; 24
Liu, Song (b0265) 2021; 174
Wang, Li, Liu, Yan, Tian, Tian, Zhang, Sun (b0225) 2017; 25
Yang, Xia (b0145) 2020; 7
Behera, Liu, Lian, Cao (b0045) 2021; 3
Bao (10.1016/j.matdes.2023.111586_b0200) 2019; 27
Kajtar (10.1016/j.matdes.2023.111586_b0075) 2016; 49
Mohanty (10.1016/j.matdes.2023.111586_b0205) 2018; 32
Huang (10.1016/j.matdes.2023.111586_b0165) 2013; 113
Zhang (10.1016/j.matdes.2023.111586_b0155) 2013; 30
Wang (10.1016/j.matdes.2023.111586_b0080) 2019; 14
Watts (10.1016/j.matdes.2023.111586_b0005) 2012; 24, OP98
Wang (10.1016/j.matdes.2023.111586_b0140) 2021; 11
Esfandiari (10.1016/j.matdes.2023.111586_b0220) 2022; 221
Zhang (10.1016/j.matdes.2023.111586_b0270) 2021; 29
Deng (10.1016/j.matdes.2023.111586_b0230) 2021; 11
Landy (10.1016/j.matdes.2023.111586_b0020) 2008; 100
Song (10.1016/j.matdes.2023.111586_b0245) 2018; 26
Chen (10.1016/j.matdes.2023.111586_b0150) 2020; 14
Wang (10.1016/j.matdes.2023.111586_b0225) 2017; 25
Liu (10.1016/j.matdes.2023.111586_b0060) 2022; 39
Hokmabadi (10.1016/j.matdes.2023.111586_b0085) 2014; 1
Zhao (10.1016/j.matdes.2023.111586_b0240) 2019; 6
Shen (10.1016/j.matdes.2023.111586_b0160) 2012; 101
Takashima (10.1016/j.matdes.2023.111586_b0025) 2022; 30
Li (10.1016/j.matdes.2023.111586_b0030) 2018; 26
Xie (10.1016/j.matdes.2023.111586_b0040) 2022; 64
Liu (10.1016/j.matdes.2023.111586_b0255) 2021; 29
Yu (10.1016/j.matdes.2023.111586_b0010) 2019; 7
Yang (10.1016/j.matdes.2023.111586_b0035) 2022; 222
Abdulkarim (10.1016/j.matdes.2023.111586_b0170) 2022; 12
Jia (10.1016/j.matdes.2023.111586_b0195) 2021; 25
Zhao (10.1016/j.matdes.2023.111586_b0070) 2019; 27
Behera (10.1016/j.matdes.2023.111586_b0045) 2021; 3
Cui (10.1016/j.matdes.2023.111586_b0120) 2019; 27
Zhu (10.1016/j.matdes.2023.111586_b0215) 2022; 32
Wang (10.1016/j.matdes.2023.111586_b0125) 2020; 8
Chen (10.1016/j.matdes.2023.111586_b0250) 2020; 28
Chen (10.1016/j.matdes.2023.111586_b0015) 2022; 7
Liu (10.1016/j.matdes.2023.111586_b0265) 2021; 174
Song (10.1016/j.matdes.2023.111586_b0115) 2018; 51
Song (10.1016/j.matdes.2023.111586_b0260) 2020; 28
Dinh (10.1016/j.matdes.2023.111586_b0050) 2021; 130
Liu (10.1016/j.matdes.2023.111586_b0065) 2019; 27
Edries (10.1016/j.matdes.2023.111586_b0185) 2020; 8
Yao (10.1016/j.matdes.2023.111586_b0135) 2016; 24
Mishra (10.1016/j.matdes.2023.111586_b0210) 2017; 5
Yang (10.1016/j.matdes.2023.111586_b0145) 2020; 7
Li (10.1016/j.matdes.2023.111586_b0105) 2021; 122
Vafapour (10.1016/j.matdes.2023.111586_b0190) 2022; 22
Khuyen (10.1016/j.matdes.2023.111586_b0110) 2018; 8
Astorino (10.1016/j.matdes.2023.111586_b0100) 2017; 121
Wang (10.1016/j.matdes.2023.111586_b0130) 2018; 57
Zhao (10.1016/j.matdes.2023.111586_b0235) 2016; 4
Singh (10.1016/j.matdes.2023.111586_b0180) 2020; 7
Du (10.1016/j.matdes.2023.111586_b0055) 2021; 144
Zamzam (10.1016/j.matdes.2023.111586_b0090) 2021; 128
Liu (10.1016/j.matdes.2023.111586_b0095) 2015; 118
Chen (10.1016/j.matdes.2023.111586_b0275) 2022; 223
Hu (10.1016/j.matdes.2023.111586_b0175) 2022; 39
References_xml – volume: 100
  year: 2008
  ident: b0020
  article-title: Perfect metamaterial absorber
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 11632
  year: 2018
  ident: b0110
  article-title: Ultra-subwavelength thickness for dual/triple-band metamaterial absorber at very low frequency
  publication-title: Sci. Rep.
– volume: 24, OP98
  year: 2012
  ident: b0005
  article-title: Metamaterial electromagnetic absorbers
  publication-title: Adv. Mater.
– volume: 25
  start-page: 32280
  year: 2017
  ident: b0225
  article-title: Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal
  publication-title: Opt. Express
– volume: 27
  start-page: 31435
  year: 2019
  ident: b0200
  article-title: Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials
  publication-title: Opt. Express
– volume: 28
  start-page: 6565
  year: 2020
  ident: b0250
  article-title: Simultaneous realizations of absorber and transparent conducting metal in a single metamaterial
  publication-title: Opt. Express
– volume: 122
  year: 2021
  ident: b0105
  article-title: 3D printed cross-shaped terahertz metamaterials with single-band, multi-band and broadband absorption
  publication-title: Opt. Mater.
– volume: 26
  start-page: 16769
  year: 2018
  ident: b0030
  article-title: Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons
  publication-title: Opt. Express
– volume: 4
  start-page: A16
  year: 2016
  ident: b0235
  article-title: Nonlinear terahertz metamaterial absorbers using GaAs
  publication-title: Photonics Res.
– volume: 11
  start-page: 1110
  year: 2021
  ident: b0140
  article-title: Design and fabrication of a triple-band terahertz metamaterial absorber
  publication-title: Nanomaterials
– volume: 223
  year: 2022
  ident: b0275
  article-title: A thermally activated VO
  publication-title: Mater. Des.
– volume: 1
  year: 2014
  ident: b0085
  article-title: Polarization-dependent, frequency-selective THz stereometamaterial perfect absorber
  publication-title: Phys. Rev. Appl.
– volume: 51
  year: 2018
  ident: b0115
  article-title: A dual-band metamaterial absorber with adjacent absorption peaks
  publication-title: J. Phys. D Appl. Phys.
– volume: 27
  start-page: 7393
  year: 2019
  ident: b0065
  article-title: Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials
  publication-title: Opt. Express
– volume: 7
  start-page: 2101171
  year: 2022
  ident: b0015
  article-title: Terahertz metamaterial absorbers
  publication-title: Adv. Mater. Technol.
– volume: 30
  start-page: 656
  year: 2013
  ident: b0155
  article-title: Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures
  publication-title: J. Opt. Soc. Am. B
– volume: 6
  start-page: 830
  year: 2019
  ident: b0240
  article-title: Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers
  publication-title: ACS Photonics
– volume: 64
  start-page: 1310
  year: 2022
  ident: b0040
  article-title: Polarization-independent dual narrow-band perfect metamaterial absorber for optical communication
  publication-title: Microw. Opt. Technol. Lett.
– volume: 174
  start-page: 617
  year: 2021
  ident: b0265
  article-title: Terahertz absorption modulator with largely tunable bandwidth and intensity
  publication-title: Carbon
– volume: 121
  year: 2017
  ident: b0100
  article-title: Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime
  publication-title: J. Appl. Phys.
– volume: 5
  start-page: 4370
  year: 2017
  ident: b0210
  article-title: An investigation on compact ultra-thin triple band polarization independent metamaterial absorber for microwave frequency applications
  publication-title: IEEE Access
– volume: 11
  start-page: 4026
  year: 2021
  ident: b0230
  article-title: Tunable terahertz metamaterial wideband absorber with liquid crystal
  publication-title: Opt. Mater. Express
– volume: 39
  year: 2022
  ident: b0060
  article-title: The tunable single-/narrow-band terahertz metamaterial absorber through photoconductivity
  publication-title: Results Phys.
– volume: 29
  start-page: 23331
  year: 2021
  ident: b0255
  article-title: Bifunctional terahertz modulator for beam steering and broadband absorption based on a hybrid structure of graphene and vanadium dioxide
  publication-title: Opt. Express
– volume: 32
  start-page: 74
  year: 2018
  ident: b0205
  article-title: A multi-band terahertz metamaterial absorber based on a Π and U-shaped structure
  publication-title: Photonics and Nanostructures-Fundamentals Appl.
– volume: 26
  start-page: 7148
  year: 2018
  ident: b0245
  article-title: Broadband tunable terahertz absorber based on vanadium dioxide metamaterials
  publication-title: Opt. Express
– volume: 30
  start-page: 44229
  year: 2022
  ident: b0025
  article-title: Ultra-thin deep ultraviolet perfect absorber using an Al/TiO
  publication-title: Opt. Express
– volume: 27
  start-page: 22190
  year: 2019
  ident: b0120
  article-title: Development of frequency-tunable multiple-band terahertz absorber based on control of polarization angles
  publication-title: Opt. Express
– volume: 14
  year: 2020
  ident: b0150
  article-title: Ultrathin terahertz triple-band metamaterial absorbers: Consideration of interlayer coupling
  publication-title: Phys. Rev. Appl.
– volume: 3
  start-page: 1758
  year: 2021
  ident: b0045
  article-title: A reconfigurable hyperbolic metamaterial perfect absorber
  publication-title: Nanoscale Adv.
– volume: 144
  year: 2021
  ident: b0055
  article-title: Thermally-stable grapheme metamaterial absorber with excellent tunability for high-performance refractive index sensing in the terahertz band
  publication-title: Opt. Laser Technol.
– volume: 221
  year: 2022
  ident: b0220
  article-title: Recent and emerging applications of graphene-based metamaterials in electromagnetics
  publication-title: Mater. Des.
– volume: 222
  year: 2022
  ident: b0035
  article-title: Electromagnetic shielding using flexible embroidery metamaterial absorbers: Design, analysis and experiments
  publication-title: Mater. Des.
– volume: 49
  year: 2016
  ident: b0075
  article-title: Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum
  publication-title: J. Phys. D Appl. Phys.
– volume: 22
  start-page: 2892
  year: 2022
  ident: b0190
  article-title: Cost-effective bull’s eye aperture-style multi-band metamaterial absorber at Sub-THz band: Design, numerical analysis, and physical interpretation
  publication-title: Sensors
– volume: 101
  year: 2012
  ident: b0160
  article-title: Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation
  publication-title: Appl. Phys. Lett.
– volume: 29
  start-page: 21551
  year: 2021
  ident: b0270
  article-title: Switchable terahertz metamaterial absorber with broadband absorption and multiband absorption
  publication-title: Opt. Express
– volume: 118
  year: 2015
  ident: b0095
  article-title: A bi-layered quad-band metamaterial absorber at terahertz frequencies
  publication-title: J. Appl. Phys.
– volume: 8
  year: 2020
  ident: b0185
  article-title: A new compact quad-band metamaterial absorber using interlaced I/Square resonators: Design, fabrication, and characterization
  publication-title: IEEE Access
– volume: 7
  year: 2020
  ident: b0145
  article-title: Experimental verification of multi-band metamaterial absorber with double structured layers
  publication-title: Mater. Res. Express
– volume: 8
  start-page: 308
  year: 2020
  ident: b0125
  article-title: Multiple-band terahertz metamaterial absorber using multiple separated sections of metallic rectangular patch
  publication-title: Front. Phys.
– volume: 14
  start-page: 64
  year: 2019
  ident: b0080
  article-title: Design of narrow discrete distances of dual-/triple-band terahertz metamaterial absorbers
  publication-title: Nanoscale Res. Lett.
– volume: 7
  start-page: 1800995
  year: 2019
  ident: b0010
  article-title: Broadband metamaterial absorbers
  publication-title: Adv. Opt. Mater.
– volume: 24
  start-page: 1518
  year: 2016
  ident: b0135
  article-title: Dual-band tunable perfect metamaterial absorber in the terahertz range
  publication-title: Opt. Express
– volume: 130
  year: 2021
  ident: b0050
  article-title: Terahertz cut-wire-pair metamaterial absorber
  publication-title: J. Appl. Phys.
– volume: 28
  start-page: 2037
  year: 2020
  ident: b0260
  article-title: Terahertz switching between broadband absorption and narrowband absorption
  publication-title: Opt. Express
– volume: 57
  start-page: 6916
  year: 2018
  ident: b0130
  article-title: Dual-band tunable perfect metamaterial absorber based on graphene
  publication-title: Appl. Opt.
– volume: 27
  start-page: 5217
  year: 2019
  ident: b0070
  article-title: A dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures
  publication-title: Opt. Express
– volume: 12
  start-page: 338
  year: 2022
  ident: b0170
  article-title: Simulation and lithographic fabrication of a triple band terahertz metamaterial absorber coated on flexible polyethylene terephthalate substrate
  publication-title: Opt. Mater. Express
– volume: 128
  year: 2021
  ident: b0090
  article-title: Quad-band polarization-insensitive metamaterial perfect absorber based on bilayer graphene metasurface
  publication-title: Phys. E
– volume: 113
  year: 2013
  ident: b0165
  article-title: Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber
  publication-title: J. Appl. Phys.
– volume: 32
  year: 2022
  ident: b0215
  article-title: Metamaterial wide-angle dual-band absorber with graphene surface
  publication-title: Surf. Interfaces
– volume: 7
  year: 2020
  ident: b0180
  article-title: An ultra-thin quad-band metamaterial absorber using symmetric bent-arrow shaped resonator for sensing and imaging in defense applications
  publication-title: Mater. Res. Express
– volume: 39
  start-page: 383
  year: 2022
  ident: b0175
  article-title: Dynamically dual-tunable dual-band to four-band metamaterial absorbers based on bulk Dirac semimetal and vanadium dioxide
  publication-title: J. Opt. Soc. Am. A
– volume: 25
  year: 2021
  ident: b0195
  article-title: Realization of multi-band perfect absorber in graphene based on metal-insulator-metal metamaterials
  publication-title: Results Phys.
– volume: 30
  start-page: 656
  year: 2013
  ident: 10.1016/j.matdes.2023.111586_b0155
  article-title: Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures
  publication-title: J. Opt. Soc. Am. B
  doi: 10.1364/JOSAB.30.000656
– volume: 174
  start-page: 617
  year: 2021
  ident: 10.1016/j.matdes.2023.111586_b0265
  article-title: Terahertz absorption modulator with largely tunable bandwidth and intensity
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.12.001
– volume: 11
  start-page: 1110
  year: 2021
  ident: 10.1016/j.matdes.2023.111586_b0140
  article-title: Design and fabrication of a triple-band terahertz metamaterial absorber
  publication-title: Nanomaterials
  doi: 10.3390/nano11051110
– volume: 14
  start-page: 64
  year: 2019
  ident: 10.1016/j.matdes.2023.111586_b0080
  article-title: Design of narrow discrete distances of dual-/triple-band terahertz metamaterial absorbers
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/s11671-019-2876-3
– volume: 122
  year: 2021
  ident: 10.1016/j.matdes.2023.111586_b0105
  article-title: 3D printed cross-shaped terahertz metamaterials with single-band, multi-band and broadband absorption
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2021.111739
– volume: 29
  start-page: 23331
  year: 2021
  ident: 10.1016/j.matdes.2023.111586_b0255
  article-title: Bifunctional terahertz modulator for beam steering and broadband absorption based on a hybrid structure of graphene and vanadium dioxide
  publication-title: Opt. Express
  doi: 10.1364/OE.433364
– volume: 1
  year: 2014
  ident: 10.1016/j.matdes.2023.111586_b0085
  article-title: Polarization-dependent, frequency-selective THz stereometamaterial perfect absorber
  publication-title: Phys. Rev. Appl.
– volume: 4
  start-page: A16
  year: 2016
  ident: 10.1016/j.matdes.2023.111586_b0235
  article-title: Nonlinear terahertz metamaterial absorbers using GaAs
  publication-title: Photonics Res.
  doi: 10.1364/PRJ.4.000A16
– volume: 39
  start-page: 383
  year: 2022
  ident: 10.1016/j.matdes.2023.111586_b0175
  article-title: Dynamically dual-tunable dual-band to four-band metamaterial absorbers based on bulk Dirac semimetal and vanadium dioxide
  publication-title: J. Opt. Soc. Am. A
  doi: 10.1364/JOSAA.447229
– volume: 6
  start-page: 830
  year: 2019
  ident: 10.1016/j.matdes.2023.111586_b0240
  article-title: Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.8b01644
– volume: 130
  year: 2021
  ident: 10.1016/j.matdes.2023.111586_b0050
  article-title: Terahertz cut-wire-pair metamaterial absorber
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0053648
– volume: 27
  start-page: 22190
  year: 2019
  ident: 10.1016/j.matdes.2023.111586_b0120
  article-title: Development of frequency-tunable multiple-band terahertz absorber based on control of polarization angles
  publication-title: Opt. Express
  doi: 10.1364/OE.27.022190
– volume: 101
  year: 2012
  ident: 10.1016/j.matdes.2023.111586_b0160
  article-title: Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4757879
– volume: 12
  start-page: 338
  year: 2022
  ident: 10.1016/j.matdes.2023.111586_b0170
  article-title: Simulation and lithographic fabrication of a triple band terahertz metamaterial absorber coated on flexible polyethylene terephthalate substrate
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.447855
– volume: 144
  year: 2021
  ident: 10.1016/j.matdes.2023.111586_b0055
  article-title: Thermally-stable grapheme metamaterial absorber with excellent tunability for high-performance refractive index sensing in the terahertz band
  publication-title: Opt. Laser Technol.
  doi: 10.1016/j.optlastec.2021.107409
– volume: 8
  year: 2020
  ident: 10.1016/j.matdes.2023.111586_b0185
  article-title: A new compact quad-band metamaterial absorber using interlaced I/Square resonators: Design, fabrication, and characterization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3009904
– volume: 25
  year: 2021
  ident: 10.1016/j.matdes.2023.111586_b0195
  article-title: Realization of multi-band perfect absorber in graphene based on metal-insulator-metal metamaterials
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2021.104301
– volume: 27
  start-page: 31435
  year: 2019
  ident: 10.1016/j.matdes.2023.111586_b0200
  article-title: Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials
  publication-title: Opt. Express
  doi: 10.1364/OE.27.031435
– volume: 27
  start-page: 7393
  year: 2019
  ident: 10.1016/j.matdes.2023.111586_b0065
  article-title: Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials
  publication-title: Opt. Express
  doi: 10.1364/OE.27.007393
– volume: 57
  start-page: 6916
  year: 2018
  ident: 10.1016/j.matdes.2023.111586_b0130
  article-title: Dual-band tunable perfect metamaterial absorber based on graphene
  publication-title: Appl. Opt.
  doi: 10.1364/AO.57.006916
– volume: 32
  year: 2022
  ident: 10.1016/j.matdes.2023.111586_b0215
  article-title: Metamaterial wide-angle dual-band absorber with graphene surface
  publication-title: Surf. Interfaces
– volume: 3
  start-page: 1758
  year: 2021
  ident: 10.1016/j.matdes.2023.111586_b0045
  article-title: A reconfigurable hyperbolic metamaterial perfect absorber
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00787K
– volume: 222
  year: 2022
  ident: 10.1016/j.matdes.2023.111586_b0035
  article-title: Electromagnetic shielding using flexible embroidery metamaterial absorbers: Design, analysis and experiments
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.111079
– volume: 28
  start-page: 6565
  year: 2020
  ident: 10.1016/j.matdes.2023.111586_b0250
  article-title: Simultaneous realizations of absorber and transparent conducting metal in a single metamaterial
  publication-title: Opt. Express
  doi: 10.1364/OE.388066
– volume: 39
  year: 2022
  ident: 10.1016/j.matdes.2023.111586_b0060
  article-title: The tunable single-/narrow-band terahertz metamaterial absorber through photoconductivity
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2022.105741
– volume: 7
  start-page: 2101171
  year: 2022
  ident: 10.1016/j.matdes.2023.111586_b0015
  article-title: Terahertz metamaterial absorbers
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202101171
– volume: 113
  year: 2013
  ident: 10.1016/j.matdes.2023.111586_b0165
  article-title: Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4809655
– volume: 26
  start-page: 7148
  year: 2018
  ident: 10.1016/j.matdes.2023.111586_b0245
  article-title: Broadband tunable terahertz absorber based on vanadium dioxide metamaterials
  publication-title: Opt. Express
  doi: 10.1364/OE.26.007148
– volume: 24, OP98
  year: 2012
  ident: 10.1016/j.matdes.2023.111586_b0005
  article-title: Metamaterial electromagnetic absorbers
  publication-title: Adv. Mater.
– volume: 8
  start-page: 308
  year: 2020
  ident: 10.1016/j.matdes.2023.111586_b0125
  article-title: Multiple-band terahertz metamaterial absorber using multiple separated sections of metallic rectangular patch
  publication-title: Front. Phys.
  doi: 10.3389/fphy.2020.00308
– volume: 118
  year: 2015
  ident: 10.1016/j.matdes.2023.111586_b0095
  article-title: A bi-layered quad-band metamaterial absorber at terahertz frequencies
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4938110
– volume: 7
  year: 2020
  ident: 10.1016/j.matdes.2023.111586_b0180
  article-title: An ultra-thin quad-band metamaterial absorber using symmetric bent-arrow shaped resonator for sensing and imaging in defense applications
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/abc3a3
– volume: 7
  start-page: 1800995
  year: 2019
  ident: 10.1016/j.matdes.2023.111586_b0010
  article-title: Broadband metamaterial absorbers
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201800995
– volume: 100
  year: 2008
  ident: 10.1016/j.matdes.2023.111586_b0020
  article-title: Perfect metamaterial absorber
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.207402
– volume: 64
  start-page: 1310
  year: 2022
  ident: 10.1016/j.matdes.2023.111586_b0040
  article-title: Polarization-independent dual narrow-band perfect metamaterial absorber for optical communication
  publication-title: Microw. Opt. Technol. Lett.
  doi: 10.1002/mop.33281
– volume: 11
  start-page: 4026
  year: 2021
  ident: 10.1016/j.matdes.2023.111586_b0230
  article-title: Tunable terahertz metamaterial wideband absorber with liquid crystal
  publication-title: Opt. Mater. Express
  doi: 10.1364/OME.444899
– volume: 8
  start-page: 11632
  year: 2018
  ident: 10.1016/j.matdes.2023.111586_b0110
  article-title: Ultra-subwavelength thickness for dual/triple-band metamaterial absorber at very low frequency
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29896-4
– volume: 22
  start-page: 2892
  year: 2022
  ident: 10.1016/j.matdes.2023.111586_b0190
  article-title: Cost-effective bull’s eye aperture-style multi-band metamaterial absorber at Sub-THz band: Design, numerical analysis, and physical interpretation
  publication-title: Sensors
  doi: 10.3390/s22082892
– volume: 128
  year: 2021
  ident: 10.1016/j.matdes.2023.111586_b0090
  article-title: Quad-band polarization-insensitive metamaterial perfect absorber based on bilayer graphene metasurface
  publication-title: Phys. E
  doi: 10.1016/j.physe.2021.114621
– volume: 51
  year: 2018
  ident: 10.1016/j.matdes.2023.111586_b0115
  article-title: A dual-band metamaterial absorber with adjacent absorption peaks
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/1361-6463/aad7e1
– volume: 24
  start-page: 1518
  year: 2016
  ident: 10.1016/j.matdes.2023.111586_b0135
  article-title: Dual-band tunable perfect metamaterial absorber in the terahertz range
  publication-title: Opt. Express
  doi: 10.1364/OE.24.001518
– volume: 221
  year: 2022
  ident: 10.1016/j.matdes.2023.111586_b0220
  article-title: Recent and emerging applications of graphene-based metamaterials in electromagnetics
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.110920
– volume: 25
  start-page: 32280
  year: 2017
  ident: 10.1016/j.matdes.2023.111586_b0225
  article-title: Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal
  publication-title: Opt. Express
  doi: 10.1364/OE.25.032280
– volume: 14
  year: 2020
  ident: 10.1016/j.matdes.2023.111586_b0150
  article-title: Ultrathin terahertz triple-band metamaterial absorbers: Consideration of interlayer coupling
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.14.054021
– volume: 28
  start-page: 2037
  year: 2020
  ident: 10.1016/j.matdes.2023.111586_b0260
  article-title: Terahertz switching between broadband absorption and narrowband absorption
  publication-title: Opt. Express
  doi: 10.1364/OE.376085
– volume: 5
  start-page: 4370
  year: 2017
  ident: 10.1016/j.matdes.2023.111586_b0210
  article-title: An investigation on compact ultra-thin triple band polarization independent metamaterial absorber for microwave frequency applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2675439
– volume: 27
  start-page: 5217
  year: 2019
  ident: 10.1016/j.matdes.2023.111586_b0070
  article-title: A dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures
  publication-title: Opt. Express
  doi: 10.1364/OE.27.005217
– volume: 30
  start-page: 44229
  year: 2022
  ident: 10.1016/j.matdes.2023.111586_b0025
  article-title: Ultra-thin deep ultraviolet perfect absorber using an Al/TiO2/AIN system
  publication-title: Opt. Express
  doi: 10.1364/OE.474847
– volume: 29
  start-page: 21551
  year: 2021
  ident: 10.1016/j.matdes.2023.111586_b0270
  article-title: Switchable terahertz metamaterial absorber with broadband absorption and multiband absorption
  publication-title: Opt. Express
  doi: 10.1364/OE.432967
– volume: 121
  year: 2017
  ident: 10.1016/j.matdes.2023.111586_b0100
  article-title: Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4975687
– volume: 7
  year: 2020
  ident: 10.1016/j.matdes.2023.111586_b0145
  article-title: Experimental verification of multi-band metamaterial absorber with double structured layers
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ab7e4d
– volume: 49
  year: 2016
  ident: 10.1016/j.matdes.2023.111586_b0075
  article-title: Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/49/5/055104
– volume: 223
  year: 2022
  ident: 10.1016/j.matdes.2023.111586_b0275
  article-title: A thermally activated VO2-based attenuator with SRR structure
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2022.111260
– volume: 26
  start-page: 16769
  year: 2018
  ident: 10.1016/j.matdes.2023.111586_b0030
  article-title: Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons
  publication-title: Opt. Express
  doi: 10.1364/OE.26.016769
– volume: 32
  start-page: 74
  year: 2018
  ident: 10.1016/j.matdes.2023.111586_b0205
  article-title: A multi-band terahertz metamaterial absorber based on a Π and U-shaped structure
  publication-title: Photonics and Nanostructures-Fundamentals Appl.
  doi: 10.1016/j.photonics.2018.10.008
SSID ssj0022734
Score 2.5904374
Snippet [Display omitted] •A new strategy is presented to design multiple-band terahertz metamaterial absorber.•Quad-band absorption is realized, the number of...
Multiple-frequency-band metamaterial absorbers possess great application prospects, which are usually achieved by vertically stacking or coplanar arranging...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 111586
SubjectTerms Multiple-band absorption
Terahertz metamaterials
Toothed resonator
Tunable properties
SummonAdditionalLinks – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  dbid: AIKHN
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gIHVF5iaUE-cI3WsR07PpaWagHRC1TqLfL4UW1pN6s0HGj_PJ44WS0XkDjGsRNrZjT-ZjTzmZD3oJnmrhSFUyk2kc7YonZGF8EpBkw4MAybk7-eq-WF_HxZXe6Rk6kXBssqR9-fffrgrceRxSjNxWa1WnxL0YNEevIEogdk84jsc2FUNSP7x5--LM-3cRcyuORUC1L06WrqoBvKvBIu9AF5u7lA91FhU_XOCTUQ-e8cVDuHz9kBeTqiRnqcN_aM7IX1c_Jkh0vwBXk4HWoxaBvpVCRYxC4XSv8qwK49xWbjpKL-nt6G3qYtDdZHLdy1HSQYSDEpS62_xqYquAn5zeBT6CbYH3cUq-SvaN9i25anKVLH3HvbvSQXZx-_nyyL8WaFwglZ90X02lrjSxVYhOgleGZ0BRyEDKHWxspSe1F6nuJDV0XlmRNRg_K8dlymCOcVma3bdXhNqDEVeDAOlFYylrGOCRJ5aS13Vc2CmBMxSbNxI-043n5x00z1ZddN1kGDOmiyDuak2K7aZNqNf8z_gIrazkXS7GGg7a6a0WoaZkBG6YNhLErDwUBZQ8I7ZWBJKsbMiZ7U3Pxhg-lTq7_-_s1_rzwkj_EpJ3WOyKzvfoa3Ceb08G40499O5v44
  priority: 102
  providerName: Elsevier
Title Design of multiple-frequency-band terahertz metamaterial absorbers with adjustable absorption peaks using toothed resonator
URI https://dx.doi.org/10.1016/j.matdes.2023.111586
https://doaj.org/article/09b4f4de900f492b9b18b1291e034899
Volume 225
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqemkPCFoQSwH50KtVJ3bi-Li8tLQqpyJxizx-VCywWe2GA-XP1xMnKCf2wjUP2_KMPN-MvvlMyHdQXOU2E8yWMTeRVhtWWa2YtyUHLixojs3Jv6_L2Y38eVvcjq76Qk5YkgdOG_eDa5BBOq85D1LnoCGrIAapzHMhY7KApy_XfEim-lQLRVtSdQVV-VQxNM11zK4IBZ1Hqe5c4IlRYB_1KCh12v2j2DSKN5c7ZLsHinSaFrhLPvjFF_J5JB_4lbycd_QL2gQ68AJZWCVu9DMDs3AU-4ujVdp_9NG3Ji6pczhqYN2sICI_inVYatwc-6jgwac33TFCl97crykS4__StsFOLUdjco7l9ma1R24uL_6czVh_mQKzcZ9aFpwyRrus9DxAcBIc16qAHIT0vlLayEw5kbk8poS2CKXjVgQFpcsrm8uY1OyTrUWz8AeEal2AA22hVKUMWahCREFOGpPbouJeTIgYdrO2vdI4XnjxUA-UsnmdbFCjDepkgwlhr38tk9LGhu9P0VCv36JOdvcgek_de0-9yXsmRA1mrnvIkaBEHOruzekP32P6b-QTDplKOkdkq109-eMIclo4IR-nV79m1yedX_8Hotz8hQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAcKp5iKQ8fuFrrJE4cH0uh2tJ2L7RSb5bHj2rbslml4UD75_HEyWq5gMTVj8SaGY2_Gc18JuQTSC5zmxXMVjE2EVYZVlslmbcVB15YUBybk88W1fxCfLssL3fI4dgLg2WVg-9PPr331sPIbJDmbL1czr7H6EEgPXkE0T2yeUR2RRmjvQnZPTg-mS82cRcyuKRUC1L0yXLsoOvLvCIudB55u_MC3UeJTdVbN1RP5L91UW1dPkfPyN6AGulBOthzsuNXL8jTLS7Bl-ThS1-LQZtAxyJBFtpUKP2LgVk5is3GUUXdPf3hOxOP1FsfNXDXtBBhIMWkLDXuGpuq4Nanmd6n0LU3N3cUq-SvaNdg25ajMVLH3HvTviIXR1_PD-dseFmB2ULUHQtOGqNcVnkeIDgBjitZQg6F8L6WyohMuiJzeYwPbRkqx20RJFQur20uYoTzmkxWzcq_IVSpEhwoC5WsRMhCHSIkcsKY3JY198WUFKM0tR1ox_H1i1s91pdd66QDjTrQSQdTwja71ol24x_rP6OiNmuRNLsfaNorPViN5gpEEM4rzoNQOSjIaoh4J_M8SkWpKZGjmvUfNhg_tfzr79_-986P5PH8_OxUnx4vTvbJE5xJCZ53ZNK1P_37CHk6-DCY9G9jAAE0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+multiple-frequency-band+terahertz+metamaterial+absorbers+with+adjustable+absorption+peaks+using+toothed+resonator&rft.jtitle=Materials+%26+design&rft.au=Ben-Xin+Wang&rft.au=Guiyuan+Duan&rft.au=Chongyang+Xu&rft.au=Jieying+Jiang&rft.date=2023-01-01&rft.pub=Elsevier&rft.issn=0264-1275&rft.volume=225&rft.spage=111586&rft_id=info:doi/10.1016%2Fj.matdes.2023.111586&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_09b4f4de900f492b9b18b1291e034899
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon