Design of multiple-frequency-band terahertz metamaterial absorbers with adjustable absorption peaks using toothed resonator
[Display omitted] •A new strategy is presented to design multiple-band terahertz metamaterial absorber.•Quad-band absorption is realized, the number of absorption peaks could be manipulated by reshaping resonator without increasing any design complexity.•Introduction of temperature-controlled vanadi...
Saved in:
Published in | Materials & design Vol. 225; p. 111586 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2023
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0264-1275 1873-4197 |
DOI | 10.1016/j.matdes.2023.111586 |
Cover
Loading…
Abstract | [Display omitted]
•A new strategy is presented to design multiple-band terahertz metamaterial absorber.•Quad-band absorption is realized, the number of absorption peaks could be manipulated by reshaping resonator without increasing any design complexity.•Introduction of temperature-controlled vanadium dioxide into the absorption system actively tunes the absorption peaks.•This work opens a new space for the design and application of multiple-band metamaterial absorbers.
Multiple-frequency-band metamaterial absorbers possess great application prospects, which are usually achieved by vertically stacking or coplanar arranging several sub-resonators. Obtaining more absorption peaks requires further sacrifice of the number of sub-resonators. More importantly, these two design methods are difficult to control or adjust the number of absorption peaks without changing the number of sub-resonators. Therefore, new scheme using simplified structure without increasing any design complexity to realize multiple-frequency-band absorption with adjustable resonance features is urgently needed. In this paper, a multiple-frequency-band terahertz metamaterial absorber using surface structure of toothed resonator is demonstrated, it has the ability to control (increase or decrease) the number of absorption peaks without increasing its design complexity, which is different from previous works that need to sacrifice the design complexity of metamaterials. Furthermore, the introduction of temperature-controlled vanadium dioxide into the surface structure of multiple-frequency-band absorber can dynamically tune its resonance performance. It is proved that when vanadium dioxide changes from metallic state to insulating state, its absorption peaks can be actively adjusted from dual- to triple-, quad- and even penta-frequency-band absorption. These efforts could provide meaningful guidance for the design of multiple-frequency-band metamaterial absorbers, and could have broad application prospects in terahertz technology-related areas. |
---|---|
AbstractList | Multiple-frequency-band metamaterial absorbers possess great application prospects, which are usually achieved by vertically stacking or coplanar arranging several sub-resonators. Obtaining more absorption peaks requires further sacrifice of the number of sub-resonators. More importantly, these two design methods are difficult to control or adjust the number of absorption peaks without changing the number of sub-resonators. Therefore, new scheme using simplified structure without increasing any design complexity to realize multiple-frequency-band absorption with adjustable resonance features is urgently needed. In this paper, a multiple-frequency-band terahertz metamaterial absorber using surface structure of toothed resonator is demonstrated, it has the ability to control (increase or decrease) the number of absorption peaks without increasing its design complexity, which is different from previous works that need to sacrifice the design complexity of metamaterials. Furthermore, the introduction of temperature-controlled vanadium dioxide into the surface structure of multiple-frequency-band absorber can dynamically tune its resonance performance. It is proved that when vanadium dioxide changes from metallic state to insulating state, its absorption peaks can be actively adjusted from dual- to triple-, quad- and even penta-frequency-band absorption. These efforts could provide meaningful guidance for the design of multiple-frequency-band metamaterial absorbers, and could have broad application prospects in terahertz technology-related areas. [Display omitted] •A new strategy is presented to design multiple-band terahertz metamaterial absorber.•Quad-band absorption is realized, the number of absorption peaks could be manipulated by reshaping resonator without increasing any design complexity.•Introduction of temperature-controlled vanadium dioxide into the absorption system actively tunes the absorption peaks.•This work opens a new space for the design and application of multiple-band metamaterial absorbers. Multiple-frequency-band metamaterial absorbers possess great application prospects, which are usually achieved by vertically stacking or coplanar arranging several sub-resonators. Obtaining more absorption peaks requires further sacrifice of the number of sub-resonators. More importantly, these two design methods are difficult to control or adjust the number of absorption peaks without changing the number of sub-resonators. Therefore, new scheme using simplified structure without increasing any design complexity to realize multiple-frequency-band absorption with adjustable resonance features is urgently needed. In this paper, a multiple-frequency-band terahertz metamaterial absorber using surface structure of toothed resonator is demonstrated, it has the ability to control (increase or decrease) the number of absorption peaks without increasing its design complexity, which is different from previous works that need to sacrifice the design complexity of metamaterials. Furthermore, the introduction of temperature-controlled vanadium dioxide into the surface structure of multiple-frequency-band absorber can dynamically tune its resonance performance. It is proved that when vanadium dioxide changes from metallic state to insulating state, its absorption peaks can be actively adjusted from dual- to triple-, quad- and even penta-frequency-band absorption. These efforts could provide meaningful guidance for the design of multiple-frequency-band metamaterial absorbers, and could have broad application prospects in terahertz technology-related areas. |
ArticleNumber | 111586 |
Author | Pi, Fuwei Xu, Chongyang Jiang, Jieying Wang, Ben-Xin Duan, Guiyuan Xu, Wei |
Author_xml | – sequence: 1 givenname: Ben-Xin surname: Wang fullname: Wang, Ben-Xin email: wangbenxin@jiangnan.edu.cn organization: School of Science, Jiangnan University, Wuxi 214122, China – sequence: 2 givenname: Guiyuan surname: Duan fullname: Duan, Guiyuan organization: School of Science, Jiangnan University, Wuxi 214122, China – sequence: 3 givenname: Chongyang surname: Xu fullname: Xu, Chongyang organization: School of Science, Jiangnan University, Wuxi 214122, China – sequence: 4 givenname: Jieying surname: Jiang fullname: Jiang, Jieying organization: School of Science, Jiangnan University, Wuxi 214122, China – sequence: 5 givenname: Wei surname: Xu fullname: Xu, Wei organization: School of Science, Jiangnan University, Wuxi 214122, China – sequence: 6 givenname: Fuwei surname: Pi fullname: Pi, Fuwei organization: State Key Laboratory of Food Science and Technology, School of Food Science and Technology, JiangnanUniversity, Wuxi, 214122, China |
BookMark | eNqFkcFu1DAQhi1UJLaFN-DgF8hiO04cc0BChUKlSlzgbI3t8a5DNl5sL6jw8mQJ6oFDOY3k0f_NeL5LcjGnGQl5ydmWM96_GrcHqB7LVjDRbjnn3dA_IRs-qLaRXKsLsmGilw0XqntGLksZGRNCtXJDfr3DEnczTYEeTlONxwmbkPHbCWd331iYPa2YYY-5_qQHrLBMwhxhomBLyhZzoT9i3VPw46lUsBOunWONaaZHhK-Fnkqcd7SmVPfoacaSZqgpPydPA0wFX_ytV-TLzfvP1x-bu08fbq_f3jWulUNtglcA2vMeWbDBS-uZVp0VtpWIg9IgufIt90IJ7rrQe-baoGzvxeCEVF17RW5Xrk8wmmOOB8j3JkE0fx5S3hnINboJDdNWBulRMxakFlZbPlguNEe27KL1wpIry-VUSsbwwOPMnGWY0awyzFmGWWUssdf_xFyscD5RzRCn_4XfrGFcjvQ9YjbFxcUP-pjR1eUX8XHAb6XArZo |
CitedBy_id | crossref_primary_10_1016_j_diamond_2024_111234 crossref_primary_10_1016_j_mssp_2023_107622 crossref_primary_10_1016_j_photonics_2023_101211 crossref_primary_10_1016_j_optlastec_2024_110829 crossref_primary_10_1016_j_matdes_2024_112703 crossref_primary_10_3788_LOP240937 crossref_primary_10_1002_adfm_202402068 crossref_primary_10_1364_OE_550452 crossref_primary_10_1063_5_0175798 crossref_primary_10_1016_j_optcom_2024_130266 crossref_primary_10_1088_1402_4896_aceb39 crossref_primary_10_1063_5_0153206 crossref_primary_10_1016_j_asej_2024_102829 crossref_primary_10_1016_j_optcom_2023_129906 crossref_primary_10_1016_j_matdes_2023_112460 crossref_primary_10_1016_j_matdes_2025_113871 crossref_primary_10_1016_j_snb_2024_136446 crossref_primary_10_1016_j_optlastec_2024_111928 crossref_primary_10_1007_s11082_023_04622_1 crossref_primary_10_1016_j_optlastec_2023_110134 crossref_primary_10_1016_j_optmat_2023_114655 crossref_primary_10_1002_adts_202300918 crossref_primary_10_1364_AO_499641 crossref_primary_10_1016_j_surfin_2024_104868 crossref_primary_10_1016_j_mtcomm_2024_108229 crossref_primary_10_1117_1_APN_3_5_056012 crossref_primary_10_1007_s00542_024_05611_4 crossref_primary_10_1007_s11664_024_11608_6 crossref_primary_10_1016_j_optcom_2023_129532 crossref_primary_10_1016_j_matdes_2025_113683 crossref_primary_10_1016_j_diamond_2023_110306 crossref_primary_10_1016_j_optmat_2024_114838 crossref_primary_10_3390_photonics11090784 crossref_primary_10_1002_mop_33826 crossref_primary_10_1039_D4DT01158A crossref_primary_10_1007_s11468_023_01989_5 crossref_primary_10_1016_j_colsurfa_2024_134043 crossref_primary_10_1117_1_OE_63_11_115102 crossref_primary_10_1088_1402_4896_acd6c7 crossref_primary_10_1016_j_optlastec_2024_111210 crossref_primary_10_1016_j_physleta_2024_129589 crossref_primary_10_1007_s11468_024_02219_2 crossref_primary_10_3390_coatings14070799 crossref_primary_10_1016_j_cjph_2024_06_021 crossref_primary_10_1007_s11664_024_10999_w crossref_primary_10_1016_j_optlastec_2023_109526 crossref_primary_10_1016_j_icheatmasstransfer_2024_108107 crossref_primary_10_1016_j_optlastec_2023_110113 crossref_primary_10_1021_acsanm_3c04908 crossref_primary_10_1016_j_solener_2024_112847 crossref_primary_10_1088_1402_4896_acc3c9 crossref_primary_10_1007_s11082_023_04756_2 crossref_primary_10_1016_j_fmre_2024_11_008 crossref_primary_10_1016_j_physe_2023_115740 crossref_primary_10_1016_j_sna_2023_114839 crossref_primary_10_1016_j_matdes_2024_112631 crossref_primary_10_1142_S0217979224504228 crossref_primary_10_1016_j_jfca_2024_107034 crossref_primary_10_1016_j_optcom_2023_129950 crossref_primary_10_1038_s41598_023_49202_1 |
Cites_doi | 10.1364/JOSAB.30.000656 10.1016/j.carbon.2020.12.001 10.3390/nano11051110 10.1186/s11671-019-2876-3 10.1016/j.optmat.2021.111739 10.1364/OE.433364 10.1364/PRJ.4.000A16 10.1364/JOSAA.447229 10.1021/acsphotonics.8b01644 10.1063/5.0053648 10.1364/OE.27.022190 10.1063/1.4757879 10.1364/OME.447855 10.1016/j.optlastec.2021.107409 10.1109/ACCESS.2020.3009904 10.1016/j.rinp.2021.104301 10.1364/OE.27.031435 10.1364/OE.27.007393 10.1364/AO.57.006916 10.1039/D0NA00787K 10.1016/j.matdes.2022.111079 10.1364/OE.388066 10.1016/j.rinp.2022.105741 10.1002/admt.202101171 10.1063/1.4809655 10.1364/OE.26.007148 10.3389/fphy.2020.00308 10.1063/1.4938110 10.1088/2053-1591/abc3a3 10.1002/adom.201800995 10.1103/PhysRevLett.100.207402 10.1002/mop.33281 10.1364/OME.444899 10.1038/s41598-018-29896-4 10.3390/s22082892 10.1016/j.physe.2021.114621 10.1088/1361-6463/aad7e1 10.1364/OE.24.001518 10.1016/j.matdes.2022.110920 10.1364/OE.25.032280 10.1103/PhysRevApplied.14.054021 10.1364/OE.376085 10.1109/ACCESS.2017.2675439 10.1364/OE.27.005217 10.1364/OE.474847 10.1364/OE.432967 10.1063/1.4975687 10.1088/2053-1591/ab7e4d 10.1088/0022-3727/49/5/055104 10.1016/j.matdes.2022.111260 10.1364/OE.26.016769 10.1016/j.photonics.2018.10.008 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.matdes.2023.111586 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4197 |
ExternalDocumentID | oai_doaj_org_article_09b4f4de900f492b9b18b1291e034899 10_1016_j_matdes_2023_111586 S0264127523000011 |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 1B1 1~. 29M 4.4 457 4G. 5GY 5VS 6I. 7-5 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAFTH AAIAV AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HVGLF HZ~ IHE J1W JJJVA KOM M41 MAGPM MO0 NCXOZ O9- OAUVE OK1 P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SEW SMS SPC SSM SST SSZ T5K WUQ ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c348t-fd7aa9d16e0fbfd4bd0975b2b34ee879a417d31d2721c5f6d0c3f7b6d28c24753 |
IEDL.DBID | DOA |
ISSN | 0264-1275 |
IngestDate | Wed Aug 27 01:33:12 EDT 2025 Tue Jul 01 02:24:13 EDT 2025 Thu Apr 24 23:04:21 EDT 2025 Fri Feb 23 02:38:50 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Terahertz metamaterials Toothed resonator Multiple-band absorption Tunable properties |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-fd7aa9d16e0fbfd4bd0975b2b34ee879a417d31d2721c5f6d0c3f7b6d28c24753 |
OpenAccessLink | https://doaj.org/article/09b4f4de900f492b9b18b1291e034899 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_09b4f4de900f492b9b18b1291e034899 crossref_primary_10_1016_j_matdes_2023_111586 crossref_citationtrail_10_1016_j_matdes_2023_111586 elsevier_sciencedirect_doi_10_1016_j_matdes_2023_111586 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2023 2023-01-00 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: January 2023 |
PublicationDecade | 2020 |
PublicationTitle | Materials & design |
PublicationYear | 2023 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Singh, Gupta, Sharma, Tyagi, Gupta, Yadaw (b0180) 2020; 7 Song, Chen, Zhang (b0260) 2020; 28 Zhao, Huang, Cai, Lin, He, Ma, Lu (b0070) 2019; 27 Huang, Yang, Yu, Wang, Li, Ye (b0165) 2013; 113 Chen, Can, Schalch, Zhao, Duan, Averitt, Zhang (b0150) 2020; 14 Chen, Cao, He, Tian (b0275) 2022; 223 Li, Gan, Guo, Liu, Xu, Yi (b0030) 2018; 26 Khuyen, Tung, Kim, Hwang, Kim, Rhee, Lam, Kim, Lee (b0110) 2018; 8 Zhu, Wang (b0215) 2022; 32 Xie, Sun, Wang, Feng, Luo, Xie, Guo, Zhang, Sun, Zhao, Yun (b0040) 2022; 64 Bao, Wang, Hu, Balmakou, Khakhomov, Tang, Zhang (b0200) 2019; 27 Zhang, Hendrickson, Guo (b0155) 2013; 30 Hu, Huang, Li, Yang (b0175) 2022; 39 Shen, Yang, Zang, Gu, Han, Zhang, Cui (b0160) 2012; 101 Wang, Tang, Niu, He, Chen (b0080) 2019; 14 Mohanty, Acharya, Appasani, Mohapatra (b0205) 2018; 32 Takashima, Nagamatsu, Haraguchi, Naoi (b0025) 2022; 30 Liu, Zhuge, Ma, Chen, Bao, He, Zhou, Cui (b0095) 2015; 118 Esfandiari, Lalbakhsh, Shehni, Jarchi, Ghaffari-Miab, Mahtaj, Reisenfeld, Alibakhshikenari, Koziel, Szczepanski (b0220) 2022; 221 Yang, Wang, Song, Pei, Purushothama, Zhang (b0035) 2022; 222 Watts, Liu, Padilla (b0005) 2012; 24, OP98 Abdulkarim, Xiao, Awl, Muhammadsharif, Lang, Saeed, Alkurt, Bakir, Karaaslan, Dong (b0170) 2022; 12 Astorino, Frezza, Tedeschi (b0100) 2017; 121 Hokmabadi, Wilbert, Kung, Kim (b0085) 2014; 1 Zhao, Zhang, Fan, Duan, Metcalfe, Wraback, Zhang, Averitt (b0235) 2016; 4 Zhao, Wang, Schalch, Duan, Cremin, Zhang, Chen, Averitt, Zhang (b0240) 2019; 6 Edries, Mohamed, Hekal, Elmorsy, Mansour (b0185) 2020; 8 Wang, Lang, Hong, Xiao, Yu (b0140) 2021; 11 Song, Wang, Li, Liu (b0245) 2018; 26 Yu, Besteiro, Huang, Wu, Fu, Tan, Jagadish, Wiederrecht, Govorov, Wang (b0010) 2019; 7 Mishra, Choudhary, Chowdhury, Kumari, Chaudhary (b0210) 2017; 5 Wang, Huang, Li, Chen, Xie (b0130) 2018; 57 Dinh, Le, Ngo, Huynh, Tung (b0050) 2021; 130 Du, Yan, Wang, Zhang, Bai, Zhou, Hou (b0055) 2021; 144 Chen, Chai, Jin, He (b0015) 2022; 7 Jia, Yin, Yao, Wang, Fan (b0195) 2021; 25 Zamzam, Rezaei, Khatami (b0090) 2021; 128 Chen, Song (b0250) 2020; 28 Liu, Yin, Zhao (b0060) 2022; 39 Vafapour (b0190) 2022; 22 Kajtar, Kafesaki, Economou, Soukoulis (b0075) 2016; 49 Cui, Zhu, Yue, Hu, Chen, Wang, Wang (b0120) 2019; 27 Deng, Hu, Mo, Xu, Yin, Lu, Hu, Li, Yang (b0230) 2021; 11 Liu, Zhong, Huang, Lv, Han, Liu (b0065) 2019; 27 Song, Wang, Li, Dong (b0115) 2018; 51 Zhang, Song (b0270) 2021; 29 Liu, Xu, Song (b0255) 2021; 29 Landy, Sajuyigbe, Mock, Smith, Padilla (b0020) 2008; 100 Wang, He, Lou, Xu, Wang, Wang, Cao (b0125) 2020; 8 Li, Shen, Yin, Zhang, Chen (b0105) 2021; 122 Yao, Ling, Yue, Luo, Ji, Yao (b0135) 2016; 24 Liu, Song (b0265) 2021; 174 Wang, Li, Liu, Yan, Tian, Tian, Zhang, Sun (b0225) 2017; 25 Yang, Xia (b0145) 2020; 7 Behera, Liu, Lian, Cao (b0045) 2021; 3 Bao (10.1016/j.matdes.2023.111586_b0200) 2019; 27 Kajtar (10.1016/j.matdes.2023.111586_b0075) 2016; 49 Mohanty (10.1016/j.matdes.2023.111586_b0205) 2018; 32 Huang (10.1016/j.matdes.2023.111586_b0165) 2013; 113 Zhang (10.1016/j.matdes.2023.111586_b0155) 2013; 30 Wang (10.1016/j.matdes.2023.111586_b0080) 2019; 14 Watts (10.1016/j.matdes.2023.111586_b0005) 2012; 24, OP98 Wang (10.1016/j.matdes.2023.111586_b0140) 2021; 11 Esfandiari (10.1016/j.matdes.2023.111586_b0220) 2022; 221 Zhang (10.1016/j.matdes.2023.111586_b0270) 2021; 29 Deng (10.1016/j.matdes.2023.111586_b0230) 2021; 11 Landy (10.1016/j.matdes.2023.111586_b0020) 2008; 100 Song (10.1016/j.matdes.2023.111586_b0245) 2018; 26 Chen (10.1016/j.matdes.2023.111586_b0150) 2020; 14 Wang (10.1016/j.matdes.2023.111586_b0225) 2017; 25 Liu (10.1016/j.matdes.2023.111586_b0060) 2022; 39 Hokmabadi (10.1016/j.matdes.2023.111586_b0085) 2014; 1 Zhao (10.1016/j.matdes.2023.111586_b0240) 2019; 6 Shen (10.1016/j.matdes.2023.111586_b0160) 2012; 101 Takashima (10.1016/j.matdes.2023.111586_b0025) 2022; 30 Li (10.1016/j.matdes.2023.111586_b0030) 2018; 26 Xie (10.1016/j.matdes.2023.111586_b0040) 2022; 64 Liu (10.1016/j.matdes.2023.111586_b0255) 2021; 29 Yu (10.1016/j.matdes.2023.111586_b0010) 2019; 7 Yang (10.1016/j.matdes.2023.111586_b0035) 2022; 222 Abdulkarim (10.1016/j.matdes.2023.111586_b0170) 2022; 12 Jia (10.1016/j.matdes.2023.111586_b0195) 2021; 25 Zhao (10.1016/j.matdes.2023.111586_b0070) 2019; 27 Behera (10.1016/j.matdes.2023.111586_b0045) 2021; 3 Cui (10.1016/j.matdes.2023.111586_b0120) 2019; 27 Zhu (10.1016/j.matdes.2023.111586_b0215) 2022; 32 Wang (10.1016/j.matdes.2023.111586_b0125) 2020; 8 Chen (10.1016/j.matdes.2023.111586_b0250) 2020; 28 Chen (10.1016/j.matdes.2023.111586_b0015) 2022; 7 Liu (10.1016/j.matdes.2023.111586_b0265) 2021; 174 Song (10.1016/j.matdes.2023.111586_b0115) 2018; 51 Song (10.1016/j.matdes.2023.111586_b0260) 2020; 28 Dinh (10.1016/j.matdes.2023.111586_b0050) 2021; 130 Liu (10.1016/j.matdes.2023.111586_b0065) 2019; 27 Edries (10.1016/j.matdes.2023.111586_b0185) 2020; 8 Yao (10.1016/j.matdes.2023.111586_b0135) 2016; 24 Mishra (10.1016/j.matdes.2023.111586_b0210) 2017; 5 Yang (10.1016/j.matdes.2023.111586_b0145) 2020; 7 Li (10.1016/j.matdes.2023.111586_b0105) 2021; 122 Vafapour (10.1016/j.matdes.2023.111586_b0190) 2022; 22 Khuyen (10.1016/j.matdes.2023.111586_b0110) 2018; 8 Astorino (10.1016/j.matdes.2023.111586_b0100) 2017; 121 Wang (10.1016/j.matdes.2023.111586_b0130) 2018; 57 Zhao (10.1016/j.matdes.2023.111586_b0235) 2016; 4 Singh (10.1016/j.matdes.2023.111586_b0180) 2020; 7 Du (10.1016/j.matdes.2023.111586_b0055) 2021; 144 Zamzam (10.1016/j.matdes.2023.111586_b0090) 2021; 128 Liu (10.1016/j.matdes.2023.111586_b0095) 2015; 118 Chen (10.1016/j.matdes.2023.111586_b0275) 2022; 223 Hu (10.1016/j.matdes.2023.111586_b0175) 2022; 39 |
References_xml | – volume: 100 year: 2008 ident: b0020 article-title: Perfect metamaterial absorber publication-title: Phys. Rev. Lett. – volume: 8 start-page: 11632 year: 2018 ident: b0110 article-title: Ultra-subwavelength thickness for dual/triple-band metamaterial absorber at very low frequency publication-title: Sci. Rep. – volume: 24, OP98 year: 2012 ident: b0005 article-title: Metamaterial electromagnetic absorbers publication-title: Adv. Mater. – volume: 25 start-page: 32280 year: 2017 ident: b0225 article-title: Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal publication-title: Opt. Express – volume: 27 start-page: 31435 year: 2019 ident: b0200 article-title: Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials publication-title: Opt. Express – volume: 28 start-page: 6565 year: 2020 ident: b0250 article-title: Simultaneous realizations of absorber and transparent conducting metal in a single metamaterial publication-title: Opt. Express – volume: 122 year: 2021 ident: b0105 article-title: 3D printed cross-shaped terahertz metamaterials with single-band, multi-band and broadband absorption publication-title: Opt. Mater. – volume: 26 start-page: 16769 year: 2018 ident: b0030 article-title: Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons publication-title: Opt. Express – volume: 4 start-page: A16 year: 2016 ident: b0235 article-title: Nonlinear terahertz metamaterial absorbers using GaAs publication-title: Photonics Res. – volume: 11 start-page: 1110 year: 2021 ident: b0140 article-title: Design and fabrication of a triple-band terahertz metamaterial absorber publication-title: Nanomaterials – volume: 223 year: 2022 ident: b0275 article-title: A thermally activated VO publication-title: Mater. Des. – volume: 1 year: 2014 ident: b0085 article-title: Polarization-dependent, frequency-selective THz stereometamaterial perfect absorber publication-title: Phys. Rev. Appl. – volume: 51 year: 2018 ident: b0115 article-title: A dual-band metamaterial absorber with adjacent absorption peaks publication-title: J. Phys. D Appl. Phys. – volume: 27 start-page: 7393 year: 2019 ident: b0065 article-title: Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials publication-title: Opt. Express – volume: 7 start-page: 2101171 year: 2022 ident: b0015 article-title: Terahertz metamaterial absorbers publication-title: Adv. Mater. Technol. – volume: 30 start-page: 656 year: 2013 ident: b0155 article-title: Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures publication-title: J. Opt. Soc. Am. B – volume: 6 start-page: 830 year: 2019 ident: b0240 article-title: Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers publication-title: ACS Photonics – volume: 64 start-page: 1310 year: 2022 ident: b0040 article-title: Polarization-independent dual narrow-band perfect metamaterial absorber for optical communication publication-title: Microw. Opt. Technol. Lett. – volume: 174 start-page: 617 year: 2021 ident: b0265 article-title: Terahertz absorption modulator with largely tunable bandwidth and intensity publication-title: Carbon – volume: 121 year: 2017 ident: b0100 article-title: Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime publication-title: J. Appl. Phys. – volume: 5 start-page: 4370 year: 2017 ident: b0210 article-title: An investigation on compact ultra-thin triple band polarization independent metamaterial absorber for microwave frequency applications publication-title: IEEE Access – volume: 11 start-page: 4026 year: 2021 ident: b0230 article-title: Tunable terahertz metamaterial wideband absorber with liquid crystal publication-title: Opt. Mater. Express – volume: 39 year: 2022 ident: b0060 article-title: The tunable single-/narrow-band terahertz metamaterial absorber through photoconductivity publication-title: Results Phys. – volume: 29 start-page: 23331 year: 2021 ident: b0255 article-title: Bifunctional terahertz modulator for beam steering and broadband absorption based on a hybrid structure of graphene and vanadium dioxide publication-title: Opt. Express – volume: 32 start-page: 74 year: 2018 ident: b0205 article-title: A multi-band terahertz metamaterial absorber based on a Π and U-shaped structure publication-title: Photonics and Nanostructures-Fundamentals Appl. – volume: 26 start-page: 7148 year: 2018 ident: b0245 article-title: Broadband tunable terahertz absorber based on vanadium dioxide metamaterials publication-title: Opt. Express – volume: 30 start-page: 44229 year: 2022 ident: b0025 article-title: Ultra-thin deep ultraviolet perfect absorber using an Al/TiO publication-title: Opt. Express – volume: 27 start-page: 22190 year: 2019 ident: b0120 article-title: Development of frequency-tunable multiple-band terahertz absorber based on control of polarization angles publication-title: Opt. Express – volume: 14 year: 2020 ident: b0150 article-title: Ultrathin terahertz triple-band metamaterial absorbers: Consideration of interlayer coupling publication-title: Phys. Rev. Appl. – volume: 3 start-page: 1758 year: 2021 ident: b0045 article-title: A reconfigurable hyperbolic metamaterial perfect absorber publication-title: Nanoscale Adv. – volume: 144 year: 2021 ident: b0055 article-title: Thermally-stable grapheme metamaterial absorber with excellent tunability for high-performance refractive index sensing in the terahertz band publication-title: Opt. Laser Technol. – volume: 221 year: 2022 ident: b0220 article-title: Recent and emerging applications of graphene-based metamaterials in electromagnetics publication-title: Mater. Des. – volume: 222 year: 2022 ident: b0035 article-title: Electromagnetic shielding using flexible embroidery metamaterial absorbers: Design, analysis and experiments publication-title: Mater. Des. – volume: 49 year: 2016 ident: b0075 article-title: Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum publication-title: J. Phys. D Appl. Phys. – volume: 22 start-page: 2892 year: 2022 ident: b0190 article-title: Cost-effective bull’s eye aperture-style multi-band metamaterial absorber at Sub-THz band: Design, numerical analysis, and physical interpretation publication-title: Sensors – volume: 101 year: 2012 ident: b0160 article-title: Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation publication-title: Appl. Phys. Lett. – volume: 29 start-page: 21551 year: 2021 ident: b0270 article-title: Switchable terahertz metamaterial absorber with broadband absorption and multiband absorption publication-title: Opt. Express – volume: 118 year: 2015 ident: b0095 article-title: A bi-layered quad-band metamaterial absorber at terahertz frequencies publication-title: J. Appl. Phys. – volume: 8 year: 2020 ident: b0185 article-title: A new compact quad-band metamaterial absorber using interlaced I/Square resonators: Design, fabrication, and characterization publication-title: IEEE Access – volume: 7 year: 2020 ident: b0145 article-title: Experimental verification of multi-band metamaterial absorber with double structured layers publication-title: Mater. Res. Express – volume: 8 start-page: 308 year: 2020 ident: b0125 article-title: Multiple-band terahertz metamaterial absorber using multiple separated sections of metallic rectangular patch publication-title: Front. Phys. – volume: 14 start-page: 64 year: 2019 ident: b0080 article-title: Design of narrow discrete distances of dual-/triple-band terahertz metamaterial absorbers publication-title: Nanoscale Res. Lett. – volume: 7 start-page: 1800995 year: 2019 ident: b0010 article-title: Broadband metamaterial absorbers publication-title: Adv. Opt. Mater. – volume: 24 start-page: 1518 year: 2016 ident: b0135 article-title: Dual-band tunable perfect metamaterial absorber in the terahertz range publication-title: Opt. Express – volume: 130 year: 2021 ident: b0050 article-title: Terahertz cut-wire-pair metamaterial absorber publication-title: J. Appl. Phys. – volume: 28 start-page: 2037 year: 2020 ident: b0260 article-title: Terahertz switching between broadband absorption and narrowband absorption publication-title: Opt. Express – volume: 57 start-page: 6916 year: 2018 ident: b0130 article-title: Dual-band tunable perfect metamaterial absorber based on graphene publication-title: Appl. Opt. – volume: 27 start-page: 5217 year: 2019 ident: b0070 article-title: A dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures publication-title: Opt. Express – volume: 12 start-page: 338 year: 2022 ident: b0170 article-title: Simulation and lithographic fabrication of a triple band terahertz metamaterial absorber coated on flexible polyethylene terephthalate substrate publication-title: Opt. Mater. Express – volume: 128 year: 2021 ident: b0090 article-title: Quad-band polarization-insensitive metamaterial perfect absorber based on bilayer graphene metasurface publication-title: Phys. E – volume: 113 year: 2013 ident: b0165 article-title: Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber publication-title: J. Appl. Phys. – volume: 32 year: 2022 ident: b0215 article-title: Metamaterial wide-angle dual-band absorber with graphene surface publication-title: Surf. Interfaces – volume: 7 year: 2020 ident: b0180 article-title: An ultra-thin quad-band metamaterial absorber using symmetric bent-arrow shaped resonator for sensing and imaging in defense applications publication-title: Mater. Res. Express – volume: 39 start-page: 383 year: 2022 ident: b0175 article-title: Dynamically dual-tunable dual-band to four-band metamaterial absorbers based on bulk Dirac semimetal and vanadium dioxide publication-title: J. Opt. Soc. Am. A – volume: 25 year: 2021 ident: b0195 article-title: Realization of multi-band perfect absorber in graphene based on metal-insulator-metal metamaterials publication-title: Results Phys. – volume: 30 start-page: 656 year: 2013 ident: 10.1016/j.matdes.2023.111586_b0155 article-title: Multispectral near-perfect metamaterial absorbers using spatially multiplexed plasmon resonance metal square structures publication-title: J. Opt. Soc. Am. B doi: 10.1364/JOSAB.30.000656 – volume: 174 start-page: 617 year: 2021 ident: 10.1016/j.matdes.2023.111586_b0265 article-title: Terahertz absorption modulator with largely tunable bandwidth and intensity publication-title: Carbon doi: 10.1016/j.carbon.2020.12.001 – volume: 11 start-page: 1110 year: 2021 ident: 10.1016/j.matdes.2023.111586_b0140 article-title: Design and fabrication of a triple-band terahertz metamaterial absorber publication-title: Nanomaterials doi: 10.3390/nano11051110 – volume: 14 start-page: 64 year: 2019 ident: 10.1016/j.matdes.2023.111586_b0080 article-title: Design of narrow discrete distances of dual-/triple-band terahertz metamaterial absorbers publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-019-2876-3 – volume: 122 year: 2021 ident: 10.1016/j.matdes.2023.111586_b0105 article-title: 3D printed cross-shaped terahertz metamaterials with single-band, multi-band and broadband absorption publication-title: Opt. Mater. doi: 10.1016/j.optmat.2021.111739 – volume: 29 start-page: 23331 year: 2021 ident: 10.1016/j.matdes.2023.111586_b0255 article-title: Bifunctional terahertz modulator for beam steering and broadband absorption based on a hybrid structure of graphene and vanadium dioxide publication-title: Opt. Express doi: 10.1364/OE.433364 – volume: 1 year: 2014 ident: 10.1016/j.matdes.2023.111586_b0085 article-title: Polarization-dependent, frequency-selective THz stereometamaterial perfect absorber publication-title: Phys. Rev. Appl. – volume: 4 start-page: A16 year: 2016 ident: 10.1016/j.matdes.2023.111586_b0235 article-title: Nonlinear terahertz metamaterial absorbers using GaAs publication-title: Photonics Res. doi: 10.1364/PRJ.4.000A16 – volume: 39 start-page: 383 year: 2022 ident: 10.1016/j.matdes.2023.111586_b0175 article-title: Dynamically dual-tunable dual-band to four-band metamaterial absorbers based on bulk Dirac semimetal and vanadium dioxide publication-title: J. Opt. Soc. Am. A doi: 10.1364/JOSAA.447229 – volume: 6 start-page: 830 year: 2019 ident: 10.1016/j.matdes.2023.111586_b0240 article-title: Optically modulated ultra-broadband all-silicon metamaterial terahertz absorbers publication-title: ACS Photonics doi: 10.1021/acsphotonics.8b01644 – volume: 130 year: 2021 ident: 10.1016/j.matdes.2023.111586_b0050 article-title: Terahertz cut-wire-pair metamaterial absorber publication-title: J. Appl. Phys. doi: 10.1063/5.0053648 – volume: 27 start-page: 22190 year: 2019 ident: 10.1016/j.matdes.2023.111586_b0120 article-title: Development of frequency-tunable multiple-band terahertz absorber based on control of polarization angles publication-title: Opt. Express doi: 10.1364/OE.27.022190 – volume: 101 year: 2012 ident: 10.1016/j.matdes.2023.111586_b0160 article-title: Triple-band terahertz metamaterial absorber: Design, experiment, and physical interpretation publication-title: Appl. Phys. Lett. doi: 10.1063/1.4757879 – volume: 12 start-page: 338 year: 2022 ident: 10.1016/j.matdes.2023.111586_b0170 article-title: Simulation and lithographic fabrication of a triple band terahertz metamaterial absorber coated on flexible polyethylene terephthalate substrate publication-title: Opt. Mater. Express doi: 10.1364/OME.447855 – volume: 144 year: 2021 ident: 10.1016/j.matdes.2023.111586_b0055 article-title: Thermally-stable grapheme metamaterial absorber with excellent tunability for high-performance refractive index sensing in the terahertz band publication-title: Opt. Laser Technol. doi: 10.1016/j.optlastec.2021.107409 – volume: 8 year: 2020 ident: 10.1016/j.matdes.2023.111586_b0185 article-title: A new compact quad-band metamaterial absorber using interlaced I/Square resonators: Design, fabrication, and characterization publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3009904 – volume: 25 year: 2021 ident: 10.1016/j.matdes.2023.111586_b0195 article-title: Realization of multi-band perfect absorber in graphene based on metal-insulator-metal metamaterials publication-title: Results Phys. doi: 10.1016/j.rinp.2021.104301 – volume: 27 start-page: 31435 year: 2019 ident: 10.1016/j.matdes.2023.111586_b0200 article-title: Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials publication-title: Opt. Express doi: 10.1364/OE.27.031435 – volume: 27 start-page: 7393 year: 2019 ident: 10.1016/j.matdes.2023.111586_b0065 article-title: Independently tunable multi-band and ultra-wide-band absorbers based on multilayer metal-graphene metamaterials publication-title: Opt. Express doi: 10.1364/OE.27.007393 – volume: 57 start-page: 6916 year: 2018 ident: 10.1016/j.matdes.2023.111586_b0130 article-title: Dual-band tunable perfect metamaterial absorber based on graphene publication-title: Appl. Opt. doi: 10.1364/AO.57.006916 – volume: 32 year: 2022 ident: 10.1016/j.matdes.2023.111586_b0215 article-title: Metamaterial wide-angle dual-band absorber with graphene surface publication-title: Surf. Interfaces – volume: 3 start-page: 1758 year: 2021 ident: 10.1016/j.matdes.2023.111586_b0045 article-title: A reconfigurable hyperbolic metamaterial perfect absorber publication-title: Nanoscale Adv. doi: 10.1039/D0NA00787K – volume: 222 year: 2022 ident: 10.1016/j.matdes.2023.111586_b0035 article-title: Electromagnetic shielding using flexible embroidery metamaterial absorbers: Design, analysis and experiments publication-title: Mater. Des. doi: 10.1016/j.matdes.2022.111079 – volume: 28 start-page: 6565 year: 2020 ident: 10.1016/j.matdes.2023.111586_b0250 article-title: Simultaneous realizations of absorber and transparent conducting metal in a single metamaterial publication-title: Opt. Express doi: 10.1364/OE.388066 – volume: 39 year: 2022 ident: 10.1016/j.matdes.2023.111586_b0060 article-title: The tunable single-/narrow-band terahertz metamaterial absorber through photoconductivity publication-title: Results Phys. doi: 10.1016/j.rinp.2022.105741 – volume: 7 start-page: 2101171 year: 2022 ident: 10.1016/j.matdes.2023.111586_b0015 article-title: Terahertz metamaterial absorbers publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202101171 – volume: 113 year: 2013 ident: 10.1016/j.matdes.2023.111586_b0165 article-title: Triple-band polarization-insensitive wide-angle ultra-thin planar spiral metamaterial absorber publication-title: J. Appl. Phys. doi: 10.1063/1.4809655 – volume: 26 start-page: 7148 year: 2018 ident: 10.1016/j.matdes.2023.111586_b0245 article-title: Broadband tunable terahertz absorber based on vanadium dioxide metamaterials publication-title: Opt. Express doi: 10.1364/OE.26.007148 – volume: 24, OP98 year: 2012 ident: 10.1016/j.matdes.2023.111586_b0005 article-title: Metamaterial electromagnetic absorbers publication-title: Adv. Mater. – volume: 8 start-page: 308 year: 2020 ident: 10.1016/j.matdes.2023.111586_b0125 article-title: Multiple-band terahertz metamaterial absorber using multiple separated sections of metallic rectangular patch publication-title: Front. Phys. doi: 10.3389/fphy.2020.00308 – volume: 118 year: 2015 ident: 10.1016/j.matdes.2023.111586_b0095 article-title: A bi-layered quad-band metamaterial absorber at terahertz frequencies publication-title: J. Appl. Phys. doi: 10.1063/1.4938110 – volume: 7 year: 2020 ident: 10.1016/j.matdes.2023.111586_b0180 article-title: An ultra-thin quad-band metamaterial absorber using symmetric bent-arrow shaped resonator for sensing and imaging in defense applications publication-title: Mater. Res. Express doi: 10.1088/2053-1591/abc3a3 – volume: 7 start-page: 1800995 year: 2019 ident: 10.1016/j.matdes.2023.111586_b0010 article-title: Broadband metamaterial absorbers publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201800995 – volume: 100 year: 2008 ident: 10.1016/j.matdes.2023.111586_b0020 article-title: Perfect metamaterial absorber publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.207402 – volume: 64 start-page: 1310 year: 2022 ident: 10.1016/j.matdes.2023.111586_b0040 article-title: Polarization-independent dual narrow-band perfect metamaterial absorber for optical communication publication-title: Microw. Opt. Technol. Lett. doi: 10.1002/mop.33281 – volume: 11 start-page: 4026 year: 2021 ident: 10.1016/j.matdes.2023.111586_b0230 article-title: Tunable terahertz metamaterial wideband absorber with liquid crystal publication-title: Opt. Mater. Express doi: 10.1364/OME.444899 – volume: 8 start-page: 11632 year: 2018 ident: 10.1016/j.matdes.2023.111586_b0110 article-title: Ultra-subwavelength thickness for dual/triple-band metamaterial absorber at very low frequency publication-title: Sci. Rep. doi: 10.1038/s41598-018-29896-4 – volume: 22 start-page: 2892 year: 2022 ident: 10.1016/j.matdes.2023.111586_b0190 article-title: Cost-effective bull’s eye aperture-style multi-band metamaterial absorber at Sub-THz band: Design, numerical analysis, and physical interpretation publication-title: Sensors doi: 10.3390/s22082892 – volume: 128 year: 2021 ident: 10.1016/j.matdes.2023.111586_b0090 article-title: Quad-band polarization-insensitive metamaterial perfect absorber based on bilayer graphene metasurface publication-title: Phys. E doi: 10.1016/j.physe.2021.114621 – volume: 51 year: 2018 ident: 10.1016/j.matdes.2023.111586_b0115 article-title: A dual-band metamaterial absorber with adjacent absorption peaks publication-title: J. Phys. D Appl. Phys. doi: 10.1088/1361-6463/aad7e1 – volume: 24 start-page: 1518 year: 2016 ident: 10.1016/j.matdes.2023.111586_b0135 article-title: Dual-band tunable perfect metamaterial absorber in the terahertz range publication-title: Opt. Express doi: 10.1364/OE.24.001518 – volume: 221 year: 2022 ident: 10.1016/j.matdes.2023.111586_b0220 article-title: Recent and emerging applications of graphene-based metamaterials in electromagnetics publication-title: Mater. Des. doi: 10.1016/j.matdes.2022.110920 – volume: 25 start-page: 32280 year: 2017 ident: 10.1016/j.matdes.2023.111586_b0225 article-title: Triple-band tunable perfect terahertz metamaterial absorber with liquid crystal publication-title: Opt. Express doi: 10.1364/OE.25.032280 – volume: 14 year: 2020 ident: 10.1016/j.matdes.2023.111586_b0150 article-title: Ultrathin terahertz triple-band metamaterial absorbers: Consideration of interlayer coupling publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.14.054021 – volume: 28 start-page: 2037 year: 2020 ident: 10.1016/j.matdes.2023.111586_b0260 article-title: Terahertz switching between broadband absorption and narrowband absorption publication-title: Opt. Express doi: 10.1364/OE.376085 – volume: 5 start-page: 4370 year: 2017 ident: 10.1016/j.matdes.2023.111586_b0210 article-title: An investigation on compact ultra-thin triple band polarization independent metamaterial absorber for microwave frequency applications publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2675439 – volume: 27 start-page: 5217 year: 2019 ident: 10.1016/j.matdes.2023.111586_b0070 article-title: A dual band and tunable perfect absorber based on dual gratings-coupled graphene-dielectric multilayer structures publication-title: Opt. Express doi: 10.1364/OE.27.005217 – volume: 30 start-page: 44229 year: 2022 ident: 10.1016/j.matdes.2023.111586_b0025 article-title: Ultra-thin deep ultraviolet perfect absorber using an Al/TiO2/AIN system publication-title: Opt. Express doi: 10.1364/OE.474847 – volume: 29 start-page: 21551 year: 2021 ident: 10.1016/j.matdes.2023.111586_b0270 article-title: Switchable terahertz metamaterial absorber with broadband absorption and multiband absorption publication-title: Opt. Express doi: 10.1364/OE.432967 – volume: 121 year: 2017 ident: 10.1016/j.matdes.2023.111586_b0100 article-title: Ultra-thin narrow-band, complementary narrow-band, and dual-band metamaterial absorbers for applications in the THz regime publication-title: J. Appl. Phys. doi: 10.1063/1.4975687 – volume: 7 year: 2020 ident: 10.1016/j.matdes.2023.111586_b0145 article-title: Experimental verification of multi-band metamaterial absorber with double structured layers publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ab7e4d – volume: 49 year: 2016 ident: 10.1016/j.matdes.2023.111586_b0075 article-title: Theoretical model of homogeneous metal-insulator-metal perfect multi-band absorbers for the visible spectrum publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/49/5/055104 – volume: 223 year: 2022 ident: 10.1016/j.matdes.2023.111586_b0275 article-title: A thermally activated VO2-based attenuator with SRR structure publication-title: Mater. Des. doi: 10.1016/j.matdes.2022.111260 – volume: 26 start-page: 16769 year: 2018 ident: 10.1016/j.matdes.2023.111586_b0030 article-title: Tailoring optical responses of infrared plasmonic metamaterial absorbers by optical phonons publication-title: Opt. Express doi: 10.1364/OE.26.016769 – volume: 32 start-page: 74 year: 2018 ident: 10.1016/j.matdes.2023.111586_b0205 article-title: A multi-band terahertz metamaterial absorber based on a Π and U-shaped structure publication-title: Photonics and Nanostructures-Fundamentals Appl. doi: 10.1016/j.photonics.2018.10.008 |
SSID | ssj0022734 |
Score | 2.5904374 |
Snippet | [Display omitted]
•A new strategy is presented to design multiple-band terahertz metamaterial absorber.•Quad-band absorption is realized, the number of... Multiple-frequency-band metamaterial absorbers possess great application prospects, which are usually achieved by vertically stacking or coplanar arranging... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 111586 |
SubjectTerms | Multiple-band absorption Terahertz metamaterials Toothed resonator Tunable properties |
SummonAdditionalLinks | – databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gIHVF5iaUE-cI3WsR07PpaWagHRC1TqLfL4UW1pN6s0HGj_PJ44WS0XkDjGsRNrZjT-ZjTzmZD3oJnmrhSFUyk2kc7YonZGF8EpBkw4MAybk7-eq-WF_HxZXe6Rk6kXBssqR9-fffrgrceRxSjNxWa1WnxL0YNEevIEogdk84jsc2FUNSP7x5--LM-3cRcyuORUC1L06WrqoBvKvBIu9AF5u7lA91FhU_XOCTUQ-e8cVDuHz9kBeTqiRnqcN_aM7IX1c_Jkh0vwBXk4HWoxaBvpVCRYxC4XSv8qwK49xWbjpKL-nt6G3qYtDdZHLdy1HSQYSDEpS62_xqYquAn5zeBT6CbYH3cUq-SvaN9i25anKVLH3HvbvSQXZx-_nyyL8WaFwglZ90X02lrjSxVYhOgleGZ0BRyEDKHWxspSe1F6nuJDV0XlmRNRg_K8dlymCOcVma3bdXhNqDEVeDAOlFYylrGOCRJ5aS13Vc2CmBMxSbNxI-043n5x00z1ZddN1kGDOmiyDuak2K7aZNqNf8z_gIrazkXS7GGg7a6a0WoaZkBG6YNhLErDwUBZQ8I7ZWBJKsbMiZ7U3Pxhg-lTq7_-_s1_rzwkj_EpJ3WOyKzvfoa3Ceb08G40499O5v44 priority: 102 providerName: Elsevier |
Title | Design of multiple-frequency-band terahertz metamaterial absorbers with adjustable absorption peaks using toothed resonator |
URI | https://dx.doi.org/10.1016/j.matdes.2023.111586 https://doaj.org/article/09b4f4de900f492b9b18b1291e034899 |
Volume | 225 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqemkPCFoQSwH50KtVJ3bi-Li8tLQqpyJxizx-VCywWe2GA-XP1xMnKCf2wjUP2_KMPN-MvvlMyHdQXOU2E8yWMTeRVhtWWa2YtyUHLixojs3Jv6_L2Y38eVvcjq76Qk5YkgdOG_eDa5BBOq85D1LnoCGrIAapzHMhY7KApy_XfEim-lQLRVtSdQVV-VQxNM11zK4IBZ1Hqe5c4IlRYB_1KCh12v2j2DSKN5c7ZLsHinSaFrhLPvjFF_J5JB_4lbycd_QL2gQ68AJZWCVu9DMDs3AU-4ujVdp_9NG3Ji6pczhqYN2sICI_inVYatwc-6jgwac33TFCl97crykS4__StsFOLUdjco7l9ma1R24uL_6czVh_mQKzcZ9aFpwyRrus9DxAcBIc16qAHIT0vlLayEw5kbk8poS2CKXjVgQFpcsrm8uY1OyTrUWz8AeEal2AA22hVKUMWahCREFOGpPbouJeTIgYdrO2vdI4XnjxUA-UsnmdbFCjDepkgwlhr38tk9LGhu9P0VCv36JOdvcgek_de0-9yXsmRA1mrnvIkaBEHOruzekP32P6b-QTDplKOkdkq109-eMIclo4IR-nV79m1yedX_8Hotz8hQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbK9gAcKp5iKQ8fuFrrJE4cH0uh2tJ2L7RSb5bHj2rbslml4UD75_HEyWq5gMTVj8SaGY2_Gc18JuQTSC5zmxXMVjE2EVYZVlslmbcVB15YUBybk88W1fxCfLssL3fI4dgLg2WVg-9PPr331sPIbJDmbL1czr7H6EEgPXkE0T2yeUR2RRmjvQnZPTg-mS82cRcyuKRUC1L0yXLsoOvLvCIudB55u_MC3UeJTdVbN1RP5L91UW1dPkfPyN6AGulBOthzsuNXL8jTLS7Bl-ThS1-LQZtAxyJBFtpUKP2LgVk5is3GUUXdPf3hOxOP1FsfNXDXtBBhIMWkLDXuGpuq4Nanmd6n0LU3N3cUq-SvaNdg25ajMVLH3HvTviIXR1_PD-dseFmB2ULUHQtOGqNcVnkeIDgBjitZQg6F8L6WyohMuiJzeYwPbRkqx20RJFQur20uYoTzmkxWzcq_IVSpEhwoC5WsRMhCHSIkcsKY3JY198WUFKM0tR1ox_H1i1s91pdd66QDjTrQSQdTwja71ol24x_rP6OiNmuRNLsfaNorPViN5gpEEM4rzoNQOSjIaoh4J_M8SkWpKZGjmvUfNhg_tfzr79_-986P5PH8_OxUnx4vTvbJE5xJCZ53ZNK1P_37CHk6-DCY9G9jAAE0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+multiple-frequency-band+terahertz+metamaterial+absorbers+with+adjustable+absorption+peaks+using+toothed+resonator&rft.jtitle=Materials+%26+design&rft.au=Ben-Xin+Wang&rft.au=Guiyuan+Duan&rft.au=Chongyang+Xu&rft.au=Jieying+Jiang&rft.date=2023-01-01&rft.pub=Elsevier&rft.issn=0264-1275&rft.volume=225&rft.spage=111586&rft_id=info:doi/10.1016%2Fj.matdes.2023.111586&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_09b4f4de900f492b9b18b1291e034899 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0264-1275&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0264-1275&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0264-1275&client=summon |