Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing

The geeSEBAL application estimates and displays evapotranspiration maps and times series based on Landsat images and global meteorological data from ERA5 Land reanalysis. Codes and applications are available at https://github.com/et-brasil/geesebal and https://etbrasil.org/geesebal, respectively. [D...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 178; pp. 81 - 96
Main Authors Laipelt, Leonardo, Henrique Bloedow Kayser, Rafael, Santos Fleischmann, Ayan, Ruhoff, Anderson, Bastiaanssen, Wim, Erickson, Tyler A., Melton, Forrest
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The geeSEBAL application estimates and displays evapotranspiration maps and times series based on Landsat images and global meteorological data from ERA5 Land reanalysis. Codes and applications are available at https://github.com/et-brasil/geesebal and https://etbrasil.org/geesebal, respectively. [Display omitted] Accurate estimation of evapotranspiration (ET) is essential for several applications in water resources management. ET models using remote sensing data have flourished in recent years allowing spatial and temporal assessments at unprecedented resolutions. This study presents geeSEBAL, a new tool for automated estimation of ET, based on the Surface Energy Balance Algorithm for Land (SEBAL) and a simplified version of the CIMEC (Calibration using Inverse Modeling at Extreme Conditions) process for the endmembers selection, developed within the Google Earth Engine (GEE) environment. The tool framework is introduced, and case studies across multiple biomes in Brazil are presented by comparing daily ET estimates with eddy covariance (EC) data from 10 flux towers. Based on 224 Landsat images using ERA5 Land as meteorological inputs, daily ET estimates of geeSEBAL yielded an average root mean squared difference (RMSD) of 0.67 mm day−1 when compared to EC data corrected for the energy balance closure. Additional analyses indicate a low geeSEBAL sensitivity to meteorological inputs, yielding an average RMSD of 0.71 mm day−1 when driven by in situ meteorological measurements. On the other hand, we found a higher sensitivity of the automated CIMEC algorithm to the selection of endmembers for internal calibration. For instance, by adjusting the endmembers percentiles to tropical biomes we found an error that was 36% lower compared to the standard CIMEC percentiles. Finally, we assessed the long-term effects (1984–2020) of land cover changes on surface energy fluxes and water use in agriculture for key areas in Brazil, from deforested areas in the Amazon to irrigated crops in the Pampas and Cerrado biomes. A comparison with a land surface temperature-based (SSEBop) and a vegetation-based (MOD16) model was also performed to assess relative advantages and disadvantages. This analysis showed that geeSEBAL has a significant potential for long-term assessment of ET in data-scarce areas, due to its lower sensitivity to meteorological inputs. geeSEBAL codes are written in Python and JavaScript and are freely available on GitHub (https://github.com/et-brasil/geesebal). geeSEBAL also includes a graphical user interface (https://etbrasil.org/geesebal), allowing important advances in water resources management at regional scales.
AbstractList The geeSEBAL application estimates and displays evapotranspiration maps and times series based on Landsat images and global meteorological data from ERA5 Land reanalysis. Codes and applications are available at https://github.com/et-brasil/geesebal and https://etbrasil.org/geesebal, respectively. [Display omitted] Accurate estimation of evapotranspiration (ET) is essential for several applications in water resources management. ET models using remote sensing data have flourished in recent years allowing spatial and temporal assessments at unprecedented resolutions. This study presents geeSEBAL, a new tool for automated estimation of ET, based on the Surface Energy Balance Algorithm for Land (SEBAL) and a simplified version of the CIMEC (Calibration using Inverse Modeling at Extreme Conditions) process for the endmembers selection, developed within the Google Earth Engine (GEE) environment. The tool framework is introduced, and case studies across multiple biomes in Brazil are presented by comparing daily ET estimates with eddy covariance (EC) data from 10 flux towers. Based on 224 Landsat images using ERA5 Land as meteorological inputs, daily ET estimates of geeSEBAL yielded an average root mean squared difference (RMSD) of 0.67 mm day−1 when compared to EC data corrected for the energy balance closure. Additional analyses indicate a low geeSEBAL sensitivity to meteorological inputs, yielding an average RMSD of 0.71 mm day−1 when driven by in situ meteorological measurements. On the other hand, we found a higher sensitivity of the automated CIMEC algorithm to the selection of endmembers for internal calibration. For instance, by adjusting the endmembers percentiles to tropical biomes we found an error that was 36% lower compared to the standard CIMEC percentiles. Finally, we assessed the long-term effects (1984–2020) of land cover changes on surface energy fluxes and water use in agriculture for key areas in Brazil, from deforested areas in the Amazon to irrigated crops in the Pampas and Cerrado biomes. A comparison with a land surface temperature-based (SSEBop) and a vegetation-based (MOD16) model was also performed to assess relative advantages and disadvantages. This analysis showed that geeSEBAL has a significant potential for long-term assessment of ET in data-scarce areas, due to its lower sensitivity to meteorological inputs. geeSEBAL codes are written in Python and JavaScript and are freely available on GitHub (https://github.com/et-brasil/geesebal). geeSEBAL also includes a graphical user interface (https://etbrasil.org/geesebal), allowing important advances in water resources management at regional scales.
Accurate estimation of evapotranspiration (ET) is essential for several applications in water resources management. ET models using remote sensing data have flourished in recent years allowing spatial and temporal assessments at unprecedented resolutions. This study presents geeSEBAL, a new tool for automated estimation of ET, based on the Surface Energy Balance Algorithm for Land (SEBAL) and a simplified version of the CIMEC (Calibration using Inverse Modeling at Extreme Conditions) process for the endmembers selection, developed within the Google Earth Engine (GEE) environment. The tool framework is introduced, and case studies across multiple biomes in Brazil are presented by comparing daily ET estimates with eddy covariance (EC) data from 10 flux towers. Based on 224 Landsat images using ERA5 Land as meteorological inputs, daily ET estimates of geeSEBAL yielded an average root mean squared difference (RMSD) of 0.67 mm day⁻¹ when compared to EC data corrected for the energy balance closure. Additional analyses indicate a low geeSEBAL sensitivity to meteorological inputs, yielding an average RMSD of 0.71 mm day⁻¹ when driven by in situ meteorological measurements. On the other hand, we found a higher sensitivity of the automated CIMEC algorithm to the selection of endmembers for internal calibration. For instance, by adjusting the endmembers percentiles to tropical biomes we found an error that was 36% lower compared to the standard CIMEC percentiles. Finally, we assessed the long-term effects (1984–2020) of land cover changes on surface energy fluxes and water use in agriculture for key areas in Brazil, from deforested areas in the Amazon to irrigated crops in the Pampas and Cerrado biomes. A comparison with a land surface temperature-based (SSEBop) and a vegetation-based (MOD16) model was also performed to assess relative advantages and disadvantages. This analysis showed that geeSEBAL has a significant potential for long-term assessment of ET in data-scarce areas, due to its lower sensitivity to meteorological inputs. geeSEBAL codes are written in Python and JavaScript and are freely available on GitHub (https://github.com/et-brasil/geesebal). geeSEBAL also includes a graphical user interface (https://etbrasil.org/geesebal), allowing important advances in water resources management at regional scales.
Author Henrique Bloedow Kayser, Rafael
Melton, Forrest
Laipelt, Leonardo
Bastiaanssen, Wim
Santos Fleischmann, Ayan
Erickson, Tyler A.
Ruhoff, Anderson
Author_xml – sequence: 1
  givenname: Leonardo
  surname: Laipelt
  fullname: Laipelt, Leonardo
  organization: Institute of Hydraulic Research, Federal University of Rio Grande do Sul, Brazil
– sequence: 2
  givenname: Rafael
  surname: Henrique Bloedow Kayser
  fullname: Henrique Bloedow Kayser, Rafael
  organization: Institute of Hydraulic Research, Federal University of Rio Grande do Sul, Brazil
– sequence: 3
  givenname: Ayan
  surname: Santos Fleischmann
  fullname: Santos Fleischmann, Ayan
  organization: Institute of Hydraulic Research, Federal University of Rio Grande do Sul, Brazil
– sequence: 4
  givenname: Anderson
  surname: Ruhoff
  fullname: Ruhoff, Anderson
  organization: Institute of Hydraulic Research, Federal University of Rio Grande do Sul, Brazil
– sequence: 5
  givenname: Wim
  surname: Bastiaanssen
  fullname: Bastiaanssen, Wim
  organization: IHE Delft Institute for Water Education, Delft, Netherlands
– sequence: 6
  givenname: Tyler A.
  surname: Erickson
  fullname: Erickson, Tyler A.
  organization: Google Inc., CA, United States
– sequence: 7
  givenname: Forrest
  surname: Melton
  fullname: Melton, Forrest
  organization: Earth Science Division, NASA Ames Research Center, CA, United States
BookMark eNqNkD1v2zAURYkgBeKk_Q3h2EUqP0SKGjq4gZsGMNAh6UxQ1JNMQyJVkgrQfx-5DjJkaYeHO7x77nCu0aUPHhC6paSkhMovx9KlOabjeiUjjJZElISqC7ShqmaFYlxcog1pWFWwmsordJ3SkRBChVQbNO6DH4oMccJT8C6H6PyAQ4_h2cwhR-PT7KLJLni8pNMvHwA_7r5t99iMw1rPhwkb3-H7EIYR8M7EfMA7PzgP2I5h6bAN07zklf2IPvRmTPDpNW_Qr--7p7sfxf7n_cPddl9YXqlc9E3bSkKaqm-pstB0vSK8MqLiQtG2rrmBRjTUCMl7y7tWCmCsV0CUMsQQwW_Q5_PuHMPvBVLWk0sWxtF4CEvSTHJZMSUauVbrc9XGkFKEXs_RTSb-0ZTok1991G9-9cmvJkKvflfy6zvSuvxX1GrNjf_Bb888rCaeHUSdrANvoXMRbNZdcP_ceAGogqEz
CitedBy_id crossref_primary_10_3390_rs15194894
crossref_primary_10_1080_23311916_2022_2100573
crossref_primary_10_1016_j_agwat_2024_108928
crossref_primary_10_3390_rs14215629
crossref_primary_10_1007_s13201_024_02345_6
crossref_primary_10_1016_j_jsames_2022_104061
crossref_primary_10_3390_rs14246253
crossref_primary_10_1016_j_isprsjprs_2023_08_004
crossref_primary_10_3390_rs16244812
crossref_primary_10_1109_TGRS_2024_3381696
crossref_primary_10_1007_s10668_024_04507_7
crossref_primary_10_1016_j_agwat_2024_109058
crossref_primary_10_1016_j_agwat_2024_109175
crossref_primary_10_3390_horticulturae10050515
crossref_primary_10_1016_j_scitotenv_2021_152134
crossref_primary_10_3390_atmos12111374
crossref_primary_10_1016_j_uclim_2021_100966
crossref_primary_10_24850_j_tyca_2024_04_04
crossref_primary_10_1016_j_scitotenv_2025_178530
crossref_primary_10_1080_10106049_2022_2068674
crossref_primary_10_1016_j_rse_2024_114447
crossref_primary_10_1109_TGRS_2024_3378287
crossref_primary_10_3390_rs14051201
crossref_primary_10_1186_s13717_024_00551_3
crossref_primary_10_17660_ActaHortic_2024_1409_8
crossref_primary_10_3390_agronomy12112629
crossref_primary_10_3390_rs16071242
crossref_primary_10_1080_02508060_2022_2117896
crossref_primary_10_3390_su16188025
crossref_primary_10_1016_j_agrformet_2024_110146
crossref_primary_10_1016_j_agrformet_2023_109408
crossref_primary_10_1016_j_agwat_2025_109372
crossref_primary_10_3390_rs17030395
crossref_primary_10_3390_rs17061016
crossref_primary_10_3390_w16233378
crossref_primary_10_1038_s44221_023_00181_7
crossref_primary_10_3390_rs16091573
crossref_primary_10_1016_j_rsase_2022_100907
crossref_primary_10_3390_agronomy13071937
crossref_primary_10_1016_j_isprsjprs_2021_10_024
crossref_primary_10_1007_s00271_024_00941_7
crossref_primary_10_1029_2023WR035234
crossref_primary_10_3390_e24121784
crossref_primary_10_3390_rs16020361
crossref_primary_10_1016_j_isprsjprs_2021_08_015
crossref_primary_10_1016_j_isprsjprs_2025_03_003
crossref_primary_10_1016_j_jsames_2024_104899
crossref_primary_10_48123_rsgis_1126221
crossref_primary_10_1016_j_agwat_2024_109066
crossref_primary_10_3390_hydrology11030039
crossref_primary_10_3390_f14040828
crossref_primary_10_5194_gmd_17_4229_2024
crossref_primary_10_1016_j_scs_2024_105629
crossref_primary_10_1016_j_jhydrol_2025_132826
crossref_primary_10_1016_j_jclepro_2025_144962
crossref_primary_10_1016_j_isprsjprs_2024_10_019
crossref_primary_10_3390_rs16183404
crossref_primary_10_1007_s10531_024_02979_7
crossref_primary_10_1109_JSTARS_2025_3539822
crossref_primary_10_5194_hess_26_5899_2022
crossref_primary_10_3390_fractalfract7060466
crossref_primary_10_1007_s41651_025_00218_3
crossref_primary_10_1080_22797254_2023_2259244
crossref_primary_10_1007_s10661_023_11852_z
crossref_primary_10_1016_j_jhydrol_2024_131862
crossref_primary_10_1016_j_agrformet_2021_108775
crossref_primary_10_1038_s41467_023_42467_0
crossref_primary_10_3390_ijgi12090370
crossref_primary_10_1111_1752_1688_12956
crossref_primary_10_3390_rs16173280
crossref_primary_10_4995_raet_2024_21467
crossref_primary_10_1016_j_rse_2024_114489
crossref_primary_10_1080_01431161_2023_2238327
crossref_primary_10_3390_w16131762
crossref_primary_10_1016_j_jhydrol_2025_133062
crossref_primary_10_1016_j_rse_2022_112982
crossref_primary_10_1016_j_agwat_2024_109000
crossref_primary_10_1016_j_physa_2023_129163
crossref_primary_10_3390_rs14143440
crossref_primary_10_1016_j_rsase_2022_100834
crossref_primary_10_1016_j_rse_2023_113689
crossref_primary_10_1016_j_ejrh_2024_101674
crossref_primary_10_1038_s41598_023_38563_2
crossref_primary_10_1117_1_JRS_16_044516
crossref_primary_10_1016_j_isprsjprs_2023_12_001
crossref_primary_10_3390_agronomy12071518
crossref_primary_10_1016_j_scitotenv_2022_155490
crossref_primary_10_3390_rs14194934
crossref_primary_10_1016_j_agwat_2024_108864
crossref_primary_10_1016_j_agwat_2024_109036
crossref_primary_10_1016_j_agwat_2023_108141
crossref_primary_10_3390_agronomy12040864
crossref_primary_10_1016_j_jhydrol_2025_132798
crossref_primary_10_3390_rs16111829
crossref_primary_10_17660_ActaHortic_2024_1395_3
crossref_primary_10_3390_w16202978
crossref_primary_10_1088_1755_1315_1350_1_012039
crossref_primary_10_1016_j_agwat_2022_107965
crossref_primary_10_1111_gwat_13336
crossref_primary_10_4995_raet_2024_20158
crossref_primary_10_1016_j_jhydrol_2022_127788
crossref_primary_10_1007_s00271_022_00775_1
Cites_doi 10.1016/j.rse.2006.07.006
10.1127/0941-2948/2013/0507
10.3390/rs12172735
10.1016/j.jsames.2017.01.002
10.1029/2007JG000641
10.1029/2007JG000640
10.1007/s10795-005-8138-9
10.3390/rs12071108
10.3390/rs8030215
10.1046/j.1466-822X.1999.00142.x
10.1007/s12205-012-0006-1
10.3390/rs8120983
10.1111/j.1365-2435.2003.00790.x
10.5194/gmd-10-1903-2017
10.5194/hess-15-223-2011
10.1016/j.agwat.2021.106763
10.3390/w11091911
10.1016/S0022-1694(98)00253-4
10.1016/j.rse.2019.04.026
10.1016/S0168-1923(02)00109-0
10.1016/j.agrformet.2014.12.008
10.1016/j.jhydrol.2016.02.026
10.1061/(ASCE)0733-9437(2007)133:4(380)
10.1016/j.rse.2012.12.007
10.1029/2019WR025196
10.1016/j.agwat.2020.106197
10.1890/06-0922.1
10.1175/JTECH-D-11-00103.1
10.3390/rs4030703
10.1061/(ASCE)1084-0699(2008)13:2(51)
10.3390/w10121864
10.1109/JSTARS.2012.2214474
10.1016/j.rse.2011.08.025
10.13031/aea.12614
10.1080/01431161.2011.632655
10.1002/2016WR020175
10.1080/07900629949005
10.1002/2013WR014240
10.1016/j.jhydrol.2019.05.021
10.1002/2016WR019107
10.1111/jawr.12054
10.1590/S1676-06032002000100009
10.1007/s00704-004-0041-z
10.1061/(ASCE)0733-9437(2005)131:1(85)
10.1016/j.rse.2018.12.033
10.1002/9781119951933
10.1111/j.1365-2486.2008.01813.x
10.3390/rs10111695
10.1002/qj.3803
10.1111/gcb.14615
10.1016/j.isprsjprs.2017.03.022
10.1002/wat2.1168
10.15809/irriga.2019v1n1p56-61
10.3390/rs9010046
10.1016/j.agrformet.2006.05.012
10.1016/S0022-1694(99)00202-4
10.1016/j.rse.2017.05.005
10.1016/S0168-1923(00)00123-4
10.1016/S0022-1694(98)00254-6
10.1002/grl.50450
10.1002/joc.5086
10.1002/2014WR015619
10.1016/j.rse.2017.05.009
10.1038/nclimate3226
10.1088/1748-9326/aa5986
10.1111/jawr.12056
10.1016/j.rse.2017.03.026
10.1016/j.rse.2013.07.013
10.1016/j.rse.2011.02.019
10.1111/jawr.12057
10.3390/s20071915
10.5194/essd-13-447-2021
10.1016/j.agrformet.2013.01.008
10.1029/2011JD016542
10.1029/2001JD000676
10.1016/j.agrformet.2012.05.011
10.1002/hyp.8408
10.3133/sir20175087
10.1016/j.rse.2007.06.025
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2021.05.018
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 96
ExternalDocumentID 10_1016_j_isprsjprs_2021_05_018
S0924271621001519
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c348t-f9bb60094fb18ce9df8034a543581b773ae9591a563fc3db65e22f8e088a0a053
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Fri Jul 11 10:26:26 EDT 2025
Thu Apr 24 23:01:41 EDT 2025
Tue Jul 01 03:46:46 EDT 2025
Fri Feb 23 02:42:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Meteorological reanalysis
Google earth engine
geeSEBAL
Cloud computation
ERA5 land
Landsat
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-f9bb60094fb18ce9df8034a543581b773ae9591a563fc3db65e22f8e088a0a053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636428596
PQPubID 24069
PageCount 16
ParticipantIDs proquest_miscellaneous_2636428596
crossref_primary_10_1016_j_isprsjprs_2021_05_018
crossref_citationtrail_10_1016_j_isprsjprs_2021_05_018
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2021_05_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
20210801
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Martens, Miralles, Lievens, van der Schalie, de Jeu, Fernández-Prieto, Beck, Dorigo, Verhoest (b0250) 2017; 10
Senay, Kagone, Velpuri (b0370) 2020
Santos, da Silva, Silva, Brasil Neto (b0355) 2017; 74
Ke, Im, Park, Gong (b0210) 2016; 8
Senay, Bohms, Singh, Gowda, Velpuri, Alemu, Verdin (b0365) 2013; 49
Senay, Schauer, Friedrichs, Velpuri, Singh (b0375) 2017; 202
Velpuri, Senay, Singh, Bohms, Verdin (b0425) 2013; 139
Wilson, Goldstein, Falge, Aubinet, Baldocchi, Berbigier, Bernhofer, Ceulemans, Dolman, Field, Grelle, Ibrom, Law, Kowalski, Meyers, Moncrieff, Monson, Oechel, Tenhunen, Valentini, Verma (b0445) 2002; 113
Allen, Trezza, Tasumi (b0025) 2006; 139
Muñoz-Sabater, Dutra, Agustí-Panareda, Albergel, Arduini, Balsamo, Boussetta, Choulga, Harrigan, Hersbach, Martens, Miralles, Piles, Rodríguez-Fernández, Zsoter, Buontempo, Thépaut (b0295) 2021; 2021
Pereira, L.S., Paredes, P., Melton, F., Johnson, L., Wang, T., López-Urrea, R., Cancela, J.J.,Allen, R.G., 2020. Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data. Agricultural Water Management, 241, 106197.
da Rocha, Freitas, Rosolem, Juárez, Tannus, Ligo, Cabral, Dias (b0320) 2002; 2
Senay (b0360) 2018; 34
Tang, Li, Chen, Jia, Li, Sun (b0405) 2013; 174–175
Bhattarai, Mallick, Stuart, Vishwakarma, Niraula, Sen, Jain (b0085) 2019; 229
Biggs, Marshall, Messina (b0105) 2016; 52
Yang, Long, Guan, Liang, Simmons, Batelaan (b0450) 2015; 51
Yang, Long, Shang (b0455) 2013; 40
Saboori, Mokhtari, Afrasiabian, Daccache, Alaghmand, Mousivand (b0345) 2021; 248
Wagle, Bhattarai, Gowda, Kakani (b0440) 2017; 128
Fisher, Tu, Baldocchi (b0180) 2008; 112
Ruhoff, Paz, Collischonn, Aragão, Rocha, Malhi, Y. (b0335) 2012; 4
Ershadi, McCabe, Evans, Walker (b0160) 2013; 131
Jaafar, H.H., Ahmad, F.A., 2019. Time series trends of Landsat-based ET using automated calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon. Remote Sens. Environ. https://doi.org/https://doi.org/10.1016/j.rse.2018.12.033.
Noojipady, Morton, Macedo, Victoria, Huang, Gibbs, Bolfe (b0300) 2017; 12
Melton, Johnson, Lund, Pierce, Michaelis, Hiatt, Guzman, Adhikari, Purdy, Rosevelt, Votava (b0265) 2012; 5
Su (b0400) 1988; 6
Allen, Burnett, Kramber, Huntington, Kjaersgaard, Kilic, Kelly, Trezza (b0015) 2013; 49
Anderson, Allen, Morse, Kustas (b0045) 2012; 122
Shuttleworth, W.J., 2012. Terrestrial Hydrometeorology, 1o. ed. John Wiley & Sons, Ltd, Chichester, UK. https://doi.org/10.1002/9781119951933.
Menne, Durre, Vose, Gleason, Houston (b0270) 2012; 29
Vieira, I.M., 2011. Tomada de decisão para comercialização de arroz em Santa Vitória do Palmar-RS. Universidade Federal do Rio Grande do Sul. Escola de Administração. Curso de Gestão de Negócios Financeiros., Porto Alegre.
Biggs, Petropoulos, Velpuri, Marshall, Glenn, Nagler, Messina (b0100) 2015
Running, S., Mu, Q., Zhao, M., 2017. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006. https://doi.org/https://doi.org/10.5067/MODIS/MOD16A2.006.
Elnashar, Wang, Wu, Zhu, Zeng (b0155) 2021; 13
Mu, Zhao, Running (b0290) 2011; 115
Alvares, Luiz, Sentelhas, de Moraes Gonçalves, Sparovek (b0035) 2013; 22
Lee, Kim (b0235) 2016; 8
Allen, R., Irmak, A., Trezza, R., Hendrickx, J.M.H., Bastiaanssen, W., Kjaersgaard, J., 2011. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 25, 4011–4027. https://doi.org/https://doi.org/10.1002/hyp.8408.
Moreira, A.A., Ruhoff, A.L., Roberti, D.R., Souza, V. de A., da Rocha, H.R., Paiva, R.C.D. de, 2019. Assessment of terrestrial water balance using remote sensing data in South America. J. Hydrol. 575, 131–147. https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.05.021.
Tasumi, Allen, Trezza (b0410) 2008; 13
Allen, Tasumi, Trezza (b0020) 2007; 133
Hersbach, Bell, Berrisford, Hirahara, Horányi, Muñoz-Sabater, Nicolas, Peubey, Radu, Schepers, Simmons, Soci, Abdalla, Abellan, Balsamo, Bechtold, Biavati, Bidlot, Bonavita, De Chiara, Dahlgren, Dee, Diamantakis, Dragani, Flemming, Forbes, Fuentes, Geer, Haimberger, Healy, Hogan, Hólm, Janisková, Keeley, Laloyaux, Lopez, Lupu, Radnoti, de Rosnay, Rozum, Vamborg, Villaume, Thépaut (b0200) 2020; 146
Laipelt, Ruhoff, Fleischmann, Kayser, Kich, da Rocha, Neale (b0230) 2020
Biudes, Vourlitis, Machado, de Arruda, Neves, de Almeida Lobo, Neale, de Souza Nogueira (b0110) 2015; 202
Zhang, Kimball, Running (b0465) 2016; 3
Borma, da Rocha, Cabral, von Randow, Collicchio, Kurzatkowski, Brugger, Freitas, Tannus, Oliveira, Rennó, Artaxo (b0115) 2009; 114
Dhungel, Barber (b0145) 2018; 10
Twine, Kustas, Norman, Cook, Houser, Meyers, Prueger, Starks, Wesely (b0420) 2000; 103
Allen, Pereira, Raes, Smith (b0010) 1998; 56 300
Li, Long, Han, Scanlon, Sun, Han, Hou (b0240) 2019; 55
Souza, C.M., Z. Shimbo, J., Rosa, M.R., Parente, L.L., A. Alencar, A., Rudorff, B.F.T., Hasenack, H., Matsumoto, M., G. Ferreira, L., Souza-Filho, P.W.M., de Oliveira, S.W., Rocha, W.F., Fonseca, A. V, Marques, C.B., Diniz, C.G., Costa, D., Monteiro, D., Rosa, E.R., Vélez-Martin, E., Weber, E.J., Lenti, F.E.B., Paternost, F.F., Pareyn, F.G.C., Siqueira, J. V, Viera, J.L., Neto, L.C.F., Saraiva, M.M., Sales, M.H., Salgado, M.P.G., Vasconcelos, R., Galano, S., Mesquita, V. V, Azevedo, T., 2020. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. . https://doi.org/10.3390/rs12172735.
Numata, Khand, Kjaersgaard, Cochrane, Silva (b0305) 2017; 9
Bastiaanssen, Menenti, Feddes, Holtslag (b0060) 1998; 212–213
Choragudi (b0130) 2011
Furley (b0195) 1999; 8
Bhattarai, Shaw, Quackenbush, Im, Niraula (b0095) 2016; 49
Morton, Huntington, Pohll, Allen, McGwire, Bassett (b0285) 2013; 49
Foken (b0190) 2008; 18
Bastiaanssen, Thiruvengadachari, Sakthivadivel, Molden (b0075) 1999; 15
von Randow, Manzi, Kruijt, de Oliveira, Zanchi, Silva, Hodnett, Gash, Elbers, Waterloo, Cardoso, Kabat (b0435) 2004; 78
Bastiaanssen (b0055) 2000; 229
Long, Singh, Li (b0245) 2011; 116
Rubert, Roberti, Pereira, Quadros, Campos Velho, Leal de Moraes (b0330) 2018; 10
Santos, Silva, Miranda, Miranda, Lloyd (b0350) 2003; 17
Brazilian Water Agency (b0120) 2020
Bhattarai, Dougherty, Marzen, Kalin (b0080) 2012; 3
Khanna, Medvigy, Fueglistaler, Walko (b0215) 2017; 7
Bastiaanssen, Noordman, Pelgrum, Davids, Thoreson, Allen (b0065) 2005; 131
Singh, Senay (b0385) 2016
Fisher, Malhi, Bonal, Da Rocha, De Araújo, Gamo, Goulden, Rano, Huete, Kondo, Kumagai, Loescher, Miller, Nobre, Nouvellon, Oberbauer, Panuthai, Roupsard, Saleska, Tanaka, Tanaka, Tu, Von Randow (b0170) 2009; 15
Tasumi, Trezza, Allen, Wright (b0415) 2005; 19
Kim, Hwang, Mu, Lee, Choi (b0220) 2012; 16
Fick, Hijmans (b0165) 2017; 37
Anderson, Kustas, Norman, Hain, Mecikalski, L, S., González-Dugo, M., Cammalleri, C., D’Urso, G., Pimstein, A., Gao, F. (b0040) 2011; 15
Chen, Senay, Singh, Verdin (b0125) 2016; 536
Foga, Scaramuzza, Guo, Zhu, Dilley, Beckmann, Schmidt, Dwyer, Joseph Hughes, Laue (b0185) 2017; 194
Araújo, A.C., Nobre, A.D., Kruijt, B., Elbers, J.A., Dallarosa, R., Stefani, P., von Randow, C., Manzi, A.O., Culf, A.D., Gash, J.H.C., Valentini, R., Kabat, P., 2002. Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site. J. Geophys. Res. Atmos. 107, LBA 58-1-LBA 58-20. https://doi.org/10.1029/2001JD000676.
McCabe, Wood (b0255) 2006; 105
Althoff, Rodrigues (b0030) 2019; 1
Bhattarai, Quackenbush, Im, Shaw (b0090) 2017; 196
Rocha, H., Manzi, A., Cabral, O., D. Miller, S., L. Goulden, M., Saleska, S., Restrepo-Coupe, N., Wofsy, S., Borma, L., Artaxo, P., Vourlitis, G., S. Nogueira, J., L. Cardoso, F., Nobre, A., Kruijt, B., Freitas, H., Von Randow, C., Aguiar, R., Maia, J., 2009. Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J. Geophys. Res. 114. https://doi.org/10.1029/2007JG000640.
Mokhtari, Ahmad, Hoveidi, Busu (b0275) 2013; 7
McShane, R.R., Driscoll, P.K., Sando, R., 2017. A Review of Surface Energy Balance Models for Estimating Actual Evapotranspiration with Remote Sensing at High Spatiotemporal Resolution over Large Extents, Scientific Investigations Report 2017-5087. Virginia. https://doi.org/https://doi.org/10.3133/sir20175087.
Souza, V. de A., Roberti, D.R., Ruhoff, A.L., Zimmer, T., Adamatti, D.S., Gonçalves, L.G.G. de, Diaz, M.B., Alves, R. de C.M., Moraes, O.L.L. de, 2019. Evaluation of MOD16 Algorithm over Irrigated Rice Paddy Using Flux Tower Measurements in Southern Brazil. Water 11, 1911. https://doi.org/10.3390/w11091911.
DiMiceli, C., Carroll, R., Sohlberg, R., Kim, D., Kelly, M., Townshend, J., 2015. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006. https://doi.org/https://doi.org/10.5067/MODIS/MOD44B.006.
Kiptala, Mohamed, Mul, der Zaag (b0225) 2013; 49
Oliveira, Von Randow, Manzi, Alvalá, Sá, Leitão, Souza (b0310) 2006; 21
Bastiaanssen, Pelgrum, Wang, Ma, Moreno, Roerink, van der Wal (b0070) 1998; 212–213
Yang, Shang, Jiang (b0460) 2012; 164
de Andrade, de Andrade Pinto, Ruhoff, Senay (b0140) 2021; 98
Dalmagro, Zanella de Arruda, Vourlitis, Lathuillière, de S. Nogueira, J., Couto, E.G., Johnson, M.S. (b0135) 2019; 25
Fisher, Melton, Middleton, Hain, Anderson, Allen, McCabe, Hook, Baldocchi, Townsend, Kilic, Tu, Miralles, Perret, Lagouarde, Waliser, Purdy, French, Schimel, Famiglietti, Stephens, Wood (b0175) 2017; 53
10.1016/j.isprsjprs.2021.05.018_b0280
Mu (10.1016/j.isprsjprs.2021.05.018_b0290) 2011; 115
Bastiaanssen (10.1016/j.isprsjprs.2021.05.018_b0060) 1998; 212–213
Allen (10.1016/j.isprsjprs.2021.05.018_b0010) 1998; 56 300
Singh (10.1016/j.isprsjprs.2021.05.018_b0385) 2016
Dhungel (10.1016/j.isprsjprs.2021.05.018_b0145) 2018; 10
Kim (10.1016/j.isprsjprs.2021.05.018_b0220) 2012; 16
McCabe (10.1016/j.isprsjprs.2021.05.018_b0255) 2006; 105
Morton (10.1016/j.isprsjprs.2021.05.018_b0285) 2013; 49
Allen (10.1016/j.isprsjprs.2021.05.018_b0015) 2013; 49
Rubert (10.1016/j.isprsjprs.2021.05.018_b0330) 2018; 10
Ke (10.1016/j.isprsjprs.2021.05.018_b0210) 2016; 8
Fisher (10.1016/j.isprsjprs.2021.05.018_b0170) 2009; 15
10.1016/j.isprsjprs.2021.05.018_b0315
Senay (10.1016/j.isprsjprs.2021.05.018_b0365) 2013; 49
Anderson (10.1016/j.isprsjprs.2021.05.018_b0040) 2011; 15
10.1016/j.isprsjprs.2021.05.018_b0395
Biggs (10.1016/j.isprsjprs.2021.05.018_b0105) 2016; 52
10.1016/j.isprsjprs.2021.05.018_b0430
Bastiaanssen (10.1016/j.isprsjprs.2021.05.018_b0075) 1999; 15
Choragudi (10.1016/j.isprsjprs.2021.05.018_b0130) 2011
Santos (10.1016/j.isprsjprs.2021.05.018_b0350) 2003; 17
Dalmagro (10.1016/j.isprsjprs.2021.05.018_b0135) 2019; 25
10.1016/j.isprsjprs.2021.05.018_b0050
Fisher (10.1016/j.isprsjprs.2021.05.018_b0175) 2017; 53
Menne (10.1016/j.isprsjprs.2021.05.018_b0270) 2012; 29
Alvares (10.1016/j.isprsjprs.2021.05.018_b0035) 2013; 22
Melton (10.1016/j.isprsjprs.2021.05.018_b0265) 2012; 5
Senay (10.1016/j.isprsjprs.2021.05.018_b0375) 2017; 202
Zhang (10.1016/j.isprsjprs.2021.05.018_b0465) 2016; 3
Fick (10.1016/j.isprsjprs.2021.05.018_b0165) 2017; 37
Lee (10.1016/j.isprsjprs.2021.05.018_b0235) 2016; 8
Furley (10.1016/j.isprsjprs.2021.05.018_b0195) 1999; 8
10.1016/j.isprsjprs.2021.05.018_b0325
Su (10.1016/j.isprsjprs.2021.05.018_b0400) 1988; 6
Borma (10.1016/j.isprsjprs.2021.05.018_b0115) 2009; 114
10.1016/j.isprsjprs.2021.05.018_b0205
Oliveira (10.1016/j.isprsjprs.2021.05.018_b0310) 2006; 21
Numata (10.1016/j.isprsjprs.2021.05.018_b0305) 2017; 9
Fisher (10.1016/j.isprsjprs.2021.05.018_b0180) 2008; 112
Foken (10.1016/j.isprsjprs.2021.05.018_b0190) 2008; 18
Martens (10.1016/j.isprsjprs.2021.05.018_b0250) 2017; 10
Khanna (10.1016/j.isprsjprs.2021.05.018_b0215) 2017; 7
Li (10.1016/j.isprsjprs.2021.05.018_b0240) 2019; 55
Senay (10.1016/j.isprsjprs.2021.05.018_b0370) 2020
10.1016/j.isprsjprs.2021.05.018_b0005
Allen (10.1016/j.isprsjprs.2021.05.018_b0020) 2007; 133
Althoff (10.1016/j.isprsjprs.2021.05.018_b0030) 2019; 1
Allen (10.1016/j.isprsjprs.2021.05.018_b0025) 2006; 139
Yang (10.1016/j.isprsjprs.2021.05.018_b0460) 2012; 164
10.1016/j.isprsjprs.2021.05.018_b0380
10.1016/j.isprsjprs.2021.05.018_b0260
Ershadi (10.1016/j.isprsjprs.2021.05.018_b0160) 2013; 131
Bhattarai (10.1016/j.isprsjprs.2021.05.018_b0095) 2016; 49
Brazilian Water Agency (10.1016/j.isprsjprs.2021.05.018_b0120) 2020
Tasumi (10.1016/j.isprsjprs.2021.05.018_b0410) 2008; 13
von Randow (10.1016/j.isprsjprs.2021.05.018_b0435) 2004; 78
Mokhtari (10.1016/j.isprsjprs.2021.05.018_b0275) 2013; 7
Senay (10.1016/j.isprsjprs.2021.05.018_b0360) 2018; 34
Long (10.1016/j.isprsjprs.2021.05.018_b0245) 2011; 116
Bhattarai (10.1016/j.isprsjprs.2021.05.018_b0085) 2019; 229
Ruhoff (10.1016/j.isprsjprs.2021.05.018_b0335) 2012; 4
Wilson (10.1016/j.isprsjprs.2021.05.018_b0445) 2002; 113
Noojipady (10.1016/j.isprsjprs.2021.05.018_b0300) 2017; 12
Biggs (10.1016/j.isprsjprs.2021.05.018_b0100) 2015
Laipelt (10.1016/j.isprsjprs.2021.05.018_b0230) 2020
Bhattarai (10.1016/j.isprsjprs.2021.05.018_b0080) 2012; 3
Kiptala (10.1016/j.isprsjprs.2021.05.018_b0225) 2013; 49
Elnashar (10.1016/j.isprsjprs.2021.05.018_b0155) 2021; 13
Anderson (10.1016/j.isprsjprs.2021.05.018_b0045) 2012; 122
Muñoz-Sabater (10.1016/j.isprsjprs.2021.05.018_b0295) 2021; 2021
Biudes (10.1016/j.isprsjprs.2021.05.018_b0110) 2015; 202
Santos (10.1016/j.isprsjprs.2021.05.018_b0355) 2017; 74
Hersbach (10.1016/j.isprsjprs.2021.05.018_b0200) 2020; 146
10.1016/j.isprsjprs.2021.05.018_b0390
10.1016/j.isprsjprs.2021.05.018_b0150
Chen (10.1016/j.isprsjprs.2021.05.018_b0125) 2016; 536
Wagle (10.1016/j.isprsjprs.2021.05.018_b0440) 2017; 128
Velpuri (10.1016/j.isprsjprs.2021.05.018_b0425) 2013; 139
Saboori (10.1016/j.isprsjprs.2021.05.018_b0345) 2021; 248
Bastiaanssen (10.1016/j.isprsjprs.2021.05.018_b0065) 2005; 131
Yang (10.1016/j.isprsjprs.2021.05.018_b0455) 2013; 40
Foga (10.1016/j.isprsjprs.2021.05.018_b0185) 2017; 194
Bhattarai (10.1016/j.isprsjprs.2021.05.018_b0090) 2017; 196
Tasumi (10.1016/j.isprsjprs.2021.05.018_b0415) 2005; 19
da Rocha (10.1016/j.isprsjprs.2021.05.018_b0320) 2002; 2
Bastiaanssen (10.1016/j.isprsjprs.2021.05.018_b0055) 2000; 229
10.1016/j.isprsjprs.2021.05.018_b0340
Yang (10.1016/j.isprsjprs.2021.05.018_b0450) 2015; 51
Twine (10.1016/j.isprsjprs.2021.05.018_b0420) 2000; 103
Bastiaanssen (10.1016/j.isprsjprs.2021.05.018_b0070) 1998; 212–213
de Andrade (10.1016/j.isprsjprs.2021.05.018_b0140) 2021; 98
Tang (10.1016/j.isprsjprs.2021.05.018_b0405) 2013; 174–175
References_xml – reference: Araújo, A.C., Nobre, A.D., Kruijt, B., Elbers, J.A., Dallarosa, R., Stefani, P., von Randow, C., Manzi, A.O., Culf, A.D., Gash, J.H.C., Valentini, R., Kabat, P., 2002. Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site. J. Geophys. Res. Atmos. 107, LBA 58-1-LBA 58-20. https://doi.org/10.1029/2001JD000676.
– volume: 7
  start-page: 200
  year: 2017
  end-page: 204
  ident: b0215
  article-title: Regional dry-season climate changes due to three decades of Amazonian deforestation
  publication-title: Nat. Clim. Chang.
– volume: 103
  start-page: 279
  year: 2000
  end-page: 300
  ident: b0420
  article-title: Correcting eddy-covariance flux underestimates over a grassland
  publication-title: Agric. For. Meteorol.
– volume: 131
  start-page: 85
  year: 2005
  end-page: 93
  ident: b0065
  article-title: SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions
  publication-title: J. Irrig. Drain. Eng.
– volume: 6
  year: 1988
  ident: b0400
  article-title: The surface energy balance system (SEBS) for estimation of turbulent heat fluxes
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 9
  year: 2017
  ident: b0305
  article-title: Evaluation of landsat-based METRIC modeling to provide high-spatial resolution evapotranspiration estimates for amazonian forests
  publication-title: Remote Sens.
– volume: 52
  start-page: 7311
  year: 2016
  end-page: 7326
  ident: b0105
  article-title: Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison
  publication-title: Water Resour. Res.
– volume: 2
  start-page: 1
  year: 2002
  end-page: 11
  ident: b0320
  article-title: Measurements of CO2 exchange over a woodland savanna (Cerrado Sensu stricto) in southeast Brasil
  publication-title: Biota Neotrop.
– volume: 194
  start-page: 379
  year: 2017
  end-page: 390
  ident: b0185
  article-title: Cloud detection algorithm comparison and validation for operational Landsat data products
  publication-title: Remote Sens. Environ.
– year: 2016
  ident: b0385
  article-title: Comparison of four different energy balance models for estimating evapotranspiration in the Midwestern United States
  publication-title: Water
– volume: 10
  start-page: 1903
  year: 2017
  end-page: 1925
  ident: b0250
  article-title: GLEAM v3: satellite-based land evaporation and root-zone soil moisture
  publication-title: Geosci. Model Dev.
– volume: 122
  start-page: 50
  year: 2012
  end-page: 65
  ident: b0045
  article-title: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources
  publication-title: Remote Sens. Environ.
– volume: 128
  start-page: 192
  year: 2017
  end-page: 203
  ident: b0440
  article-title: Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 105
  start-page: 271
  year: 2006
  end-page: 285
  ident: b0255
  article-title: Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors
  publication-title: Remote Sens. Environ.
– volume: 113
  start-page: 223
  year: 2002
  end-page: 243
  ident: b0445
  article-title: Energy balance closure at FLUXNET sites
  publication-title: Agric. For. Meteorol.
– volume: 202
  start-page: 98
  year: 2017
  end-page: 112
  ident: b0375
  article-title: Satellite-based water use dynamics using historical Landsat data (1984–2014) in the southwestern United States
  publication-title: Remote Sens. Environ.
– volume: 536
  start-page: 384
  year: 2016
  end-page: 399
  ident: b0125
  article-title: Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites
  publication-title: J. Hydrol.
– volume: 49
  start-page: 577
  year: 2013
  end-page: 591
  ident: b0365
  article-title: Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach
  publication-title: JAWRA J. Am. Water Resour. Assoc.
– volume: 22
  start-page: 711
  year: 2013
  end-page: 728
  ident: b0035
  article-title: Köppen’s climate classification map for Brazil
  publication-title: Meteorol. Zeitschrift
– volume: 37
  start-page: 4302
  year: 2017
  end-page: 4315
  ident: b0165
  article-title: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas
  publication-title: Int. J. Climatol.
– reference: Shuttleworth, W.J., 2012. Terrestrial Hydrometeorology, 1o. ed. John Wiley & Sons, Ltd, Chichester, UK. https://doi.org/10.1002/9781119951933.
– volume: 212–213
  start-page: 213
  year: 1998
  end-page: 229
  ident: b0070
  article-title: A remote sensing surface energy balance algorithm for land (SEBAL): 2
  publication-title: Validation. J. Hydrol.
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 50
  ident: b0295
  article-title: ERA5-Land: A state-of-the-art global reanalysis dataset for land applications
  publication-title: Earth Syst. Sci. Data Discuss.
– volume: 131
  start-page: 51
  year: 2013
  end-page: 62
  ident: b0160
  article-title: Effects of spatial aggregation on the multi-scale estimation of evapotranspiration
  publication-title: Remote Sens. Environ.
– year: 2015
  ident: b0100
  article-title: Remote Sensing of Actual Evapotranspiration from Cropland: Chapter 3
  publication-title: Remote Sensing Handbook, Vol. III: Remote Sensing of Water Resources, Disasters
– volume: 10
  start-page: 1864
  year: 2018
  ident: b0330
  article-title: Evapotranspiration of the Brazilian Pampa Biome: Seasonality and Influential Factors
  publication-title: Water
– volume: 174–175
  start-page: 28
  year: 2013
  end-page: 42
  ident: b0405
  article-title: Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data
  publication-title: Agric. For. Meteorol.
– reference: Vieira, I.M., 2011. Tomada de decisão para comercialização de arroz em Santa Vitória do Palmar-RS. Universidade Federal do Rio Grande do Sul. Escola de Administração. Curso de Gestão de Negócios Financeiros., Porto Alegre.
– volume: 248
  year: 2021
  ident: b0345
  article-title: Automatically selecting hot and cold pixels for satellite actual evapotranspiration estimation under different topographic and climatic conditions
  publication-title: Agric. Water Manag.
– volume: 21
  start-page: 159
  year: 2006
  end-page: 165
  ident: b0310
  article-title: Fluxos Turbulentos de Energia sobre o Pantanal Sul Mato-Grossense
  publication-title: Rev. Bras. Meteorol.
– volume: 7
  start-page: 407
  year: 2013
  end-page: 422
  ident: b0275
  article-title: Sensitivity analysis of METRIC-based evapotranspiration algorithm
  publication-title: Int. J. Environ. Res.
– volume: 34
  start-page: 555
  year: 2018
  end-page: 566
  ident: b0360
  article-title: Satellite psychrometric formulation of the operational simplified surface energy balance (SSEBop) model for quantifying and mapping evapotranspiration
  publication-title: Appl. Eng. Agric.
– volume: 5
  start-page: 1709
  year: 2012
  end-page: 1721
  ident: b0265
  article-title: Satellite irrigation management support with the terrestrial observation and prediction system: A framework for integration of satellite and surface observations to support improvements in agricultural water resource management
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– reference: Running, S., Mu, Q., Zhao, M., 2017. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006. https://doi.org/https://doi.org/10.5067/MODIS/MOD16A2.006.
– volume: 40
  start-page: 3026
  year: 2013
  end-page: 3030
  ident: b0455
  article-title: Remote estimation of terrestrial evapotranspiration without using meteorological data
  publication-title: Geophys. Res. Lett.
– volume: 18
  start-page: 1351
  year: 2008
  end-page: 1367
  ident: b0190
  article-title: The energy balance closure problem: An overview
  publication-title: Ecol. Appl.
– volume: 98
  year: 2021
  ident: b0140
  article-title: Remote sensing-based actual evapotranspiration assessment in a data-scarce area of Brazil: A case study of the Urucuia Aquifer System
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 15
  year: 2011
  ident: b0040
  article-title: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 49
  start-page: 563
  year: 2013
  end-page: 576
  ident: b0015
  article-title: Automated calibration of the METRIC-landsat evapotranspiration process
  publication-title: JAWRA J. Am. Water Resour. Assoc.
– volume: 115
  start-page: 1781
  year: 2011
  end-page: 1800
  ident: b0290
  article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm
  publication-title: Remote Sens. Environ.
– volume: 49
  start-page: 549
  year: 2013
  end-page: 562
  ident: b0285
  article-title: Assessing calibration uncertainty and automation for estimating evapotranspiration from agricultural areas using METRIC
  publication-title: JAWRA J. Am. Water Resour. Assoc.
– volume: 229
  start-page: 87
  year: 2000
  end-page: 100
  ident: b0055
  article-title: SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin
  publication-title: Turkey. J. Hydrol.
– volume: 112
  start-page: 901
  year: 2008
  end-page: 919
  ident: b0180
  article-title: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites
  publication-title: Remote Sens. Environ.
– volume: 8
  start-page: 223
  year: 1999
  end-page: 241
  ident: b0195
  article-title: The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados
  publication-title: Glob. Ecol. Biogeogr.
– reference: McShane, R.R., Driscoll, P.K., Sando, R., 2017. A Review of Surface Energy Balance Models for Estimating Actual Evapotranspiration with Remote Sensing at High Spatiotemporal Resolution over Large Extents, Scientific Investigations Report 2017-5087. Virginia. https://doi.org/https://doi.org/10.3133/sir20175087.
– volume: 8
  start-page: 215
  year: 2016
  ident: b0210
  article-title: Downscaling of MODIS one kilometer evapotranspiration using landsat-8 data and machine learning approaches
  publication-title: Remote Sens.
– year: 2020
  ident: b0120
  article-title: Estimativas de evapotranspiração real por sensoriamento remoto no Brasil
  publication-title: Brasília.
– reference: Pereira, L.S., Paredes, P., Melton, F., Johnson, L., Wang, T., López-Urrea, R., Cancela, J.J.,Allen, R.G., 2020. Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data. Agricultural Water Management, 241, 106197.
– volume: 13
  start-page: 447
  year: 2021
  end-page: 480
  ident: b0155
  article-title: Synthesis of global actual evapotranspiration from 1982 to 2019
  publication-title: Earth Syst. Sci. Data
– volume: 133
  start-page: 380
  year: 2007
  end-page: 394
  ident: b0020
  article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model
  publication-title: J. Irrig. Drain. Eng.
– volume: 8
  start-page: 983
  year: 2016
  ident: b0235
  article-title: The modified SEBAL for mapping daily spatial evapotranspiration of South Korea using three flux towers and terra MODIS data
  publication-title: Remote Sens.
– volume: 16
  start-page: 229
  year: 2012
  end-page: 238
  ident: b0220
  article-title: Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia
  publication-title: KSCE J. Civ. Eng.
– volume: 53
  start-page: 2618
  year: 2017
  end-page: 2626
  ident: b0175
  article-title: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources
  publication-title: Water Resour. Res.
– volume: 17
  start-page: 711
  year: 2003
  end-page: 719
  ident: b0350
  article-title: Effects of fire on surface carbon, energy and water vapour fluxes over campo sujo savanna in central Brazil
  publication-title: Funct. Ecol.
– volume: 74
  start-page: 54
  year: 2017
  end-page: 66
  ident: b0355
  article-title: Estimation of evapotranspiration for different land covers in a Brazilian semi-arid region: A case study of the Brígida River basin
  publication-title: Brazil. J. South Am. Earth Sci.
– start-page: 78
  year: 2011
  ident: b0130
  article-title: Sensitivity analysis on mapping evapotranspiration at high resolution using internal calibration (METRIC)
– volume: 3
  start-page: 511
  year: 2012
  end-page: 519
  ident: b0080
  article-title: Validation of evaporation estimates from a modified surface energy balance algorithm for land (SEBAL) model in the south-eastern United States
  publication-title: Remote Sens. Lett.
– volume: 229
  start-page: 69
  year: 2019
  end-page: 92
  ident: b0085
  article-title: An automated multi-model evapotranspiration mapping framework using remotely sensed and reanalysis data
  publication-title: Remote Sens. Environ.
– volume: 15
  start-page: 181
  year: 1999
  end-page: 194
  ident: b0075
  article-title: Satellite remote sensing for estimating productivities of land and water
  publication-title: Int. J. Water Resour. Dev.
– volume: 116
  year: 2011
  ident: b0245
  article-title: How sensitive is SEBAL to changes in input variables, domain size and satellite sensor?
  publication-title: J. Geophys. Res. Atmos.
– volume: 114
  start-page: G01003
  year: 2009
  ident: b0115
  article-title: Atmosphere and hydrological controls of the evapotranspiration over a floodplain forest in the Bananal Island region, Amazonia
  publication-title: J. Geophys. Res.
– volume: 15
  start-page: 2694
  year: 2009
  end-page: 2714
  ident: b0170
  article-title: The land-atmosphere water flux in the tropics
  publication-title: Glob. Chang. Biol.
– volume: 55
  start-page: 8608
  year: 2019
  end-page: 8630
  ident: b0240
  article-title: Evapotranspiration estimation for tibetan plateau headwaters using conjoint terrestrial and atmospheric water balances and multisource remote sensing
  publication-title: Water Resour. Res.
– volume: 29
  start-page: 897
  year: 2012
  end-page: 910
  ident: b0270
  article-title: An overview of the global historical climatology network-daily database
  publication-title: J. Atmos. Ocean. Technol.
– reference: Souza, C.M., Z. Shimbo, J., Rosa, M.R., Parente, L.L., A. Alencar, A., Rudorff, B.F.T., Hasenack, H., Matsumoto, M., G. Ferreira, L., Souza-Filho, P.W.M., de Oliveira, S.W., Rocha, W.F., Fonseca, A. V, Marques, C.B., Diniz, C.G., Costa, D., Monteiro, D., Rosa, E.R., Vélez-Martin, E., Weber, E.J., Lenti, F.E.B., Paternost, F.F., Pareyn, F.G.C., Siqueira, J. V, Viera, J.L., Neto, L.C.F., Saraiva, M.M., Sales, M.H., Salgado, M.P.G., Vasconcelos, R., Galano, S., Mesquita, V. V, Azevedo, T., 2020. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. . https://doi.org/10.3390/rs12172735.
– volume: 13
  start-page: 51
  year: 2008
  end-page: 63
  ident: b0410
  article-title: At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance
  publication-title: J. Hydrol. Eng.
– volume: 1
  start-page: 56
  year: 2019
  end-page: 61
  ident: b0030
  article-title: The expansion of center-pivot irrigation in the cerrado biome
  publication-title: IRRIGA
– volume: 212–213
  start-page: 198
  year: 1998
  end-page: 212
  ident: b0060
  article-title: A remote sensing surface energy balance algorithm for land (SEBAL): 1
  publication-title: Formulation. J. Hydrol.
– volume: 51
  start-page: 3145
  year: 2015
  end-page: 3165
  ident: b0450
  article-title: Comparison of three dual-source remote sensing evapotranspiration models during the MUSOEXE-12 campaign: Revisit of model physics
  publication-title: Water Resour. Res.
– volume: 139
  start-page: 55
  year: 2006
  end-page: 73
  ident: b0025
  article-title: Analytical integrated functions for daily solar radiation on slopes
  publication-title: Agric. For. Meteorol.
– volume: 4
  start-page: 703
  year: 2012
  end-page: 725
  ident: b0335
  article-title: A MODIS-based energy balance to estimate evapotranspiration for clear-sky days in brazilian tropical Savannas
  publication-title: Remote Sensing
– year: 2020
  ident: b0230
  article-title: Assessment of an automated calibration of the SEBAL algorithm to estimate dry-season surface-energy partitioning in a forest-Savanna transition in Brazil
  publication-title: Remote Sens
– reference: Souza, V. de A., Roberti, D.R., Ruhoff, A.L., Zimmer, T., Adamatti, D.S., Gonçalves, L.G.G. de, Diaz, M.B., Alves, R. de C.M., Moraes, O.L.L. de, 2019. Evaluation of MOD16 Algorithm over Irrigated Rice Paddy Using Flux Tower Measurements in Southern Brazil. Water 11, 1911. https://doi.org/10.3390/w11091911.
– volume: 3
  start-page: 834
  year: 2016
  end-page: 853
  ident: b0465
  article-title: A review of remote sensing based actual evapotranspiration estimation
  publication-title: Wiley Interdiscip. Rev. Water
– volume: 146
  start-page: 1999
  year: 2020
  end-page: 2049
  ident: b0200
  article-title: The ERA5 global reanalysis
  publication-title: Q. J. R. Meteorol. Soc.
– reference: Allen, R., Irmak, A., Trezza, R., Hendrickx, J.M.H., Bastiaanssen, W., Kjaersgaard, J., 2011. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 25, 4011–4027. https://doi.org/https://doi.org/10.1002/hyp.8408.
– reference: Rocha, H., Manzi, A., Cabral, O., D. Miller, S., L. Goulden, M., Saleska, S., Restrepo-Coupe, N., Wofsy, S., Borma, L., Artaxo, P., Vourlitis, G., S. Nogueira, J., L. Cardoso, F., Nobre, A., Kruijt, B., Freitas, H., Von Randow, C., Aguiar, R., Maia, J., 2009. Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J. Geophys. Res. 114. https://doi.org/10.1029/2007JG000640.
– volume: 25
  start-page: 1967
  year: 2019
  end-page: 1981
  ident: b0135
  article-title: Radiative forcing of methane fluxes offsets net carbon dioxide uptake for a tropical flooded forest
  publication-title: Glob. Chang. Biol.
– reference: Jaafar, H.H., Ahmad, F.A., 2019. Time series trends of Landsat-based ET using automated calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon. Remote Sens. Environ. https://doi.org/https://doi.org/10.1016/j.rse.2018.12.033.
– reference: Moreira, A.A., Ruhoff, A.L., Roberti, D.R., Souza, V. de A., da Rocha, H.R., Paiva, R.C.D. de, 2019. Assessment of terrestrial water balance using remote sensing data in South America. J. Hydrol. 575, 131–147. https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.05.021.
– year: 2020
  ident: b0370
  article-title: Operational global actual evapotranspiration: development, evaluation, and dissemination
  publication-title: Sensors
– volume: 49
  start-page: 75
  year: 2016
  end-page: 86
  ident: b0095
  article-title: Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 19
  start-page: 355
  year: 2005
  end-page: 376
  ident: b0415
  article-title: Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S
  publication-title: Irrig. Drain. Syst.
– reference: DiMiceli, C., Carroll, R., Sohlberg, R., Kim, D., Kelly, M., Townshend, J., 2015. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006. https://doi.org/https://doi.org/10.5067/MODIS/MOD44B.006.
– volume: 139
  start-page: 35
  year: 2013
  end-page: 49
  ident: b0425
  article-title: A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET
  publication-title: Remote Sens. Environ.
– volume: 49
  start-page: 8495
  year: 2013
  end-page: 8510
  ident: b0225
  article-title: Mapping evapotranspiration trends using MODIS and SEBAL model in a data scarce and heterogeneous landscape in Eastern Africa
  publication-title: Water Resour. Res.
– volume: 202
  start-page: 112
  year: 2015
  end-page: 124
  ident: b0110
  article-title: Patterns of energy exchange for tropical ecosystems across a climate gradient in Mato Grosso, Brazil
  publication-title: Agric. For. Meteorol.
– volume: 196
  start-page: 178
  year: 2017
  end-page: 192
  ident: b0090
  article-title: A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models
  publication-title: Remote Sens. Environ.
– volume: 56 300
  year: 1998
  ident: b0010
  article-title: Crop evapotranspiration. Crop evapotranspiration-guidelines
  publication-title: Comput. Crop Water Requir. Irrig. Drain. Pap.
– volume: 10
  year: 2018
  ident: b0145
  article-title: remote sensing Estimating Calibration Variability in Evapotranspiration Derived from a Satellite-Based Energy Balance Model
  publication-title: Remote Sens.
– volume: 164
  start-page: 112
  year: 2012
  end-page: 122
  ident: b0460
  article-title: Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China
  publication-title: Agric. For. Meteorol.
– volume: 78
  year: 2004
  ident: b0435
  article-title: Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia
  publication-title: Theor. Appl. Climatol.
– volume: 12
  start-page: 25004
  year: 2017
  ident: b0300
  article-title: Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome
  publication-title: Environ. Res. Lett.
– volume: 105
  start-page: 271
  year: 2006
  ident: 10.1016/j.isprsjprs.2021.05.018_b0255
  article-title: Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.07.006
– volume: 22
  start-page: 711
  year: 2013
  ident: 10.1016/j.isprsjprs.2021.05.018_b0035
  article-title: Köppen’s climate classification map for Brazil
  publication-title: Meteorol. Zeitschrift
  doi: 10.1127/0941-2948/2013/0507
– year: 2020
  ident: 10.1016/j.isprsjprs.2021.05.018_b0120
  article-title: Estimativas de evapotranspiração real por sensoriamento remoto no Brasil
  publication-title: Brasília.
– volume: 21
  start-page: 159
  year: 2006
  ident: 10.1016/j.isprsjprs.2021.05.018_b0310
  article-title: Fluxos Turbulentos de Energia sobre o Pantanal Sul Mato-Grossense
  publication-title: Rev. Bras. Meteorol.
– ident: 10.1016/j.isprsjprs.2021.05.018_b0390
  doi: 10.3390/rs12172735
– volume: 74
  start-page: 54
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.05.018_b0355
  article-title: Estimation of evapotranspiration for different land covers in a Brazilian semi-arid region: A case study of the Brígida River basin
  publication-title: Brazil. J. South Am. Earth Sci.
  doi: 10.1016/j.jsames.2017.01.002
– volume: 6
  year: 1988
  ident: 10.1016/j.isprsjprs.2021.05.018_b0400
  article-title: The surface energy balance system (SEBS) for estimation of turbulent heat fluxes
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 114
  start-page: G01003
  year: 2009
  ident: 10.1016/j.isprsjprs.2021.05.018_b0115
  article-title: Atmosphere and hydrological controls of the evapotranspiration over a floodplain forest in the Bananal Island region, Amazonia
  publication-title: J. Geophys. Res.
  doi: 10.1029/2007JG000641
– ident: 10.1016/j.isprsjprs.2021.05.018_b0325
  doi: 10.1029/2007JG000640
– volume: 19
  start-page: 355
  year: 2005
  ident: 10.1016/j.isprsjprs.2021.05.018_b0415
  article-title: Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S
  publication-title: Irrig. Drain. Syst.
  doi: 10.1007/s10795-005-8138-9
– year: 2020
  ident: 10.1016/j.isprsjprs.2021.05.018_b0230
  article-title: Assessment of an automated calibration of the SEBAL algorithm to estimate dry-season surface-energy partitioning in a forest-Savanna transition in Brazil
  publication-title: Remote Sens
  doi: 10.3390/rs12071108
– volume: 8
  start-page: 215
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.05.018_b0210
  article-title: Downscaling of MODIS one kilometer evapotranspiration using landsat-8 data and machine learning approaches
  publication-title: Remote Sens.
  doi: 10.3390/rs8030215
– volume: 8
  start-page: 223
  year: 1999
  ident: 10.1016/j.isprsjprs.2021.05.018_b0195
  article-title: The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1046/j.1466-822X.1999.00142.x
– volume: 16
  start-page: 229
  year: 2012
  ident: 10.1016/j.isprsjprs.2021.05.018_b0220
  article-title: Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-012-0006-1
– volume: 8
  start-page: 983
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.05.018_b0235
  article-title: The modified SEBAL for mapping daily spatial evapotranspiration of South Korea using three flux towers and terra MODIS data
  publication-title: Remote Sens.
  doi: 10.3390/rs8120983
– volume: 17
  start-page: 711
  year: 2003
  ident: 10.1016/j.isprsjprs.2021.05.018_b0350
  article-title: Effects of fire on surface carbon, energy and water vapour fluxes over campo sujo savanna in central Brazil
  publication-title: Funct. Ecol.
  doi: 10.1111/j.1365-2435.2003.00790.x
– volume: 10
  start-page: 1903
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.05.018_b0250
  article-title: GLEAM v3: satellite-based land evaporation and root-zone soil moisture
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-10-1903-2017
– volume: 15
  year: 2011
  ident: 10.1016/j.isprsjprs.2021.05.018_b0040
  article-title: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-15-223-2011
– volume: 248
  year: 2021
  ident: 10.1016/j.isprsjprs.2021.05.018_b0345
  article-title: Automatically selecting hot and cold pixels for satellite actual evapotranspiration estimation under different topographic and climatic conditions
  publication-title: Agric. Water Manag.
  doi: 10.1016/j.agwat.2021.106763
– ident: 10.1016/j.isprsjprs.2021.05.018_b0395
  doi: 10.3390/w11091911
– ident: 10.1016/j.isprsjprs.2021.05.018_b0430
– volume: 212–213
  start-page: 198
  year: 1998
  ident: 10.1016/j.isprsjprs.2021.05.018_b0060
  article-title: A remote sensing surface energy balance algorithm for land (SEBAL): 1
  publication-title: Formulation. J. Hydrol.
  doi: 10.1016/S0022-1694(98)00253-4
– volume: 229
  start-page: 69
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.05.018_b0085
  article-title: An automated multi-model evapotranspiration mapping framework using remotely sensed and reanalysis data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.04.026
– volume: 113
  start-page: 223
  year: 2002
  ident: 10.1016/j.isprsjprs.2021.05.018_b0445
  article-title: Energy balance closure at FLUXNET sites
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(02)00109-0
– volume: 202
  start-page: 112
  year: 2015
  ident: 10.1016/j.isprsjprs.2021.05.018_b0110
  article-title: Patterns of energy exchange for tropical ecosystems across a climate gradient in Mato Grosso, Brazil
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2014.12.008
– volume: 536
  start-page: 384
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.05.018_b0125
  article-title: Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2016.02.026
– volume: 133
  start-page: 380
  year: 2007
  ident: 10.1016/j.isprsjprs.2021.05.018_b0020
  article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2007)133:4(380)
– volume: 131
  start-page: 51
  year: 2013
  ident: 10.1016/j.isprsjprs.2021.05.018_b0160
  article-title: Effects of spatial aggregation on the multi-scale estimation of evapotranspiration
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.12.007
– volume: 55
  start-page: 8608
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.05.018_b0240
  article-title: Evapotranspiration estimation for tibetan plateau headwaters using conjoint terrestrial and atmospheric water balances and multisource remote sensing
  publication-title: Water Resour. Res.
  doi: 10.1029/2019WR025196
– ident: 10.1016/j.isprsjprs.2021.05.018_b0315
  doi: 10.1016/j.agwat.2020.106197
– volume: 18
  start-page: 1351
  year: 2008
  ident: 10.1016/j.isprsjprs.2021.05.018_b0190
  article-title: The energy balance closure problem: An overview
  publication-title: Ecol. Appl.
  doi: 10.1890/06-0922.1
– volume: 29
  start-page: 897
  year: 2012
  ident: 10.1016/j.isprsjprs.2021.05.018_b0270
  article-title: An overview of the global historical climatology network-daily database
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-11-00103.1
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.isprsjprs.2021.05.018_b0295
  article-title: ERA5-Land: A state-of-the-art global reanalysis dataset for land applications
  publication-title: Earth Syst. Sci. Data Discuss.
– volume: 4
  start-page: 703
  issue: 3
  year: 2012
  ident: 10.1016/j.isprsjprs.2021.05.018_b0335
  article-title: A MODIS-based energy balance to estimate evapotranspiration for clear-sky days in brazilian tropical Savannas
  publication-title: Remote Sensing
  doi: 10.3390/rs4030703
– volume: 13
  start-page: 51
  year: 2008
  ident: 10.1016/j.isprsjprs.2021.05.018_b0410
  article-title: At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2008)13:2(51)
– volume: 10
  start-page: 1864
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.05.018_b0330
  article-title: Evapotranspiration of the Brazilian Pampa Biome: Seasonality and Influential Factors
  publication-title: Water
  doi: 10.3390/w10121864
– volume: 5
  start-page: 1709
  issue: 6
  year: 2012
  ident: 10.1016/j.isprsjprs.2021.05.018_b0265
  article-title: Satellite irrigation management support with the terrestrial observation and prediction system: A framework for integration of satellite and surface observations to support improvements in agricultural water resource management
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2012.2214474
– volume: 122
  start-page: 50
  year: 2012
  ident: 10.1016/j.isprsjprs.2021.05.018_b0045
  article-title: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.08.025
– ident: 10.1016/j.isprsjprs.2021.05.018_b0340
– volume: 34
  start-page: 555
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.05.018_b0360
  article-title: Satellite psychrometric formulation of the operational simplified surface energy balance (SSEBop) model for quantifying and mapping evapotranspiration
  publication-title: Appl. Eng. Agric.
  doi: 10.13031/aea.12614
– volume: 3
  start-page: 511
  year: 2012
  ident: 10.1016/j.isprsjprs.2021.05.018_b0080
  article-title: Validation of evaporation estimates from a modified surface energy balance algorithm for land (SEBAL) model in the south-eastern United States
  publication-title: Remote Sens. Lett.
  doi: 10.1080/01431161.2011.632655
– volume: 53
  start-page: 2618
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.05.018_b0175
  article-title: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR020175
– volume: 15
  start-page: 181
  year: 1999
  ident: 10.1016/j.isprsjprs.2021.05.018_b0075
  article-title: Satellite remote sensing for estimating productivities of land and water
  publication-title: Int. J. Water Resour. Dev.
  doi: 10.1080/07900629949005
– volume: 49
  start-page: 8495
  year: 2013
  ident: 10.1016/j.isprsjprs.2021.05.018_b0225
  article-title: Mapping evapotranspiration trends using MODIS and SEBAL model in a data scarce and heterogeneous landscape in Eastern Africa
  publication-title: Water Resour. Res.
  doi: 10.1002/2013WR014240
– ident: 10.1016/j.isprsjprs.2021.05.018_b0280
  doi: 10.1016/j.jhydrol.2019.05.021
– volume: 52
  start-page: 7311
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.05.018_b0105
  article-title: Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison
  publication-title: Water Resour. Res.
  doi: 10.1002/2016WR019107
– ident: 10.1016/j.isprsjprs.2021.05.018_b0150
– volume: 49
  start-page: 549
  year: 2013
  ident: 10.1016/j.isprsjprs.2021.05.018_b0285
  article-title: Assessing calibration uncertainty and automation for estimating evapotranspiration from agricultural areas using METRIC
  publication-title: JAWRA J. Am. Water Resour. Assoc.
  doi: 10.1111/jawr.12054
– volume: 2
  start-page: 1
  year: 2002
  ident: 10.1016/j.isprsjprs.2021.05.018_b0320
  article-title: Measurements of CO2 exchange over a woodland savanna (Cerrado Sensu stricto) in southeast Brasil
  publication-title: Biota Neotrop.
  doi: 10.1590/S1676-06032002000100009
– volume: 78
  year: 2004
  ident: 10.1016/j.isprsjprs.2021.05.018_b0435
  article-title: Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-004-0041-z
– volume: 131
  start-page: 85
  year: 2005
  ident: 10.1016/j.isprsjprs.2021.05.018_b0065
  article-title: SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions
  publication-title: J. Irrig. Drain. Eng.
  doi: 10.1061/(ASCE)0733-9437(2005)131:1(85)
– volume: 49
  start-page: 75
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.05.018_b0095
  article-title: Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: 10.1016/j.isprsjprs.2021.05.018_b0205
  doi: 10.1016/j.rse.2018.12.033
– ident: 10.1016/j.isprsjprs.2021.05.018_b0380
  doi: 10.1002/9781119951933
– year: 2016
  ident: 10.1016/j.isprsjprs.2021.05.018_b0385
  article-title: Comparison of four different energy balance models for estimating evapotranspiration in the Midwestern United States
  publication-title: Water
– volume: 15
  start-page: 2694
  year: 2009
  ident: 10.1016/j.isprsjprs.2021.05.018_b0170
  article-title: The land-atmosphere water flux in the tropics
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2008.01813.x
– volume: 10
  year: 2018
  ident: 10.1016/j.isprsjprs.2021.05.018_b0145
  article-title: remote sensing Estimating Calibration Variability in Evapotranspiration Derived from a Satellite-Based Energy Balance Model
  publication-title: Remote Sens.
  doi: 10.3390/rs10111695
– volume: 146
  start-page: 1999
  year: 2020
  ident: 10.1016/j.isprsjprs.2021.05.018_b0200
  article-title: The ERA5 global reanalysis
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.3803
– volume: 25
  start-page: 1967
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.05.018_b0135
  article-title: Radiative forcing of methane fluxes offsets net carbon dioxide uptake for a tropical flooded forest
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.14615
– volume: 128
  start-page: 192
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.05.018_b0440
  article-title: Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.03.022
– volume: 3
  start-page: 834
  year: 2016
  ident: 10.1016/j.isprsjprs.2021.05.018_b0465
  article-title: A review of remote sensing based actual evapotranspiration estimation
  publication-title: Wiley Interdiscip. Rev. Water
  doi: 10.1002/wat2.1168
– volume: 1
  start-page: 56
  year: 2019
  ident: 10.1016/j.isprsjprs.2021.05.018_b0030
  article-title: The expansion of center-pivot irrigation in the cerrado biome
  publication-title: IRRIGA
  doi: 10.15809/irriga.2019v1n1p56-61
– start-page: 78
  year: 2011
  ident: 10.1016/j.isprsjprs.2021.05.018_b0130
– volume: 9
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.05.018_b0305
  article-title: Evaluation of landsat-based METRIC modeling to provide high-spatial resolution evapotranspiration estimates for amazonian forests
  publication-title: Remote Sens.
  doi: 10.3390/rs9010046
– volume: 139
  start-page: 55
  year: 2006
  ident: 10.1016/j.isprsjprs.2021.05.018_b0025
  article-title: Analytical integrated functions for daily solar radiation on slopes
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2006.05.012
– volume: 229
  start-page: 87
  year: 2000
  ident: 10.1016/j.isprsjprs.2021.05.018_b0055
  article-title: SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin
  publication-title: Turkey. J. Hydrol.
  doi: 10.1016/S0022-1694(99)00202-4
– volume: 202
  start-page: 98
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.05.018_b0375
  article-title: Satellite-based water use dynamics using historical Landsat data (1984–2014) in the southwestern United States
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.05.005
– volume: 103
  start-page: 279
  year: 2000
  ident: 10.1016/j.isprsjprs.2021.05.018_b0420
  article-title: Correcting eddy-covariance flux underestimates over a grassland
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/S0168-1923(00)00123-4
– volume: 212–213
  start-page: 213
  year: 1998
  ident: 10.1016/j.isprsjprs.2021.05.018_b0070
  article-title: A remote sensing surface energy balance algorithm for land (SEBAL): 2
  publication-title: Validation. J. Hydrol.
  doi: 10.1016/S0022-1694(98)00254-6
– volume: 40
  start-page: 3026
  year: 2013
  ident: 10.1016/j.isprsjprs.2021.05.018_b0455
  article-title: Remote estimation of terrestrial evapotranspiration without using meteorological data
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/grl.50450
– volume: 37
  start-page: 4302
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.05.018_b0165
  article-title: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.5086
– volume: 51
  start-page: 3145
  year: 2015
  ident: 10.1016/j.isprsjprs.2021.05.018_b0450
  article-title: Comparison of three dual-source remote sensing evapotranspiration models during the MUSOEXE-12 campaign: Revisit of model physics
  publication-title: Water Resour. Res.
  doi: 10.1002/2014WR015619
– volume: 196
  start-page: 178
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.05.018_b0090
  article-title: A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.05.009
– volume: 7
  start-page: 200
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.05.018_b0215
  article-title: Regional dry-season climate changes due to three decades of Amazonian deforestation
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/nclimate3226
– volume: 12
  start-page: 25004
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.05.018_b0300
  article-title: Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aa5986
– volume: 49
  start-page: 563
  year: 2013
  ident: 10.1016/j.isprsjprs.2021.05.018_b0015
  article-title: Automated calibration of the METRIC-landsat evapotranspiration process
  publication-title: JAWRA J. Am. Water Resour. Assoc.
  doi: 10.1111/jawr.12056
– volume: 194
  start-page: 379
  year: 2017
  ident: 10.1016/j.isprsjprs.2021.05.018_b0185
  article-title: Cloud detection algorithm comparison and validation for operational Landsat data products
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.03.026
– volume: 139
  start-page: 35
  year: 2013
  ident: 10.1016/j.isprsjprs.2021.05.018_b0425
  article-title: A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.07.013
– volume: 115
  start-page: 1781
  year: 2011
  ident: 10.1016/j.isprsjprs.2021.05.018_b0290
  article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.02.019
– volume: 98
  year: 2021
  ident: 10.1016/j.isprsjprs.2021.05.018_b0140
  article-title: Remote sensing-based actual evapotranspiration assessment in a data-scarce area of Brazil: A case study of the Urucuia Aquifer System
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– year: 2015
  ident: 10.1016/j.isprsjprs.2021.05.018_b0100
  article-title: Remote Sensing of Actual Evapotranspiration from Cropland: Chapter 3
– volume: 49
  start-page: 577
  year: 2013
  ident: 10.1016/j.isprsjprs.2021.05.018_b0365
  article-title: Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach
  publication-title: JAWRA J. Am. Water Resour. Assoc.
  doi: 10.1111/jawr.12057
– volume: 7
  start-page: 407
  year: 2013
  ident: 10.1016/j.isprsjprs.2021.05.018_b0275
  article-title: Sensitivity analysis of METRIC-based evapotranspiration algorithm
  publication-title: Int. J. Environ. Res.
– year: 2020
  ident: 10.1016/j.isprsjprs.2021.05.018_b0370
  article-title: Operational global actual evapotranspiration: development, evaluation, and dissemination
  publication-title: Sensors
  doi: 10.3390/s20071915
– volume: 13
  start-page: 447
  year: 2021
  ident: 10.1016/j.isprsjprs.2021.05.018_b0155
  article-title: Synthesis of global actual evapotranspiration from 1982 to 2019
  publication-title: Earth Syst. Sci. Data
  doi: 10.5194/essd-13-447-2021
– volume: 174–175
  start-page: 28
  year: 2013
  ident: 10.1016/j.isprsjprs.2021.05.018_b0405
  article-title: Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2013.01.008
– volume: 116
  year: 2011
  ident: 10.1016/j.isprsjprs.2021.05.018_b0245
  article-title: How sensitive is SEBAL to changes in input variables, domain size and satellite sensor?
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2011JD016542
– ident: 10.1016/j.isprsjprs.2021.05.018_b0050
  doi: 10.1029/2001JD000676
– volume: 164
  start-page: 112
  year: 2012
  ident: 10.1016/j.isprsjprs.2021.05.018_b0460
  article-title: Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China
  publication-title: Agric. For. Meteorol.
  doi: 10.1016/j.agrformet.2012.05.011
– ident: 10.1016/j.isprsjprs.2021.05.018_b0005
  doi: 10.1002/hyp.8408
– volume: 56 300
  year: 1998
  ident: 10.1016/j.isprsjprs.2021.05.018_b0010
  article-title: Crop evapotranspiration. Crop evapotranspiration-guidelines
  publication-title: Comput. Crop Water Requir. Irrig. Drain. Pap.
– ident: 10.1016/j.isprsjprs.2021.05.018_b0260
  doi: 10.3133/sir20175087
– volume: 112
  start-page: 901
  year: 2008
  ident: 10.1016/j.isprsjprs.2021.05.018_b0180
  article-title: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.06.025
SSID ssj0001568
Score 2.6052868
Snippet The geeSEBAL application estimates and displays evapotranspiration maps and times series based on Landsat images and global meteorological data from ERA5 Land...
Accurate estimation of evapotranspiration (ET) is essential for several applications in water resources management. ET models using remote sensing data have...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 81
SubjectTerms algorithms
automation
Brazil
cerrado
Cloud computation
computer software
deforestation
eddy covariance
energy balance
ERA5 land
evapotranspiration
geeSEBAL
Google earth engine
Internet
irrigation
land cover
Landsat
Meteorological reanalysis
photogrammetry
Title Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing
URI https://dx.doi.org/10.1016/j.isprsjprs.2021.05.018
https://www.proquest.com/docview/2636428596
Volume 178
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQPdAeqkKpCgVkpF7NJuuPJL0taOlCKReKxM2yY3t3UUhWkEXi0t_OTD6gVKo49JBDohkl8hvP2MrzG0K-qlQ4ADZmEmoVEyFKGapMMa-kEy6HCON4GvnnuZpcitMrebVCjvqzMEir7HJ_m9ObbN09GXSjOVjM54OLCLYOQxRAQhkh2Uh_CpFglB_8fqZ5xO1xODRmaP2C4zW_W9zeXcMFG8Vh3Ep4pv-qUH_l6qYAHX8g77uVIx21H7dOVny5Qd79oSe4Qda6luazh4-kOKvKKcPES2-aeYsmtArU35tFVTea5vMWfork9ymFpSC9GB-OzqgppmBez26oKR39XlXTwtMxDMuMtu-jeVEtHc2blhDgu0kuj8e_jiasa63Aci7SmoXMWoWswmDjNPeZC2nEhZEC5dBsknDjM5nFRioecu6skn44DKmHnGQiAwB-IqtlVfrPhHoXhci7xGXeCgszOgGrPEltiHniuN8iqh9OnXe649j-otA9wexaP-GgEQcdSQ04bJHoyXHRSm-87vKtx0u_iCINBeJ15_0eYQ1zDH-cmNJXSzBSHLdpMlPb__OCL-Qt3rX0wR2yWt8u_S4saWq718TsHnkzOvkxOX8Ejub45w
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLZQObAdJsY2jQHDk3a1mtSxk3ArqKyM0gsgcbPs2G6LQlJBisR_z3v5UcGkiQOHXJL3lMjf8_ds5fl7hPyWSWQB2JAJyFUs8kHCUGWKOSlsZDOIMI6nkS-mcnwd_b0RNxvkpDsLg2WVLfc3nF6zdXun345mf7lY9C8D2DoMUAAJZYQESn9uojqV6JHN4dn5eLom5LA5EYf2DB1elXktHpb3D7dwwV5xEDYqnsn_ktQ_dF3noNNt8qldPNJh832fyYYrdsjHF5KCO2Sr7Wo-f_pC8klZzBhyL72rpy6a0NJT96iXZVXLmi-aCKBY_z6jsBqkl6Pj4YTqfAbm1fyO6sLSP2U5yx0dwcjMafM-muXlytKs7goBvl_J9eno6mTM2u4KLONRUjGfGiOxsNCbMMlcan0S8EiLCBXRTBxz7VKRhlpI7jNujRRuMPCJA1rSgQYMv5FeURbuO6HOBj5wNrapM5GBSR2DVRYnxoc8ttztEtkNp8pa6XHsgJGrrsbsVq1xUIiDCoQCHHZJsHZcNuobb7scdXipV4GkIEe87fyrQ1jBNMN_J7pw5QqMJMedmkjlj_e84JBsja8uJmpyNj3fIx_wSVNNuE961f3KHcAKpzI_2wh-Bgqb-5g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+monitoring+of+evapotranspiration+using+the+SEBAL+algorithm+and+Google+Earth+Engine+cloud+computing&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Laipelt%2C+Leonardo&rft.au=Henrique+Bloedow+Kayser%2C+Rafael&rft.au=Santos+Fleischmann%2C+Ayan&rft.au=Ruhoff%2C+Anderson&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=178&rft.spage=81&rft.epage=96&rft_id=info:doi/10.1016%2Fj.isprsjprs.2021.05.018&rft.externalDocID=S0924271621001519
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon