Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing
The geeSEBAL application estimates and displays evapotranspiration maps and times series based on Landsat images and global meteorological data from ERA5 Land reanalysis. Codes and applications are available at https://github.com/et-brasil/geesebal and https://etbrasil.org/geesebal, respectively. [D...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 178; pp. 81 - 96 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The geeSEBAL application estimates and displays evapotranspiration maps and times series based on Landsat images and global meteorological data from ERA5 Land reanalysis. Codes and applications are available at https://github.com/et-brasil/geesebal and https://etbrasil.org/geesebal, respectively.
[Display omitted]
Accurate estimation of evapotranspiration (ET) is essential for several applications in water resources management. ET models using remote sensing data have flourished in recent years allowing spatial and temporal assessments at unprecedented resolutions. This study presents geeSEBAL, a new tool for automated estimation of ET, based on the Surface Energy Balance Algorithm for Land (SEBAL) and a simplified version of the CIMEC (Calibration using Inverse Modeling at Extreme Conditions) process for the endmembers selection, developed within the Google Earth Engine (GEE) environment. The tool framework is introduced, and case studies across multiple biomes in Brazil are presented by comparing daily ET estimates with eddy covariance (EC) data from 10 flux towers. Based on 224 Landsat images using ERA5 Land as meteorological inputs, daily ET estimates of geeSEBAL yielded an average root mean squared difference (RMSD) of 0.67 mm day−1 when compared to EC data corrected for the energy balance closure. Additional analyses indicate a low geeSEBAL sensitivity to meteorological inputs, yielding an average RMSD of 0.71 mm day−1 when driven by in situ meteorological measurements. On the other hand, we found a higher sensitivity of the automated CIMEC algorithm to the selection of endmembers for internal calibration. For instance, by adjusting the endmembers percentiles to tropical biomes we found an error that was 36% lower compared to the standard CIMEC percentiles. Finally, we assessed the long-term effects (1984–2020) of land cover changes on surface energy fluxes and water use in agriculture for key areas in Brazil, from deforested areas in the Amazon to irrigated crops in the Pampas and Cerrado biomes. A comparison with a land surface temperature-based (SSEBop) and a vegetation-based (MOD16) model was also performed to assess relative advantages and disadvantages. This analysis showed that geeSEBAL has a significant potential for long-term assessment of ET in data-scarce areas, due to its lower sensitivity to meteorological inputs. geeSEBAL codes are written in Python and JavaScript and are freely available on GitHub (https://github.com/et-brasil/geesebal). geeSEBAL also includes a graphical user interface (https://etbrasil.org/geesebal), allowing important advances in water resources management at regional scales. |
---|---|
AbstractList | The geeSEBAL application estimates and displays evapotranspiration maps and times series based on Landsat images and global meteorological data from ERA5 Land reanalysis. Codes and applications are available at https://github.com/et-brasil/geesebal and https://etbrasil.org/geesebal, respectively.
[Display omitted]
Accurate estimation of evapotranspiration (ET) is essential for several applications in water resources management. ET models using remote sensing data have flourished in recent years allowing spatial and temporal assessments at unprecedented resolutions. This study presents geeSEBAL, a new tool for automated estimation of ET, based on the Surface Energy Balance Algorithm for Land (SEBAL) and a simplified version of the CIMEC (Calibration using Inverse Modeling at Extreme Conditions) process for the endmembers selection, developed within the Google Earth Engine (GEE) environment. The tool framework is introduced, and case studies across multiple biomes in Brazil are presented by comparing daily ET estimates with eddy covariance (EC) data from 10 flux towers. Based on 224 Landsat images using ERA5 Land as meteorological inputs, daily ET estimates of geeSEBAL yielded an average root mean squared difference (RMSD) of 0.67 mm day−1 when compared to EC data corrected for the energy balance closure. Additional analyses indicate a low geeSEBAL sensitivity to meteorological inputs, yielding an average RMSD of 0.71 mm day−1 when driven by in situ meteorological measurements. On the other hand, we found a higher sensitivity of the automated CIMEC algorithm to the selection of endmembers for internal calibration. For instance, by adjusting the endmembers percentiles to tropical biomes we found an error that was 36% lower compared to the standard CIMEC percentiles. Finally, we assessed the long-term effects (1984–2020) of land cover changes on surface energy fluxes and water use in agriculture for key areas in Brazil, from deforested areas in the Amazon to irrigated crops in the Pampas and Cerrado biomes. A comparison with a land surface temperature-based (SSEBop) and a vegetation-based (MOD16) model was also performed to assess relative advantages and disadvantages. This analysis showed that geeSEBAL has a significant potential for long-term assessment of ET in data-scarce areas, due to its lower sensitivity to meteorological inputs. geeSEBAL codes are written in Python and JavaScript and are freely available on GitHub (https://github.com/et-brasil/geesebal). geeSEBAL also includes a graphical user interface (https://etbrasil.org/geesebal), allowing important advances in water resources management at regional scales. Accurate estimation of evapotranspiration (ET) is essential for several applications in water resources management. ET models using remote sensing data have flourished in recent years allowing spatial and temporal assessments at unprecedented resolutions. This study presents geeSEBAL, a new tool for automated estimation of ET, based on the Surface Energy Balance Algorithm for Land (SEBAL) and a simplified version of the CIMEC (Calibration using Inverse Modeling at Extreme Conditions) process for the endmembers selection, developed within the Google Earth Engine (GEE) environment. The tool framework is introduced, and case studies across multiple biomes in Brazil are presented by comparing daily ET estimates with eddy covariance (EC) data from 10 flux towers. Based on 224 Landsat images using ERA5 Land as meteorological inputs, daily ET estimates of geeSEBAL yielded an average root mean squared difference (RMSD) of 0.67 mm day⁻¹ when compared to EC data corrected for the energy balance closure. Additional analyses indicate a low geeSEBAL sensitivity to meteorological inputs, yielding an average RMSD of 0.71 mm day⁻¹ when driven by in situ meteorological measurements. On the other hand, we found a higher sensitivity of the automated CIMEC algorithm to the selection of endmembers for internal calibration. For instance, by adjusting the endmembers percentiles to tropical biomes we found an error that was 36% lower compared to the standard CIMEC percentiles. Finally, we assessed the long-term effects (1984–2020) of land cover changes on surface energy fluxes and water use in agriculture for key areas in Brazil, from deforested areas in the Amazon to irrigated crops in the Pampas and Cerrado biomes. A comparison with a land surface temperature-based (SSEBop) and a vegetation-based (MOD16) model was also performed to assess relative advantages and disadvantages. This analysis showed that geeSEBAL has a significant potential for long-term assessment of ET in data-scarce areas, due to its lower sensitivity to meteorological inputs. geeSEBAL codes are written in Python and JavaScript and are freely available on GitHub (https://github.com/et-brasil/geesebal). geeSEBAL also includes a graphical user interface (https://etbrasil.org/geesebal), allowing important advances in water resources management at regional scales. |
Author | Henrique Bloedow Kayser, Rafael Melton, Forrest Laipelt, Leonardo Bastiaanssen, Wim Santos Fleischmann, Ayan Erickson, Tyler A. Ruhoff, Anderson |
Author_xml | – sequence: 1 givenname: Leonardo surname: Laipelt fullname: Laipelt, Leonardo organization: Institute of Hydraulic Research, Federal University of Rio Grande do Sul, Brazil – sequence: 2 givenname: Rafael surname: Henrique Bloedow Kayser fullname: Henrique Bloedow Kayser, Rafael organization: Institute of Hydraulic Research, Federal University of Rio Grande do Sul, Brazil – sequence: 3 givenname: Ayan surname: Santos Fleischmann fullname: Santos Fleischmann, Ayan organization: Institute of Hydraulic Research, Federal University of Rio Grande do Sul, Brazil – sequence: 4 givenname: Anderson surname: Ruhoff fullname: Ruhoff, Anderson organization: Institute of Hydraulic Research, Federal University of Rio Grande do Sul, Brazil – sequence: 5 givenname: Wim surname: Bastiaanssen fullname: Bastiaanssen, Wim organization: IHE Delft Institute for Water Education, Delft, Netherlands – sequence: 6 givenname: Tyler A. surname: Erickson fullname: Erickson, Tyler A. organization: Google Inc., CA, United States – sequence: 7 givenname: Forrest surname: Melton fullname: Melton, Forrest organization: Earth Science Division, NASA Ames Research Center, CA, United States |
BookMark | eNqNkD1v2zAURYkgBeKk_Q3h2EUqP0SKGjq4gZsGMNAh6UxQ1JNMQyJVkgrQfx-5DjJkaYeHO7x77nCu0aUPHhC6paSkhMovx9KlOabjeiUjjJZElISqC7ShqmaFYlxcog1pWFWwmsordJ3SkRBChVQbNO6DH4oMccJT8C6H6PyAQ4_h2cwhR-PT7KLJLni8pNMvHwA_7r5t99iMw1rPhwkb3-H7EIYR8M7EfMA7PzgP2I5h6bAN07zklf2IPvRmTPDpNW_Qr--7p7sfxf7n_cPddl9YXqlc9E3bSkKaqm-pstB0vSK8MqLiQtG2rrmBRjTUCMl7y7tWCmCsV0CUMsQQwW_Q5_PuHMPvBVLWk0sWxtF4CEvSTHJZMSUauVbrc9XGkFKEXs_RTSb-0ZTok1991G9-9cmvJkKvflfy6zvSuvxX1GrNjf_Bb888rCaeHUSdrANvoXMRbNZdcP_ceAGogqEz |
CitedBy_id | crossref_primary_10_3390_rs15194894 crossref_primary_10_1080_23311916_2022_2100573 crossref_primary_10_1016_j_agwat_2024_108928 crossref_primary_10_3390_rs14215629 crossref_primary_10_1007_s13201_024_02345_6 crossref_primary_10_1016_j_jsames_2022_104061 crossref_primary_10_3390_rs14246253 crossref_primary_10_1016_j_isprsjprs_2023_08_004 crossref_primary_10_3390_rs16244812 crossref_primary_10_1109_TGRS_2024_3381696 crossref_primary_10_1007_s10668_024_04507_7 crossref_primary_10_1016_j_agwat_2024_109058 crossref_primary_10_1016_j_agwat_2024_109175 crossref_primary_10_3390_horticulturae10050515 crossref_primary_10_1016_j_scitotenv_2021_152134 crossref_primary_10_3390_atmos12111374 crossref_primary_10_1016_j_uclim_2021_100966 crossref_primary_10_24850_j_tyca_2024_04_04 crossref_primary_10_1016_j_scitotenv_2025_178530 crossref_primary_10_1080_10106049_2022_2068674 crossref_primary_10_1016_j_rse_2024_114447 crossref_primary_10_1109_TGRS_2024_3378287 crossref_primary_10_3390_rs14051201 crossref_primary_10_1186_s13717_024_00551_3 crossref_primary_10_17660_ActaHortic_2024_1409_8 crossref_primary_10_3390_agronomy12112629 crossref_primary_10_3390_rs16071242 crossref_primary_10_1080_02508060_2022_2117896 crossref_primary_10_3390_su16188025 crossref_primary_10_1016_j_agrformet_2024_110146 crossref_primary_10_1016_j_agrformet_2023_109408 crossref_primary_10_1016_j_agwat_2025_109372 crossref_primary_10_3390_rs17030395 crossref_primary_10_3390_rs17061016 crossref_primary_10_3390_w16233378 crossref_primary_10_1038_s44221_023_00181_7 crossref_primary_10_3390_rs16091573 crossref_primary_10_1016_j_rsase_2022_100907 crossref_primary_10_3390_agronomy13071937 crossref_primary_10_1016_j_isprsjprs_2021_10_024 crossref_primary_10_1007_s00271_024_00941_7 crossref_primary_10_1029_2023WR035234 crossref_primary_10_3390_e24121784 crossref_primary_10_3390_rs16020361 crossref_primary_10_1016_j_isprsjprs_2021_08_015 crossref_primary_10_1016_j_isprsjprs_2025_03_003 crossref_primary_10_1016_j_jsames_2024_104899 crossref_primary_10_48123_rsgis_1126221 crossref_primary_10_1016_j_agwat_2024_109066 crossref_primary_10_3390_hydrology11030039 crossref_primary_10_3390_f14040828 crossref_primary_10_5194_gmd_17_4229_2024 crossref_primary_10_1016_j_scs_2024_105629 crossref_primary_10_1016_j_jhydrol_2025_132826 crossref_primary_10_1016_j_jclepro_2025_144962 crossref_primary_10_1016_j_isprsjprs_2024_10_019 crossref_primary_10_3390_rs16183404 crossref_primary_10_1007_s10531_024_02979_7 crossref_primary_10_1109_JSTARS_2025_3539822 crossref_primary_10_5194_hess_26_5899_2022 crossref_primary_10_3390_fractalfract7060466 crossref_primary_10_1007_s41651_025_00218_3 crossref_primary_10_1080_22797254_2023_2259244 crossref_primary_10_1007_s10661_023_11852_z crossref_primary_10_1016_j_jhydrol_2024_131862 crossref_primary_10_1016_j_agrformet_2021_108775 crossref_primary_10_1038_s41467_023_42467_0 crossref_primary_10_3390_ijgi12090370 crossref_primary_10_1111_1752_1688_12956 crossref_primary_10_3390_rs16173280 crossref_primary_10_4995_raet_2024_21467 crossref_primary_10_1016_j_rse_2024_114489 crossref_primary_10_1080_01431161_2023_2238327 crossref_primary_10_3390_w16131762 crossref_primary_10_1016_j_jhydrol_2025_133062 crossref_primary_10_1016_j_rse_2022_112982 crossref_primary_10_1016_j_agwat_2024_109000 crossref_primary_10_1016_j_physa_2023_129163 crossref_primary_10_3390_rs14143440 crossref_primary_10_1016_j_rsase_2022_100834 crossref_primary_10_1016_j_rse_2023_113689 crossref_primary_10_1016_j_ejrh_2024_101674 crossref_primary_10_1038_s41598_023_38563_2 crossref_primary_10_1117_1_JRS_16_044516 crossref_primary_10_1016_j_isprsjprs_2023_12_001 crossref_primary_10_3390_agronomy12071518 crossref_primary_10_1016_j_scitotenv_2022_155490 crossref_primary_10_3390_rs14194934 crossref_primary_10_1016_j_agwat_2024_108864 crossref_primary_10_1016_j_agwat_2024_109036 crossref_primary_10_1016_j_agwat_2023_108141 crossref_primary_10_3390_agronomy12040864 crossref_primary_10_1016_j_jhydrol_2025_132798 crossref_primary_10_3390_rs16111829 crossref_primary_10_17660_ActaHortic_2024_1395_3 crossref_primary_10_3390_w16202978 crossref_primary_10_1088_1755_1315_1350_1_012039 crossref_primary_10_1016_j_agwat_2022_107965 crossref_primary_10_1111_gwat_13336 crossref_primary_10_4995_raet_2024_20158 crossref_primary_10_1016_j_jhydrol_2022_127788 crossref_primary_10_1007_s00271_022_00775_1 |
Cites_doi | 10.1016/j.rse.2006.07.006 10.1127/0941-2948/2013/0507 10.3390/rs12172735 10.1016/j.jsames.2017.01.002 10.1029/2007JG000641 10.1029/2007JG000640 10.1007/s10795-005-8138-9 10.3390/rs12071108 10.3390/rs8030215 10.1046/j.1466-822X.1999.00142.x 10.1007/s12205-012-0006-1 10.3390/rs8120983 10.1111/j.1365-2435.2003.00790.x 10.5194/gmd-10-1903-2017 10.5194/hess-15-223-2011 10.1016/j.agwat.2021.106763 10.3390/w11091911 10.1016/S0022-1694(98)00253-4 10.1016/j.rse.2019.04.026 10.1016/S0168-1923(02)00109-0 10.1016/j.agrformet.2014.12.008 10.1016/j.jhydrol.2016.02.026 10.1061/(ASCE)0733-9437(2007)133:4(380) 10.1016/j.rse.2012.12.007 10.1029/2019WR025196 10.1016/j.agwat.2020.106197 10.1890/06-0922.1 10.1175/JTECH-D-11-00103.1 10.3390/rs4030703 10.1061/(ASCE)1084-0699(2008)13:2(51) 10.3390/w10121864 10.1109/JSTARS.2012.2214474 10.1016/j.rse.2011.08.025 10.13031/aea.12614 10.1080/01431161.2011.632655 10.1002/2016WR020175 10.1080/07900629949005 10.1002/2013WR014240 10.1016/j.jhydrol.2019.05.021 10.1002/2016WR019107 10.1111/jawr.12054 10.1590/S1676-06032002000100009 10.1007/s00704-004-0041-z 10.1061/(ASCE)0733-9437(2005)131:1(85) 10.1016/j.rse.2018.12.033 10.1002/9781119951933 10.1111/j.1365-2486.2008.01813.x 10.3390/rs10111695 10.1002/qj.3803 10.1111/gcb.14615 10.1016/j.isprsjprs.2017.03.022 10.1002/wat2.1168 10.15809/irriga.2019v1n1p56-61 10.3390/rs9010046 10.1016/j.agrformet.2006.05.012 10.1016/S0022-1694(99)00202-4 10.1016/j.rse.2017.05.005 10.1016/S0168-1923(00)00123-4 10.1016/S0022-1694(98)00254-6 10.1002/grl.50450 10.1002/joc.5086 10.1002/2014WR015619 10.1016/j.rse.2017.05.009 10.1038/nclimate3226 10.1088/1748-9326/aa5986 10.1111/jawr.12056 10.1016/j.rse.2017.03.026 10.1016/j.rse.2013.07.013 10.1016/j.rse.2011.02.019 10.1111/jawr.12057 10.3390/s20071915 10.5194/essd-13-447-2021 10.1016/j.agrformet.2013.01.008 10.1029/2011JD016542 10.1029/2001JD000676 10.1016/j.agrformet.2012.05.011 10.1002/hyp.8408 10.3133/sir20175087 10.1016/j.rse.2007.06.025 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2021.05.018 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 96 |
ExternalDocumentID | 10_1016_j_isprsjprs_2021_05_018 S0924271621001519 |
GeographicLocations | Brazil |
GeographicLocations_xml | – name: Brazil |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c348t-f9bb60094fb18ce9df8034a543581b773ae9591a563fc3db65e22f8e088a0a053 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Fri Jul 11 10:26:26 EDT 2025 Thu Apr 24 23:01:41 EDT 2025 Tue Jul 01 03:46:46 EDT 2025 Fri Feb 23 02:42:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Meteorological reanalysis Google earth engine geeSEBAL Cloud computation ERA5 land Landsat |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-f9bb60094fb18ce9df8034a543581b773ae9591a563fc3db65e22f8e088a0a053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2636428596 |
PQPubID | 24069 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2636428596 crossref_primary_10_1016_j_isprsjprs_2021_05_018 crossref_citationtrail_10_1016_j_isprsjprs_2021_05_018 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2021_05_018 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 2021-08-00 20210801 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Martens, Miralles, Lievens, van der Schalie, de Jeu, Fernández-Prieto, Beck, Dorigo, Verhoest (b0250) 2017; 10 Senay, Kagone, Velpuri (b0370) 2020 Santos, da Silva, Silva, Brasil Neto (b0355) 2017; 74 Ke, Im, Park, Gong (b0210) 2016; 8 Senay, Bohms, Singh, Gowda, Velpuri, Alemu, Verdin (b0365) 2013; 49 Senay, Schauer, Friedrichs, Velpuri, Singh (b0375) 2017; 202 Velpuri, Senay, Singh, Bohms, Verdin (b0425) 2013; 139 Wilson, Goldstein, Falge, Aubinet, Baldocchi, Berbigier, Bernhofer, Ceulemans, Dolman, Field, Grelle, Ibrom, Law, Kowalski, Meyers, Moncrieff, Monson, Oechel, Tenhunen, Valentini, Verma (b0445) 2002; 113 Allen, Trezza, Tasumi (b0025) 2006; 139 Muñoz-Sabater, Dutra, Agustí-Panareda, Albergel, Arduini, Balsamo, Boussetta, Choulga, Harrigan, Hersbach, Martens, Miralles, Piles, Rodríguez-Fernández, Zsoter, Buontempo, Thépaut (b0295) 2021; 2021 Pereira, L.S., Paredes, P., Melton, F., Johnson, L., Wang, T., López-Urrea, R., Cancela, J.J.,Allen, R.G., 2020. Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data. Agricultural Water Management, 241, 106197. da Rocha, Freitas, Rosolem, Juárez, Tannus, Ligo, Cabral, Dias (b0320) 2002; 2 Senay (b0360) 2018; 34 Tang, Li, Chen, Jia, Li, Sun (b0405) 2013; 174–175 Bhattarai, Mallick, Stuart, Vishwakarma, Niraula, Sen, Jain (b0085) 2019; 229 Biggs, Marshall, Messina (b0105) 2016; 52 Yang, Long, Guan, Liang, Simmons, Batelaan (b0450) 2015; 51 Yang, Long, Shang (b0455) 2013; 40 Saboori, Mokhtari, Afrasiabian, Daccache, Alaghmand, Mousivand (b0345) 2021; 248 Wagle, Bhattarai, Gowda, Kakani (b0440) 2017; 128 Fisher, Tu, Baldocchi (b0180) 2008; 112 Ruhoff, Paz, Collischonn, Aragão, Rocha, Malhi, Y. (b0335) 2012; 4 Ershadi, McCabe, Evans, Walker (b0160) 2013; 131 Jaafar, H.H., Ahmad, F.A., 2019. Time series trends of Landsat-based ET using automated calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon. Remote Sens. Environ. https://doi.org/https://doi.org/10.1016/j.rse.2018.12.033. Noojipady, Morton, Macedo, Victoria, Huang, Gibbs, Bolfe (b0300) 2017; 12 Melton, Johnson, Lund, Pierce, Michaelis, Hiatt, Guzman, Adhikari, Purdy, Rosevelt, Votava (b0265) 2012; 5 Su (b0400) 1988; 6 Allen, Burnett, Kramber, Huntington, Kjaersgaard, Kilic, Kelly, Trezza (b0015) 2013; 49 Anderson, Allen, Morse, Kustas (b0045) 2012; 122 Shuttleworth, W.J., 2012. Terrestrial Hydrometeorology, 1o. ed. John Wiley & Sons, Ltd, Chichester, UK. https://doi.org/10.1002/9781119951933. Menne, Durre, Vose, Gleason, Houston (b0270) 2012; 29 Vieira, I.M., 2011. Tomada de decisão para comercialização de arroz em Santa Vitória do Palmar-RS. Universidade Federal do Rio Grande do Sul. Escola de Administração. Curso de Gestão de Negócios Financeiros., Porto Alegre. Biggs, Petropoulos, Velpuri, Marshall, Glenn, Nagler, Messina (b0100) 2015 Running, S., Mu, Q., Zhao, M., 2017. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006. https://doi.org/https://doi.org/10.5067/MODIS/MOD16A2.006. Elnashar, Wang, Wu, Zhu, Zeng (b0155) 2021; 13 Mu, Zhao, Running (b0290) 2011; 115 Alvares, Luiz, Sentelhas, de Moraes Gonçalves, Sparovek (b0035) 2013; 22 Lee, Kim (b0235) 2016; 8 Allen, R., Irmak, A., Trezza, R., Hendrickx, J.M.H., Bastiaanssen, W., Kjaersgaard, J., 2011. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 25, 4011–4027. https://doi.org/https://doi.org/10.1002/hyp.8408. Moreira, A.A., Ruhoff, A.L., Roberti, D.R., Souza, V. de A., da Rocha, H.R., Paiva, R.C.D. de, 2019. Assessment of terrestrial water balance using remote sensing data in South America. J. Hydrol. 575, 131–147. https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.05.021. Tasumi, Allen, Trezza (b0410) 2008; 13 Allen, Tasumi, Trezza (b0020) 2007; 133 Hersbach, Bell, Berrisford, Hirahara, Horányi, Muñoz-Sabater, Nicolas, Peubey, Radu, Schepers, Simmons, Soci, Abdalla, Abellan, Balsamo, Bechtold, Biavati, Bidlot, Bonavita, De Chiara, Dahlgren, Dee, Diamantakis, Dragani, Flemming, Forbes, Fuentes, Geer, Haimberger, Healy, Hogan, Hólm, Janisková, Keeley, Laloyaux, Lopez, Lupu, Radnoti, de Rosnay, Rozum, Vamborg, Villaume, Thépaut (b0200) 2020; 146 Laipelt, Ruhoff, Fleischmann, Kayser, Kich, da Rocha, Neale (b0230) 2020 Biudes, Vourlitis, Machado, de Arruda, Neves, de Almeida Lobo, Neale, de Souza Nogueira (b0110) 2015; 202 Zhang, Kimball, Running (b0465) 2016; 3 Borma, da Rocha, Cabral, von Randow, Collicchio, Kurzatkowski, Brugger, Freitas, Tannus, Oliveira, Rennó, Artaxo (b0115) 2009; 114 Dhungel, Barber (b0145) 2018; 10 Twine, Kustas, Norman, Cook, Houser, Meyers, Prueger, Starks, Wesely (b0420) 2000; 103 Allen, Pereira, Raes, Smith (b0010) 1998; 56 300 Li, Long, Han, Scanlon, Sun, Han, Hou (b0240) 2019; 55 Souza, C.M., Z. Shimbo, J., Rosa, M.R., Parente, L.L., A. Alencar, A., Rudorff, B.F.T., Hasenack, H., Matsumoto, M., G. Ferreira, L., Souza-Filho, P.W.M., de Oliveira, S.W., Rocha, W.F., Fonseca, A. V, Marques, C.B., Diniz, C.G., Costa, D., Monteiro, D., Rosa, E.R., Vélez-Martin, E., Weber, E.J., Lenti, F.E.B., Paternost, F.F., Pareyn, F.G.C., Siqueira, J. V, Viera, J.L., Neto, L.C.F., Saraiva, M.M., Sales, M.H., Salgado, M.P.G., Vasconcelos, R., Galano, S., Mesquita, V. V, Azevedo, T., 2020. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. . https://doi.org/10.3390/rs12172735. Numata, Khand, Kjaersgaard, Cochrane, Silva (b0305) 2017; 9 Bastiaanssen, Menenti, Feddes, Holtslag (b0060) 1998; 212–213 Choragudi (b0130) 2011 Furley (b0195) 1999; 8 Bhattarai, Shaw, Quackenbush, Im, Niraula (b0095) 2016; 49 Morton, Huntington, Pohll, Allen, McGwire, Bassett (b0285) 2013; 49 Foken (b0190) 2008; 18 Bastiaanssen, Thiruvengadachari, Sakthivadivel, Molden (b0075) 1999; 15 von Randow, Manzi, Kruijt, de Oliveira, Zanchi, Silva, Hodnett, Gash, Elbers, Waterloo, Cardoso, Kabat (b0435) 2004; 78 Bastiaanssen (b0055) 2000; 229 Long, Singh, Li (b0245) 2011; 116 Rubert, Roberti, Pereira, Quadros, Campos Velho, Leal de Moraes (b0330) 2018; 10 Santos, Silva, Miranda, Miranda, Lloyd (b0350) 2003; 17 Brazilian Water Agency (b0120) 2020 Bhattarai, Dougherty, Marzen, Kalin (b0080) 2012; 3 Khanna, Medvigy, Fueglistaler, Walko (b0215) 2017; 7 Bastiaanssen, Noordman, Pelgrum, Davids, Thoreson, Allen (b0065) 2005; 131 Singh, Senay (b0385) 2016 Fisher, Malhi, Bonal, Da Rocha, De Araújo, Gamo, Goulden, Rano, Huete, Kondo, Kumagai, Loescher, Miller, Nobre, Nouvellon, Oberbauer, Panuthai, Roupsard, Saleska, Tanaka, Tanaka, Tu, Von Randow (b0170) 2009; 15 Tasumi, Trezza, Allen, Wright (b0415) 2005; 19 Kim, Hwang, Mu, Lee, Choi (b0220) 2012; 16 Fick, Hijmans (b0165) 2017; 37 Anderson, Kustas, Norman, Hain, Mecikalski, L, S., González-Dugo, M., Cammalleri, C., D’Urso, G., Pimstein, A., Gao, F. (b0040) 2011; 15 Chen, Senay, Singh, Verdin (b0125) 2016; 536 Foga, Scaramuzza, Guo, Zhu, Dilley, Beckmann, Schmidt, Dwyer, Joseph Hughes, Laue (b0185) 2017; 194 Araújo, A.C., Nobre, A.D., Kruijt, B., Elbers, J.A., Dallarosa, R., Stefani, P., von Randow, C., Manzi, A.O., Culf, A.D., Gash, J.H.C., Valentini, R., Kabat, P., 2002. Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site. J. Geophys. Res. Atmos. 107, LBA 58-1-LBA 58-20. https://doi.org/10.1029/2001JD000676. McCabe, Wood (b0255) 2006; 105 Althoff, Rodrigues (b0030) 2019; 1 Bhattarai, Quackenbush, Im, Shaw (b0090) 2017; 196 Rocha, H., Manzi, A., Cabral, O., D. Miller, S., L. Goulden, M., Saleska, S., Restrepo-Coupe, N., Wofsy, S., Borma, L., Artaxo, P., Vourlitis, G., S. Nogueira, J., L. Cardoso, F., Nobre, A., Kruijt, B., Freitas, H., Von Randow, C., Aguiar, R., Maia, J., 2009. Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J. Geophys. Res. 114. https://doi.org/10.1029/2007JG000640. Mokhtari, Ahmad, Hoveidi, Busu (b0275) 2013; 7 McShane, R.R., Driscoll, P.K., Sando, R., 2017. A Review of Surface Energy Balance Models for Estimating Actual Evapotranspiration with Remote Sensing at High Spatiotemporal Resolution over Large Extents, Scientific Investigations Report 2017-5087. Virginia. https://doi.org/https://doi.org/10.3133/sir20175087. Souza, V. de A., Roberti, D.R., Ruhoff, A.L., Zimmer, T., Adamatti, D.S., Gonçalves, L.G.G. de, Diaz, M.B., Alves, R. de C.M., Moraes, O.L.L. de, 2019. Evaluation of MOD16 Algorithm over Irrigated Rice Paddy Using Flux Tower Measurements in Southern Brazil. Water 11, 1911. https://doi.org/10.3390/w11091911. DiMiceli, C., Carroll, R., Sohlberg, R., Kim, D., Kelly, M., Townshend, J., 2015. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006. https://doi.org/https://doi.org/10.5067/MODIS/MOD44B.006. Kiptala, Mohamed, Mul, der Zaag (b0225) 2013; 49 Oliveira, Von Randow, Manzi, Alvalá, Sá, Leitão, Souza (b0310) 2006; 21 Bastiaanssen, Pelgrum, Wang, Ma, Moreno, Roerink, van der Wal (b0070) 1998; 212–213 Yang, Shang, Jiang (b0460) 2012; 164 de Andrade, de Andrade Pinto, Ruhoff, Senay (b0140) 2021; 98 Dalmagro, Zanella de Arruda, Vourlitis, Lathuillière, de S. Nogueira, J., Couto, E.G., Johnson, M.S. (b0135) 2019; 25 Fisher, Melton, Middleton, Hain, Anderson, Allen, McCabe, Hook, Baldocchi, Townsend, Kilic, Tu, Miralles, Perret, Lagouarde, Waliser, Purdy, French, Schimel, Famiglietti, Stephens, Wood (b0175) 2017; 53 10.1016/j.isprsjprs.2021.05.018_b0280 Mu (10.1016/j.isprsjprs.2021.05.018_b0290) 2011; 115 Bastiaanssen (10.1016/j.isprsjprs.2021.05.018_b0060) 1998; 212–213 Allen (10.1016/j.isprsjprs.2021.05.018_b0010) 1998; 56 300 Singh (10.1016/j.isprsjprs.2021.05.018_b0385) 2016 Dhungel (10.1016/j.isprsjprs.2021.05.018_b0145) 2018; 10 Kim (10.1016/j.isprsjprs.2021.05.018_b0220) 2012; 16 McCabe (10.1016/j.isprsjprs.2021.05.018_b0255) 2006; 105 Morton (10.1016/j.isprsjprs.2021.05.018_b0285) 2013; 49 Allen (10.1016/j.isprsjprs.2021.05.018_b0015) 2013; 49 Rubert (10.1016/j.isprsjprs.2021.05.018_b0330) 2018; 10 Ke (10.1016/j.isprsjprs.2021.05.018_b0210) 2016; 8 Fisher (10.1016/j.isprsjprs.2021.05.018_b0170) 2009; 15 10.1016/j.isprsjprs.2021.05.018_b0315 Senay (10.1016/j.isprsjprs.2021.05.018_b0365) 2013; 49 Anderson (10.1016/j.isprsjprs.2021.05.018_b0040) 2011; 15 10.1016/j.isprsjprs.2021.05.018_b0395 Biggs (10.1016/j.isprsjprs.2021.05.018_b0105) 2016; 52 10.1016/j.isprsjprs.2021.05.018_b0430 Bastiaanssen (10.1016/j.isprsjprs.2021.05.018_b0075) 1999; 15 Choragudi (10.1016/j.isprsjprs.2021.05.018_b0130) 2011 Santos (10.1016/j.isprsjprs.2021.05.018_b0350) 2003; 17 Dalmagro (10.1016/j.isprsjprs.2021.05.018_b0135) 2019; 25 10.1016/j.isprsjprs.2021.05.018_b0050 Fisher (10.1016/j.isprsjprs.2021.05.018_b0175) 2017; 53 Menne (10.1016/j.isprsjprs.2021.05.018_b0270) 2012; 29 Alvares (10.1016/j.isprsjprs.2021.05.018_b0035) 2013; 22 Melton (10.1016/j.isprsjprs.2021.05.018_b0265) 2012; 5 Senay (10.1016/j.isprsjprs.2021.05.018_b0375) 2017; 202 Zhang (10.1016/j.isprsjprs.2021.05.018_b0465) 2016; 3 Fick (10.1016/j.isprsjprs.2021.05.018_b0165) 2017; 37 Lee (10.1016/j.isprsjprs.2021.05.018_b0235) 2016; 8 Furley (10.1016/j.isprsjprs.2021.05.018_b0195) 1999; 8 10.1016/j.isprsjprs.2021.05.018_b0325 Su (10.1016/j.isprsjprs.2021.05.018_b0400) 1988; 6 Borma (10.1016/j.isprsjprs.2021.05.018_b0115) 2009; 114 10.1016/j.isprsjprs.2021.05.018_b0205 Oliveira (10.1016/j.isprsjprs.2021.05.018_b0310) 2006; 21 Numata (10.1016/j.isprsjprs.2021.05.018_b0305) 2017; 9 Fisher (10.1016/j.isprsjprs.2021.05.018_b0180) 2008; 112 Foken (10.1016/j.isprsjprs.2021.05.018_b0190) 2008; 18 Martens (10.1016/j.isprsjprs.2021.05.018_b0250) 2017; 10 Khanna (10.1016/j.isprsjprs.2021.05.018_b0215) 2017; 7 Li (10.1016/j.isprsjprs.2021.05.018_b0240) 2019; 55 Senay (10.1016/j.isprsjprs.2021.05.018_b0370) 2020 10.1016/j.isprsjprs.2021.05.018_b0005 Allen (10.1016/j.isprsjprs.2021.05.018_b0020) 2007; 133 Althoff (10.1016/j.isprsjprs.2021.05.018_b0030) 2019; 1 Allen (10.1016/j.isprsjprs.2021.05.018_b0025) 2006; 139 Yang (10.1016/j.isprsjprs.2021.05.018_b0460) 2012; 164 10.1016/j.isprsjprs.2021.05.018_b0380 10.1016/j.isprsjprs.2021.05.018_b0260 Ershadi (10.1016/j.isprsjprs.2021.05.018_b0160) 2013; 131 Bhattarai (10.1016/j.isprsjprs.2021.05.018_b0095) 2016; 49 Brazilian Water Agency (10.1016/j.isprsjprs.2021.05.018_b0120) 2020 Tasumi (10.1016/j.isprsjprs.2021.05.018_b0410) 2008; 13 von Randow (10.1016/j.isprsjprs.2021.05.018_b0435) 2004; 78 Mokhtari (10.1016/j.isprsjprs.2021.05.018_b0275) 2013; 7 Senay (10.1016/j.isprsjprs.2021.05.018_b0360) 2018; 34 Long (10.1016/j.isprsjprs.2021.05.018_b0245) 2011; 116 Bhattarai (10.1016/j.isprsjprs.2021.05.018_b0085) 2019; 229 Ruhoff (10.1016/j.isprsjprs.2021.05.018_b0335) 2012; 4 Wilson (10.1016/j.isprsjprs.2021.05.018_b0445) 2002; 113 Noojipady (10.1016/j.isprsjprs.2021.05.018_b0300) 2017; 12 Biggs (10.1016/j.isprsjprs.2021.05.018_b0100) 2015 Laipelt (10.1016/j.isprsjprs.2021.05.018_b0230) 2020 Bhattarai (10.1016/j.isprsjprs.2021.05.018_b0080) 2012; 3 Kiptala (10.1016/j.isprsjprs.2021.05.018_b0225) 2013; 49 Elnashar (10.1016/j.isprsjprs.2021.05.018_b0155) 2021; 13 Anderson (10.1016/j.isprsjprs.2021.05.018_b0045) 2012; 122 Muñoz-Sabater (10.1016/j.isprsjprs.2021.05.018_b0295) 2021; 2021 Biudes (10.1016/j.isprsjprs.2021.05.018_b0110) 2015; 202 Santos (10.1016/j.isprsjprs.2021.05.018_b0355) 2017; 74 Hersbach (10.1016/j.isprsjprs.2021.05.018_b0200) 2020; 146 10.1016/j.isprsjprs.2021.05.018_b0390 10.1016/j.isprsjprs.2021.05.018_b0150 Chen (10.1016/j.isprsjprs.2021.05.018_b0125) 2016; 536 Wagle (10.1016/j.isprsjprs.2021.05.018_b0440) 2017; 128 Velpuri (10.1016/j.isprsjprs.2021.05.018_b0425) 2013; 139 Saboori (10.1016/j.isprsjprs.2021.05.018_b0345) 2021; 248 Bastiaanssen (10.1016/j.isprsjprs.2021.05.018_b0065) 2005; 131 Yang (10.1016/j.isprsjprs.2021.05.018_b0455) 2013; 40 Foga (10.1016/j.isprsjprs.2021.05.018_b0185) 2017; 194 Bhattarai (10.1016/j.isprsjprs.2021.05.018_b0090) 2017; 196 Tasumi (10.1016/j.isprsjprs.2021.05.018_b0415) 2005; 19 da Rocha (10.1016/j.isprsjprs.2021.05.018_b0320) 2002; 2 Bastiaanssen (10.1016/j.isprsjprs.2021.05.018_b0055) 2000; 229 10.1016/j.isprsjprs.2021.05.018_b0340 Yang (10.1016/j.isprsjprs.2021.05.018_b0450) 2015; 51 Twine (10.1016/j.isprsjprs.2021.05.018_b0420) 2000; 103 Bastiaanssen (10.1016/j.isprsjprs.2021.05.018_b0070) 1998; 212–213 de Andrade (10.1016/j.isprsjprs.2021.05.018_b0140) 2021; 98 Tang (10.1016/j.isprsjprs.2021.05.018_b0405) 2013; 174–175 |
References_xml | – reference: Araújo, A.C., Nobre, A.D., Kruijt, B., Elbers, J.A., Dallarosa, R., Stefani, P., von Randow, C., Manzi, A.O., Culf, A.D., Gash, J.H.C., Valentini, R., Kabat, P., 2002. Comparative measurements of carbon dioxide fluxes from two nearby towers in a central Amazonian rainforest: The Manaus LBA site. J. Geophys. Res. Atmos. 107, LBA 58-1-LBA 58-20. https://doi.org/10.1029/2001JD000676. – volume: 7 start-page: 200 year: 2017 end-page: 204 ident: b0215 article-title: Regional dry-season climate changes due to three decades of Amazonian deforestation publication-title: Nat. Clim. Chang. – volume: 103 start-page: 279 year: 2000 end-page: 300 ident: b0420 article-title: Correcting eddy-covariance flux underestimates over a grassland publication-title: Agric. For. Meteorol. – volume: 131 start-page: 85 year: 2005 end-page: 93 ident: b0065 article-title: SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions publication-title: J. Irrig. Drain. Eng. – volume: 6 year: 1988 ident: b0400 article-title: The surface energy balance system (SEBS) for estimation of turbulent heat fluxes publication-title: Hydrol. Earth Syst. Sci. – volume: 9 year: 2017 ident: b0305 article-title: Evaluation of landsat-based METRIC modeling to provide high-spatial resolution evapotranspiration estimates for amazonian forests publication-title: Remote Sens. – volume: 52 start-page: 7311 year: 2016 end-page: 7326 ident: b0105 article-title: Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison publication-title: Water Resour. Res. – volume: 2 start-page: 1 year: 2002 end-page: 11 ident: b0320 article-title: Measurements of CO2 exchange over a woodland savanna (Cerrado Sensu stricto) in southeast Brasil publication-title: Biota Neotrop. – volume: 194 start-page: 379 year: 2017 end-page: 390 ident: b0185 article-title: Cloud detection algorithm comparison and validation for operational Landsat data products publication-title: Remote Sens. Environ. – year: 2016 ident: b0385 article-title: Comparison of four different energy balance models for estimating evapotranspiration in the Midwestern United States publication-title: Water – volume: 10 start-page: 1903 year: 2017 end-page: 1925 ident: b0250 article-title: GLEAM v3: satellite-based land evaporation and root-zone soil moisture publication-title: Geosci. Model Dev. – volume: 122 start-page: 50 year: 2012 end-page: 65 ident: b0045 article-title: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources publication-title: Remote Sens. Environ. – volume: 128 start-page: 192 year: 2017 end-page: 203 ident: b0440 article-title: Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 105 start-page: 271 year: 2006 end-page: 285 ident: b0255 article-title: Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors publication-title: Remote Sens. Environ. – volume: 113 start-page: 223 year: 2002 end-page: 243 ident: b0445 article-title: Energy balance closure at FLUXNET sites publication-title: Agric. For. Meteorol. – volume: 202 start-page: 98 year: 2017 end-page: 112 ident: b0375 article-title: Satellite-based water use dynamics using historical Landsat data (1984–2014) in the southwestern United States publication-title: Remote Sens. Environ. – volume: 536 start-page: 384 year: 2016 end-page: 399 ident: b0125 article-title: Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites publication-title: J. Hydrol. – volume: 49 start-page: 577 year: 2013 end-page: 591 ident: b0365 article-title: Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach publication-title: JAWRA J. Am. Water Resour. Assoc. – volume: 22 start-page: 711 year: 2013 end-page: 728 ident: b0035 article-title: Köppen’s climate classification map for Brazil publication-title: Meteorol. Zeitschrift – volume: 37 start-page: 4302 year: 2017 end-page: 4315 ident: b0165 article-title: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas publication-title: Int. J. Climatol. – reference: Shuttleworth, W.J., 2012. Terrestrial Hydrometeorology, 1o. ed. John Wiley & Sons, Ltd, Chichester, UK. https://doi.org/10.1002/9781119951933. – volume: 212–213 start-page: 213 year: 1998 end-page: 229 ident: b0070 article-title: A remote sensing surface energy balance algorithm for land (SEBAL): 2 publication-title: Validation. J. Hydrol. – volume: 2021 start-page: 1 year: 2021 end-page: 50 ident: b0295 article-title: ERA5-Land: A state-of-the-art global reanalysis dataset for land applications publication-title: Earth Syst. Sci. Data Discuss. – volume: 131 start-page: 51 year: 2013 end-page: 62 ident: b0160 article-title: Effects of spatial aggregation on the multi-scale estimation of evapotranspiration publication-title: Remote Sens. Environ. – year: 2015 ident: b0100 article-title: Remote Sensing of Actual Evapotranspiration from Cropland: Chapter 3 publication-title: Remote Sensing Handbook, Vol. III: Remote Sensing of Water Resources, Disasters – volume: 10 start-page: 1864 year: 2018 ident: b0330 article-title: Evapotranspiration of the Brazilian Pampa Biome: Seasonality and Influential Factors publication-title: Water – volume: 174–175 start-page: 28 year: 2013 end-page: 42 ident: b0405 article-title: Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data publication-title: Agric. For. Meteorol. – reference: Vieira, I.M., 2011. Tomada de decisão para comercialização de arroz em Santa Vitória do Palmar-RS. Universidade Federal do Rio Grande do Sul. Escola de Administração. Curso de Gestão de Negócios Financeiros., Porto Alegre. – volume: 248 year: 2021 ident: b0345 article-title: Automatically selecting hot and cold pixels for satellite actual evapotranspiration estimation under different topographic and climatic conditions publication-title: Agric. Water Manag. – volume: 21 start-page: 159 year: 2006 end-page: 165 ident: b0310 article-title: Fluxos Turbulentos de Energia sobre o Pantanal Sul Mato-Grossense publication-title: Rev. Bras. Meteorol. – volume: 7 start-page: 407 year: 2013 end-page: 422 ident: b0275 article-title: Sensitivity analysis of METRIC-based evapotranspiration algorithm publication-title: Int. J. Environ. Res. – volume: 34 start-page: 555 year: 2018 end-page: 566 ident: b0360 article-title: Satellite psychrometric formulation of the operational simplified surface energy balance (SSEBop) model for quantifying and mapping evapotranspiration publication-title: Appl. Eng. Agric. – volume: 5 start-page: 1709 year: 2012 end-page: 1721 ident: b0265 article-title: Satellite irrigation management support with the terrestrial observation and prediction system: A framework for integration of satellite and surface observations to support improvements in agricultural water resource management publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. – reference: Running, S., Mu, Q., Zhao, M., 2017. MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006. https://doi.org/https://doi.org/10.5067/MODIS/MOD16A2.006. – volume: 40 start-page: 3026 year: 2013 end-page: 3030 ident: b0455 article-title: Remote estimation of terrestrial evapotranspiration without using meteorological data publication-title: Geophys. Res. Lett. – volume: 18 start-page: 1351 year: 2008 end-page: 1367 ident: b0190 article-title: The energy balance closure problem: An overview publication-title: Ecol. Appl. – volume: 98 year: 2021 ident: b0140 article-title: Remote sensing-based actual evapotranspiration assessment in a data-scarce area of Brazil: A case study of the Urucuia Aquifer System publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 15 year: 2011 ident: b0040 article-title: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery publication-title: Hydrol. Earth Syst. Sci. – volume: 49 start-page: 563 year: 2013 end-page: 576 ident: b0015 article-title: Automated calibration of the METRIC-landsat evapotranspiration process publication-title: JAWRA J. Am. Water Resour. Assoc. – volume: 115 start-page: 1781 year: 2011 end-page: 1800 ident: b0290 article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm publication-title: Remote Sens. Environ. – volume: 49 start-page: 549 year: 2013 end-page: 562 ident: b0285 article-title: Assessing calibration uncertainty and automation for estimating evapotranspiration from agricultural areas using METRIC publication-title: JAWRA J. Am. Water Resour. Assoc. – volume: 229 start-page: 87 year: 2000 end-page: 100 ident: b0055 article-title: SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin publication-title: Turkey. J. Hydrol. – volume: 112 start-page: 901 year: 2008 end-page: 919 ident: b0180 article-title: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites publication-title: Remote Sens. Environ. – volume: 8 start-page: 223 year: 1999 end-page: 241 ident: b0195 article-title: The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados publication-title: Glob. Ecol. Biogeogr. – reference: McShane, R.R., Driscoll, P.K., Sando, R., 2017. A Review of Surface Energy Balance Models for Estimating Actual Evapotranspiration with Remote Sensing at High Spatiotemporal Resolution over Large Extents, Scientific Investigations Report 2017-5087. Virginia. https://doi.org/https://doi.org/10.3133/sir20175087. – volume: 8 start-page: 215 year: 2016 ident: b0210 article-title: Downscaling of MODIS one kilometer evapotranspiration using landsat-8 data and machine learning approaches publication-title: Remote Sens. – year: 2020 ident: b0120 article-title: Estimativas de evapotranspiração real por sensoriamento remoto no Brasil publication-title: Brasília. – reference: Pereira, L.S., Paredes, P., Melton, F., Johnson, L., Wang, T., López-Urrea, R., Cancela, J.J.,Allen, R.G., 2020. Prediction of crop coefficients from fraction of ground cover and height. Background and validation using ground and remote sensing data. Agricultural Water Management, 241, 106197. – volume: 13 start-page: 447 year: 2021 end-page: 480 ident: b0155 article-title: Synthesis of global actual evapotranspiration from 1982 to 2019 publication-title: Earth Syst. Sci. Data – volume: 133 start-page: 380 year: 2007 end-page: 394 ident: b0020 article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model publication-title: J. Irrig. Drain. Eng. – volume: 8 start-page: 983 year: 2016 ident: b0235 article-title: The modified SEBAL for mapping daily spatial evapotranspiration of South Korea using three flux towers and terra MODIS data publication-title: Remote Sens. – volume: 16 start-page: 229 year: 2012 end-page: 238 ident: b0220 article-title: Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia publication-title: KSCE J. Civ. Eng. – volume: 53 start-page: 2618 year: 2017 end-page: 2626 ident: b0175 article-title: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources publication-title: Water Resour. Res. – volume: 17 start-page: 711 year: 2003 end-page: 719 ident: b0350 article-title: Effects of fire on surface carbon, energy and water vapour fluxes over campo sujo savanna in central Brazil publication-title: Funct. Ecol. – volume: 74 start-page: 54 year: 2017 end-page: 66 ident: b0355 article-title: Estimation of evapotranspiration for different land covers in a Brazilian semi-arid region: A case study of the Brígida River basin publication-title: Brazil. J. South Am. Earth Sci. – start-page: 78 year: 2011 ident: b0130 article-title: Sensitivity analysis on mapping evapotranspiration at high resolution using internal calibration (METRIC) – volume: 3 start-page: 511 year: 2012 end-page: 519 ident: b0080 article-title: Validation of evaporation estimates from a modified surface energy balance algorithm for land (SEBAL) model in the south-eastern United States publication-title: Remote Sens. Lett. – volume: 229 start-page: 69 year: 2019 end-page: 92 ident: b0085 article-title: An automated multi-model evapotranspiration mapping framework using remotely sensed and reanalysis data publication-title: Remote Sens. Environ. – volume: 15 start-page: 181 year: 1999 end-page: 194 ident: b0075 article-title: Satellite remote sensing for estimating productivities of land and water publication-title: Int. J. Water Resour. Dev. – volume: 116 year: 2011 ident: b0245 article-title: How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? publication-title: J. Geophys. Res. Atmos. – volume: 114 start-page: G01003 year: 2009 ident: b0115 article-title: Atmosphere and hydrological controls of the evapotranspiration over a floodplain forest in the Bananal Island region, Amazonia publication-title: J. Geophys. Res. – volume: 15 start-page: 2694 year: 2009 end-page: 2714 ident: b0170 article-title: The land-atmosphere water flux in the tropics publication-title: Glob. Chang. Biol. – volume: 55 start-page: 8608 year: 2019 end-page: 8630 ident: b0240 article-title: Evapotranspiration estimation for tibetan plateau headwaters using conjoint terrestrial and atmospheric water balances and multisource remote sensing publication-title: Water Resour. Res. – volume: 29 start-page: 897 year: 2012 end-page: 910 ident: b0270 article-title: An overview of the global historical climatology network-daily database publication-title: J. Atmos. Ocean. Technol. – reference: Souza, C.M., Z. Shimbo, J., Rosa, M.R., Parente, L.L., A. Alencar, A., Rudorff, B.F.T., Hasenack, H., Matsumoto, M., G. Ferreira, L., Souza-Filho, P.W.M., de Oliveira, S.W., Rocha, W.F., Fonseca, A. V, Marques, C.B., Diniz, C.G., Costa, D., Monteiro, D., Rosa, E.R., Vélez-Martin, E., Weber, E.J., Lenti, F.E.B., Paternost, F.F., Pareyn, F.G.C., Siqueira, J. V, Viera, J.L., Neto, L.C.F., Saraiva, M.M., Sales, M.H., Salgado, M.P.G., Vasconcelos, R., Galano, S., Mesquita, V. V, Azevedo, T., 2020. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. . https://doi.org/10.3390/rs12172735. – volume: 13 start-page: 51 year: 2008 end-page: 63 ident: b0410 article-title: At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance publication-title: J. Hydrol. Eng. – volume: 1 start-page: 56 year: 2019 end-page: 61 ident: b0030 article-title: The expansion of center-pivot irrigation in the cerrado biome publication-title: IRRIGA – volume: 212–213 start-page: 198 year: 1998 end-page: 212 ident: b0060 article-title: A remote sensing surface energy balance algorithm for land (SEBAL): 1 publication-title: Formulation. J. Hydrol. – volume: 51 start-page: 3145 year: 2015 end-page: 3165 ident: b0450 article-title: Comparison of three dual-source remote sensing evapotranspiration models during the MUSOEXE-12 campaign: Revisit of model physics publication-title: Water Resour. Res. – volume: 139 start-page: 55 year: 2006 end-page: 73 ident: b0025 article-title: Analytical integrated functions for daily solar radiation on slopes publication-title: Agric. For. Meteorol. – volume: 4 start-page: 703 year: 2012 end-page: 725 ident: b0335 article-title: A MODIS-based energy balance to estimate evapotranspiration for clear-sky days in brazilian tropical Savannas publication-title: Remote Sensing – year: 2020 ident: b0230 article-title: Assessment of an automated calibration of the SEBAL algorithm to estimate dry-season surface-energy partitioning in a forest-Savanna transition in Brazil publication-title: Remote Sens – reference: Souza, V. de A., Roberti, D.R., Ruhoff, A.L., Zimmer, T., Adamatti, D.S., Gonçalves, L.G.G. de, Diaz, M.B., Alves, R. de C.M., Moraes, O.L.L. de, 2019. Evaluation of MOD16 Algorithm over Irrigated Rice Paddy Using Flux Tower Measurements in Southern Brazil. Water 11, 1911. https://doi.org/10.3390/w11091911. – volume: 3 start-page: 834 year: 2016 end-page: 853 ident: b0465 article-title: A review of remote sensing based actual evapotranspiration estimation publication-title: Wiley Interdiscip. Rev. Water – volume: 146 start-page: 1999 year: 2020 end-page: 2049 ident: b0200 article-title: The ERA5 global reanalysis publication-title: Q. J. R. Meteorol. Soc. – reference: Allen, R., Irmak, A., Trezza, R., Hendrickx, J.M.H., Bastiaanssen, W., Kjaersgaard, J., 2011. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrol. Process. 25, 4011–4027. https://doi.org/https://doi.org/10.1002/hyp.8408. – reference: Rocha, H., Manzi, A., Cabral, O., D. Miller, S., L. Goulden, M., Saleska, S., Restrepo-Coupe, N., Wofsy, S., Borma, L., Artaxo, P., Vourlitis, G., S. Nogueira, J., L. Cardoso, F., Nobre, A., Kruijt, B., Freitas, H., Von Randow, C., Aguiar, R., Maia, J., 2009. Patterns of water and heat flux across a biome gradient from tropical forest to savanna in Brazil. J. Geophys. Res. 114. https://doi.org/10.1029/2007JG000640. – volume: 25 start-page: 1967 year: 2019 end-page: 1981 ident: b0135 article-title: Radiative forcing of methane fluxes offsets net carbon dioxide uptake for a tropical flooded forest publication-title: Glob. Chang. Biol. – reference: Jaafar, H.H., Ahmad, F.A., 2019. Time series trends of Landsat-based ET using automated calibration in METRIC and SEBAL: The Bekaa Valley, Lebanon. Remote Sens. Environ. https://doi.org/https://doi.org/10.1016/j.rse.2018.12.033. – reference: Moreira, A.A., Ruhoff, A.L., Roberti, D.R., Souza, V. de A., da Rocha, H.R., Paiva, R.C.D. de, 2019. Assessment of terrestrial water balance using remote sensing data in South America. J. Hydrol. 575, 131–147. https://doi.org/https://doi.org/10.1016/j.jhydrol.2019.05.021. – year: 2020 ident: b0370 article-title: Operational global actual evapotranspiration: development, evaluation, and dissemination publication-title: Sensors – volume: 49 start-page: 75 year: 2016 end-page: 86 ident: b0095 article-title: Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 19 start-page: 355 year: 2005 end-page: 376 ident: b0415 article-title: Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S publication-title: Irrig. Drain. Syst. – reference: DiMiceli, C., Carroll, R., Sohlberg, R., Kim, D., Kelly, M., Townshend, J., 2015. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250m SIN Grid V006. https://doi.org/https://doi.org/10.5067/MODIS/MOD44B.006. – volume: 139 start-page: 35 year: 2013 end-page: 49 ident: b0425 article-title: A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET publication-title: Remote Sens. Environ. – volume: 49 start-page: 8495 year: 2013 end-page: 8510 ident: b0225 article-title: Mapping evapotranspiration trends using MODIS and SEBAL model in a data scarce and heterogeneous landscape in Eastern Africa publication-title: Water Resour. Res. – volume: 202 start-page: 112 year: 2015 end-page: 124 ident: b0110 article-title: Patterns of energy exchange for tropical ecosystems across a climate gradient in Mato Grosso, Brazil publication-title: Agric. For. Meteorol. – volume: 196 start-page: 178 year: 2017 end-page: 192 ident: b0090 article-title: A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models publication-title: Remote Sens. Environ. – volume: 56 300 year: 1998 ident: b0010 article-title: Crop evapotranspiration. Crop evapotranspiration-guidelines publication-title: Comput. Crop Water Requir. Irrig. Drain. Pap. – volume: 10 year: 2018 ident: b0145 article-title: remote sensing Estimating Calibration Variability in Evapotranspiration Derived from a Satellite-Based Energy Balance Model publication-title: Remote Sens. – volume: 164 start-page: 112 year: 2012 end-page: 122 ident: b0460 article-title: Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China publication-title: Agric. For. Meteorol. – volume: 78 year: 2004 ident: b0435 article-title: Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia publication-title: Theor. Appl. Climatol. – volume: 12 start-page: 25004 year: 2017 ident: b0300 article-title: Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome publication-title: Environ. Res. Lett. – volume: 105 start-page: 271 year: 2006 ident: 10.1016/j.isprsjprs.2021.05.018_b0255 article-title: Scale influences on the remote estimation of evapotranspiration using multiple satellite sensors publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.07.006 – volume: 22 start-page: 711 year: 2013 ident: 10.1016/j.isprsjprs.2021.05.018_b0035 article-title: Köppen’s climate classification map for Brazil publication-title: Meteorol. Zeitschrift doi: 10.1127/0941-2948/2013/0507 – year: 2020 ident: 10.1016/j.isprsjprs.2021.05.018_b0120 article-title: Estimativas de evapotranspiração real por sensoriamento remoto no Brasil publication-title: Brasília. – volume: 21 start-page: 159 year: 2006 ident: 10.1016/j.isprsjprs.2021.05.018_b0310 article-title: Fluxos Turbulentos de Energia sobre o Pantanal Sul Mato-Grossense publication-title: Rev. Bras. Meteorol. – ident: 10.1016/j.isprsjprs.2021.05.018_b0390 doi: 10.3390/rs12172735 – volume: 74 start-page: 54 year: 2017 ident: 10.1016/j.isprsjprs.2021.05.018_b0355 article-title: Estimation of evapotranspiration for different land covers in a Brazilian semi-arid region: A case study of the Brígida River basin publication-title: Brazil. J. South Am. Earth Sci. doi: 10.1016/j.jsames.2017.01.002 – volume: 6 year: 1988 ident: 10.1016/j.isprsjprs.2021.05.018_b0400 article-title: The surface energy balance system (SEBS) for estimation of turbulent heat fluxes publication-title: Hydrol. Earth Syst. Sci. – volume: 114 start-page: G01003 year: 2009 ident: 10.1016/j.isprsjprs.2021.05.018_b0115 article-title: Atmosphere and hydrological controls of the evapotranspiration over a floodplain forest in the Bananal Island region, Amazonia publication-title: J. Geophys. Res. doi: 10.1029/2007JG000641 – ident: 10.1016/j.isprsjprs.2021.05.018_b0325 doi: 10.1029/2007JG000640 – volume: 19 start-page: 355 year: 2005 ident: 10.1016/j.isprsjprs.2021.05.018_b0415 article-title: Operational aspects of satellite-based energy balance models for irrigated crops in the semi-arid U.S publication-title: Irrig. Drain. Syst. doi: 10.1007/s10795-005-8138-9 – year: 2020 ident: 10.1016/j.isprsjprs.2021.05.018_b0230 article-title: Assessment of an automated calibration of the SEBAL algorithm to estimate dry-season surface-energy partitioning in a forest-Savanna transition in Brazil publication-title: Remote Sens doi: 10.3390/rs12071108 – volume: 8 start-page: 215 year: 2016 ident: 10.1016/j.isprsjprs.2021.05.018_b0210 article-title: Downscaling of MODIS one kilometer evapotranspiration using landsat-8 data and machine learning approaches publication-title: Remote Sens. doi: 10.3390/rs8030215 – volume: 8 start-page: 223 year: 1999 ident: 10.1016/j.isprsjprs.2021.05.018_b0195 article-title: The nature and diversity of neotropical savanna vegetation with particular reference to the Brazilian cerrados publication-title: Glob. Ecol. Biogeogr. doi: 10.1046/j.1466-822X.1999.00142.x – volume: 16 start-page: 229 year: 2012 ident: 10.1016/j.isprsjprs.2021.05.018_b0220 article-title: Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-012-0006-1 – volume: 8 start-page: 983 year: 2016 ident: 10.1016/j.isprsjprs.2021.05.018_b0235 article-title: The modified SEBAL for mapping daily spatial evapotranspiration of South Korea using three flux towers and terra MODIS data publication-title: Remote Sens. doi: 10.3390/rs8120983 – volume: 17 start-page: 711 year: 2003 ident: 10.1016/j.isprsjprs.2021.05.018_b0350 article-title: Effects of fire on surface carbon, energy and water vapour fluxes over campo sujo savanna in central Brazil publication-title: Funct. Ecol. doi: 10.1111/j.1365-2435.2003.00790.x – volume: 10 start-page: 1903 year: 2017 ident: 10.1016/j.isprsjprs.2021.05.018_b0250 article-title: GLEAM v3: satellite-based land evaporation and root-zone soil moisture publication-title: Geosci. Model Dev. doi: 10.5194/gmd-10-1903-2017 – volume: 15 year: 2011 ident: 10.1016/j.isprsjprs.2021.05.018_b0040 article-title: Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-223-2011 – volume: 248 year: 2021 ident: 10.1016/j.isprsjprs.2021.05.018_b0345 article-title: Automatically selecting hot and cold pixels for satellite actual evapotranspiration estimation under different topographic and climatic conditions publication-title: Agric. Water Manag. doi: 10.1016/j.agwat.2021.106763 – ident: 10.1016/j.isprsjprs.2021.05.018_b0395 doi: 10.3390/w11091911 – ident: 10.1016/j.isprsjprs.2021.05.018_b0430 – volume: 212–213 start-page: 198 year: 1998 ident: 10.1016/j.isprsjprs.2021.05.018_b0060 article-title: A remote sensing surface energy balance algorithm for land (SEBAL): 1 publication-title: Formulation. J. Hydrol. doi: 10.1016/S0022-1694(98)00253-4 – volume: 229 start-page: 69 year: 2019 ident: 10.1016/j.isprsjprs.2021.05.018_b0085 article-title: An automated multi-model evapotranspiration mapping framework using remotely sensed and reanalysis data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.04.026 – volume: 113 start-page: 223 year: 2002 ident: 10.1016/j.isprsjprs.2021.05.018_b0445 article-title: Energy balance closure at FLUXNET sites publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(02)00109-0 – volume: 202 start-page: 112 year: 2015 ident: 10.1016/j.isprsjprs.2021.05.018_b0110 article-title: Patterns of energy exchange for tropical ecosystems across a climate gradient in Mato Grosso, Brazil publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2014.12.008 – volume: 536 start-page: 384 year: 2016 ident: 10.1016/j.isprsjprs.2021.05.018_b0125 article-title: Uncertainty analysis of the Operational Simplified Surface Energy Balance (SSEBop) model at multiple flux tower sites publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2016.02.026 – volume: 133 start-page: 380 year: 2007 ident: 10.1016/j.isprsjprs.2021.05.018_b0020 article-title: Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—model publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2007)133:4(380) – volume: 131 start-page: 51 year: 2013 ident: 10.1016/j.isprsjprs.2021.05.018_b0160 article-title: Effects of spatial aggregation on the multi-scale estimation of evapotranspiration publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.007 – volume: 55 start-page: 8608 year: 2019 ident: 10.1016/j.isprsjprs.2021.05.018_b0240 article-title: Evapotranspiration estimation for tibetan plateau headwaters using conjoint terrestrial and atmospheric water balances and multisource remote sensing publication-title: Water Resour. Res. doi: 10.1029/2019WR025196 – ident: 10.1016/j.isprsjprs.2021.05.018_b0315 doi: 10.1016/j.agwat.2020.106197 – volume: 18 start-page: 1351 year: 2008 ident: 10.1016/j.isprsjprs.2021.05.018_b0190 article-title: The energy balance closure problem: An overview publication-title: Ecol. Appl. doi: 10.1890/06-0922.1 – volume: 29 start-page: 897 year: 2012 ident: 10.1016/j.isprsjprs.2021.05.018_b0270 article-title: An overview of the global historical climatology network-daily database publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-11-00103.1 – volume: 2021 start-page: 1 year: 2021 ident: 10.1016/j.isprsjprs.2021.05.018_b0295 article-title: ERA5-Land: A state-of-the-art global reanalysis dataset for land applications publication-title: Earth Syst. Sci. Data Discuss. – volume: 4 start-page: 703 issue: 3 year: 2012 ident: 10.1016/j.isprsjprs.2021.05.018_b0335 article-title: A MODIS-based energy balance to estimate evapotranspiration for clear-sky days in brazilian tropical Savannas publication-title: Remote Sensing doi: 10.3390/rs4030703 – volume: 13 start-page: 51 year: 2008 ident: 10.1016/j.isprsjprs.2021.05.018_b0410 article-title: At-surface reflectance and albedo from satellite for operational calculation of land surface energy balance publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2008)13:2(51) – volume: 10 start-page: 1864 year: 2018 ident: 10.1016/j.isprsjprs.2021.05.018_b0330 article-title: Evapotranspiration of the Brazilian Pampa Biome: Seasonality and Influential Factors publication-title: Water doi: 10.3390/w10121864 – volume: 5 start-page: 1709 issue: 6 year: 2012 ident: 10.1016/j.isprsjprs.2021.05.018_b0265 article-title: Satellite irrigation management support with the terrestrial observation and prediction system: A framework for integration of satellite and surface observations to support improvements in agricultural water resource management publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2012.2214474 – volume: 122 start-page: 50 year: 2012 ident: 10.1016/j.isprsjprs.2021.05.018_b0045 article-title: Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.08.025 – ident: 10.1016/j.isprsjprs.2021.05.018_b0340 – volume: 34 start-page: 555 year: 2018 ident: 10.1016/j.isprsjprs.2021.05.018_b0360 article-title: Satellite psychrometric formulation of the operational simplified surface energy balance (SSEBop) model for quantifying and mapping evapotranspiration publication-title: Appl. Eng. Agric. doi: 10.13031/aea.12614 – volume: 3 start-page: 511 year: 2012 ident: 10.1016/j.isprsjprs.2021.05.018_b0080 article-title: Validation of evaporation estimates from a modified surface energy balance algorithm for land (SEBAL) model in the south-eastern United States publication-title: Remote Sens. Lett. doi: 10.1080/01431161.2011.632655 – volume: 53 start-page: 2618 year: 2017 ident: 10.1016/j.isprsjprs.2021.05.018_b0175 article-title: The future of evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources publication-title: Water Resour. Res. doi: 10.1002/2016WR020175 – volume: 15 start-page: 181 year: 1999 ident: 10.1016/j.isprsjprs.2021.05.018_b0075 article-title: Satellite remote sensing for estimating productivities of land and water publication-title: Int. J. Water Resour. Dev. doi: 10.1080/07900629949005 – volume: 49 start-page: 8495 year: 2013 ident: 10.1016/j.isprsjprs.2021.05.018_b0225 article-title: Mapping evapotranspiration trends using MODIS and SEBAL model in a data scarce and heterogeneous landscape in Eastern Africa publication-title: Water Resour. Res. doi: 10.1002/2013WR014240 – ident: 10.1016/j.isprsjprs.2021.05.018_b0280 doi: 10.1016/j.jhydrol.2019.05.021 – volume: 52 start-page: 7311 year: 2016 ident: 10.1016/j.isprsjprs.2021.05.018_b0105 article-title: Mapping daily and seasonal evapotranspiration from irrigated crops using global climate grids and satellite imagery: Automation and methods comparison publication-title: Water Resour. Res. doi: 10.1002/2016WR019107 – ident: 10.1016/j.isprsjprs.2021.05.018_b0150 – volume: 49 start-page: 549 year: 2013 ident: 10.1016/j.isprsjprs.2021.05.018_b0285 article-title: Assessing calibration uncertainty and automation for estimating evapotranspiration from agricultural areas using METRIC publication-title: JAWRA J. Am. Water Resour. Assoc. doi: 10.1111/jawr.12054 – volume: 2 start-page: 1 year: 2002 ident: 10.1016/j.isprsjprs.2021.05.018_b0320 article-title: Measurements of CO2 exchange over a woodland savanna (Cerrado Sensu stricto) in southeast Brasil publication-title: Biota Neotrop. doi: 10.1590/S1676-06032002000100009 – volume: 78 year: 2004 ident: 10.1016/j.isprsjprs.2021.05.018_b0435 article-title: Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in South West Amazonia publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-004-0041-z – volume: 131 start-page: 85 year: 2005 ident: 10.1016/j.isprsjprs.2021.05.018_b0065 article-title: SEBAL Model with Remotely Sensed Data to Improve Water-Resources Management under Actual Field Conditions publication-title: J. Irrig. Drain. Eng. doi: 10.1061/(ASCE)0733-9437(2005)131:1(85) – volume: 49 start-page: 75 year: 2016 ident: 10.1016/j.isprsjprs.2021.05.018_b0095 article-title: Evaluating five remote sensing based single-source surface energy balance models for estimating daily evapotranspiration in a humid subtropical climate publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: 10.1016/j.isprsjprs.2021.05.018_b0205 doi: 10.1016/j.rse.2018.12.033 – ident: 10.1016/j.isprsjprs.2021.05.018_b0380 doi: 10.1002/9781119951933 – year: 2016 ident: 10.1016/j.isprsjprs.2021.05.018_b0385 article-title: Comparison of four different energy balance models for estimating evapotranspiration in the Midwestern United States publication-title: Water – volume: 15 start-page: 2694 year: 2009 ident: 10.1016/j.isprsjprs.2021.05.018_b0170 article-title: The land-atmosphere water flux in the tropics publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2008.01813.x – volume: 10 year: 2018 ident: 10.1016/j.isprsjprs.2021.05.018_b0145 article-title: remote sensing Estimating Calibration Variability in Evapotranspiration Derived from a Satellite-Based Energy Balance Model publication-title: Remote Sens. doi: 10.3390/rs10111695 – volume: 146 start-page: 1999 year: 2020 ident: 10.1016/j.isprsjprs.2021.05.018_b0200 article-title: The ERA5 global reanalysis publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.3803 – volume: 25 start-page: 1967 year: 2019 ident: 10.1016/j.isprsjprs.2021.05.018_b0135 article-title: Radiative forcing of methane fluxes offsets net carbon dioxide uptake for a tropical flooded forest publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.14615 – volume: 128 start-page: 192 year: 2017 ident: 10.1016/j.isprsjprs.2021.05.018_b0440 article-title: Performance of five surface energy balance models for estimating daily evapotranspiration in high biomass sorghum publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.03.022 – volume: 3 start-page: 834 year: 2016 ident: 10.1016/j.isprsjprs.2021.05.018_b0465 article-title: A review of remote sensing based actual evapotranspiration estimation publication-title: Wiley Interdiscip. Rev. Water doi: 10.1002/wat2.1168 – volume: 1 start-page: 56 year: 2019 ident: 10.1016/j.isprsjprs.2021.05.018_b0030 article-title: The expansion of center-pivot irrigation in the cerrado biome publication-title: IRRIGA doi: 10.15809/irriga.2019v1n1p56-61 – start-page: 78 year: 2011 ident: 10.1016/j.isprsjprs.2021.05.018_b0130 – volume: 9 year: 2017 ident: 10.1016/j.isprsjprs.2021.05.018_b0305 article-title: Evaluation of landsat-based METRIC modeling to provide high-spatial resolution evapotranspiration estimates for amazonian forests publication-title: Remote Sens. doi: 10.3390/rs9010046 – volume: 139 start-page: 55 year: 2006 ident: 10.1016/j.isprsjprs.2021.05.018_b0025 article-title: Analytical integrated functions for daily solar radiation on slopes publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2006.05.012 – volume: 229 start-page: 87 year: 2000 ident: 10.1016/j.isprsjprs.2021.05.018_b0055 article-title: SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin publication-title: Turkey. J. Hydrol. doi: 10.1016/S0022-1694(99)00202-4 – volume: 202 start-page: 98 year: 2017 ident: 10.1016/j.isprsjprs.2021.05.018_b0375 article-title: Satellite-based water use dynamics using historical Landsat data (1984–2014) in the southwestern United States publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.05.005 – volume: 103 start-page: 279 year: 2000 ident: 10.1016/j.isprsjprs.2021.05.018_b0420 article-title: Correcting eddy-covariance flux underestimates over a grassland publication-title: Agric. For. Meteorol. doi: 10.1016/S0168-1923(00)00123-4 – volume: 212–213 start-page: 213 year: 1998 ident: 10.1016/j.isprsjprs.2021.05.018_b0070 article-title: A remote sensing surface energy balance algorithm for land (SEBAL): 2 publication-title: Validation. J. Hydrol. doi: 10.1016/S0022-1694(98)00254-6 – volume: 40 start-page: 3026 year: 2013 ident: 10.1016/j.isprsjprs.2021.05.018_b0455 article-title: Remote estimation of terrestrial evapotranspiration without using meteorological data publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50450 – volume: 37 start-page: 4302 year: 2017 ident: 10.1016/j.isprsjprs.2021.05.018_b0165 article-title: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas publication-title: Int. J. Climatol. doi: 10.1002/joc.5086 – volume: 51 start-page: 3145 year: 2015 ident: 10.1016/j.isprsjprs.2021.05.018_b0450 article-title: Comparison of three dual-source remote sensing evapotranspiration models during the MUSOEXE-12 campaign: Revisit of model physics publication-title: Water Resour. Res. doi: 10.1002/2014WR015619 – volume: 196 start-page: 178 year: 2017 ident: 10.1016/j.isprsjprs.2021.05.018_b0090 article-title: A new optimized algorithm for automating endmember pixel selection in the SEBAL and METRIC models publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.05.009 – volume: 7 start-page: 200 year: 2017 ident: 10.1016/j.isprsjprs.2021.05.018_b0215 article-title: Regional dry-season climate changes due to three decades of Amazonian deforestation publication-title: Nat. Clim. Chang. doi: 10.1038/nclimate3226 – volume: 12 start-page: 25004 year: 2017 ident: 10.1016/j.isprsjprs.2021.05.018_b0300 article-title: Forest carbon emissions from cropland expansion in the Brazilian Cerrado biome publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/aa5986 – volume: 49 start-page: 563 year: 2013 ident: 10.1016/j.isprsjprs.2021.05.018_b0015 article-title: Automated calibration of the METRIC-landsat evapotranspiration process publication-title: JAWRA J. Am. Water Resour. Assoc. doi: 10.1111/jawr.12056 – volume: 194 start-page: 379 year: 2017 ident: 10.1016/j.isprsjprs.2021.05.018_b0185 article-title: Cloud detection algorithm comparison and validation for operational Landsat data products publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.03.026 – volume: 139 start-page: 35 year: 2013 ident: 10.1016/j.isprsjprs.2021.05.018_b0425 article-title: A comprehensive evaluation of two MODIS evapotranspiration products over the conterminous United States: Using point and gridded FLUXNET and water balance ET publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.07.013 – volume: 115 start-page: 1781 year: 2011 ident: 10.1016/j.isprsjprs.2021.05.018_b0290 article-title: Improvements to a MODIS global terrestrial evapotranspiration algorithm publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.02.019 – volume: 98 year: 2021 ident: 10.1016/j.isprsjprs.2021.05.018_b0140 article-title: Remote sensing-based actual evapotranspiration assessment in a data-scarce area of Brazil: A case study of the Urucuia Aquifer System publication-title: Int. J. Appl. Earth Obs. Geoinf. – year: 2015 ident: 10.1016/j.isprsjprs.2021.05.018_b0100 article-title: Remote Sensing of Actual Evapotranspiration from Cropland: Chapter 3 – volume: 49 start-page: 577 year: 2013 ident: 10.1016/j.isprsjprs.2021.05.018_b0365 article-title: Operational evapotranspiration mapping using remote sensing and weather datasets: a new parameterization for the SSEB approach publication-title: JAWRA J. Am. Water Resour. Assoc. doi: 10.1111/jawr.12057 – volume: 7 start-page: 407 year: 2013 ident: 10.1016/j.isprsjprs.2021.05.018_b0275 article-title: Sensitivity analysis of METRIC-based evapotranspiration algorithm publication-title: Int. J. Environ. Res. – year: 2020 ident: 10.1016/j.isprsjprs.2021.05.018_b0370 article-title: Operational global actual evapotranspiration: development, evaluation, and dissemination publication-title: Sensors doi: 10.3390/s20071915 – volume: 13 start-page: 447 year: 2021 ident: 10.1016/j.isprsjprs.2021.05.018_b0155 article-title: Synthesis of global actual evapotranspiration from 1982 to 2019 publication-title: Earth Syst. Sci. Data doi: 10.5194/essd-13-447-2021 – volume: 174–175 start-page: 28 year: 2013 ident: 10.1016/j.isprsjprs.2021.05.018_b0405 article-title: Spatial-scale effect on the SEBAL model for evapotranspiration estimation using remote sensing data publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2013.01.008 – volume: 116 year: 2011 ident: 10.1016/j.isprsjprs.2021.05.018_b0245 article-title: How sensitive is SEBAL to changes in input variables, domain size and satellite sensor? publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2011JD016542 – ident: 10.1016/j.isprsjprs.2021.05.018_b0050 doi: 10.1029/2001JD000676 – volume: 164 start-page: 112 year: 2012 ident: 10.1016/j.isprsjprs.2021.05.018_b0460 article-title: Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China publication-title: Agric. For. Meteorol. doi: 10.1016/j.agrformet.2012.05.011 – ident: 10.1016/j.isprsjprs.2021.05.018_b0005 doi: 10.1002/hyp.8408 – volume: 56 300 year: 1998 ident: 10.1016/j.isprsjprs.2021.05.018_b0010 article-title: Crop evapotranspiration. Crop evapotranspiration-guidelines publication-title: Comput. Crop Water Requir. Irrig. Drain. Pap. – ident: 10.1016/j.isprsjprs.2021.05.018_b0260 doi: 10.3133/sir20175087 – volume: 112 start-page: 901 year: 2008 ident: 10.1016/j.isprsjprs.2021.05.018_b0180 article-title: Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.06.025 |
SSID | ssj0001568 |
Score | 2.6052868 |
Snippet | The geeSEBAL application estimates and displays evapotranspiration maps and times series based on Landsat images and global meteorological data from ERA5 Land... Accurate estimation of evapotranspiration (ET) is essential for several applications in water resources management. ET models using remote sensing data have... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 81 |
SubjectTerms | algorithms automation Brazil cerrado Cloud computation computer software deforestation eddy covariance energy balance ERA5 land evapotranspiration geeSEBAL Google earth engine Internet irrigation land cover Landsat Meteorological reanalysis photogrammetry |
Title | Long-term monitoring of evapotranspiration using the SEBAL algorithm and Google Earth Engine cloud computing |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2021.05.018 https://www.proquest.com/docview/2636428596 |
Volume | 178 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwELUQPdAeqkKpCgVkpF7NJuuPJL0taOlCKReKxM2yY3t3UUhWkEXi0t_OTD6gVKo49JBDohkl8hvP2MrzG0K-qlQ4ADZmEmoVEyFKGapMMa-kEy6HCON4GvnnuZpcitMrebVCjvqzMEir7HJ_m9ObbN09GXSjOVjM54OLCLYOQxRAQhkh2Uh_CpFglB_8fqZ5xO1xODRmaP2C4zW_W9zeXcMFG8Vh3Ep4pv-qUH_l6qYAHX8g77uVIx21H7dOVny5Qd79oSe4Qda6luazh4-kOKvKKcPES2-aeYsmtArU35tFVTea5vMWfork9ymFpSC9GB-OzqgppmBez26oKR39XlXTwtMxDMuMtu-jeVEtHc2blhDgu0kuj8e_jiasa63Aci7SmoXMWoWswmDjNPeZC2nEhZEC5dBsknDjM5nFRioecu6skn44DKmHnGQiAwB-IqtlVfrPhHoXhci7xGXeCgszOgGrPEltiHniuN8iqh9OnXe649j-otA9wexaP-GgEQcdSQ04bJHoyXHRSm-87vKtx0u_iCINBeJ15_0eYQ1zDH-cmNJXSzBSHLdpMlPb__OCL-Qt3rX0wR2yWt8u_S4saWq718TsHnkzOvkxOX8Ejub45w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLZQObAdJsY2jQHDk3a1mtSxk3ArqKyM0gsgcbPs2G6LQlJBisR_z3v5UcGkiQOHXJL3lMjf8_ds5fl7hPyWSWQB2JAJyFUs8kHCUGWKOSlsZDOIMI6nkS-mcnwd_b0RNxvkpDsLg2WVLfc3nF6zdXun345mf7lY9C8D2DoMUAAJZYQESn9uojqV6JHN4dn5eLom5LA5EYf2DB1elXktHpb3D7dwwV5xEDYqnsn_ktQ_dF3noNNt8qldPNJh832fyYYrdsjHF5KCO2Sr7Wo-f_pC8klZzBhyL72rpy6a0NJT96iXZVXLmi-aCKBY_z6jsBqkl6Pj4YTqfAbm1fyO6sLSP2U5yx0dwcjMafM-muXlytKs7goBvl_J9eno6mTM2u4KLONRUjGfGiOxsNCbMMlcan0S8EiLCBXRTBxz7VKRhlpI7jNujRRuMPCJA1rSgQYMv5FeURbuO6HOBj5wNrapM5GBSR2DVRYnxoc8ttztEtkNp8pa6XHsgJGrrsbsVq1xUIiDCoQCHHZJsHZcNuobb7scdXipV4GkIEe87fyrQ1jBNMN_J7pw5QqMJMedmkjlj_e84JBsja8uJmpyNj3fIx_wSVNNuE961f3KHcAKpzI_2wh-Bgqb-5g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Long-term+monitoring+of+evapotranspiration+using+the+SEBAL+algorithm+and+Google+Earth+Engine+cloud+computing&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Laipelt%2C+Leonardo&rft.au=Henrique+Bloedow+Kayser%2C+Rafael&rft.au=Santos+Fleischmann%2C+Ayan&rft.au=Ruhoff%2C+Anderson&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=178&rft.spage=81&rft.epage=96&rft_id=info:doi/10.1016%2Fj.isprsjprs.2021.05.018&rft.externalDocID=S0924271621001519 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |