Reasoning with Vectors: A Continuous Model for Fast Robust Inference
This paper describes the use of continuous vector space models for reasoning with a formal knowledge base. The practical significance of these models is that they support fast, approximate but robust inference and hypothesis generation, which is complementary to the slow, exact, but sometimes brittl...
Saved in:
Published in | Logic journal of the IGPL Vol. 23; no. 2; p. 141 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
01.10.2015
|
Online Access | Get more information |
ISSN | 1367-0751 |
DOI | 10.1093/jigpal/jzu028 |
Cover
Loading…
Abstract | This paper describes the use of continuous vector space models for reasoning with a formal knowledge base. The practical significance of these models is that they support fast, approximate but robust inference and hypothesis generation, which is complementary to the slow, exact, but sometimes brittle behavior of more traditional deduction engines such as theorem provers. The paper explains the way logical connectives can be used in semantic vector models, and summarizes the development of Predication-based Semantic Indexing, which involves the use of Vector Symbolic Architectures to represent the concepts and relationships from a knowledge base of subject-predicate-object triples. Experiments show that the use of continuous models for formal reasoning is not only possible, but already demonstrably effective for some recognized informatics tasks, and showing promise in other traditional problem areas. Examples described in this paper include: predicting new uses for existing drugs in biomedical informatics; removing unwanted meanings from search results in information retrieval and concept navigation; type-inference from attributes; comparing words based on their orthography; and representing tabular data, including modelling numerical values. The algorithms and techniques described in this paper are all publicly released and freely available in the Semantic Vectors open-source software package. |
---|---|
AbstractList | This paper describes the use of continuous vector space models for reasoning with a formal knowledge base. The practical significance of these models is that they support fast, approximate but robust inference and hypothesis generation, which is complementary to the slow, exact, but sometimes brittle behavior of more traditional deduction engines such as theorem provers. The paper explains the way logical connectives can be used in semantic vector models, and summarizes the development of Predication-based Semantic Indexing, which involves the use of Vector Symbolic Architectures to represent the concepts and relationships from a knowledge base of subject-predicate-object triples. Experiments show that the use of continuous models for formal reasoning is not only possible, but already demonstrably effective for some recognized informatics tasks, and showing promise in other traditional problem areas. Examples described in this paper include: predicting new uses for existing drugs in biomedical informatics; removing unwanted meanings from search results in information retrieval and concept navigation; type-inference from attributes; comparing words based on their orthography; and representing tabular data, including modelling numerical values. The algorithms and techniques described in this paper are all publicly released and freely available in the Semantic Vectors open-source software package. |
Author | Cohen, Trevor Widdows, Dominic |
Author_xml | – sequence: 1 givenname: Dominic surname: Widdows fullname: Widdows, Dominic organization: Microsoft Bing – sequence: 2 givenname: Trevor surname: Cohen fullname: Cohen, Trevor organization: University of Texas School of Biomedical Informatics at Houston |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26582967$$D View this record in MEDLINE/PubMed |
BookMark | eNo1z01LwzAYwPEcJu5Fj14lX6AufZI0rbcxnQ4mwlCvIy9PZkuXlKZF9NMrqKff7Q__OZmEGJCQq5zd5Kziy6Y-drpdNl8jg3JCZjkvVMaUzKdknlLDGBMlyHMyhUKWUBVqRu72qFMMdTjSj3p4p29oh9inW7qi6xiGOoxxTPQpOmypjz3d6DTQfTTjD9vgscdg8YKced0mvPxzQV439y_rx2z3_LBdr3aZ5aIcMq88cCmgMs5I5kF5o7RXgjt0HiQUGq0TSqrK6kowqxkWMgdjjXPSMQ4Lcv3b7UZzQnfo-vqk-8_D_w58A5UwTgU |
CitedBy_id | crossref_primary_10_1007_s11036_017_0942_6 crossref_primary_10_1016_j_bica_2018_07_002 crossref_primary_10_3389_fdata_2024_1371518 crossref_primary_10_1145_3558000 crossref_primary_10_1515_sem_2018_0120 crossref_primary_10_1186_s40537_024_01010_8 crossref_primary_10_1007_s11265_024_01921_y crossref_primary_10_1162_neco_a_01618 crossref_primary_10_3389_frai_2021_698809 crossref_primary_10_1145_3538531 crossref_primary_10_1186_s12859_020_3517_7 crossref_primary_10_1016_j_procs_2018_11_060 crossref_primary_10_3390_jcm12144830 crossref_primary_10_1016_j_jbi_2021_103719 crossref_primary_10_1109_TNNLS_2016_2535338 crossref_primary_10_1109_TNNLS_2020_3043309 crossref_primary_10_1515_jdis_2017_0019 crossref_primary_10_1109_ACCESS_2021_3059762 crossref_primary_10_3233_NAI_240675 crossref_primary_10_1109_TNNLS_2018_2814400 crossref_primary_10_1007_s12559_021_09974_y crossref_primary_10_3390_bdcc9030068 crossref_primary_10_3389_fnbot_2019_00084 crossref_primary_10_1016_j_jbi_2017_03_003 crossref_primary_10_1007_s10462_025_11181_2 crossref_primary_10_3103_S1060992X21010033 crossref_primary_10_1007_s11192_020_03811_z crossref_primary_10_1109_JPROC_2018_2871163 crossref_primary_10_1016_j_procs_2016_09_342 crossref_primary_10_1109_LRA_2019_2927096 crossref_primary_10_2196_27918 crossref_primary_10_1007_s10559_015_9774_1 crossref_primary_10_1017_S1351324919000226 crossref_primary_10_1109_MCAS_2020_2988388 crossref_primary_10_1109_OJCAS_2024_3381508 |
ContentType | Journal Article |
DBID | NPM |
DOI | 10.1093/jigpal/jzu028 |
DatabaseName | PubMed |
DatabaseTitle | PubMed |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Languages & Literatures Mathematics Philosophy |
ExternalDocumentID | 26582967 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NLM NIH HHS grantid: R01 LM011563 – fundername: NLM NIH HHS grantid: R21 LM010826 |
GroupedDBID | .2P .4S .DC .I3 0R~ 1TH 29L 4.4 482 48X 5GY 5VS 5WA 70D 8VB AAIJN AAJKP AAJQQ AAMVS AAOGV AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAWDT ABAZT ABDFA ABDTM ABEJV ABEUO ABGNP ABIME ABIXL ABJNI ABNGD ABNKS ABPQP ABPTD ABQLI ABVGC ABVLG ABWST ABXVV ABZBJ ACFRR ACGFO ACGFS ACUFI ACUKT ACUTJ ACUXJ ACYTK ADEYI ADEZT ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRDM ADRTK ADVEK ADYJX ADYVW ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFIYH AFOFC AGINJ AGKEF AGQPQ AGQXC AGSYK AHGBF AHQJS AHXPO AIAGR AIJHB AJBYB AJEEA AJEUX AJNCP AKVCP ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX ANAKG ANFBD APIBT APWMN AQDSO ARCSS ATGXG ATTQO AXUDD AZFZN AZVOD BAYMD BCRHZ BEFXN BEYMZ BFFAM BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN CAG CDBKE COF CS3 CZ4 DAKXR DILTD DU5 D~K EBS EBU EDO EE~ EJD ELUNK F9B FEDTE FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC H13 H5~ HAR HVGLF HW0 HZ~ IOX JAVBF JXSIZ K1G KAQDR KBUDW KOP KSI KSN M-Z N9A NGC NMDNZ NOMLY NPM NVLIB O0~ O9- OCL ODMLO OJQWA OJZSN OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y QWB R44 RD5 RNI ROL ROX RUSNO RW1 RXO RZF RZO TCN TH9 TJP TUS X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 |
ID | FETCH-LOGICAL-c348t-f7f235429bdb50f27fb7af743dedf2526aecd47579ca940ca0e6512bcbdd5d032 |
ISSN | 1367-0751 |
IngestDate | Mon Jul 21 05:43:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c348t-f7f235429bdb50f27fb7af743dedf2526aecd47579ca940ca0e6512bcbdd5d032 |
PMID | 26582967 |
ParticipantIDs | pubmed_primary_26582967 |
PublicationCentury | 2000 |
PublicationDate | 2015-Oct |
PublicationDateYYYYMMDD | 2015-10-01 |
PublicationDate_xml | – month: 10 year: 2015 text: 2015-Oct |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Logic journal of the IGPL |
PublicationTitleAlternate | Log J IGPL |
PublicationYear | 2015 |
SSID | ssj0004825 |
Score | 2.3144977 |
Snippet | This paper describes the use of continuous vector space models for reasoning with a formal knowledge base. The practical significance of these models is that... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 141 |
Title | Reasoning with Vectors: A Continuous Model for Fast Robust Inference |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26582967 |
Volume | 23 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFB21dJMuKgil9EE1C8QGmTrjN7sKGlKUoAglpbtqnlUjkUSx04p-fe88PLECRdCNE3sUa-x7Mr5zPecchN6SlEt4cNEgFAkP4pwXATwFecASrfUdUZkaxZvBt7Q3jr9eJpcrmzvDLqnYB37_R17JU6IKxyCumiX7H5H1J4UD8B3iC1uIMGz_KcbfJS0b5dQLU4Eva7K59oBY6hWu2u_M0BTfd2lZ6cXUS_g4r6l-zfxUWy_zppyEWVz5ZehLxD9uhJjdudxb65Jw_xajJnqMFvJ2tmiWEzqJX5hWj4BRqmuXTgXWDZGWEuygQBrjXceqVv02DluNqsnN9VzbFnQn98vQcsAbUZn_NGEhkAORwnpy_L11TRi7btpEmzBF0J6nulBTU2Jz47frr8bJq0K_TmyvTmyftBi0O8_axMIkGKPnaMfNDPCpDfMLtCGnbbTXd_XkEr_DfS-BXbbR9sAL7sJea1hbUvx6iT57XGCNC-xw8RGf4hUqsEEFBlRgjQpsUYE9KnbRuHs2-tQLnFtGwKM4rwKVKRJp9zEmWBIqkimWUQUJopBCkYSkVHIRZ0lWcFrEIaehTCHbY5wJkYgwIq_Qs-lsKl8jDJPoTEVFh8GPYgY5YyEol3meRormUvF9tGfv1NXcSqJc1ffw4NGWQ9Rawe0IbSn4D8o3kNBV7NiE7gHtGUq0 |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reasoning+with+Vectors%3A+A+Continuous+Model+for+Fast+Robust+Inference&rft.jtitle=Logic+journal+of+the+IGPL&rft.au=Widdows%2C+Dominic&rft.au=Cohen%2C+Trevor&rft.date=2015-10-01&rft.issn=1367-0751&rft.volume=23&rft.issue=2&rft.spage=141&rft_id=info:doi/10.1093%2Fjigpal%2Fjzu028&rft_id=info%3Apmid%2F26582967&rft_id=info%3Apmid%2F26582967&rft.externalDocID=26582967 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-0751&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-0751&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-0751&client=summon |