ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data
Scene understanding of high resolution aerial images is of great importance for the task of automated monitoring in various remote sensing applications. Due to the large within-class and small between-class variance in pixel values of objects of interest, this remains a challenging task. In recent y...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 162; pp. 94 - 114 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Scene understanding of high resolution aerial images is of great importance for the task of automated monitoring in various remote sensing applications. Due to the large within-class and small between-class variance in pixel values of objects of interest, this remains a challenging task. In recent years, deep convolutional neural networks have started being used in remote sensing applications and demonstrate state of the art performance for pixel level classification of objects. Here we propose a reliable framework for performant results for the task of semantic segmentation of monotemporal very high resolution aerial images. Our framework consists of a novel deep learning architecture, ResUNet-a, and a novel loss function based on the Dice loss. ResUNet-a uses a UNet encoder/decoder backbone, in combination with residual connections, atrous convolutions, pyramid scene parsing pooling and multi-tasking inference. ResUNet-a infers sequentially the boundary of the objects, the distance transform of the segmentation mask, the segmentation mask and a colored reconstruction of the input. Each of the tasks is conditioned on the inference of the previous ones, thus establishing a conditioned relationship between the various tasks, as this is described through the architecture’s computation graph. We analyse the performance of several flavours of the Generalized Dice loss for semantic segmentation, and we introduce a novel variant loss function for semantic segmentation of objects that has excellent convergence properties and behaves well even under the presence of highly imbalanced classes. The performance of our modeling framework is evaluated on the ISPRS 2D Potsdam dataset. Results show state-of-the-art performance with an average F1 score of 92.9% over all classes for our best model. |
---|---|
AbstractList | Scene understanding of high resolution aerial images is of great importance for the task of automated monitoring in various remote sensing applications. Due to the large within-class and small between-class variance in pixel values of objects of interest, this remains a challenging task. In recent years, deep convolutional neural networks have started being used in remote sensing applications and demonstrate state of the art performance for pixel level classification of objects. Here we propose a reliable framework for performant results for the task of semantic segmentation of monotemporal very high resolution aerial images. Our framework consists of a novel deep learning architecture, ResUNet-a, and a novel loss function based on the Dice loss. ResUNet-a uses a UNet encoder/decoder backbone, in combination with residual connections, atrous convolutions, pyramid scene parsing pooling and multi-tasking inference. ResUNet-a infers sequentially the boundary of the objects, the distance transform of the segmentation mask, the segmentation mask and a colored reconstruction of the input. Each of the tasks is conditioned on the inference of the previous ones, thus establishing a conditioned relationship between the various tasks, as this is described through the architecture’s computation graph. We analyse the performance of several flavours of the Generalized Dice loss for semantic segmentation, and we introduce a novel variant loss function for semantic segmentation of objects that has excellent convergence properties and behaves well even under the presence of highly imbalanced classes. The performance of our modeling framework is evaluated on the ISPRS 2D Potsdam dataset. Results show state-of-the-art performance with an average F1 score of 92.9% over all classes for our best model. |
Author | Caccetta, Peter Waldner, François Diakogiannis, Foivos I. Wu, Chen |
Author_xml | – sequence: 1 givenname: Foivos I. surname: Diakogiannis fullname: Diakogiannis, Foivos I. email: foivos.diakogiannis@data61.csiro.au organization: Data61, CSIRO, Floreat, WA, Australia – sequence: 2 givenname: François surname: Waldner fullname: Waldner, François organization: CSIRO Agriculture & Food, St Lucia, QLD, Australia – sequence: 3 givenname: Peter surname: Caccetta fullname: Caccetta, Peter organization: Data61, CSIRO, Floreat, WA, Australia – sequence: 4 givenname: Chen surname: Wu fullname: Wu, Chen organization: ICRAR, The University of Western Australia, Crawley, WA, Australia |
BookMark | eNqNUE1LAzEQDVLBtvobzNHL1kl2t4mCh1L8AlEQ9Rqy2VlJ3U1qkir-eyMVD14U3jDDzHsP5k3IyHmHhBwymDFg8-PVzMZ1iKtcMw4cZsAyyh0yZlLwQvKyHpExnPCq4ILN98gkxhUAsHoux-TpHuPjLaZCn9IFbRHXtEcdnHXPtAt6wHcfXmjnA404aJesycPzgC7pZL2jvqMBB5-w_8gHF7GlrU56n-x2uo948N2n5PHi_GF5VdzcXV4vFzeFKSuZCjS1ZgyFaDuJDczRtAw5r0XVMd7xRui8FFhXrWwYQmZzU8qGM2hkVQldTsnR1ncd_OsGY1KDjQb7Xjv0m6h4BVBzkPIkU8WWaoKPMWCn1sEOOnwoBuorSbVSP0mqryQVsIwyK89-KY3dvp-Ctv0_9IutHnMSbxaDisaiM9jagCap1ts_PT4BOPqZKQ |
CitedBy_id | crossref_primary_10_3390_aerospace10100880 crossref_primary_10_1016_j_compbiomed_2024_108305 crossref_primary_10_1016_j_jag_2021_102557 crossref_primary_10_1007_s11517_025_03342_w crossref_primary_10_1142_S0219519423400699 crossref_primary_10_1016_j_pacs_2020_100218 crossref_primary_10_1007_s00521_023_08768_7 crossref_primary_10_1016_j_isprsjprs_2022_08_008 crossref_primary_10_1109_ACCESS_2024_3402818 crossref_primary_10_1016_j_isprsjprs_2023_11_015 crossref_primary_10_1016_j_rse_2023_113856 crossref_primary_10_1109_JSTARS_2021_3102137 crossref_primary_10_3390_rs15071931 crossref_primary_10_1016_j_exer_2021_108844 crossref_primary_10_3390_en13071772 crossref_primary_10_1007_s00371_024_03762_z crossref_primary_10_1038_s41597_024_03990_x crossref_primary_10_1016_j_cag_2020_05_003 crossref_primary_10_1016_j_isprsjprs_2022_08_019 crossref_primary_10_1016_j_displa_2024_102929 crossref_primary_10_1016_j_jksuci_2023_101793 crossref_primary_10_1016_j_media_2022_102642 crossref_primary_10_3390_rs13020294 crossref_primary_10_1016_j_media_2023_102957 crossref_primary_10_17660_ActaHortic_2023_1360_7 crossref_primary_10_1038_s41598_021_90599_4 crossref_primary_10_3390_rs17030422 crossref_primary_10_1007_s10489_023_04766_3 crossref_primary_10_1109_LSP_2025_3541989 crossref_primary_10_1093_mnras_stad1375 crossref_primary_10_1109_LGRS_2022_3142279 crossref_primary_10_12677_acm_2025_152503 crossref_primary_10_1080_09540091_2020_1862059 crossref_primary_10_1109_TGRS_2023_3344150 crossref_primary_10_1007_s12273_021_0872_x crossref_primary_10_1016_j_jag_2024_104113 crossref_primary_10_1007_s10462_023_10621_1 crossref_primary_10_3390_electronics13224503 crossref_primary_10_1007_s12524_023_01793_y crossref_primary_10_1016_j_buildenv_2021_107949 crossref_primary_10_1371_journal_pone_0301134 crossref_primary_10_1016_j_isprsjprs_2023_02_006 crossref_primary_10_1016_j_compag_2022_106873 crossref_primary_10_1016_j_health_2023_100259 crossref_primary_10_3390_math12050765 crossref_primary_10_1117_1_JRS_16_038504 crossref_primary_10_1049_ipr2_13052 crossref_primary_10_3390_rs13152986 crossref_primary_10_1080_14498596_2024_2305124 crossref_primary_10_1109_ACCESS_2021_3069882 crossref_primary_10_3390_rs13234902 crossref_primary_10_3390_rs14225862 crossref_primary_10_1016_j_ibmed_2023_100092 crossref_primary_10_1109_LGRS_2025_3532334 crossref_primary_10_1109_ACCESS_2024_3365577 crossref_primary_10_1080_24699322_2024_2329675 crossref_primary_10_1007_s10921_023_01019_8 crossref_primary_10_3390_rs16050839 crossref_primary_10_1109_JSTARS_2021_3071353 crossref_primary_10_1109_TGRS_2023_3326500 crossref_primary_10_1109_TGRS_2024_3393489 crossref_primary_10_3390_rs13020239 crossref_primary_10_3390_rs13152903 crossref_primary_10_1155_2022_7733860 crossref_primary_10_3390_ijgi12110454 crossref_primary_10_1007_s13735_023_00293_6 crossref_primary_10_1016_j_neunet_2025_107386 crossref_primary_10_1080_10106049_2024_2302176 crossref_primary_10_1007_s11517_023_02824_z crossref_primary_10_1007_s40747_024_01735_2 crossref_primary_10_1109_ACCESS_2024_3351564 crossref_primary_10_3390_rs17030496 crossref_primary_10_1093_mnras_stad563 crossref_primary_10_1016_j_neucom_2023_126946 crossref_primary_10_1109_ACCESS_2024_3392947 crossref_primary_10_1145_3613453 crossref_primary_10_3390_rs15163934 crossref_primary_10_1016_j_landurbplan_2022_104671 crossref_primary_10_1109_TGRS_2024_3443420 crossref_primary_10_1016_j_jenvman_2022_115732 crossref_primary_10_1007_s00330_022_09303_3 crossref_primary_10_1016_j_isprsjprs_2023_04_019 crossref_primary_10_1109_TGRS_2024_3386934 crossref_primary_10_1016_j_engappai_2023_106669 crossref_primary_10_3390_app12041953 crossref_primary_10_3390_s24144684 crossref_primary_10_3390_land10111266 crossref_primary_10_3390_rs14040992 crossref_primary_10_1016_j_compbiomed_2020_104077 crossref_primary_10_1109_TGRS_2024_3421654 crossref_primary_10_1016_j_jag_2023_103180 crossref_primary_10_1007_s12524_024_02063_1 crossref_primary_10_1016_j_media_2022_102628 crossref_primary_10_1145_3716370 crossref_primary_10_1016_j_compbiomed_2024_109223 crossref_primary_10_1007_s12145_022_00870_z crossref_primary_10_1109_TGRS_2021_3104807 crossref_primary_10_3390_rs15102585 crossref_primary_10_1515_revneuro_2023_0115 crossref_primary_10_1109_JSTARS_2022_3165005 crossref_primary_10_3390_rs12040644 crossref_primary_10_3390_s23187724 crossref_primary_10_1016_j_culher_2023_11_005 crossref_primary_10_1109_JSTARS_2022_3230149 crossref_primary_10_1109_TGRS_2024_3466909 crossref_primary_10_1109_JBHI_2024_3500026 crossref_primary_10_1109_TGRS_2023_3252544 crossref_primary_10_3390_app11188340 crossref_primary_10_1080_15481603_2024_2356355 crossref_primary_10_1016_j_displa_2024_102779 crossref_primary_10_3390_bioengineering11121302 crossref_primary_10_3934_mbe_2023747 crossref_primary_10_1139_geomat_2021_0013 crossref_primary_10_1109_ACCESS_2024_3483661 crossref_primary_10_1371_journal_pone_0307777 crossref_primary_10_3390_rs15051229 crossref_primary_10_1109_JSTARS_2025_3531505 crossref_primary_10_1007_s11263_024_02252_y crossref_primary_10_1016_j_jag_2022_102685 crossref_primary_10_1002_ima_22802 crossref_primary_10_1190_geo2023_0133_1 crossref_primary_10_1109_TGRS_2025_3532248 crossref_primary_10_1016_j_compag_2023_107642 crossref_primary_10_1016_j_bspc_2024_107363 crossref_primary_10_1016_j_cmpb_2023_107408 crossref_primary_10_1080_01431161_2023_2274318 crossref_primary_10_1117_1_JMI_11_3_034504 crossref_primary_10_1109_TGRS_2023_3329152 crossref_primary_10_1016_j_compind_2023_103889 crossref_primary_10_1080_15481603_2024_2395700 crossref_primary_10_1016_j_bspc_2024_107127 crossref_primary_10_1063_5_0172146 crossref_primary_10_1007_s10278_025_01387_9 crossref_primary_10_3390_rs12020207 crossref_primary_10_1016_j_isprsjprs_2021_01_020 crossref_primary_10_1088_2057_1976_ad1663 crossref_primary_10_1007_s00521_021_06564_9 crossref_primary_10_1007_s13748_024_00340_1 crossref_primary_10_1016_j_measurement_2024_116219 crossref_primary_10_1109_ACCESS_2022_3193248 crossref_primary_10_1007_s42835_023_01479_y crossref_primary_10_1016_j_sedgeo_2023_106570 crossref_primary_10_1109_JBHI_2024_3504829 crossref_primary_10_3390_rs13193890 crossref_primary_10_1038_s41598_023_38974_1 crossref_primary_10_1155_2024_5575787 crossref_primary_10_1109_JSTARS_2024_3371427 crossref_primary_10_1186_s13244_023_01531_5 crossref_primary_10_3390_app13137966 crossref_primary_10_1109_TGRS_2023_3324706 crossref_primary_10_1007_s11042_025_20676_7 crossref_primary_10_1088_2057_1976_ad8c47 crossref_primary_10_3390_s21051873 crossref_primary_10_1109_TGRS_2023_3251659 crossref_primary_10_1080_17538947_2022_2159080 crossref_primary_10_1109_ACCESS_2021_3065695 crossref_primary_10_1109_TGRS_2024_3487643 crossref_primary_10_1109_TIP_2022_3189825 crossref_primary_10_3390_s24237730 crossref_primary_10_1016_j_bspc_2023_104631 crossref_primary_10_1038_s41598_020_69187_5 crossref_primary_10_1007_s11517_024_03025_y crossref_primary_10_1007_s11517_022_02723_9 crossref_primary_10_1016_j_bspc_2022_103896 crossref_primary_10_1109_TGRS_2024_3453868 crossref_primary_10_1109_ACCESS_2024_3387535 crossref_primary_10_1109_TGRS_2021_3108781 crossref_primary_10_3390_rs14030533 crossref_primary_10_1109_TMI_2022_3211764 crossref_primary_10_3390_atmos14121713 crossref_primary_10_1155_2022_9263379 crossref_primary_10_1016_j_compbiomed_2025_110012 crossref_primary_10_1016_j_jag_2022_102881 crossref_primary_10_1016_j_pacs_2022_100429 crossref_primary_10_1016_j_compag_2024_109050 crossref_primary_10_1109_JBHI_2024_3485767 crossref_primary_10_1016_j_compag_2024_109042 crossref_primary_10_1016_j_bspc_2023_105707 crossref_primary_10_3390_rs13061176 crossref_primary_10_1109_JSEN_2023_3324668 crossref_primary_10_1109_TGRS_2024_3483283 crossref_primary_10_3390_rs17030402 crossref_primary_10_1016_j_measurement_2024_115595 crossref_primary_10_1109_TGRS_2025_3538829 crossref_primary_10_1016_j_rse_2023_113495 crossref_primary_10_1016_j_rsase_2024_101188 crossref_primary_10_1109_JSTARS_2024_3424831 crossref_primary_10_3390_jcm10204760 crossref_primary_10_11648_j_ajcst_20240704_16 crossref_primary_10_3390_data8120185 crossref_primary_10_1016_j_bspc_2024_107165 crossref_primary_10_1016_j_measurement_2024_115333 crossref_primary_10_1109_TGRS_2024_3369310 crossref_primary_10_1109_JSTARS_2025_3527213 crossref_primary_10_3390_s24082552 crossref_primary_10_3390_rs13193836 crossref_primary_10_1109_ACCESS_2024_3392901 crossref_primary_10_1007_s10554_021_02482_y crossref_primary_10_1186_s40537_021_00414_0 crossref_primary_10_1109_JSTARS_2021_3063788 crossref_primary_10_3390_s23094444 crossref_primary_10_3390_app132312658 crossref_primary_10_1016_j_media_2025_103539 crossref_primary_10_12677_CSA_2022_1212283 crossref_primary_10_1109_TGRS_2021_3131331 crossref_primary_10_1016_j_compbiomed_2022_106207 crossref_primary_10_1002_mp_16646 crossref_primary_10_1016_j_eij_2024_100446 crossref_primary_10_1167_tvst_12_5_7 crossref_primary_10_1016_j_jag_2024_104160 crossref_primary_10_1109_TMM_2022_3209924 crossref_primary_10_1016_j_aej_2023_02_039 crossref_primary_10_3390_app14041634 crossref_primary_10_12677_csa_2024_1412244 crossref_primary_10_1007_s11356_023_30843_8 crossref_primary_10_1007_s10278_025_01455_0 crossref_primary_10_1109_JSTARS_2023_3314866 crossref_primary_10_1016_j_ufug_2021_127241 crossref_primary_10_1109_TGRS_2023_3306891 crossref_primary_10_1177_08953996241290326 crossref_primary_10_1109_TMI_2023_3247543 crossref_primary_10_1371_journal_pone_0256830 crossref_primary_10_1080_17538947_2023_2246436 crossref_primary_10_1007_s41064_023_00247_x crossref_primary_10_1007_s00371_025_03809_9 crossref_primary_10_3390_electronics13183771 crossref_primary_10_3390_rs14010207 crossref_primary_10_1109_LGRS_2023_3336680 crossref_primary_10_1109_TGRS_2024_3503588 crossref_primary_10_1109_LGRS_2023_3302432 crossref_primary_10_3390_app14062226 crossref_primary_10_1016_j_rineng_2024_103164 crossref_primary_10_1109_ACCESS_2024_3379142 crossref_primary_10_1109_ACCESS_2024_3451304 crossref_primary_10_1109_TITS_2023_3334266 crossref_primary_10_1109_JSTARS_2023_3255553 crossref_primary_10_1016_j_advengsoft_2025_103872 crossref_primary_10_1016_j_rse_2024_114207 crossref_primary_10_1109_TGRS_2023_3235002 crossref_primary_10_1109_TIM_2023_3243680 crossref_primary_10_1109_TGRS_2024_3392737 crossref_primary_10_3389_fphys_2022_1061911 crossref_primary_10_1109_ACCESS_2022_3159618 crossref_primary_10_1109_ACCESS_2021_3131768 crossref_primary_10_1186_s12880_024_01401_6 crossref_primary_10_1080_15481603_2023_2281142 crossref_primary_10_3390_ijgi11090462 crossref_primary_10_3389_fevo_2023_1201125 crossref_primary_10_1080_10106049_2021_1983034 crossref_primary_10_1007_s00371_023_03147_8 crossref_primary_10_1016_j_eswa_2021_115486 crossref_primary_10_1016_j_compbiomed_2023_107624 crossref_primary_10_1109_JSTARS_2023_3244207 crossref_primary_10_1109_ACCESS_2024_3355154 crossref_primary_10_1007_s11761_024_00400_3 crossref_primary_10_1109_ACCESS_2021_3097630 crossref_primary_10_1007_s41064_022_00194_z crossref_primary_10_1016_j_isprsjprs_2020_09_025 crossref_primary_10_1109_TGRS_2023_3302024 crossref_primary_10_1080_01431161_2024_2398824 crossref_primary_10_1007_s10489_021_02542_9 crossref_primary_10_1109_TGRS_2024_3423010 crossref_primary_10_1109_TGRS_2024_3425673 crossref_primary_10_1016_j_vrih_2023_05_001 crossref_primary_10_3390_rs16234392 crossref_primary_10_1016_j_compbiomed_2023_107879 crossref_primary_10_3390_rs15245682 crossref_primary_10_3390_rs13163187 crossref_primary_10_1088_1361_6560_acf110 crossref_primary_10_7717_peerj_cs_1483 crossref_primary_10_3389_fcell_2023_1181305 crossref_primary_10_1016_j_measurement_2023_113570 crossref_primary_10_3389_fbioe_2024_1504249 crossref_primary_10_3390_rs12081233 crossref_primary_10_1109_TGRS_2024_3360701 crossref_primary_10_1016_j_rsase_2022_100898 crossref_primary_10_1038_s41746_024_01305_3 crossref_primary_10_1186_s42492_023_00141_8 crossref_primary_10_1038_s41597_025_04760_z crossref_primary_10_1109_ACCESS_2025_3526602 crossref_primary_10_1080_01431161_2022_2142081 crossref_primary_10_1109_TGRS_2024_3469268 crossref_primary_10_1016_j_compbiomed_2024_107939 crossref_primary_10_1016_j_nicl_2022_103044 crossref_primary_10_3390_rs13163135 crossref_primary_10_3390_land12081566 crossref_primary_10_1016_j_bspc_2024_106383 crossref_primary_10_1109_TGRS_2022_3143855 crossref_primary_10_1016_j_cag_2023_06_018 crossref_primary_10_1016_j_isprsjprs_2024_09_017 crossref_primary_10_1109_ACCESS_2021_3052791 crossref_primary_10_3390_mca29040048 crossref_primary_10_1080_15481603_2022_2143678 crossref_primary_10_3390_rs13245015 crossref_primary_10_1007_s12555_024_0550_8 crossref_primary_10_1109_TIM_2024_3497060 crossref_primary_10_1155_2023_6460639 crossref_primary_10_1109_JSTARS_2024_3490584 crossref_primary_10_3390_rs17060995 crossref_primary_10_1016_j_bspc_2024_107200 crossref_primary_10_1038_s41598_023_36940_5 crossref_primary_10_3390_sym14061129 crossref_primary_10_3390_rs16234583 crossref_primary_10_1109_ACCESS_2022_3161507 crossref_primary_10_3390_math10152755 crossref_primary_10_1016_j_bspc_2024_107202 crossref_primary_10_1142_S0129065724500680 crossref_primary_10_1016_j_engappai_2024_109467 crossref_primary_10_1016_j_compbiomed_2022_106294 crossref_primary_10_1016_j_compag_2022_107249 crossref_primary_10_1109_ACCESS_2024_3516079 crossref_primary_10_1049_ipr2_12444 crossref_primary_10_1002_mp_14861 crossref_primary_10_1109_TGRS_2024_3426561 crossref_primary_10_1016_j_bspc_2024_107456 crossref_primary_10_1016_j_compbiomed_2024_108819 crossref_primary_10_1016_j_isprsjprs_2022_06_008 crossref_primary_10_3390_rs14194889 crossref_primary_10_3390_rs15112811 crossref_primary_10_3390_rs13163149 crossref_primary_10_3390_rs14184610 crossref_primary_10_3390_f12111441 crossref_primary_10_1190_geo2023_0182_1 crossref_primary_10_1080_01431161_2021_1982155 crossref_primary_10_1109_ACCESS_2025_3538876 crossref_primary_10_1016_j_array_2024_100346 crossref_primary_10_1080_03091902_2022_2077997 crossref_primary_10_1016_j_asoc_2024_112061 crossref_primary_10_1016_j_heliyon_2024_e26775 crossref_primary_10_1016_j_asoc_2024_112065 crossref_primary_10_1016_j_compmedimag_2022_102072 crossref_primary_10_1016_j_compbiomed_2023_107208 crossref_primary_10_1109_LGRS_2022_3215200 crossref_primary_10_1016_j_apenergy_2024_123871 crossref_primary_10_1051_e3sconf_202131004002 crossref_primary_10_1080_22797254_2023_2181874 crossref_primary_10_3390_bioengineering10080945 crossref_primary_10_3390_s24113677 crossref_primary_10_1155_2022_6010912 crossref_primary_10_1109_TGRS_2024_3493963 crossref_primary_10_1109_TGRS_2023_3334294 crossref_primary_10_3390_electronics12081829 crossref_primary_10_1109_TGRS_2023_3244136 crossref_primary_10_3390_rs15153711 crossref_primary_10_3390_bioengineering11090950 crossref_primary_10_1109_TCSVT_2024_3457622 crossref_primary_10_1109_TGRS_2024_3515157 crossref_primary_10_1016_j_scitotenv_2023_169113 crossref_primary_10_1080_01431161_2023_2243021 crossref_primary_10_1016_j_bspc_2024_106987 crossref_primary_10_1007_s00530_024_01260_9 crossref_primary_10_1016_j_compbiomed_2024_107989 crossref_primary_10_1016_j_compbiomed_2024_108838 crossref_primary_10_1016_j_engappai_2024_108782 crossref_primary_10_1109_ACCESS_2024_3520594 crossref_primary_10_1016_j_inffus_2024_102634 crossref_primary_10_1007_s10489_024_05457_3 crossref_primary_10_1016_j_asoc_2021_107445 crossref_primary_10_1016_j_renene_2023_119126 crossref_primary_10_1038_s41598_023_48553_z crossref_primary_10_1109_ACCESS_2023_3301873 crossref_primary_10_3390_s24206655 crossref_primary_10_1007_s12524_024_01908_z crossref_primary_10_1016_j_eswa_2024_125779 crossref_primary_10_3390_rs13112197 crossref_primary_10_1016_j_jag_2023_103265 crossref_primary_10_1016_j_semcancer_2023_09_001 crossref_primary_10_1109_TVT_2022_3168574 crossref_primary_10_1109_JSTARS_2024_3397488 crossref_primary_10_1007_s00521_023_08569_y crossref_primary_10_1016_j_compag_2025_109953 crossref_primary_10_3389_fmars_2025_1528921 crossref_primary_10_1109_TGRS_2022_3220423 crossref_primary_10_1007_s11554_025_01639_5 crossref_primary_10_3390_rs13163119 crossref_primary_10_1364_OE_504606 crossref_primary_10_1109_ACCESS_2024_3451153 crossref_primary_10_1109_TGRS_2023_3268362 crossref_primary_10_1109_TGRS_2024_3376432 crossref_primary_10_3390_app14177928 crossref_primary_10_2139_ssrn_4151292 crossref_primary_10_1109_TIM_2022_3206810 crossref_primary_10_1155_2022_2697932 crossref_primary_10_1109_ACCESS_2021_3106377 crossref_primary_10_1016_j_engappai_2024_109890 crossref_primary_10_3390_rs14174219 crossref_primary_10_1109_TGRS_2024_3509735 crossref_primary_10_1016_j_neuri_2023_100138 crossref_primary_10_1109_JSTARS_2022_3205609 crossref_primary_10_3390_bioengineering11010016 crossref_primary_10_3390_bioengineering10080957 crossref_primary_10_1016_j_cma_2025_117848 crossref_primary_10_3389_fpls_2022_1043884 crossref_primary_10_1109_ACCESS_2025_3530701 crossref_primary_10_3390_s22145292 crossref_primary_10_1109_ACCESS_2024_3450492 crossref_primary_10_1038_s41598_024_71187_8 crossref_primary_10_3897_oneeco_7_e79160 crossref_primary_10_1109_TASLP_2024_3519881 crossref_primary_10_3390_math11204363 crossref_primary_10_1109_TGRS_2023_3338699 crossref_primary_10_1016_j_jag_2024_103717 crossref_primary_10_1111_tgis_70020 crossref_primary_10_1038_s41598_023_34943_w crossref_primary_10_3390_rs13010039 crossref_primary_10_3934_mbe_2024090 crossref_primary_10_3390_s23167284 crossref_primary_10_3390_app10186439 crossref_primary_10_1016_j_jksuci_2022_04_011 crossref_primary_10_1002_widm_1554 crossref_primary_10_1364_BOE_513619 crossref_primary_10_1016_j_eswa_2023_121926 crossref_primary_10_3233_XST_230413 crossref_primary_10_1109_JSTARS_2024_3486906 crossref_primary_10_1109_TGRS_2020_3033816 crossref_primary_10_1016_j_ecoinf_2022_101583 crossref_primary_10_1109_ACCESS_2025_3547796 crossref_primary_10_3390_rs17020290 crossref_primary_10_3390_rs14071638 crossref_primary_10_1016_j_bspc_2021_102959 crossref_primary_10_1016_j_neucom_2025_129660 crossref_primary_10_1080_01431161_2024_2349267 crossref_primary_10_1109_ACCESS_2023_3309158 crossref_primary_10_1109_TGRS_2024_3446317 crossref_primary_10_3390_rs16010003 crossref_primary_10_1016_j_jag_2022_103146 crossref_primary_10_3390_rs13010056 crossref_primary_10_1109_JSTARS_2024_3482553 crossref_primary_10_3390_rs16152851 crossref_primary_10_1371_journal_pone_0316089 crossref_primary_10_1016_j_inffus_2024_102409 crossref_primary_10_3390_rs15071836 crossref_primary_10_1109_TGRS_2024_3404953 crossref_primary_10_3390_rs15010266 crossref_primary_10_1109_TGRS_2022_3194581 crossref_primary_10_3390_rs15235610 crossref_primary_10_1016_j_isprsjprs_2023_01_018 crossref_primary_10_1016_j_optlastec_2024_111384 crossref_primary_10_3390_cancers16061120 crossref_primary_10_3390_rs16060949 crossref_primary_10_1080_01431161_2024_2424511 crossref_primary_10_1364_OL_495624 crossref_primary_10_1109_LGRS_2022_3177778 crossref_primary_10_3390_rs16173300 crossref_primary_10_1016_j_compbiomed_2023_107290 crossref_primary_10_3390_w16101365 crossref_primary_10_1016_j_ejmp_2021_03_008 crossref_primary_10_1038_s41598_022_27352_y crossref_primary_10_3390_rs16071214 crossref_primary_10_1016_j_compbiomed_2021_104699 crossref_primary_10_1364_OE_519379 crossref_primary_10_4236_ars_2023_123004 crossref_primary_10_1109_TGRS_2024_3363742 crossref_primary_10_1088_1361_6501_ac5439 crossref_primary_10_1016_j_jag_2022_102949 crossref_primary_10_1016_j_jag_2022_102706 crossref_primary_10_1088_1361_6560_ad1cfa crossref_primary_10_1080_01431161_2021_1876272 crossref_primary_10_1080_15481603_2022_2076382 crossref_primary_10_1007_s11760_024_03551_0 crossref_primary_10_1007_s10346_022_01847_1 crossref_primary_10_1007_s41348_024_01050_5 crossref_primary_10_1016_j_bspc_2023_104785 crossref_primary_10_3390_rs14153562 crossref_primary_10_3390_rs15133398 crossref_primary_10_1515_jisys_2024_0185 crossref_primary_10_1109_TGRS_2022_3225144 crossref_primary_10_1109_TIM_2024_3400352 crossref_primary_10_1080_01431161_2022_2107411 crossref_primary_10_3389_fbioe_2024_1398237 crossref_primary_10_1109_ACCESS_2024_3377428 crossref_primary_10_1007_s13369_022_06734_4 crossref_primary_10_1109_JSTARS_2020_3043442 crossref_primary_10_1109_TGRS_2020_3037211 crossref_primary_10_3390_rs14174298 crossref_primary_10_1145_3592147 crossref_primary_10_3390_rs14225738 crossref_primary_10_1109_ACCESS_2024_3494816 crossref_primary_10_1109_LSP_2022_3151549 crossref_primary_10_1016_j_rse_2020_111741 crossref_primary_10_1016_j_jrmge_2024_10_027 crossref_primary_10_1007_s11227_022_04642_w crossref_primary_10_3390_electronics11071093 crossref_primary_10_3233_XST_200735 crossref_primary_10_3390_rs14092061 crossref_primary_10_1016_j_jag_2022_102940 crossref_primary_10_1109_ACCESS_2025_3528638 crossref_primary_10_1109_ACCESS_2022_3211501 crossref_primary_10_1007_s11554_022_01225_z crossref_primary_10_1080_15481603_2023_2196117 crossref_primary_10_1109_TIM_2024_3379418 crossref_primary_10_1109_TIM_2023_3302376 crossref_primary_10_1016_j_eswa_2020_114417 crossref_primary_10_1109_TIP_2022_3226418 crossref_primary_10_1016_j_dibe_2023_100144 crossref_primary_10_3390_s22082988 crossref_primary_10_1002_mp_17689 crossref_primary_10_1016_j_jksuci_2023_04_006 crossref_primary_10_1007_s00371_024_03774_9 crossref_primary_10_1109_JSTARS_2023_3328315 crossref_primary_10_1016_j_bspc_2024_106804 crossref_primary_10_1109_JSTARS_2023_3328559 crossref_primary_10_5194_amt_17_3029_2024 crossref_primary_10_1007_s00530_023_01173_z crossref_primary_10_1109_ACCESS_2023_3243475 crossref_primary_10_1016_j_compmedimag_2023_102287 crossref_primary_10_1038_s41598_024_68357_z crossref_primary_10_1016_j_bspc_2022_104004 crossref_primary_10_1002_jbio_202300447 crossref_primary_10_1007_s12145_024_01325_3 crossref_primary_10_1109_JSTARS_2024_3393531 crossref_primary_10_1016_j_commatsci_2024_113063 crossref_primary_10_1007_s00371_025_03838_4 crossref_primary_10_5194_essd_16_4817_2024 crossref_primary_10_1016_j_engappai_2023_107638 crossref_primary_10_1007_s10278_023_00942_6 crossref_primary_10_1109_TGRS_2023_3336689 crossref_primary_10_17816_DD629866 crossref_primary_10_3389_fcell_2024_1532228 crossref_primary_10_3390_jmse12060852 crossref_primary_10_1109_JSTARS_2024_3459624 crossref_primary_10_1016_j_bspc_2023_105658 crossref_primary_10_1016_j_isprsjprs_2024_05_001 crossref_primary_10_1109_TGRS_2024_3384669 crossref_primary_10_3390_jimaging8050130 crossref_primary_10_3390_s22103960 crossref_primary_10_1016_j_isprsjprs_2022_02_021 crossref_primary_10_1109_LGRS_2024_3477609 crossref_primary_10_1364_BOE_484154 crossref_primary_10_3390_app13085031 crossref_primary_10_1109_JSTARS_2024_3443283 crossref_primary_10_1016_j_knosys_2022_109552 crossref_primary_10_1109_JSTARS_2024_3435425 crossref_primary_10_3390_rs16244701 crossref_primary_10_1109_TGRS_2022_3207551 crossref_primary_10_1080_17538947_2024_2328827 crossref_primary_10_1002_acm2_14584 crossref_primary_10_1109_TGRS_2023_3264232 crossref_primary_10_1016_j_rse_2022_113014 crossref_primary_10_1109_TGRS_2024_3477548 crossref_primary_10_21122_2309_4923_2023_4_20_28 crossref_primary_10_4236_ojapps_2024_142020 crossref_primary_10_1016_j_compag_2022_107473 crossref_primary_10_1109_TGRS_2023_3243954 crossref_primary_10_61186_jgst_14_2_55 crossref_primary_10_1109_JSTARS_2023_3339642 crossref_primary_10_1080_17452759_2024_2325572 crossref_primary_10_3390_diagnostics13132274 crossref_primary_10_1016_j_isprsjprs_2022_11_014 crossref_primary_10_1016_j_isprsjprs_2022_11_012 crossref_primary_10_1016_j_asoc_2022_109695 crossref_primary_10_1016_j_bspc_2025_107773 crossref_primary_10_1364_BOE_529505 crossref_primary_10_3390_s23041887 crossref_primary_10_1088_2632_2153_aba8e8 crossref_primary_10_3390_electronics12061300 crossref_primary_10_1002_mp_16302 crossref_primary_10_1093_mam_ozae044_942 crossref_primary_10_1016_j_autcon_2025_106069 crossref_primary_10_1109_TGRS_2024_3502401 crossref_primary_10_12677_airr_2024_132037 crossref_primary_10_1109_TGRS_2023_3339291 crossref_primary_10_1016_j_compag_2024_108902 crossref_primary_10_3390_rs13183755 crossref_primary_10_1007_s10489_022_03310_z crossref_primary_10_3390_rs14051128 crossref_primary_10_1109_JSTARS_2022_3180558 crossref_primary_10_3390_w17010068 crossref_primary_10_1007_s11760_024_03568_5 crossref_primary_10_1016_j_isprsjprs_2024_06_011 crossref_primary_10_2139_ssrn_4184451 crossref_primary_10_1109_JSTARS_2025_3540789 crossref_primary_10_1016_j_imavis_2024_105338 crossref_primary_10_3390_rs14112611 crossref_primary_10_1109_TGRS_2022_3168697 crossref_primary_10_1007_s11548_022_02822_w crossref_primary_10_1038_s41598_024_69827_0 crossref_primary_10_1109_JBHI_2023_3264539 crossref_primary_10_1109_LGRS_2022_3145499 crossref_primary_10_1016_j_bspc_2025_107793 crossref_primary_10_3390_rs15215148 crossref_primary_10_3390_ijgi11010009 crossref_primary_10_1016_j_bspc_2024_107257 crossref_primary_10_54097_50tqkg08 crossref_primary_10_3390_rs14194722 crossref_primary_10_1016_j_jag_2024_104084 crossref_primary_10_3390_diagnostics14232761 crossref_primary_10_1109_ACCESS_2024_3468384 crossref_primary_10_1016_j_ufug_2024_128373 crossref_primary_10_1109_JBHI_2024_3468904 crossref_primary_10_1515_bmt_2024_0439 crossref_primary_10_1177_01617346221075769 crossref_primary_10_1109_ACCESS_2024_3372394 crossref_primary_10_1109_TGRS_2022_3144894 crossref_primary_10_1109_ACCESS_2020_3009976 crossref_primary_10_1007_s10586_024_04292_y crossref_primary_10_1109_TGRS_2023_3271392 crossref_primary_10_1002_acm2_14155 crossref_primary_10_1109_TGRS_2024_3453501 crossref_primary_10_1016_j_daach_2024_e00360 crossref_primary_10_1080_17538947_2023_2230956 crossref_primary_10_1109_TGRS_2021_3128033 crossref_primary_10_1007_s00530_023_01138_2 crossref_primary_10_1007_s10278_024_01191_x crossref_primary_10_3390_en16237726 crossref_primary_10_1364_OE_539117 crossref_primary_10_3390_rs15215123 crossref_primary_10_1109_TAI_2021_3064913 crossref_primary_10_3390_rs15215124 crossref_primary_10_1016_j_media_2023_103031 crossref_primary_10_1016_j_neucom_2022_04_045 crossref_primary_10_1111_jcmm_70315 crossref_primary_10_1007_s11042_022_14037_x crossref_primary_10_3390_rs16132336 crossref_primary_10_3389_fbioe_2024_1414605 crossref_primary_10_1088_1475_7516_2024_09_002 crossref_primary_10_1016_j_jag_2021_102451 crossref_primary_10_1016_j_isprsjprs_2025_01_034 crossref_primary_10_1016_j_jvcir_2024_104212 crossref_primary_10_1140_epjp_s13360_024_05960_z crossref_primary_10_1016_j_displa_2025_102993 crossref_primary_10_1002_ima_70030 crossref_primary_10_1016_j_engfracmech_2024_110149 crossref_primary_10_1109_ACCESS_2024_3506557 crossref_primary_10_3390_rs13061049 crossref_primary_10_1109_TMI_2023_3283948 crossref_primary_10_3390_rs12132159 crossref_primary_10_1109_ACCESS_2020_3030112 crossref_primary_10_3389_fdata_2022_1080715 crossref_primary_10_3390_app14156765 crossref_primary_10_3390_rs13183707 crossref_primary_10_1007_s11042_024_19197_6 crossref_primary_10_3390_app12125960 crossref_primary_10_1016_j_fri_2024_200611 crossref_primary_10_1109_TAI_2024_3366146 crossref_primary_10_3390_rs15051328 crossref_primary_10_1016_j_compbiomed_2023_107717 crossref_primary_10_1038_s41598_025_90151_8 crossref_primary_10_3390_rs14164065 crossref_primary_10_1016_j_cmpb_2022_107031 crossref_primary_10_1016_j_autcon_2022_104519 crossref_primary_10_1093_mnras_staa3344 crossref_primary_10_1016_j_bea_2022_100041 crossref_primary_10_1016_j_compag_2022_106799 crossref_primary_10_1080_17538947_2023_2300731 crossref_primary_10_1109_TCE_2024_3433432 crossref_primary_10_3390_app13158725 crossref_primary_10_1109_JSTARS_2024_3362688 crossref_primary_10_3390_rs16061096 crossref_primary_10_1109_JSTARS_2025_3525576 crossref_primary_10_1109_TGRS_2024_3376389 crossref_primary_10_3390_rs13153000 crossref_primary_10_1016_j_isprsjprs_2021_03_016 crossref_primary_10_1016_j_isprsjprs_2024_01_013 crossref_primary_10_1080_13682199_2023_2198394 crossref_primary_10_3390_s24051708 crossref_primary_10_1016_j_compmedimag_2022_102112 crossref_primary_10_1109_ACCESS_2023_3275435 crossref_primary_10_1016_j_sigpro_2023_109152 crossref_primary_10_1186_s12880_024_01194_8 crossref_primary_10_3390_rs15143619 crossref_primary_10_1007_s10278_022_00740_6 crossref_primary_10_1109_TGRS_2023_3328339 crossref_primary_10_1007_s11042_024_20584_2 crossref_primary_10_1007_s12530_023_09533_w crossref_primary_10_1016_j_engappai_2022_105420 crossref_primary_10_1007_s11517_024_03252_3 crossref_primary_10_3390_app14104075 crossref_primary_10_1002_mp_15610 crossref_primary_10_1016_j_compmedimag_2022_102104 crossref_primary_10_1016_j_isprsjprs_2021_03_023 crossref_primary_10_1109_LGRS_2022_3227392 crossref_primary_10_1186_s40494_024_01505_w crossref_primary_10_1016_j_asoc_2024_111918 crossref_primary_10_1016_j_cma_2023_116277 crossref_primary_10_1109_TGRS_2023_3298924 crossref_primary_10_1109_JSTARS_2024_3464691 crossref_primary_10_1016_j_cageo_2022_105196 crossref_primary_10_3390_rs12233928 crossref_primary_10_1038_s41598_025_90709_6 crossref_primary_10_1109_TGRS_2024_3425540 crossref_primary_10_1002_nbm_4794 crossref_primary_10_1371_journal_pone_0309421 crossref_primary_10_1109_LGRS_2021_3063381 crossref_primary_10_1109_ACCESS_2022_3233078 crossref_primary_10_1109_TGRS_2022_3232143 crossref_primary_10_3390_rs17050824 crossref_primary_10_3390_rs14010102 crossref_primary_10_1155_2024_5057538 crossref_primary_10_3390_rs12193270 crossref_primary_10_3788_LOP213019 crossref_primary_10_1016_j_optlaseng_2024_108585 crossref_primary_10_1109_TGRS_2021_3115569 crossref_primary_10_3390_rs15092293 crossref_primary_10_1007_s11042_023_15764_5 crossref_primary_10_1016_j_compag_2023_108547 crossref_primary_10_1016_j_imavis_2024_105055 crossref_primary_10_1093_jmicro_dfab043 crossref_primary_10_1016_j_engappai_2024_108292 crossref_primary_10_1007_s11517_023_02828_9 crossref_primary_10_1109_TGRS_2024_3377009 crossref_primary_10_1016_j_eiar_2024_107633 crossref_primary_10_5194_essd_15_3283_2023 crossref_primary_10_1109_JSTARS_2024_3439267 crossref_primary_10_1080_01431161_2021_1949069 crossref_primary_10_1016_j_bspc_2024_106205 crossref_primary_10_1007_s42979_023_02434_4 crossref_primary_10_1007_s10278_023_00890_1 crossref_primary_10_1073_pnas_2221407120 crossref_primary_10_1007_s00371_024_03722_7 crossref_primary_10_3390_rs13163065 crossref_primary_10_1007_s00521_022_07737_w crossref_primary_10_1109_JSTARS_2022_3219724 crossref_primary_10_1007_s12559_024_10289_x crossref_primary_10_1155_2023_9979431 crossref_primary_10_1038_s41598_025_92715_0 crossref_primary_10_3390_rs13142794 crossref_primary_10_1016_j_icte_2022_09_007 crossref_primary_10_1109_JSTARS_2024_3375313 crossref_primary_10_1109_JSTARS_2022_3214485 crossref_primary_10_1016_j_jag_2024_104093 crossref_primary_10_1016_j_mtener_2023_101348 crossref_primary_10_1016_j_isprsjprs_2021_09_005 crossref_primary_10_3390_sym16070870 crossref_primary_10_3390_s24175845 crossref_primary_10_1080_01431161_2022_2135413 crossref_primary_10_1109_JSTARS_2024_3501678 crossref_primary_10_1049_ipr2_12780 crossref_primary_10_3390_s22062330 crossref_primary_10_1080_01431161_2023_2173033 crossref_primary_10_3390_rs16234494 crossref_primary_10_1109_JSTARS_2023_3335891 crossref_primary_10_1016_j_imavis_2024_105068 crossref_primary_10_1016_j_compbiomed_2022_106148 crossref_primary_10_1109_TCSVT_2022_3227172 crossref_primary_10_1109_TGRS_2024_3367632 crossref_primary_10_4103_jmss_jmss_52_22 crossref_primary_10_1007_s12205_023_2285_0 crossref_primary_10_1016_j_addma_2024_104266 crossref_primary_10_1016_j_rsase_2024_101221 crossref_primary_10_1007_s10489_025_06408_2 crossref_primary_10_1016_j_neucom_2025_129382 crossref_primary_10_1016_j_tust_2024_105819 crossref_primary_10_1007_s41064_023_00233_3 crossref_primary_10_1109_JBHI_2024_3506829 crossref_primary_10_3390_app12063024 crossref_primary_10_1007_s00521_023_08729_0 crossref_primary_10_1007_s12524_024_01827_z crossref_primary_10_3390_rs13163275 crossref_primary_10_1016_j_compbiomed_2023_107541 crossref_primary_10_3390_a16090419 crossref_primary_10_1080_01431161_2023_2275326 crossref_primary_10_1109_TCI_2024_3446230 crossref_primary_10_1007_s10489_021_03111_w crossref_primary_10_3390_diagnostics13010123 crossref_primary_10_1016_j_eswa_2024_124751 crossref_primary_10_1109_TGRS_2023_3292112 crossref_primary_10_1109_TGRS_2023_3301494 crossref_primary_10_1117_1_JEI_32_5_053016 crossref_primary_10_1016_j_bspc_2024_106484 crossref_primary_10_1016_j_isprsjprs_2024_01_021 crossref_primary_10_1080_01431161_2023_2174386 crossref_primary_10_3390_s23218739 crossref_primary_10_1109_TETCI_2023_3309626 crossref_primary_10_3390_rs15082208 crossref_primary_10_3390_life12111848 crossref_primary_10_1109_TGRS_2025_3532349 crossref_primary_10_3390_rs14092253 crossref_primary_10_3390_rs15071768 crossref_primary_10_1016_j_asoc_2021_107789 crossref_primary_10_1109_TGRS_2024_3373033 crossref_primary_10_1016_j_bspc_2023_105241 crossref_primary_10_1016_j_jag_2022_103087 crossref_primary_10_1016_j_cmpbup_2023_100109 crossref_primary_10_1016_j_compbiomed_2024_108947 crossref_primary_10_1016_j_heliyon_2024_e26414 crossref_primary_10_1016_j_measen_2023_100998 crossref_primary_10_1109_TGRS_2023_3281420 crossref_primary_10_1016_j_isprsjprs_2023_08_001 crossref_primary_10_1109_ACCESS_2024_3415169 crossref_primary_10_3390_rs13163211 crossref_primary_10_34133_remotesensing_0078 crossref_primary_10_1016_j_knosys_2024_112203 crossref_primary_10_1016_j_neucom_2025_129593 crossref_primary_10_3390_rs13091749 crossref_primary_10_3390_rs15092231 crossref_primary_10_1117_1_JRS_18_034522 crossref_primary_10_3390_a14060159 crossref_primary_10_1109_ACCESS_2022_3205419 crossref_primary_10_1016_j_bspc_2024_106866 crossref_primary_10_31590_ejosat_1057643 crossref_primary_10_1109_ACCESS_2021_3111899 crossref_primary_10_1109_TGRS_2022_3174651 crossref_primary_10_3390_rs15061701 crossref_primary_10_1186_s40317_021_00248_w crossref_primary_10_1007_s11517_024_03052_9 crossref_primary_10_3390_app122111226 crossref_primary_10_3390_rs15092464 crossref_primary_10_1109_TGRS_2024_3520610 crossref_primary_10_1007_s11042_023_14752_z crossref_primary_10_1109_TGRS_2024_3367850 crossref_primary_10_1016_j_zemedi_2023_08_006 crossref_primary_10_1080_07038992_2022_2144179 crossref_primary_10_3390_rs13112077 crossref_primary_10_1016_j_jag_2024_103662 crossref_primary_10_1016_j_jag_2024_103661 crossref_primary_10_1002_ima_23207 crossref_primary_10_1007_s40747_025_01803_1 crossref_primary_10_1016_j_asoc_2024_112399 crossref_primary_10_1289_EHP13214 crossref_primary_10_3390_a17050182 crossref_primary_10_1109_JBHI_2022_3181462 crossref_primary_10_3390_rs14092225 crossref_primary_10_1109_JSTARS_2021_3139017 crossref_primary_10_1016_j_isprsjprs_2023_09_021 crossref_primary_10_1016_j_apgeog_2024_103399 crossref_primary_10_3390_ijgi10100672 crossref_primary_10_1109_TGRS_2024_3354783 crossref_primary_10_1007_s12559_025_10425_1 crossref_primary_10_2174_0126662558275210231121044758 crossref_primary_10_1016_j_optlastec_2024_111222 crossref_primary_10_3390_rs13142788 crossref_primary_10_1109_TGRS_2023_3273818 crossref_primary_10_1109_TGRS_2022_3183144 crossref_primary_10_1007_s11837_024_06681_5 crossref_primary_10_1109_TAI_2024_3363685 crossref_primary_10_3390_electronics13173414 crossref_primary_10_1016_j_inffus_2024_102795 crossref_primary_10_1117_1_JMI_11_2_024004 crossref_primary_10_3390_rs13020197 crossref_primary_10_1016_j_eswa_2023_119950 crossref_primary_10_1016_j_compeleceng_2024_109719 crossref_primary_10_3390_jimaging10120297 crossref_primary_10_3390_app14146299 crossref_primary_10_1007_s10278_021_00571_x crossref_primary_10_1016_j_scitotenv_2022_155826 crossref_primary_10_3390_s24227266 crossref_primary_10_1109_TMI_2022_3180435 crossref_primary_10_1016_j_isprsjprs_2021_07_001 crossref_primary_10_3390_s22103784 crossref_primary_10_3390_rs13040808 crossref_primary_10_1109_JBHI_2023_3318640 crossref_primary_10_1007_s13748_025_00367_y crossref_primary_10_1109_TGRS_2022_3233637 crossref_primary_10_1007_s10895_024_04032_w crossref_primary_10_1016_j_cmpb_2024_108177 crossref_primary_10_1016_j_compbiomed_2024_108759 crossref_primary_10_1109_TGRS_2025_3531879 crossref_primary_10_1016_j_compbiomed_2025_109708 crossref_primary_10_1016_j_ymeth_2024_10_010 crossref_primary_10_1109_TMI_2023_3320151 crossref_primary_10_3390_diagnostics12122952 crossref_primary_10_3390_rs14102291 crossref_primary_10_1016_j_jag_2023_103345 crossref_primary_10_1155_int_9987190 crossref_primary_10_1016_j_knosys_2024_112217 crossref_primary_10_3390_jimaging10070161 crossref_primary_10_47164_ijngc_v13i5_903 crossref_primary_10_1016_j_compbiomed_2024_109617 crossref_primary_10_1080_09507116_2022_2163937 crossref_primary_10_1049_ipr2_12948 crossref_primary_10_3390_rs14184582 crossref_primary_10_3390_rs15184555 crossref_primary_10_1049_ipr2_12708 crossref_primary_10_1142_S0218001423540253 crossref_primary_10_1109_JSTARS_2024_3388464 crossref_primary_10_3390_app11136072 crossref_primary_10_1109_TIM_2025_3545864 crossref_primary_10_1007_s11069_022_05612_4 crossref_primary_10_1016_j_rse_2023_113833 crossref_primary_10_1109_TIV_2022_3216734 crossref_primary_10_5194_amt_17_961_2024 crossref_primary_10_1109_JSTARS_2022_3203750 crossref_primary_10_1016_j_jag_2023_103332 crossref_primary_10_1371_journal_pone_0246071 crossref_primary_10_1109_ACCESS_2024_3407795 crossref_primary_10_3390_rs15081996 crossref_primary_10_1007_s00521_022_07859_1 |
Cites_doi | 10.1016/j.rse.2017.11.026 10.3390/app9102110 10.1016/0005-2795(75)90109-9 10.1016/j.isprsjprs.2017.12.007 10.3390/rs8040329 10.1016/j.rse.2011.04.032 10.1109/TCYB.2016.2531179 10.1109/ICCV.2015.164 10.1109/CVPR.2017.660 10.1016/S0734-189X(86)80047-0 10.1109/CVPRW.2015.7301382 10.1371/journal.pone.0181911 10.1016/j.isprsjprs.2017.08.011 10.1109/CVPR.2018.00747 10.1162/neco_a_00990 10.1007/s11263-009-0275-4 10.1109/TGRS.2016.2616585 10.1109/JSTARS.2016.2645798 10.1016/j.isprsjprs.2019.04.015 10.2307/1932409 10.1109/TGRS.2017.2669341 10.3390/rs10050743 10.1109/ICCV.2017.244 10.1109/TKDE.2009.191 10.1109/CVPR.2009.5206848 10.1007/978-3-319-46976-8_19 10.1016/j.isprsjprs.2017.11.009 10.1016/j.isprsjprs.2013.09.014 10.3390/rs61111372 10.23915/distill.00003 10.1117/12.586823 10.1007/978-3-319-67558-9_28 10.1109/IGARSS.2017.8128165 10.1016/j.rse.2010.12.017 10.1109/ICCV.2017.324 10.1016/j.isprsjprs.2017.11.011 10.1109/CVPRW.2017.200 10.3390/rs9040368 10.1109/TMI.2006.880587 10.3390/rs10111768 10.3390/rs8030232 10.3390/rs3081777 10.1162/neco.1989.1.4.541 10.1109/34.87344 10.1109/MGRS.2017.2762307 10.1109/34.1000236 10.1109/TGRS.2015.2400462 10.1109/ICCV.2017.322 10.1109/JSTARS.2016.2582921 |
ContentType | Journal Article |
Copyright | 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
Copyright_xml | – notice: 2020 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2020.01.013 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Architecture Engineering |
EISSN | 1872-8235 |
EndPage | 114 |
ExternalDocumentID | 10_1016_j_isprsjprs_2020_01_013 S0924271620300149 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c348t-ec5a11e77df8eb06ecd1e22574f12f2b7ab067e54d8b1e0c5a2c38b210b8447a3 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Fri Jul 11 08:56:32 EDT 2025 Tue Jul 01 03:46:43 EDT 2025 Thu Apr 24 23:10:01 EDT 2025 Fri Feb 23 02:47:45 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Loss function Data augmentation Architecture Very high spatial resolution Convolutional neural network |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-ec5a11e77df8eb06ecd1e22574f12f2b7ab067e54d8b1e0c5a2c38b210b8447a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2400520889 |
PQPubID | 24069 |
PageCount | 21 |
ParticipantIDs | proquest_miscellaneous_2400520889 crossref_primary_10_1016_j_isprsjprs_2020_01_013 crossref_citationtrail_10_1016_j_isprsjprs_2020_01_013 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2020_01_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2020 2020-04-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: April 2020 |
PublicationDecade | 2020 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2020 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Badrinarayanan, V., Kendall, A., Cipolla, R., 2015. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. CoRR abs/1511.00561. Borgefors (b0045) 1986; 34 Zhu, J., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. CoRR abs/1703.10593. Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P., 2017. Focal loss for dense object detection. CoRR abs/1708.02002. ISPRS, International society for photogrammetry and remote sensing (isprs) and bsf swissphoto: Wg3 potsdam overhead data. Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. CoRR abs/1412.6980. Taghanaki, S.A., Abhishek, K., Cohen, J.P., Cohen-Adad, J., Hamarneh, G., 2019. Deep semantic segmentation of natural and medical images: a review arXiv Sørensen (b0340) 1948; 5 Chen, L., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation. CoRR abs/1706.05587. Vadivel, A., Sural, Shamik, Majumdar, A.K., 2005. Human color perception in the hsv space and its application in histogram generation for image retrieval. doi Pan, Gao, Marinoni, Zhang, Yang, Gamba (b0290) 2018; 10 Pan, Gao, Zhang, Yang, Liao (b0295) 2018 Audebert, N., Saux, B.L., Lefèvre, S., 2016. Semantic segmentation of earth observation data using multimodal and multi-scale deep networks. CoRR abs/1609.06846. He, K., Gkioxari, G., Dollár, P., Girshick, R.B., 2017. Mask R-CNN. CoRR abs/1703.06870. He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition. CoRR abs/1512.03385. Liu, Minh Nguyen, Deligiannis, Ding, Munteanu (b0215) 2017; 9 Myint, Gober, Brazel, Grossman-Clarke, Weng (b0265) 2011; 115 Audebert, Le Saux, Lefèvre (b0010) 2018; 140 Goyal, P., Dollár, P., Girshick, R.B., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., He, K., 2017. Accurate, large minibatch SGD: training imagenet in 1 hour. CoRR abs/1706.02677. Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR abs/1502.03167. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K., 2015. Spatial transformer networks. CoRR abs/1506.02025. Li, S., Jiao, J., Han, Y., Weissman, T., 2016. Demystifying resnet. CoRR abs/1611.01186. Zhao, Du, Wang, Emery (b0420) 2017; 132 Lu, Yuan, Zheng (b0230) 2017; 47 Matikainen, Karila (b0250) 2011; 3 Wen, Huang, Liu, Liao, Zhang (b0375) 2017; 10 Zhu, Tuia, Mou, Xia, Zhang, Xu, Fraundorfer (b0430) 2017; 5 Blaschke, Hay, Kelly, Lang, Hofmann, Addink, Feitosa, Van der Meer, Van der Werff, Van Coillie (b0040) 2014; 87 He, K., Zhang, X., Ren, S., Sun, J., 2014. Spatial pyramid pooling in deep convolutional networks for visual recognition. CoRR abs/1406.4729. Liu, Y., Piramanayagam, S., Monteiro, S.T., Saber, E., 2017b. Dense semantic labeling of very-high-resolution aerial imagery and lidar with fully-convolutional neural networks and higher-order crfs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Honolulu, USA. . Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (Eds.), Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc., pp. 2672–2680. Ma, Liu, Zhang, Ye, Yin, Johnson (b0235) 2019; 152 Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Cardoso, M.J., 2017. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. CoRR abs/1707.03237. Kervadec, H., Bouchtiba, J., Desrosiers, C., Ric Granger, Dolz, J., Ayed, I.B., 2018. Boundary loss for highly unbalanced segmentation arXiv Baatz, M., Schäpe, A., 2000. Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation (ecognition), 12–23. Vincent, Soille (b0360) 1991 Lambert, Waldner, Defourny (b0175) 2016; 8 He, K., Zhang, X., Ren, S., Sun, J., 2016. Identity mappings in deep residual networks. CoRR abs/1603.05027. Zhang, Z., Liu, Q., Wang, Y., 2017. Road extraction by deep residual u-net. CoRR abs/1711.10684. doi Bertasius, G., Shi, J., Torresani, L., 2015. Semantic segmentation with boundary neural fields. CoRR abs/1511.02674. Goldblatt, Stuhlmacher, Tellman, Clinton, Hanson, Georgescu, Wang, Serrano-Candela, Khandelwal, Cheng (b0100) 2018; 205 Pan, Yang (b0285) 2010; 22 Cheng, Wang, Xu, Wang, Xiang, Pan (b0065) 2017; 55 He, K., Girshick, R.B., Dollár, P., 2018. Rethinking imagenet pre-training. CoRR abs/1811.08883. Rawat, Wang (b0310) 2017; 29 Liu, Fan, Wang, Bai, Xiang, Pan (b0210) 2018; 145 Audebert, Le Saux, Lefévre (b0015) 2017; 9 Xie, S., Tu, Z., 2015. Holistically-nested edge detection. CoRR abs/1504.06375. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C., 2016. The importance of skip connections in biomedical image segmentation. CoRR abs/1608.04117. Sergeev, A., Balso, M.D., 2018. Horovod: fast and easy distributed deep learning in TensorFlow. arXiv preprint arXiv Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2016. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. CoRR abs/1606.00915. Ruder, S., 2017. An overview of multi-task learning in deep neural networks. CoRR abs/1706.05098. Huang, G., Liu, Z., Weinberger, K.Q., 2016. Densely connected convolutional networks. CoRR abs/1608.06993. Odena, Dumoulin, Olah (b0275) 2016 Yang, Wu, Yao, Wu, Wang, Xu (b0390) 2018; 10 Li, Shao (b0200) 2014; 6 Long, J., Shelhamer, E., Darrell, T., 2014. Fully convolutional networks for semantic segmentation. CoRR abs/1411.4038. Zagoruyko, S., Komodakis, N., 2016. Wide residual networks. CoRR abs/1605.07146. http://arxiv.org/abs/1605.07146, arXiv:1605.07146. Penatti, O.A., Nogueira, K., dos Santos, J.A., 2015. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 44–51. Paisitkriangkrai, Sherrah, Janney, van den Hengel (b0280) 2016; 9 Gu, Wang, Li (b0115) 2019; 9 Längkvist, Kiselev, Alirezaie, Loutfi (b0180) 2016; 8 Novikov, A.A., Major, D., Lenis, D., Hladuvka, J., Wimmer, M., Bühler, K., 2017. Fully convolutional architectures for multi-class segmentation in chest radiographs. CoRR abs/1701.08816. Piramanayagam, Saber, Schwartzkopf, Koehler (b0305) 2018 Volpi, Tuia (b0365) 2017; 55 Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017a. Pyramid scene parsing network. In: CVPR. Everingham, Van Gool, Williams, Winn, Zisserman (b0095) 2010; 88 Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., 2009. ImageNet: A Large-Scale Hierarchical Image Database. In: CVPR09. LeCun, Boser, Denker, Henderson, Howard, Hubbard, Jackel (b0185) 1989; 1 Xie, S.M., Jean, N., Burke, M., Lobell, D.B., Ermon, S., 2015. Transfer learning from deep features for remote sensing and poverty mapping. CoRR abs/1510.00098. Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C., Zhang, Z., 2015. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv Abraham, N., Khan, N.M., 2018. A novel focal tversky loss function with improved attention u-net for lesion segmentation. CoRR abs/1810.07842. Waldner, Hansen, Potapov, Löw, Newby, Ferreira, Defourny (b0370) 2017; 12 Crum, Camara, Hill (b0075) 2006; 25 Li, Femiani, Xu, Zhang, Wonka (b0190) 2015; 53 Sherrah, J., 2016. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. CoRR abs/1606.02585. Matthews (b0255) 1975; 405 Dice, L.R., 1945. Measures of the amount of ecologic association between species. Ecology 26, 297–302. doi Smith, L.N., 2018. A disciplined approach to neural network hyper-parameters: Part 1 – learning rate, batch size, momentum, and weight decay. CoRR abs/1803.09820. Zhang, Seto (b0405) 2011; 115 Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. CoRR abs/1505.04597. Marmanis, D., Wegner, J.D., Galliani, S., Schindler, K., Datcu, M., Stilla, U., 2016. Semantic segmentation of aerial images with an ensemble of cnns. Marmanis, Schindler, Wegner, Galliani, Datcu, Stilla (b0240) 2018; 135 Zhang, H., Dana, K., Shi, J., Zhang, Z., Wang, X., Tyagi, A., Agrawal, A., 2018. Context encoding for semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Comaniciu, Meer (b0070) 2002; 24 Milletari, F., Navab, N., Ahmadi, S., 2016. V-net: Fully convolutional neural networks for volumetric medical image segmentation. CoRR abs/1606.04797. Borgefors (10.1016/j.isprsjprs.2020.01.013_b0045) 1986; 34 Ma (10.1016/j.isprsjprs.2020.01.013_b0235) 2019; 152 10.1016/j.isprsjprs.2020.01.013_b0315 Yang (10.1016/j.isprsjprs.2020.01.013_b0390) 2018; 10 Cheng (10.1016/j.isprsjprs.2020.01.013_b0065) 2017; 55 Paisitkriangkrai (10.1016/j.isprsjprs.2020.01.013_b0280) 2016; 9 Pan (10.1016/j.isprsjprs.2020.01.013_b0295) 2018 10.1016/j.isprsjprs.2020.01.013_b0120 10.1016/j.isprsjprs.2020.01.013_b0165 Vincent (10.1016/j.isprsjprs.2020.01.013_b0360) 1991 10.1016/j.isprsjprs.2020.01.013_b0320 10.1016/j.isprsjprs.2020.01.013_b0245 Rawat (10.1016/j.isprsjprs.2020.01.013_b0310) 2017; 29 Crum (10.1016/j.isprsjprs.2020.01.013_b0075) 2006; 25 10.1016/j.isprsjprs.2020.01.013_b0125 10.1016/j.isprsjprs.2020.01.013_b0400 10.1016/j.isprsjprs.2020.01.013_b0005 10.1016/j.isprsjprs.2020.01.013_b0080 LeCun (10.1016/j.isprsjprs.2020.01.013_b0185) 1989; 1 10.1016/j.isprsjprs.2020.01.013_b0160 10.1016/j.isprsjprs.2020.01.013_b0085 Blaschke (10.1016/j.isprsjprs.2020.01.013_b0040) 2014; 87 Everingham (10.1016/j.isprsjprs.2020.01.013_b0095) 2010; 88 10.1016/j.isprsjprs.2020.01.013_b0105 10.1016/j.isprsjprs.2020.01.013_b0425 Comaniciu (10.1016/j.isprsjprs.2020.01.013_b0070) 2002; 24 Pan (10.1016/j.isprsjprs.2020.01.013_b0285) 2010; 22 10.1016/j.isprsjprs.2020.01.013_b0350 Lu (10.1016/j.isprsjprs.2020.01.013_b0230) 2017; 47 10.1016/j.isprsjprs.2020.01.013_b0395 10.1016/j.isprsjprs.2020.01.013_b0110 10.1016/j.isprsjprs.2020.01.013_b0155 10.1016/j.isprsjprs.2020.01.013_b0035 10.1016/j.isprsjprs.2020.01.013_b0355 Li (10.1016/j.isprsjprs.2020.01.013_b0190) 2015; 53 Liu (10.1016/j.isprsjprs.2020.01.013_b0210) 2018; 145 Matikainen (10.1016/j.isprsjprs.2020.01.013_b0250) 2011; 3 Wen (10.1016/j.isprsjprs.2020.01.013_b0375) 2017; 10 Goldblatt (10.1016/j.isprsjprs.2020.01.013_b0100) 2018; 205 10.1016/j.isprsjprs.2020.01.013_b0270 10.1016/j.isprsjprs.2020.01.013_b0150 10.1016/j.isprsjprs.2020.01.013_b0030 10.1016/j.isprsjprs.2020.01.013_b0195 Li (10.1016/j.isprsjprs.2020.01.013_b0200) 2014; 6 Gu (10.1016/j.isprsjprs.2020.01.013_b0115) 2019; 9 10.1016/j.isprsjprs.2020.01.013_b0415 10.1016/j.isprsjprs.2020.01.013_b0020 10.1016/j.isprsjprs.2020.01.013_b0220 Matthews (10.1016/j.isprsjprs.2020.01.013_b0255) 1975; 405 10.1016/j.isprsjprs.2020.01.013_b0385 Odena (10.1016/j.isprsjprs.2020.01.013_b0275) 2016 10.1016/j.isprsjprs.2020.01.013_b0145 Liu (10.1016/j.isprsjprs.2020.01.013_b0215) 2017; 9 10.1016/j.isprsjprs.2020.01.013_b0025 10.1016/j.isprsjprs.2020.01.013_b0300 Zhu (10.1016/j.isprsjprs.2020.01.013_b0430) 2017; 5 10.1016/j.isprsjprs.2020.01.013_b0345 10.1016/j.isprsjprs.2020.01.013_b0225 Längkvist (10.1016/j.isprsjprs.2020.01.013_b0180) 2016; 8 10.1016/j.isprsjprs.2020.01.013_b0060 Zhao (10.1016/j.isprsjprs.2020.01.013_b0420) 2017; 132 10.1016/j.isprsjprs.2020.01.013_b0380 Marmanis (10.1016/j.isprsjprs.2020.01.013_b0240) 2018; 135 10.1016/j.isprsjprs.2020.01.013_b0260 Volpi (10.1016/j.isprsjprs.2020.01.013_b0365) 2017; 55 10.1016/j.isprsjprs.2020.01.013_b0140 Myint (10.1016/j.isprsjprs.2020.01.013_b0265) 2011; 115 Zhang (10.1016/j.isprsjprs.2020.01.013_b0405) 2011; 115 Piramanayagam (10.1016/j.isprsjprs.2020.01.013_b0305) 2018 Pan (10.1016/j.isprsjprs.2020.01.013_b0290) 2018; 10 10.1016/j.isprsjprs.2020.01.013_b0325 10.1016/j.isprsjprs.2020.01.013_b0205 Audebert (10.1016/j.isprsjprs.2020.01.013_b0010) 2018; 140 Audebert (10.1016/j.isprsjprs.2020.01.013_b0015) 2017; 9 Sørensen (10.1016/j.isprsjprs.2020.01.013_b0340) 1948; 5 10.1016/j.isprsjprs.2020.01.013_b0130 10.1016/j.isprsjprs.2020.01.013_b0055 Lambert (10.1016/j.isprsjprs.2020.01.013_b0175) 2016; 8 10.1016/j.isprsjprs.2020.01.013_b0330 10.1016/j.isprsjprs.2020.01.013_b0135 10.1016/j.isprsjprs.2020.01.013_b0410 Waldner (10.1016/j.isprsjprs.2020.01.013_b0370) 2017; 12 10.1016/j.isprsjprs.2020.01.013_b0335 10.1016/j.isprsjprs.2020.01.013_b0090 10.1016/j.isprsjprs.2020.01.013_b0170 10.1016/j.isprsjprs.2020.01.013_b0050 |
References_xml | – volume: 55 start-page: 3322 year: 2017 end-page: 3337 ident: b0065 article-title: Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao, T., Xu, B., Zhang, C., Zhang, Z., 2015. Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv: – reference: He, K., Girshick, R.B., Dollár, P., 2018. Rethinking imagenet pre-training. CoRR abs/1811.08883. – volume: 88 start-page: 303 year: 2010 end-page: 338 ident: b0095 article-title: The pascal visual object classes (voc) challenge publication-title: Int. J. Comput. Vision – reference: Taghanaki, S.A., Abhishek, K., Cohen, J.P., Cohen-Adad, J., Hamarneh, G., 2019. Deep semantic segmentation of natural and medical images: a review arXiv: – volume: 29 start-page: 2352 year: 2017 end-page: 2449 ident: b0310 article-title: Deep convolutional neural networks for image classification: a comprehensive review publication-title: Neural Comput. – reference: Xie, S., Tu, Z., 2015. Holistically-nested edge detection. CoRR abs/1504.06375. – volume: 135 start-page: 158 year: 2018 end-page: 172 ident: b0240 article-title: Classification with an edge: Improving semantic image segmentation with boundary detection publication-title: ISPRS J. Photogramm. Remote Sens. – start-page: 583 year: 1991 end-page: 598 ident: b0360 article-title: Watersheds in digital spaces: an efficient algorithm based on immersion simulations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Huang, G., Liu, Z., Weinberger, K.Q., 2016. Densely connected convolutional networks. CoRR abs/1608.06993. – reference: Sherrah, J., 2016. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. CoRR abs/1606.02585. – reference: Chen, L., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L., 2016. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. CoRR abs/1606.00915. – volume: 12 year: 2017 ident: b0370 article-title: National-scale cropland mapping based on spectral-temporal features and outdated land cover information publication-title: PloS One – volume: 53 start-page: 4483 year: 2015 end-page: 4495 ident: b0190 article-title: Robust rooftop extraction from visible band images using higher order crf publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Kervadec, H., Bouchtiba, J., Desrosiers, C., Ric Granger, Dolz, J., Ayed, I.B., 2018. Boundary loss for highly unbalanced segmentation arXiv: – volume: 47 start-page: 884 year: 2017 end-page: 897 ident: b0230 article-title: Joint dictionary learning for multispectral change detection publication-title: IEEE Trans. Cybernetics – reference: Bertasius, G., Shi, J., Torresani, L., 2015. Semantic segmentation with boundary neural fields. CoRR abs/1511.02674. – volume: 87 start-page: 180 year: 2014 end-page: 191 ident: b0040 article-title: Geographic object-based image analysis–towards a new paradigm publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Vadivel, A., Sural, Shamik, Majumdar, A.K., 2005. Human color perception in the hsv space and its application in histogram generation for image retrieval. doi: – reference: Goyal, P., Dollár, P., Girshick, R.B., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., He, K., 2017. Accurate, large minibatch SGD: training imagenet in 1 hour. CoRR abs/1706.02677. – reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Identity mappings in deep residual networks. CoRR abs/1603.05027. – reference: He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition. CoRR abs/1512.03385. – start-page: 18 year: 2018 ident: b0295 article-title: High-resolution aerial imagery semantic labeling with dense pyramid network publication-title: Sensors – volume: 10 start-page: 1413 year: 2017 end-page: 1424 ident: b0375 article-title: Semantic classification of urban trees using very high resolution satellite imagery publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – volume: 152 start-page: 166 year: 2019 end-page: 177 ident: b0235 article-title: Deep learning in remote sensing applications: a meta-analysis and review publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 10 year: 2018 ident: b0290 article-title: Semantic labeling of high resolution aerial imagery and lidar data with fine segmentation network publication-title: Remote Sens. – volume: 55 start-page: 881 year: 2017 end-page: 893 ident: b0365 article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Baatz, M., Schäpe, A., 2000. Multiresolution segmentation: an optimization approach for high quality multi-scale image segmentation (ecognition), 12–23. – year: 2016 ident: b0275 article-title: Deconvolution and checkerboard artifacts publication-title: Distill – reference: Badrinarayanan, V., Kendall, A., Cipolla, R., 2015. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. CoRR abs/1511.00561. – volume: 1 start-page: 541 year: 1989 end-page: 551 ident: b0185 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. – volume: 3 start-page: 1777 year: 2011 end-page: 1804 ident: b0250 article-title: Segment-based land cover mapping of a suburban areacomparison of high-resolution remotely sensed datasets using classification trees and test field points publication-title: Remote Sens. – reference: Zhang, Z., Liu, Q., Wang, Y., 2017. Road extraction by deep residual u-net. CoRR abs/1711.10684. – reference: Sergeev, A., Balso, M.D., 2018. Horovod: fast and easy distributed deep learning in TensorFlow. arXiv preprint arXiv: – volume: 205 start-page: 253 year: 2018 end-page: 275 ident: b0100 article-title: Using landsat and nighttime lights for supervised pixel-based image classification of urban land cover publication-title: Remote Sens. Environ. – reference: Chen, L., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation. CoRR abs/1706.05587. – reference: Novikov, A.A., Major, D., Lenis, D., Hladuvka, J., Wimmer, M., Bühler, K., 2017. Fully convolutional architectures for multi-class segmentation in chest radiographs. CoRR abs/1701.08816. – volume: 9 start-page: 2868 year: 2016 end-page: 2881 ident: b0280 article-title: Semantic labeling of aerial and satellite imagery publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. – start-page: 10 year: 2018 ident: b0305 article-title: Supervised classification of multisensor remotely sensed images using a deep learning framework publication-title: Remote Sens. – volume: 145 start-page: 78 year: 2018 end-page: 95 ident: b0210 article-title: Semantic labeling in very high resolution images via a self-cascaded convolutional neural network publication-title: ISPRS J. Photogramm. Remote Sens. – reference: He, K., Gkioxari, G., Dollár, P., Girshick, R.B., 2017. Mask R-CNN. CoRR abs/1703.06870. – reference: , doi: – volume: 115 start-page: 2320 year: 2011 end-page: 2329 ident: b0405 article-title: Mapping urbanization dynamics at regional and global scales using multi-temporal dmsp/ols nighttime light data publication-title: Remote Sens. Environ. – reference: Ruder, S., 2017. An overview of multi-task learning in deep neural networks. CoRR abs/1706.05098. – reference: Dice, L.R., 1945. Measures of the amount of ecologic association between species. Ecology 26, 297–302. doi: – volume: 9 year: 2017 ident: b0015 article-title: Segment-before-detect: vehicle detection and classification through semantic segmentation of aerial images publication-title: Remote Sens. – reference: Lin, T., Goyal, P., Girshick, R.B., He, K., Dollár, P., 2017. Focal loss for dense object detection. CoRR abs/1708.02002. – volume: 9 year: 2019 ident: b0115 article-title: A survey on deep learning-driven remote sensing image scene understanding: Scene classification, scene retrieval and scene-guided object detection publication-title: Appl. Sci. – reference: Xie, S.M., Jean, N., Burke, M., Lobell, D.B., Ermon, S., 2015. Transfer learning from deep features for remote sensing and poverty mapping. CoRR abs/1510.00098. – reference: Penatti, O.A., Nogueira, K., dos Santos, J.A., 2015. Do deep features generalize from everyday objects to remote sensing and aerial scenes domains? In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 44–51. – volume: 9 year: 2017 ident: b0215 article-title: Hourglass-shapenetwork based semantic segmentation for high resolution aerial imagery publication-title: Remote Sens. – reference: Abraham, N., Khan, N.M., 2018. A novel focal tversky loss function with improved attention u-net for lesion segmentation. CoRR abs/1810.07842. – volume: 25 start-page: 1451 year: 2006 end-page: 1461 ident: b0075 article-title: Generalized overlap measures for evaluation and validation in medical image analysis publication-title: IEEE Trans. Med. Imaging – reference: Long, J., Shelhamer, E., Darrell, T., 2014. Fully convolutional networks for semantic segmentation. CoRR abs/1411.4038. – volume: 8 start-page: 232 year: 2016 ident: b0175 article-title: Cropland mapping over sahelian and sudanian agrosystems: a knowledge-based approach using proba-v time series at 100-m publication-title: Remote Sens. – reference: Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L., 2009. ImageNet: A Large-Scale Hierarchical Image Database. In: CVPR09. – reference: Liu, Y., Piramanayagam, S., Monteiro, S.T., Saber, E., 2017b. Dense semantic labeling of very-high-resolution aerial imagery and lidar with fully-convolutional neural networks and higher-order crfs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, Honolulu, USA. – volume: 24 start-page: 603 year: 2002 end-page: 619 ident: b0070 article-title: Mean shift: a robust approach toward feature space analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K., 2015. Spatial transformer networks. CoRR abs/1506.02025. – reference: Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014. Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (Eds.), Advances in Neural Information Processing Systems, vol. 27. Curran Associates, Inc., pp. 2672–2680. – reference: ISPRS, International society for photogrammetry and remote sensing (isprs) and bsf swissphoto: Wg3 potsdam overhead data. – reference: Milletari, F., Navab, N., Ahmadi, S., 2016. V-net: Fully convolutional neural networks for volumetric medical image segmentation. CoRR abs/1606.04797. – reference: Audebert, N., Saux, B.L., Lefèvre, S., 2016. Semantic segmentation of earth observation data using multimodal and multi-scale deep networks. CoRR abs/1609.06846. – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: b0285 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. – reference: Li, S., Jiao, J., Han, Y., Weissman, T., 2016. Demystifying resnet. CoRR abs/1611.01186. – reference: Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Cardoso, M.J., 2017. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. CoRR abs/1707.03237. – reference: Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017a. Pyramid scene parsing network. In: CVPR. – volume: 10 year: 2018 ident: b0390 article-title: Building extraction in very high resolution imagery by dense-attention networks publication-title: Remote Sens. – volume: 8 start-page: 329 year: 2016 ident: b0180 article-title: Classification and segmentation of satellite orthoimagery using convolutional neural networks publication-title: Remote Sens. – volume: 5 start-page: 1 year: 1948 end-page: 34 ident: b0340 article-title: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons publication-title: Biol. Skr. – volume: 5 start-page: 8 year: 2017 end-page: 36 ident: b0430 article-title: Deep learning in remote sensing: a comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. – reference: Zhang, H., Dana, K., Shi, J., Zhang, Z., Wang, X., Tyagi, A., Agrawal, A., 2018. Context encoding for semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR). – reference: . – reference: Marmanis, D., Wegner, J.D., Galliani, S., Schindler, K., Datcu, M., Stilla, U., 2016. Semantic segmentation of aerial images with an ensemble of cnns. – reference: Ronneberger, O., Fischer, P., Brox, T., 2015. U-net: Convolutional networks for biomedical image segmentation. CoRR abs/1505.04597. – reference: Zhu, J., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. CoRR abs/1703.10593. – reference: Smith, L.N., 2018. A disciplined approach to neural network hyper-parameters: Part 1 – learning rate, batch size, momentum, and weight decay. CoRR abs/1803.09820. – volume: 115 start-page: 1145 year: 2011 end-page: 1161 ident: b0265 article-title: Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery publication-title: Remote Sens. Environ. – reference: Zagoruyko, S., Komodakis, N., 2016. Wide residual networks. CoRR abs/1605.07146. http://arxiv.org/abs/1605.07146, arXiv:1605.07146. – volume: 132 start-page: 48 year: 2017 end-page: 60 ident: b0420 article-title: Contextually guided very-high-resolution imagery classification with semantic segments publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 140 start-page: 20 year: 2018 end-page: 32 ident: b0010 article-title: Beyond rgb: Very high resolution urban remote sensing with multimodal deep networks publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C., 2016. The importance of skip connections in biomedical image segmentation. CoRR abs/1608.04117. – volume: 34 start-page: 344 year: 1986 end-page: 371 ident: b0045 article-title: Distance transformations in digital images publication-title: Comput. Vision Graph. Image Process. – reference: He, K., Zhang, X., Ren, S., Sun, J., 2014. Spatial pyramid pooling in deep convolutional networks for visual recognition. CoRR abs/1406.4729. – volume: 6 start-page: 11372 year: 2014 end-page: 11390 ident: b0200 article-title: Object-based land-cover mapping with high resolution aerial photography at a county scale in midwestern usa publication-title: Remote Sens. – volume: 405 start-page: 442 year: 1975 end-page: 451 ident: b0255 article-title: Comparison of the predicted and observed secondary structure of t4 phage lysozyme publication-title: Biochimica et Biophysica Acta (BBA) – Protein Structure – reference: Ioffe, S., Szegedy, C., 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR abs/1502.03167. – reference: Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. CoRR abs/1412.6980. – volume: 205 start-page: 253 year: 2018 ident: 10.1016/j.isprsjprs.2020.01.013_b0100 article-title: Using landsat and nighttime lights for supervised pixel-based image classification of urban land cover publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.11.026 – ident: 10.1016/j.isprsjprs.2020.01.013_b0325 – ident: 10.1016/j.isprsjprs.2020.01.013_b0350 – volume: 9 year: 2019 ident: 10.1016/j.isprsjprs.2020.01.013_b0115 article-title: A survey on deep learning-driven remote sensing image scene understanding: Scene classification, scene retrieval and scene-guided object detection publication-title: Appl. Sci. doi: 10.3390/app9102110 – ident: 10.1016/j.isprsjprs.2020.01.013_b0270 – volume: 405 start-page: 442 year: 1975 ident: 10.1016/j.isprsjprs.2020.01.013_b0255 article-title: Comparison of the predicted and observed secondary structure of t4 phage lysozyme publication-title: Biochimica et Biophysica Acta (BBA) – Protein Structure doi: 10.1016/0005-2795(75)90109-9 – volume: 145 start-page: 78 year: 2018 ident: 10.1016/j.isprsjprs.2020.01.013_b0210 article-title: Semantic labeling in very high resolution images via a self-cascaded convolutional neural network publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.12.007 – ident: 10.1016/j.isprsjprs.2020.01.013_b0260 – ident: 10.1016/j.isprsjprs.2020.01.013_b0155 – volume: 8 start-page: 329 year: 2016 ident: 10.1016/j.isprsjprs.2020.01.013_b0180 article-title: Classification and segmentation of satellite orthoimagery using convolutional neural networks publication-title: Remote Sens. doi: 10.3390/rs8040329 – volume: 115 start-page: 2320 year: 2011 ident: 10.1016/j.isprsjprs.2020.01.013_b0405 article-title: Mapping urbanization dynamics at regional and global scales using multi-temporal dmsp/ols nighttime light data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.04.032 – volume: 47 start-page: 884 year: 2017 ident: 10.1016/j.isprsjprs.2020.01.013_b0230 article-title: Joint dictionary learning for multispectral change detection publication-title: IEEE Trans. Cybernetics doi: 10.1109/TCYB.2016.2531179 – ident: 10.1016/j.isprsjprs.2020.01.013_b0315 – ident: 10.1016/j.isprsjprs.2020.01.013_b0225 – ident: 10.1016/j.isprsjprs.2020.01.013_b0380 doi: 10.1109/ICCV.2015.164 – ident: 10.1016/j.isprsjprs.2020.01.013_b0415 doi: 10.1109/CVPR.2017.660 – volume: 34 start-page: 344 year: 1986 ident: 10.1016/j.isprsjprs.2020.01.013_b0045 article-title: Distance transformations in digital images publication-title: Comput. Vision Graph. Image Process. doi: 10.1016/S0734-189X(86)80047-0 – ident: 10.1016/j.isprsjprs.2020.01.013_b0055 – ident: 10.1016/j.isprsjprs.2020.01.013_b0330 – ident: 10.1016/j.isprsjprs.2020.01.013_b0300 doi: 10.1109/CVPRW.2015.7301382 – ident: 10.1016/j.isprsjprs.2020.01.013_b0145 – ident: 10.1016/j.isprsjprs.2020.01.013_b0110 – ident: 10.1016/j.isprsjprs.2020.01.013_b0135 – ident: 10.1016/j.isprsjprs.2020.01.013_b0160 – volume: 12 year: 2017 ident: 10.1016/j.isprsjprs.2020.01.013_b0370 article-title: National-scale cropland mapping based on spectral-temporal features and outdated land cover information publication-title: PloS One doi: 10.1371/journal.pone.0181911 – ident: 10.1016/j.isprsjprs.2020.01.013_b0410 – volume: 132 start-page: 48 year: 2017 ident: 10.1016/j.isprsjprs.2020.01.013_b0420 article-title: Contextually guided very-high-resolution imagery classification with semantic segments publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.08.011 – ident: 10.1016/j.isprsjprs.2020.01.013_b0400 doi: 10.1109/CVPR.2018.00747 – volume: 29 start-page: 2352 year: 2017 ident: 10.1016/j.isprsjprs.2020.01.013_b0310 article-title: Deep convolutional neural networks for image classification: a comprehensive review publication-title: Neural Comput. doi: 10.1162/neco_a_00990 – volume: 88 start-page: 303 year: 2010 ident: 10.1016/j.isprsjprs.2020.01.013_b0095 article-title: The pascal visual object classes (voc) challenge publication-title: Int. J. Comput. Vision doi: 10.1007/s11263-009-0275-4 – volume: 55 start-page: 881 year: 2017 ident: 10.1016/j.isprsjprs.2020.01.013_b0365 article-title: Dense semantic labeling of subdecimeter resolution images with convolutional neural networks publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2616585 – ident: 10.1016/j.isprsjprs.2020.01.013_b0395 – ident: 10.1016/j.isprsjprs.2020.01.013_b0005 – volume: 10 start-page: 1413 year: 2017 ident: 10.1016/j.isprsjprs.2020.01.013_b0375 article-title: Semantic classification of urban trees using very high resolution satellite imagery publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2016.2645798 – ident: 10.1016/j.isprsjprs.2020.01.013_b0170 – volume: 152 start-page: 166 year: 2019 ident: 10.1016/j.isprsjprs.2020.01.013_b0235 article-title: Deep learning in remote sensing applications: a meta-analysis and review publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.04.015 – ident: 10.1016/j.isprsjprs.2020.01.013_b0085 doi: 10.2307/1932409 – volume: 55 start-page: 3322 year: 2017 ident: 10.1016/j.isprsjprs.2020.01.013_b0065 article-title: Automatic road detection and centerline extraction via cascaded end-to-end convolutional neural network publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2669341 – ident: 10.1016/j.isprsjprs.2020.01.013_b0385 – volume: 10 year: 2018 ident: 10.1016/j.isprsjprs.2020.01.013_b0290 article-title: Semantic labeling of high resolution aerial imagery and lidar data with fine segmentation network publication-title: Remote Sens. doi: 10.3390/rs10050743 – ident: 10.1016/j.isprsjprs.2020.01.013_b0425 doi: 10.1109/ICCV.2017.244 – volume: 22 start-page: 1345 year: 2010 ident: 10.1016/j.isprsjprs.2020.01.013_b0285 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – ident: 10.1016/j.isprsjprs.2020.01.013_b0080 doi: 10.1109/CVPR.2009.5206848 – ident: 10.1016/j.isprsjprs.2020.01.013_b0050 – ident: 10.1016/j.isprsjprs.2020.01.013_b0090 doi: 10.1007/978-3-319-46976-8_19 – volume: 135 start-page: 158 year: 2018 ident: 10.1016/j.isprsjprs.2020.01.013_b0240 article-title: Classification with an edge: Improving semantic image segmentation with boundary detection publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.009 – volume: 87 start-page: 180 year: 2014 ident: 10.1016/j.isprsjprs.2020.01.013_b0040 article-title: Geographic object-based image analysis–towards a new paradigm publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.09.014 – volume: 6 start-page: 11372 year: 2014 ident: 10.1016/j.isprsjprs.2020.01.013_b0200 article-title: Object-based land-cover mapping with high resolution aerial photography at a county scale in midwestern usa publication-title: Remote Sens. doi: 10.3390/rs61111372 – year: 2016 ident: 10.1016/j.isprsjprs.2020.01.013_b0275 article-title: Deconvolution and checkerboard artifacts publication-title: Distill doi: 10.23915/distill.00003 – ident: 10.1016/j.isprsjprs.2020.01.013_b0355 doi: 10.1117/12.586823 – ident: 10.1016/j.isprsjprs.2020.01.013_b0345 doi: 10.1007/978-3-319-67558-9_28 – ident: 10.1016/j.isprsjprs.2020.01.013_b0130 – ident: 10.1016/j.isprsjprs.2020.01.013_b0245 doi: 10.1109/IGARSS.2017.8128165 – volume: 115 start-page: 1145 year: 2011 ident: 10.1016/j.isprsjprs.2020.01.013_b0265 article-title: Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2010.12.017 – ident: 10.1016/j.isprsjprs.2020.01.013_b0205 doi: 10.1109/ICCV.2017.324 – ident: 10.1016/j.isprsjprs.2020.01.013_b0060 – ident: 10.1016/j.isprsjprs.2020.01.013_b0025 – ident: 10.1016/j.isprsjprs.2020.01.013_b0195 – volume: 140 start-page: 20 year: 2018 ident: 10.1016/j.isprsjprs.2020.01.013_b0010 article-title: Beyond rgb: Very high resolution urban remote sensing with multimodal deep networks publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.011 – ident: 10.1016/j.isprsjprs.2020.01.013_b0120 – volume: 5 start-page: 1 year: 1948 ident: 10.1016/j.isprsjprs.2020.01.013_b0340 article-title: A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons publication-title: Biol. Skr. – ident: 10.1016/j.isprsjprs.2020.01.013_b0105 – ident: 10.1016/j.isprsjprs.2020.01.013_b0030 – start-page: 18 year: 2018 ident: 10.1016/j.isprsjprs.2020.01.013_b0295 article-title: High-resolution aerial imagery semantic labeling with dense pyramid network publication-title: Sensors – ident: 10.1016/j.isprsjprs.2020.01.013_b0320 – ident: 10.1016/j.isprsjprs.2020.01.013_b0020 – volume: 9 year: 2017 ident: 10.1016/j.isprsjprs.2020.01.013_b0215 article-title: Hourglass-shapenetwork based semantic segmentation for high resolution aerial imagery publication-title: Remote Sens. – ident: 10.1016/j.isprsjprs.2020.01.013_b0220 doi: 10.1109/CVPRW.2017.200 – volume: 9 year: 2017 ident: 10.1016/j.isprsjprs.2020.01.013_b0015 article-title: Segment-before-detect: vehicle detection and classification through semantic segmentation of aerial images publication-title: Remote Sens. doi: 10.3390/rs9040368 – volume: 25 start-page: 1451 year: 2006 ident: 10.1016/j.isprsjprs.2020.01.013_b0075 article-title: Generalized overlap measures for evaluation and validation in medical image analysis publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2006.880587 – ident: 10.1016/j.isprsjprs.2020.01.013_b0150 – volume: 10 year: 2018 ident: 10.1016/j.isprsjprs.2020.01.013_b0390 article-title: Building extraction in very high resolution imagery by dense-attention networks publication-title: Remote Sens. doi: 10.3390/rs10111768 – volume: 8 start-page: 232 year: 2016 ident: 10.1016/j.isprsjprs.2020.01.013_b0175 article-title: Cropland mapping over sahelian and sudanian agrosystems: a knowledge-based approach using proba-v time series at 100-m publication-title: Remote Sens. doi: 10.3390/rs8030232 – volume: 3 start-page: 1777 year: 2011 ident: 10.1016/j.isprsjprs.2020.01.013_b0250 article-title: Segment-based land cover mapping of a suburban areacomparison of high-resolution remotely sensed datasets using classification trees and test field points publication-title: Remote Sens. doi: 10.3390/rs3081777 – start-page: 10 year: 2018 ident: 10.1016/j.isprsjprs.2020.01.013_b0305 article-title: Supervised classification of multisensor remotely sensed images using a deep learning framework publication-title: Remote Sens. – ident: 10.1016/j.isprsjprs.2020.01.013_b0335 – volume: 1 start-page: 541 year: 1989 ident: 10.1016/j.isprsjprs.2020.01.013_b0185 article-title: Backpropagation applied to handwritten zip code recognition publication-title: Neural Comput. doi: 10.1162/neco.1989.1.4.541 – start-page: 583 year: 1991 ident: 10.1016/j.isprsjprs.2020.01.013_b0360 article-title: Watersheds in digital spaces: an efficient algorithm based on immersion simulations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.87344 – volume: 5 start-page: 8 year: 2017 ident: 10.1016/j.isprsjprs.2020.01.013_b0430 article-title: Deep learning in remote sensing: a comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2017.2762307 – volume: 24 start-page: 603 year: 2002 ident: 10.1016/j.isprsjprs.2020.01.013_b0070 article-title: Mean shift: a robust approach toward feature space analysis publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.1000236 – ident: 10.1016/j.isprsjprs.2020.01.013_b0165 – volume: 53 start-page: 4483 year: 2015 ident: 10.1016/j.isprsjprs.2020.01.013_b0190 article-title: Robust rooftop extraction from visible band images using higher order crf publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2015.2400462 – ident: 10.1016/j.isprsjprs.2020.01.013_b0140 – ident: 10.1016/j.isprsjprs.2020.01.013_b0035 – ident: 10.1016/j.isprsjprs.2020.01.013_b0125 doi: 10.1109/ICCV.2017.322 – volume: 9 start-page: 2868 year: 2016 ident: 10.1016/j.isprsjprs.2020.01.013_b0280 article-title: Semantic labeling of aerial and satellite imagery publication-title: IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2016.2582921 |
SSID | ssj0001568 |
Score | 2.7144868 |
Snippet | Scene understanding of high resolution aerial images is of great importance for the task of automated monitoring in various remote sensing applications. Due to... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 94 |
SubjectTerms | aerial photography Architecture automation color Convolutional neural network Data augmentation data collection flavor Loss function monitoring neural networks remote sensing variance Very high spatial resolution |
Title | ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2020.01.013 https://www.proquest.com/docview/2400520889 |
Volume | 162 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9RADLaqcuAhIVhAlEc1SFyHzTw2mfS2qqgWEHsAFvUWzcNpt2qzq8320Au_HU8yKS0S6gEpkZKJR4lsx2NrPtsA7500lqyc40HljutSFtyWQnNrvSm1K4MIMVD8Os9nC_35eHK8A4dDLkyEVSbb39v0zlqnkXHi5ni9XI6_ZxQ6yFgAifQ0Ovoxg10XUcs__PoD8xB9Olwk5pH6FsZr2a437RmdFCjKrKvfKdS_Vqi_bHW3AB09gcfJc2TT_uOewg42I3g0vbERMIKHN8oLjuB-6nB-evUMfn7DdjHHLbcHbMoC4pqlhhEnrB4AWow8WNbiBXF76eni5CJlJjVsVbMNkljx_IoeNC0GFsGlz2Fx9PHH4YynngrcK222HP3ECoFFEWqDLsvRB4H0Txe6FrKWrrA0WOBEB-MEZkQtvTKOAkNniLtWvYDdZtXgS2CyRKxL8iBqlWt0BXmapddeBSVJ5BL3IB_4WPlUcDz2vTivBmTZWXUtgCoKoMoEHWoPsuuJ677mxt1TDgZBVbfUp6KV4e7J7wbRVvRzxR0T2-Dqkoh0hxMypnz1Py94DQ_iXQ_4eQO7280lviVfZuv2O2Xdh3vTT19m89-4QfXg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED-69KFbYWzZxtp9abBXE-sjtty3UFbStc3D1oy-CUs6tymtE-L0of_9TrEc2sHow8AGI-mQuTud7tBPdwDfrNAlWTmbeJnZRBUiT8qCq6QsnS6ULTz3IVA8m2TjqfpxMbzYgsPuLkyAVUbb39r0tbWOLYPIzcFiNhv8Sil0ECEBEulpcPSfwXbITjXswfbo-GQ82Rhk3t6IC-OTQPAI5jVrFsvmml6KFUW6TuHJ5b82qb_M9XoPOnoFL6PzyEbt_72GLaz7sDt6cBbQhxcPMgz2YScWOb-6fwO_f2IzneAqKQ_YiHnEBYs1Iy5Z1WG0GDmxrMFbYvjM0cflbbycVLN5xZZIksWbe-qoG_Qs4EvfwvTo-_nhOIllFRInlV4l6IYl55jnvtJo0wyd50jLOlcVF5WweUmNOQ6V15ZjSqOFk9pSbGi1Unkp30Gvntf4HpgoEKuCnIhKZgptTs5m4ZSTXgqSusA9yDo-GhdzjofSFzemA5ddm40ATBCASTk9cg_SDeGiTbvxNMlBJyjzSIMMbQ5PE3_tRGtofYVDk7LG-R0NUmuokNbF_v9M8AV2xudnp-b0eHLyAZ6Hnhb_8xF6q-UdfiLXZmU_R9X9Ax94-JE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=ResUNet-a%3A+A+deep+learning+framework+for+semantic+segmentation+of+remotely+sensed+data&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Diakogiannis%2C+Foivos+I.&rft.au=Waldner%2C+Fran%C3%A7ois&rft.au=Caccetta%2C+Peter&rft.au=Wu%2C+Chen&rft.date=2020-04-01&rft.issn=0924-2716&rft.volume=162&rft.spage=94&rft.epage=114&rft_id=info:doi/10.1016%2Fj.isprsjprs.2020.01.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isprsjprs_2020_01_013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |