Clinically Relevant Circulating Protein Biomarkers for Type 1 Diabetes: Evidence From a Two-Sample Mendelian Randomization Study
To identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR). We used a large-scale two-sample MR study, using cis genetic determinants (protein quantitative trait loci [pQTL]) of up to 1,611 circulating proteins from five large genome-wide associati...
Saved in:
Published in | Diabetes care Vol. 45; no. 1; pp. 169 - 177 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Diabetes Association
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | To identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR).
We used a large-scale two-sample MR study, using cis genetic determinants (protein quantitative trait loci [pQTL]) of up to 1,611 circulating proteins from five large genome-wide association studies, to screen for causal associations of these proteins with type 1 diabetes risk in 9,684 case subjects with type 1 diabetes and 15,743 control subjects. Further, pleiotropy-robust MR methods were used in sensitivity analyses using both cis and trans-pQTL.
We found that a genetically predicted SD increase in signal regulatory protein gamma (SIRPG) level was associated with increased risk of type 1 diabetes risk (MR odds ratio [OR] 1.66 [95% 1.36-2.03]; P = 7.1 × 10-7). The risk of type 1 diabetes increased almost twofold per genetically predicted standard deviation (SD) increase in interleukin-27 Epstein-Barr virus-induced 3 (IL27-EBI3) protein levels (MR OR 1.97 [95% CI 1.48-2.62]; P = 3.7 × 10-6). However, an SD increase in chymotrypsinogen B1 (CTRB1) was associated with decreased risk of type 1 diabetes (MR OR 0.84 [95% CI 0.77-0.90]; P = 6.1 × 10-6). Sensitivity analyses using MR methods testing for pleiotropy while including trans-pQTL showed similar results. While the MR-Egger suggested no pleotropic effect (P value MR-Egger intercept = 0.31), there was evidence of pleiotropy in MR-PRESSO (P value global test = 0.006).
We identified three novel circulating protein biomarkers associated with type 1 diabetes risk using an MR approach. These biomarkers are promising targets for development of drugs and/or of screening tools for early prediction of type 1 diabetes. |
---|---|
AbstractList | To identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR).OBJECTIVETo identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR).We used a large-scale two-sample MR study, using cis genetic determinants (protein quantitative trait loci [pQTL]) of up to 1,611 circulating proteins from five large genome-wide association studies, to screen for causal associations of these proteins with type 1 diabetes risk in 9,684 case subjects with type 1 diabetes and 15,743 control subjects. Further, pleiotropy-robust MR methods were used in sensitivity analyses using both cis and trans-pQTL.RESEARCH DESIGN AND METHODSWe used a large-scale two-sample MR study, using cis genetic determinants (protein quantitative trait loci [pQTL]) of up to 1,611 circulating proteins from five large genome-wide association studies, to screen for causal associations of these proteins with type 1 diabetes risk in 9,684 case subjects with type 1 diabetes and 15,743 control subjects. Further, pleiotropy-robust MR methods were used in sensitivity analyses using both cis and trans-pQTL.We found that a genetically predicted SD increase in signal regulatory protein gamma (SIRPG) level was associated with increased risk of type 1 diabetes risk (MR odds ratio [OR] 1.66 [95% 1.36-2.03]; P = 7.1 × 10-7). The risk of type 1 diabetes increased almost twofold per genetically predicted standard deviation (SD) increase in interleukin-27 Epstein-Barr virus-induced 3 (IL27-EBI3) protein levels (MR OR 1.97 [95% CI 1.48-2.62]; P = 3.7 × 10-6). However, an SD increase in chymotrypsinogen B1 (CTRB1) was associated with decreased risk of type 1 diabetes (MR OR 0.84 [95% CI 0.77-0.90]; P = 6.1 × 10-6). Sensitivity analyses using MR methods testing for pleiotropy while including trans-pQTL showed similar results. While the MR-Egger suggested no pleotropic effect (P value MR-Egger intercept = 0.31), there was evidence of pleiotropy in MR-PRESSO (P value global test = 0.006).RESULTSWe found that a genetically predicted SD increase in signal regulatory protein gamma (SIRPG) level was associated with increased risk of type 1 diabetes risk (MR odds ratio [OR] 1.66 [95% 1.36-2.03]; P = 7.1 × 10-7). The risk of type 1 diabetes increased almost twofold per genetically predicted standard deviation (SD) increase in interleukin-27 Epstein-Barr virus-induced 3 (IL27-EBI3) protein levels (MR OR 1.97 [95% CI 1.48-2.62]; P = 3.7 × 10-6). However, an SD increase in chymotrypsinogen B1 (CTRB1) was associated with decreased risk of type 1 diabetes (MR OR 0.84 [95% CI 0.77-0.90]; P = 6.1 × 10-6). Sensitivity analyses using MR methods testing for pleiotropy while including trans-pQTL showed similar results. While the MR-Egger suggested no pleotropic effect (P value MR-Egger intercept = 0.31), there was evidence of pleiotropy in MR-PRESSO (P value global test = 0.006).We identified three novel circulating protein biomarkers associated with type 1 diabetes risk using an MR approach. These biomarkers are promising targets for development of drugs and/or of screening tools for early prediction of type 1 diabetes.CONCLUSIONSWe identified three novel circulating protein biomarkers associated with type 1 diabetes risk using an MR approach. These biomarkers are promising targets for development of drugs and/or of screening tools for early prediction of type 1 diabetes. OBJECTIVE To identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR). RESEARCH DESIGN AND METHODS We used a large-scale two-sample MR study, using cis genetic determinants (protein quantitative trait loci [pQTL]) of up to 1,611 circulating proteins from five large genome-wide association studies, to screen for causal associations of these proteins with type 1 diabetes risk in 9,684 case subjects with type 1 diabetes and 15,743 control subjects. Further, pleiotropy-robust MR methods were used in sensitivity analyses using both cis and trans-pQTL. RESULTS We found that a genetically predicted SD increase in signal regulatory protein gamma (SIRPG) level was associated with increased risk of type 1 diabetes risk (MR odds ratio [OR] 1.66 [95% 1.36–2.03]; P = 7.1 × 10−7). The risk of type 1 diabetes increased almost twofold per genetically predicted standard deviation (SD) increase in interleukin-27 Epstein-Barr virus–induced 3 (IL27-EBI3) protein levels (MR OR 1.97 [95% CI 1.48–2.62]; P = 3.7 × 10−6). However, an SD increase in chymotrypsinogen B1 (CTRB1) was associated with decreased risk of type 1 diabetes (MR OR 0.84 [95% CI 0.77–0.90]; P = 6.1 × 10−6). Sensitivity analyses using MR methods testing for pleiotropy while including trans-pQTL showed similar results. While the MR-Egger suggested no pleotropic effect (P value MR-Egger intercept = 0.31), there was evidence of pleiotropy in MR-PRESSO (P value global test = 0.006). CONCLUSIONS We identified three novel circulating protein biomarkers associated with type 1 diabetes risk using an MR approach. These biomarkers are promising targets for development of drugs and/or of screening tools for early prediction of type 1 diabetes. To identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR). We used a large-scale two-sample MR study, using cis genetic determinants (protein quantitative trait loci [pQTL]) of up to 1,611 circulating proteins from five large genome-wide association studies, to screen for causal associations of these proteins with type 1 diabetes risk in 9,684 case subjects with type 1 diabetes and 15,743 control subjects. Further, pleiotropy-robust MR methods were used in sensitivity analyses using both cis and trans-pQTL. We found that a genetically predicted SD increase in signal regulatory protein gamma (SIRPG) level was associated with increased risk of type 1 diabetes risk (MR odds ratio [OR] 1.66 [95% 1.36-2.03]; P = 7.1 × 10-7). The risk of type 1 diabetes increased almost twofold per genetically predicted standard deviation (SD) increase in interleukin-27 Epstein-Barr virus-induced 3 (IL27-EBI3) protein levels (MR OR 1.97 [95% CI 1.48-2.62]; P = 3.7 × 10-6). However, an SD increase in chymotrypsinogen B1 (CTRB1) was associated with decreased risk of type 1 diabetes (MR OR 0.84 [95% CI 0.77-0.90]; P = 6.1 × 10-6). Sensitivity analyses using MR methods testing for pleiotropy while including trans-pQTL showed similar results. While the MR-Egger suggested no pleotropic effect (P value MR-Egger intercept = 0.31), there was evidence of pleiotropy in MR-PRESSO (P value global test = 0.006). We identified three novel circulating protein biomarkers associated with type 1 diabetes risk using an MR approach. These biomarkers are promising targets for development of drugs and/or of screening tools for early prediction of type 1 diabetes. |
Author | Yazdanpanah, Mojgan Forgetta, Vincenzo Polychronakos, Constantin Wang, Ye Richards, J. Brent Yazdanpanah, Nahid Manousaki, Despoina Pollak, Michael |
Author_xml | – sequence: 1 givenname: Nahid surname: Yazdanpanah fullname: Yazdanpanah, Nahid organization: 1Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada – sequence: 2 givenname: Mojgan surname: Yazdanpanah fullname: Yazdanpanah, Mojgan organization: 1Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada – sequence: 3 givenname: Ye surname: Wang fullname: Wang, Ye organization: 2Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada – sequence: 4 givenname: Vincenzo surname: Forgetta fullname: Forgetta, Vincenzo organization: 2Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada – sequence: 5 givenname: Michael surname: Pollak fullname: Pollak, Michael organization: 2Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada, 3Department of Medicine, McGill University, Montreal, Quebec, Canada, 4Department of Oncology, McGill University, Montreal, Quebec, Canada – sequence: 6 givenname: Constantin orcidid: 0000-0002-7624-6635 surname: Polychronakos fullname: Polychronakos, Constantin organization: 5Department of Pediatrics, McGill University, Montreal, Quebec, Canada, 6Department of Human Genetics, McGill University, Montreal, Quebec, Canada, 7Centre of Excellence in Translational Immunology, Montreal, Quebec, Canada – sequence: 7 givenname: J. Brent orcidid: 0000-0002-3746-9086 surname: Richards fullname: Richards, J. Brent organization: 2Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada, 3Department of Medicine, McGill University, Montreal, Quebec, Canada, 6Department of Human Genetics, McGill University, Montreal, Quebec, Canada, 8Department of Epidemiology and Biostatistics, McGill University, Montreal, Quebec, Canada, 9Department of Twin Research, King’s College London, London, U.K – sequence: 8 givenname: Despoina orcidid: 0000-0002-4133-0618 surname: Manousaki fullname: Manousaki, Despoina organization: 1Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada, 10Departments of Pediatrics, Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34758976$$D View this record in MEDLINE/PubMed |
BookMark | eNplkU9v1DAUxC1URLeFA18AWeICh1Db8Z-YGywtIBWB2uVsOfYLcnHsrZ0ULSc-OlnaXsrpXX4zmjdzhA5SToDQc0resLZVJ94x2lDC9SO0oroVjRC8O0ArQrluhNbsEB3VekUI4bzrnqDDlivRaSVX6M86hhScjXGHLyDCjU0TXofi5minkH7gbyVPEBJ-H_Joy08oFQ-54M1uC5jiD8H2MEF9i09vgofkAJ-VPGKLN79yc2nHbQT8BZKHGGzCFzb5PIbfi3VO-HKa_e4pejzYWOHZ3T1G389ON-tPzfnXj5_X784b1_JuakBKaYcWBtVDJ5gSFJijznvZe0kA6ECHXjHNeK-0cD0VnNvedb6Vgkjl2mP06tZ3W_L1DHUyY6gOYrQJ8lwNE1pyoZTsFvTlA_QqzyUt6QyTLReaUEYW6sUdNfcjeLMtYSloZ-67XYCTW8CVXGuBwbgw_ft8KjZEQ4nZr2f265n9eovi9QPFven_7F8o8Jor |
CitedBy_id | crossref_primary_10_1093_cercor_bhae377 crossref_primary_10_3389_fgene_2023_1230113 crossref_primary_10_1016_j_clinre_2024_102419 crossref_primary_10_1007_s11892_024_01533_7 crossref_primary_10_1007_s00198_024_07225_y crossref_primary_10_1111_cts_13442 crossref_primary_10_1016_j_identj_2024_02_007 crossref_primary_10_1210_endrev_bnae002 crossref_primary_10_2337_db24_0380 crossref_primary_10_1111_and_14527 crossref_primary_10_3389_fendo_2023_1339374 crossref_primary_10_3389_fimmu_2024_1406041 crossref_primary_10_3389_fimmu_2023_1158278 crossref_primary_10_1007_s00439_023_02627_0 crossref_primary_10_3389_fmed_2024_1332162 crossref_primary_10_1007_s12094_024_03616_z crossref_primary_10_1021_acsomega_4c01934 crossref_primary_10_1136_ard_2023_224459 crossref_primary_10_2337_db24_0262 crossref_primary_10_1007_s00125_024_06247_9 crossref_primary_10_1038_s42003_024_06538_2 crossref_primary_10_3389_fcvm_2023_1126208 crossref_primary_10_3390_ijms251910236 crossref_primary_10_3390_nu16223795 crossref_primary_10_1016_j_biopha_2023_115958 crossref_primary_10_1016_j_jocn_2024_110998 crossref_primary_10_1097_MD_0000000000039842 crossref_primary_10_3389_fonc_2024_1407795 crossref_primary_10_1186_s13073_023_01229_9 crossref_primary_10_3389_fendo_2024_1497373 crossref_primary_10_3389_fgene_2023_1161817 crossref_primary_10_2337_dc22_1317 crossref_primary_10_3390_biom14121489 crossref_primary_10_1007_s00125_023_05879_7 |
Cites_doi | 10.4049/jimmunol.173.4.2562 10.2337/db13-0227 10.2337/dc15-0101 10.1002/oby.21351 10.1038/nature11632 10.1093/ije/dyx034 10.1056/NEJMc2022226 10.1371/journal.pgen.1006643 10.1038/s42255-020-00287-2 10.1038/s41467-018-05512-x 10.2337/db19-0831 10.1016/j.gde.2018.03.009 10.2337/db14-0983 10.3390/biom11081110 10.1002/dmrr.1141 10.2337/db18-1263 10.1038/ncomms14357 10.1002/oby.23093 10.1093/bioinformatics/btz469 10.2337/diabetes.54.suppl_2.S125 10.1016/j.celrep.2019.11.010 10.1002/gepi.21758 10.1038/nrendo.2009.129 10.1038/s41588-020-0682-6 10.1038/s41598-018-33901-1 10.1007/s00125-021-05428-0 10.1126/science.aaq1327 10.15171/apb.2015.081 10.1093/ije/dyg070 10.1016/j.autrev.2015.08.001 10.2337/db11-0962 10.1093/ije/dyt179 10.1177/193229681000400431 10.1016/j.ajpath.2011.08.001 10.1038/ng.381 10.2147/DMSO.S162008 10.1038/ng1847 10.1111/febs.12018 10.3109/13813455.2010.501801 10.1371/journal.pone.0238070 10.1136/gutjnl-2017-314454 10.1038/nrg2969 10.2217/imt.14.95 10.1038/s41586-018-0175-2 10.1089/bio.2015.29031.hmm 10.1016/j.trsl.2018.07.009 10.1371/journal.pgen.1004383 10.1038/s41598-021-93346-x |
ContentType | Journal Article |
Copyright | 2021 by the American Diabetes Association. Copyright American Diabetes Association Jan 2022 |
Copyright_xml | – notice: 2021 by the American Diabetes Association. – notice: Copyright American Diabetes Association Jan 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 |
DOI | 10.2337/dc21-1049 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1935-5548 |
EndPage | 177 |
ExternalDocumentID | 34758976 10_2337_dc21_1049 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -ET ..I .XZ 08P 0R~ 18M 29F 2WC 4.4 53G 5GY 5RE 5RS 5VS 6PF 8R4 8R5 AAFWJ AAIKC AAMNW AAWTL AAYEP AAYXX ABOCM ABPPZ ACGFO ACGOD ADBBV AEGXH AENEX AERZD AFOSN AFRAH AHMBA AIAGR ALIPV ALMA_UNASSIGNED_HOLDINGS BAWUL BENPR BTFSW CITATION CS3 DIK DU5 E3Z EBS EDB EMOBN EX3 F5P GX1 H13 HZ~ IAO IEA IHR INH INR IOF IPO KQ8 L7B M0K M5~ O5R O5S O9- OK1 OVD P2P PCD Q2X RHI SV3 TDI TEORI TR2 TWZ VVN W8F WH7 WOQ WOW YHG YOC ZCG ~KM CGR CUY CVF ECM EIF IGG NPM RHF K9. NAPCQ 7X8 |
ID | FETCH-LOGICAL-c348t-e666af3ef7be852751e2c1cdd6bd60ee1f1fb72924b795cb1544abc8d365067c3 |
ISSN | 0149-5992 1935-5548 |
IngestDate | Fri Jul 11 07:09:30 EDT 2025 Mon Jun 30 11:11:30 EDT 2025 Thu Jan 02 22:54:30 EST 2025 Tue Jul 01 04:12:05 EDT 2025 Thu Apr 24 23:04:13 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021 by the American Diabetes Association. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c348t-e666af3ef7be852751e2c1cdd6bd60ee1f1fb72924b795cb1544abc8d365067c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4133-0618 0000-0002-3746-9086 0000-0002-7624-6635 |
OpenAccessLink | https://diabetesjournals.org/care/article-pdf/45/1/169/636277/dc211049.pdf |
PMID | 34758976 |
PQID | 2634590120 |
PQPubID | 47715 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_2596457768 proquest_journals_2634590120 pubmed_primary_34758976 crossref_citationtrail_10_2337_dc21_1049 crossref_primary_10_2337_dc21_1049 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Alexandria |
PublicationTitle | Diabetes care |
PublicationTitleAlternate | Diabetes Care |
PublicationYear | 2022 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | Price (2022051611042730300_B22) 2006; 38 Long (2022051611042730300_B3) 2012; 61 Nyaga (2022051611042730300_B45) 2021; 11 Katsogiannos (2022051611042730300_B37) 2021; 29 Nam (2022051611042730300_B36) 2016; 24 Zhi (2022051611042730300_B8) 2010; 4 Sinha (2022051611042730300_B31) 2018; 8 Zamani (2022051611042730300_B26) 2015; 5 Brion (2022051611042730300_B25) 2013; 42 Folkersen (2022051611042730300_B16) 2020; 2 Szabó (2022051611042730300_B43) 2012; 279 Stolerman (2022051611042730300_B47) 2009; 5 Brooke (2022051611042730300_B32) 2004; 173 do Nascimento de Oliveira (2022051611042730300_B9) 2018; 11 Sun (2022051611042730300_B18) 2018; 558 Barrett (2022051611042730300_B33) 2009; 41 Yi (2022051611042730300_B28) 2018; 201 Giambartolomei (2022051611042730300_B13) 2014; 10 Fujimoto (2022051611042730300_B39) 2011; 179 1000 Genomes Project Consortium (2022051611042730300_B14) 2012; 491 Ciecko (2022051611042730300_B38) 2019; 29 Inshaw (2022051611042730300_B46) 2021; 64 Bonifacio (2022051611042730300_B10) 2015; 38 Frohnert (2022051611042730300_B29) 2020; 69 Meka (2022051611042730300_B34) 2015; 14 Kasela (2022051611042730300_B40) 2017; 13 Carithers (2022051611042730300_B24) 2015; 13 t Hart (2022051611042730300_B42) 2013; 62 Chaimowitz (2022051611042730300_B5) 2020; 383 Sharp (2022051611042730300_B2) 2018; 50 Forgetta (2022051611042730300_B20) 2020; 69 Li (2022051611042730300_B35) 2015; 7 Moulder (2022051611042730300_B6) 2015; 64 Vehik (2022051611042730300_B1) 2011; 27 Smith (2022051611042730300_B11) 2003; 32 Yavorska (2022051611042730300_B21) 2017; 46 Zheng (2022051611042730300_B4) 2020; 52 Emilsson (2022051611042730300_B15) 2018; 361 Knip (2022051611042730300_B27) 2005; 54 Kamat (2022051611042730300_B23) 2019; 35 Łukawska-Tatarczuk (2022051611042730300_B41) 2021; 11 Suhre (2022051611042730300_B17) 2017; 8 Montgomery (2022051611042730300_B48) 2011; 12 Sinha (2022051611042730300_B30) 2020; 15 Yao (2022051611042730300_B19) 2018; 9 Burgess (2022051611042730300_B12) 2013; 37 McGuire (2022051611042730300_B7) 2010; 116 Rosendahl (2022051611042730300_B44) 2018; 67 |
References_xml | – volume: 173 start-page: 2562 year: 2004 ident: 2022051611042730300_B32 article-title: Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein (SIRP) family publication-title: J Immunol doi: 10.4049/jimmunol.173.4.2562 – volume: 62 start-page: 3275 year: 2013 ident: 2022051611042730300_B42 article-title: The CTRB1/2 locus affects diabetes susceptibility and treatment via the incretin pathway publication-title: Diabetes doi: 10.2337/db13-0227 – volume: 38 start-page: 989 year: 2015 ident: 2022051611042730300_B10 article-title: Predicting type 1 diabetes using biomarkers publication-title: Diabetes Care doi: 10.2337/dc15-0101 – volume: 24 start-page: 157 year: 2016 ident: 2022051611042730300_B36 article-title: Modulation of IL-27 in adipocytes during inflammatory stress publication-title: Obesity (Silver Spring) doi: 10.1002/oby.21351 – volume: 491 start-page: 56 year: 2012 ident: 2022051611042730300_B14 article-title: An integrated map of genetic variation from 1,092 human genomes publication-title: Nature doi: 10.1038/nature11632 – volume: 46 start-page: 1734 year: 2017 ident: 2022051611042730300_B21 article-title: MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data publication-title: Int J Epidemiol doi: 10.1093/ije/dyx034 – volume: 383 start-page: 1494 year: 2020 ident: 2022051611042730300_B5 article-title: STAT1 gain of function, type 1 diabetes, and reversal with JAK inhibition publication-title: N Engl J Med doi: 10.1056/NEJMc2022226 – volume: 13 start-page: e1006643 year: 2017 ident: 2022051611042730300_B40 article-title: Pathogenic implications for autoimmune mechanisms derived by comparative eQTL analysis of CD4+ versus CD8+ T cells publication-title: PLoS Genet doi: 10.1371/journal.pgen.1006643 – volume: 2 start-page: 1135 year: 2020 ident: 2022051611042730300_B16 article-title: Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals publication-title: Nat Metab doi: 10.1038/s42255-020-00287-2 – volume: 9 start-page: 3268 year: 2018 ident: 2022051611042730300_B19 article-title: Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease publication-title: Nat Commun doi: 10.1038/s41467-018-05512-x – volume: 69 start-page: 784 year: 2020 ident: 2022051611042730300_B20 article-title: Rare genetic variants of large effect influence risk of type 1 diabetes publication-title: Diabetes doi: 10.2337/db19-0831 – volume: 50 start-page: 96 year: 2018 ident: 2022051611042730300_B2 article-title: Clinical and research uses of genetic risk scores in type 1 diabetes publication-title: Curr Opin Genet Dev doi: 10.1016/j.gde.2018.03.009 – volume: 64 start-page: 2265 year: 2015 ident: 2022051611042730300_B6 article-title: Serum proteomes distinguish children developing type 1 diabetes in a cohort with HLA-conferred susceptibility publication-title: Diabetes doi: 10.2337/db14-0983 – volume: 11 start-page: 1110 year: 2021 ident: 2022051611042730300_B41 article-title: Sirtuin 1, visfatin and IL-27 serum levels of type 1 diabetic females in relation to cardiovascular parameters and autoimmune thyroid disease publication-title: Biomolecules doi: 10.3390/biom11081110 – volume: 27 start-page: 3 year: 2011 ident: 2022051611042730300_B1 article-title: The changing epidemiology of type 1 diabetes: why is it going through the roof? publication-title: Diabetes Metab Res Rev doi: 10.1002/dmrr.1141 – volume: 69 start-page: 238 year: 2020 ident: 2022051611042730300_B29 article-title: Predictive modeling of type 1 diabetes stages using disparate data sources publication-title: Diabetes doi: 10.2337/db18-1263 – volume: 8 start-page: 14357 year: 2017 ident: 2022051611042730300_B17 article-title: Connecting genetic risk to disease end points through the human blood plasma proteome publication-title: Nat Commun doi: 10.1038/ncomms14357 – volume: 29 start-page: 535 year: 2021 ident: 2022051611042730300_B37 article-title: Changes in circulating cytokines and adipokines after RYGB in patients with and without type 2 diabetes publication-title: Obesity (Silver Spring) doi: 10.1002/oby.23093 – volume: 35 start-page: 4851 year: 2019 ident: 2022051611042730300_B23 article-title: PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz469 – volume: 54 start-page: S125 year: 2005 ident: 2022051611042730300_B27 article-title: Environmental triggers and determinants of type 1 diabetes publication-title: Diabetes doi: 10.2337/diabetes.54.suppl_2.S125 – volume: 29 start-page: 3073 year: 2019 ident: 2022051611042730300_B38 article-title: Interleukin-27 is essential for type 1 diabetes development and Sjögren syndrome-like inflammation publication-title: Cell Rep doi: 10.1016/j.celrep.2019.11.010 – volume: 37 start-page: 658 year: 2013 ident: 2022051611042730300_B12 article-title: Mendelian randomization analysis with multiple genetic variants using summarized data publication-title: Genet Epidemiol doi: 10.1002/gepi.21758 – volume: 5 start-page: 429 year: 2009 ident: 2022051611042730300_B47 article-title: Genomics of type 2 diabetes mellitus: implications for the clinician publication-title: Nat Rev Endocrinol doi: 10.1038/nrendo.2009.129 – volume: 52 start-page: 1122 year: 2020 ident: 2022051611042730300_B4 article-title: Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases publication-title: Nat Genet doi: 10.1038/s41588-020-0682-6 – volume: 8 start-page: 15440 year: 2018 ident: 2022051611042730300_B31 article-title: An autoimmune disease risk SNP, rs2281808, in SIRPG is associated with reduced expression of SIRPγ and heightened effector state in human CD8 T-cells publication-title: Sci Rep doi: 10.1038/s41598-018-33901-1 – volume: 64 start-page: 1342 year: 2021 ident: 2022051611042730300_B46 article-title: Analysis of overlapping genetic association in type 1 and type 2 diabetes publication-title: Diabetologia doi: 10.1007/s00125-021-05428-0 – volume: 361 start-page: 769 year: 2018 ident: 2022051611042730300_B15 article-title: Co-regulatory networks of human serum proteins link genetics to disease publication-title: Science doi: 10.1126/science.aaq1327 – volume: 5 start-page: 599 year: 2015 ident: 2022051611042730300_B26 article-title: New approaches to the immunotherapy of type 1 diabetes mellitus using interleukin-27 publication-title: Adv Pharm Bull doi: 10.15171/apb.2015.081 – volume: 32 start-page: 1 year: 2003 ident: 2022051611042730300_B11 article-title: ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? publication-title: Int J Epidemiol doi: 10.1093/ije/dyg070 – volume: 14 start-page: 1131 year: 2015 ident: 2022051611042730300_B34 article-title: IL-27-induced modulation of autoimmunity and its therapeutic potential publication-title: Autoimmun Rev doi: 10.1016/j.autrev.2015.08.001 – volume: 61 start-page: 683 year: 2012 ident: 2022051611042730300_B3 article-title: Rising incidence of type 1 diabetes is associated with altered immunophenotype at diagnosis publication-title: Diabetes doi: 10.2337/db11-0962 – volume: 42 start-page: 1497 year: 2013 ident: 2022051611042730300_B25 article-title: Calculating statistical power in Mendelian randomization studies publication-title: Int J Epidemiol doi: 10.1093/ije/dyt179 – volume: 4 start-page: 993 year: 2010 ident: 2022051611042730300_B8 article-title: Proteomic technologies for the discovery of type 1 diabetes biomarkers publication-title: J Diabetes Sci Technol doi: 10.1177/193229681000400431 – volume: 179 start-page: 2327 year: 2011 ident: 2022051611042730300_B39 article-title: IL-27 inhibits hyperglycemia and pancreatic islet inflammation induced by streptozotocin in mice publication-title: Am J Pathol doi: 10.1016/j.ajpath.2011.08.001 – volume: 41 start-page: 703 year: 2009 ident: 2022051611042730300_B33 article-title: Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes publication-title: Nat Genet doi: 10.1038/ng.381 – volume: 11 start-page: 289 year: 2018 ident: 2022051611042730300_B9 article-title: Proteomic analysis to identify candidate biomarkers associated with type 1 diabetes publication-title: Diabetes Metab Syndr Obes doi: 10.2147/DMSO.S162008 – volume: 38 start-page: 904 year: 2006 ident: 2022051611042730300_B22 article-title: Principal components analysis corrects for stratification in genome-wide association studies publication-title: Nat Genet doi: 10.1038/ng1847 – volume: 279 start-page: 4283 year: 2012 ident: 2022051611042730300_B43 article-title: Determinants of chymotrypsin C cleavage specificity in the calcium-binding loop of human cationic trypsinogen publication-title: FEBS J doi: 10.1111/febs.12018 – volume: 116 start-page: 227 year: 2010 ident: 2022051611042730300_B7 article-title: Screening newborns for candidate biomarkers of type 1 diabetes publication-title: Arch Physiol Biochem doi: 10.3109/13813455.2010.501801 – volume: 15 start-page: e0238070 year: 2020 ident: 2022051611042730300_B30 article-title: Altered expression of SIRPγ on the T-cells of relapsing remitting multiple sclerosis and type 1 diabetes patients could potentiate effector responses from T-cells publication-title: PLoS One doi: 10.1371/journal.pone.0238070 – volume: 67 start-page: 1855 year: 2018 ident: 2022051611042730300_B44 article-title: Genome-wide association study identifies inversion in the CTRB1-CTRB2 locus to modify risk for alcoholic and non-alcoholic chronic pancreatitis publication-title: Gut doi: 10.1136/gutjnl-2017-314454 – volume: 12 start-page: 277 year: 2011 ident: 2022051611042730300_B48 article-title: From expression QTLs to personalized transcriptomics publication-title: Nat Rev Genet doi: 10.1038/nrg2969 – volume: 7 start-page: 191 year: 2015 ident: 2022051611042730300_B35 article-title: The Yin and Yang aspects of IL-27 in induction of cancer-specific T-cell responses and immunotherapy publication-title: Immunotherapy doi: 10.2217/imt.14.95 – volume: 558 start-page: 73 year: 2018 ident: 2022051611042730300_B18 article-title: Genomic atlas of the human plasma proteome publication-title: Nature doi: 10.1038/s41586-018-0175-2 – volume: 13 start-page: 307 year: 2015 ident: 2022051611042730300_B24 article-title: The Genotype-Tissue Expression (GTEx) Project publication-title: Biopreserv Biobank doi: 10.1089/bio.2015.29031.hmm – volume: 201 start-page: 13 year: 2018 ident: 2022051611042730300_B28 article-title: Serum biomarkers for diagnosis and prediction of type 1 diabetes publication-title: Transl Res doi: 10.1016/j.trsl.2018.07.009 – volume: 10 start-page: e1004383 year: 2014 ident: 2022051611042730300_B13 article-title: Bayesian test for colocalisation between pairs of genetic association studies using summary statistics publication-title: PLoS Genet doi: 10.1371/journal.pgen.1004383 – volume: 11 start-page: 13871 year: 2021 ident: 2022051611042730300_B45 article-title: Untangling the genetic link between type 1 and type 2 diabetes using functional genomics publication-title: Sci Rep doi: 10.1038/s41598-021-93346-x |
SSID | ssj0004488 |
Score | 2.5374858 |
Snippet | To identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR).
We used a large-scale two-sample MR study,... OBJECTIVE To identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR). RESEARCH DESIGN AND METHODS We used a... To identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR).OBJECTIVETo identify circulating proteins... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 169 |
SubjectTerms | Biomarkers Diabetes Diabetes mellitus Diabetes mellitus (insulin dependent) Diabetes Mellitus, Type 1 - genetics Drug development Drug screening Epstein-Barr virus Epstein-Barr Virus Infections Gene mapping Genome-Wide Association Study - methods Genomes Health risks Herpesvirus 4, Human Humans Interleukin 27 Interleukins Mendelian Randomization Analysis - methods Pleiotropy Polymorphism, Single Nucleotide Proteins Quantitative trait loci Randomization Research design Risk Robust control Sensitivity analysis |
Title | Clinically Relevant Circulating Protein Biomarkers for Type 1 Diabetes: Evidence From a Two-Sample Mendelian Randomization Study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34758976 https://www.proquest.com/docview/2634590120 https://www.proquest.com/docview/2596457768 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkKa9IL7XMZBBPCBFgcT55g1NTBOoSEAH4ymyHXsbapOp64TUB8Sfzp3tfHRsEvASVbHrVPn9cr1z7n5HyPOUx7niQvhaV9qPZQR2MMkLX4NzrnIRCyumM_mQHhzG746So9Ho57C6ZCleytWVdSX_gyqcA1yxSvYfkO0WhRPwGfCFIyAMx7_C2Il6zmboSM8UOMVLb-90IU1LrvoYqwCwmSU2nJxjGs7CiC94GHt6oeeSYUxOXNtcFBzZZu5xb_qj8T9zVA7GvNdKmc2QT7yumrkr3DQZiGvvhNv1jNp1Z034quI1mBx-Yo35SZtC_8fYpPl-3HP1q9vI_tYttW927623--UUfmy9aoabFowNNi2UNbRFlPjgyuRDS2yFJdcYZ81qaNu5XDb3LDKCAZVkmJYXr82Be3c2N7hHMcRERXZJcNv9hduhG-QmgzAD7eT7jwO1ebBuVo0Kr_Squ84W2Wy_ue7OXBOjGF9lepvcckEGfWMZc4eMVH2XbE5cGsU98qsnDm2JQwfEoY44tCcOBeJQJA4NaQv0a9rShiJtKKc9bWhHG7pGG2poc58c7r-d7h34rhWHL6M4X_oKolyuI6UzofKEZUmomAxlVaWiSgOlQh1qAXEag4e7SKRAjScuZF5FEAGkmYwekI26qdU2obGUMmSSBzkuHYg80QGsI5NAB6ziekxetHe0lE6nHtulzEqIVxGHEnEoEYcxedZNPbPiLFdN2m1hKd2ze16yNIqx6poFY_K0GwbLiq_LeK2aC5iTFGmcZBCPj8lDC2d3lRb-nWtHHpGtnvi7ZGO5uFCPwX9diieGZL8BmNWfpg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinically+Relevant+Circulating+Protein+Biomarkers+for+Type+1+Diabetes%3A+Evidence+From+a+Two-Sample+Mendelian+Randomization+Study&rft.jtitle=Diabetes+care&rft.au=Yazdanpanah%2C+Nahid&rft.au=Yazdanpanah%2C+Mojgan&rft.au=Wang%2C+Ye&rft.au=Forgetta%2C+Vincenzo&rft.date=2022-01-01&rft.eissn=1935-5548&rft.volume=45&rft.issue=1&rft.spage=169&rft_id=info:doi/10.2337%2Fdc21-1049&rft_id=info%3Apmid%2F34758976&rft.externalDocID=34758976 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0149-5992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0149-5992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0149-5992&client=summon |