Clinically Relevant Circulating Protein Biomarkers for Type 1 Diabetes: Evidence From a Two-Sample Mendelian Randomization Study

To identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR). We used a large-scale two-sample MR study, using cis genetic determinants (protein quantitative trait loci [pQTL]) of up to 1,611 circulating proteins from five large genome-wide associati...

Full description

Saved in:
Bibliographic Details
Published inDiabetes care Vol. 45; no. 1; pp. 169 - 177
Main Authors Yazdanpanah, Nahid, Yazdanpanah, Mojgan, Wang, Ye, Forgetta, Vincenzo, Pollak, Michael, Polychronakos, Constantin, Richards, J. Brent, Manousaki, Despoina
Format Journal Article
LanguageEnglish
Published United States American Diabetes Association 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract To identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR). We used a large-scale two-sample MR study, using cis genetic determinants (protein quantitative trait loci [pQTL]) of up to 1,611 circulating proteins from five large genome-wide association studies, to screen for causal associations of these proteins with type 1 diabetes risk in 9,684 case subjects with type 1 diabetes and 15,743 control subjects. Further, pleiotropy-robust MR methods were used in sensitivity analyses using both cis and trans-pQTL. We found that a genetically predicted SD increase in signal regulatory protein gamma (SIRPG) level was associated with increased risk of type 1 diabetes risk (MR odds ratio [OR] 1.66 [95% 1.36-2.03]; P = 7.1 × 10-7). The risk of type 1 diabetes increased almost twofold per genetically predicted standard deviation (SD) increase in interleukin-27 Epstein-Barr virus-induced 3 (IL27-EBI3) protein levels (MR OR 1.97 [95% CI 1.48-2.62]; P = 3.7 × 10-6). However, an SD increase in chymotrypsinogen B1 (CTRB1) was associated with decreased risk of type 1 diabetes (MR OR 0.84 [95% CI 0.77-0.90]; P = 6.1 × 10-6). Sensitivity analyses using MR methods testing for pleiotropy while including trans-pQTL showed similar results. While the MR-Egger suggested no pleotropic effect (P value MR-Egger intercept = 0.31), there was evidence of pleiotropy in MR-PRESSO (P value global test = 0.006). We identified three novel circulating protein biomarkers associated with type 1 diabetes risk using an MR approach. These biomarkers are promising targets for development of drugs and/or of screening tools for early prediction of type 1 diabetes.
AbstractList To identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR).OBJECTIVETo identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR).We used a large-scale two-sample MR study, using cis genetic determinants (protein quantitative trait loci [pQTL]) of up to 1,611 circulating proteins from five large genome-wide association studies, to screen for causal associations of these proteins with type 1 diabetes risk in 9,684 case subjects with type 1 diabetes and 15,743 control subjects. Further, pleiotropy-robust MR methods were used in sensitivity analyses using both cis and trans-pQTL.RESEARCH DESIGN AND METHODSWe used a large-scale two-sample MR study, using cis genetic determinants (protein quantitative trait loci [pQTL]) of up to 1,611 circulating proteins from five large genome-wide association studies, to screen for causal associations of these proteins with type 1 diabetes risk in 9,684 case subjects with type 1 diabetes and 15,743 control subjects. Further, pleiotropy-robust MR methods were used in sensitivity analyses using both cis and trans-pQTL.We found that a genetically predicted SD increase in signal regulatory protein gamma (SIRPG) level was associated with increased risk of type 1 diabetes risk (MR odds ratio [OR] 1.66 [95% 1.36-2.03]; P = 7.1 × 10-7). The risk of type 1 diabetes increased almost twofold per genetically predicted standard deviation (SD) increase in interleukin-27 Epstein-Barr virus-induced 3 (IL27-EBI3) protein levels (MR OR 1.97 [95% CI 1.48-2.62]; P = 3.7 × 10-6). However, an SD increase in chymotrypsinogen B1 (CTRB1) was associated with decreased risk of type 1 diabetes (MR OR 0.84 [95% CI 0.77-0.90]; P = 6.1 × 10-6). Sensitivity analyses using MR methods testing for pleiotropy while including trans-pQTL showed similar results. While the MR-Egger suggested no pleotropic effect (P value MR-Egger intercept = 0.31), there was evidence of pleiotropy in MR-PRESSO (P value global test = 0.006).RESULTSWe found that a genetically predicted SD increase in signal regulatory protein gamma (SIRPG) level was associated with increased risk of type 1 diabetes risk (MR odds ratio [OR] 1.66 [95% 1.36-2.03]; P = 7.1 × 10-7). The risk of type 1 diabetes increased almost twofold per genetically predicted standard deviation (SD) increase in interleukin-27 Epstein-Barr virus-induced 3 (IL27-EBI3) protein levels (MR OR 1.97 [95% CI 1.48-2.62]; P = 3.7 × 10-6). However, an SD increase in chymotrypsinogen B1 (CTRB1) was associated with decreased risk of type 1 diabetes (MR OR 0.84 [95% CI 0.77-0.90]; P = 6.1 × 10-6). Sensitivity analyses using MR methods testing for pleiotropy while including trans-pQTL showed similar results. While the MR-Egger suggested no pleotropic effect (P value MR-Egger intercept = 0.31), there was evidence of pleiotropy in MR-PRESSO (P value global test = 0.006).We identified three novel circulating protein biomarkers associated with type 1 diabetes risk using an MR approach. These biomarkers are promising targets for development of drugs and/or of screening tools for early prediction of type 1 diabetes.CONCLUSIONSWe identified three novel circulating protein biomarkers associated with type 1 diabetes risk using an MR approach. These biomarkers are promising targets for development of drugs and/or of screening tools for early prediction of type 1 diabetes.
OBJECTIVE To identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR). RESEARCH DESIGN AND METHODS We used a large-scale two-sample MR study, using cis genetic determinants (protein quantitative trait loci [pQTL]) of up to 1,611 circulating proteins from five large genome-wide association studies, to screen for causal associations of these proteins with type 1 diabetes risk in 9,684 case subjects with type 1 diabetes and 15,743 control subjects. Further, pleiotropy-robust MR methods were used in sensitivity analyses using both cis and trans-pQTL. RESULTS We found that a genetically predicted SD increase in signal regulatory protein gamma (SIRPG) level was associated with increased risk of type 1 diabetes risk (MR odds ratio [OR] 1.66 [95% 1.36–2.03]; P = 7.1 × 10−7). The risk of type 1 diabetes increased almost twofold per genetically predicted standard deviation (SD) increase in interleukin-27 Epstein-Barr virus–induced 3 (IL27-EBI3) protein levels (MR OR 1.97 [95% CI 1.48–2.62]; P = 3.7 × 10−6). However, an SD increase in chymotrypsinogen B1 (CTRB1) was associated with decreased risk of type 1 diabetes (MR OR 0.84 [95% CI 0.77–0.90]; P = 6.1 × 10−6). Sensitivity analyses using MR methods testing for pleiotropy while including trans-pQTL showed similar results. While the MR-Egger suggested no pleotropic effect (P value MR-Egger intercept = 0.31), there was evidence of pleiotropy in MR-PRESSO (P value global test = 0.006). CONCLUSIONS We identified three novel circulating protein biomarkers associated with type 1 diabetes risk using an MR approach. These biomarkers are promising targets for development of drugs and/or of screening tools for early prediction of type 1 diabetes.
To identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR). We used a large-scale two-sample MR study, using cis genetic determinants (protein quantitative trait loci [pQTL]) of up to 1,611 circulating proteins from five large genome-wide association studies, to screen for causal associations of these proteins with type 1 diabetes risk in 9,684 case subjects with type 1 diabetes and 15,743 control subjects. Further, pleiotropy-robust MR methods were used in sensitivity analyses using both cis and trans-pQTL. We found that a genetically predicted SD increase in signal regulatory protein gamma (SIRPG) level was associated with increased risk of type 1 diabetes risk (MR odds ratio [OR] 1.66 [95% 1.36-2.03]; P = 7.1 × 10-7). The risk of type 1 diabetes increased almost twofold per genetically predicted standard deviation (SD) increase in interleukin-27 Epstein-Barr virus-induced 3 (IL27-EBI3) protein levels (MR OR 1.97 [95% CI 1.48-2.62]; P = 3.7 × 10-6). However, an SD increase in chymotrypsinogen B1 (CTRB1) was associated with decreased risk of type 1 diabetes (MR OR 0.84 [95% CI 0.77-0.90]; P = 6.1 × 10-6). Sensitivity analyses using MR methods testing for pleiotropy while including trans-pQTL showed similar results. While the MR-Egger suggested no pleotropic effect (P value MR-Egger intercept = 0.31), there was evidence of pleiotropy in MR-PRESSO (P value global test = 0.006). We identified three novel circulating protein biomarkers associated with type 1 diabetes risk using an MR approach. These biomarkers are promising targets for development of drugs and/or of screening tools for early prediction of type 1 diabetes.
Author Yazdanpanah, Mojgan
Forgetta, Vincenzo
Polychronakos, Constantin
Wang, Ye
Richards, J. Brent
Yazdanpanah, Nahid
Manousaki, Despoina
Pollak, Michael
Author_xml – sequence: 1
  givenname: Nahid
  surname: Yazdanpanah
  fullname: Yazdanpanah, Nahid
  organization: 1Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
– sequence: 2
  givenname: Mojgan
  surname: Yazdanpanah
  fullname: Yazdanpanah, Mojgan
  organization: 1Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
– sequence: 3
  givenname: Ye
  surname: Wang
  fullname: Wang, Ye
  organization: 2Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
– sequence: 4
  givenname: Vincenzo
  surname: Forgetta
  fullname: Forgetta, Vincenzo
  organization: 2Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
– sequence: 5
  givenname: Michael
  surname: Pollak
  fullname: Pollak, Michael
  organization: 2Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada, 3Department of Medicine, McGill University, Montreal, Quebec, Canada, 4Department of Oncology, McGill University, Montreal, Quebec, Canada
– sequence: 6
  givenname: Constantin
  orcidid: 0000-0002-7624-6635
  surname: Polychronakos
  fullname: Polychronakos, Constantin
  organization: 5Department of Pediatrics, McGill University, Montreal, Quebec, Canada, 6Department of Human Genetics, McGill University, Montreal, Quebec, Canada, 7Centre of Excellence in Translational Immunology, Montreal, Quebec, Canada
– sequence: 7
  givenname: J. Brent
  orcidid: 0000-0002-3746-9086
  surname: Richards
  fullname: Richards, J. Brent
  organization: 2Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada, 3Department of Medicine, McGill University, Montreal, Quebec, Canada, 6Department of Human Genetics, McGill University, Montreal, Quebec, Canada, 8Department of Epidemiology and Biostatistics, McGill University, Montreal, Quebec, Canada, 9Department of Twin Research, King’s College London, London, U.K
– sequence: 8
  givenname: Despoina
  orcidid: 0000-0002-4133-0618
  surname: Manousaki
  fullname: Manousaki, Despoina
  organization: 1Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada, 10Departments of Pediatrics, Biochemistry and Molecular Medicine, University of Montreal, Montreal, Quebec, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34758976$$D View this record in MEDLINE/PubMed
BookMark eNplkU9v1DAUxC1URLeFA18AWeICh1Db8Z-YGywtIBWB2uVsOfYLcnHsrZ0ULSc-OlnaXsrpXX4zmjdzhA5SToDQc0resLZVJ94x2lDC9SO0oroVjRC8O0ArQrluhNbsEB3VekUI4bzrnqDDlivRaSVX6M86hhScjXGHLyDCjU0TXofi5minkH7gbyVPEBJ-H_Joy08oFQ-54M1uC5jiD8H2MEF9i09vgofkAJ-VPGKLN79yc2nHbQT8BZKHGGzCFzb5PIbfi3VO-HKa_e4pejzYWOHZ3T1G389ON-tPzfnXj5_X784b1_JuakBKaYcWBtVDJ5gSFJijznvZe0kA6ECHXjHNeK-0cD0VnNvedb6Vgkjl2mP06tZ3W_L1DHUyY6gOYrQJ8lwNE1pyoZTsFvTlA_QqzyUt6QyTLReaUEYW6sUdNfcjeLMtYSloZ-67XYCTW8CVXGuBwbgw_ft8KjZEQ4nZr2f265n9eovi9QPFven_7F8o8Jor
CitedBy_id crossref_primary_10_1093_cercor_bhae377
crossref_primary_10_3389_fgene_2023_1230113
crossref_primary_10_1016_j_clinre_2024_102419
crossref_primary_10_1007_s11892_024_01533_7
crossref_primary_10_1007_s00198_024_07225_y
crossref_primary_10_1111_cts_13442
crossref_primary_10_1016_j_identj_2024_02_007
crossref_primary_10_1210_endrev_bnae002
crossref_primary_10_2337_db24_0380
crossref_primary_10_1111_and_14527
crossref_primary_10_3389_fendo_2023_1339374
crossref_primary_10_3389_fimmu_2024_1406041
crossref_primary_10_3389_fimmu_2023_1158278
crossref_primary_10_1007_s00439_023_02627_0
crossref_primary_10_3389_fmed_2024_1332162
crossref_primary_10_1007_s12094_024_03616_z
crossref_primary_10_1021_acsomega_4c01934
crossref_primary_10_1136_ard_2023_224459
crossref_primary_10_2337_db24_0262
crossref_primary_10_1007_s00125_024_06247_9
crossref_primary_10_1038_s42003_024_06538_2
crossref_primary_10_3389_fcvm_2023_1126208
crossref_primary_10_3390_ijms251910236
crossref_primary_10_3390_nu16223795
crossref_primary_10_1016_j_biopha_2023_115958
crossref_primary_10_1016_j_jocn_2024_110998
crossref_primary_10_1097_MD_0000000000039842
crossref_primary_10_3389_fonc_2024_1407795
crossref_primary_10_1186_s13073_023_01229_9
crossref_primary_10_3389_fendo_2024_1497373
crossref_primary_10_3389_fgene_2023_1161817
crossref_primary_10_2337_dc22_1317
crossref_primary_10_3390_biom14121489
crossref_primary_10_1007_s00125_023_05879_7
Cites_doi 10.4049/jimmunol.173.4.2562
10.2337/db13-0227
10.2337/dc15-0101
10.1002/oby.21351
10.1038/nature11632
10.1093/ije/dyx034
10.1056/NEJMc2022226
10.1371/journal.pgen.1006643
10.1038/s42255-020-00287-2
10.1038/s41467-018-05512-x
10.2337/db19-0831
10.1016/j.gde.2018.03.009
10.2337/db14-0983
10.3390/biom11081110
10.1002/dmrr.1141
10.2337/db18-1263
10.1038/ncomms14357
10.1002/oby.23093
10.1093/bioinformatics/btz469
10.2337/diabetes.54.suppl_2.S125
10.1016/j.celrep.2019.11.010
10.1002/gepi.21758
10.1038/nrendo.2009.129
10.1038/s41588-020-0682-6
10.1038/s41598-018-33901-1
10.1007/s00125-021-05428-0
10.1126/science.aaq1327
10.15171/apb.2015.081
10.1093/ije/dyg070
10.1016/j.autrev.2015.08.001
10.2337/db11-0962
10.1093/ije/dyt179
10.1177/193229681000400431
10.1016/j.ajpath.2011.08.001
10.1038/ng.381
10.2147/DMSO.S162008
10.1038/ng1847
10.1111/febs.12018
10.3109/13813455.2010.501801
10.1371/journal.pone.0238070
10.1136/gutjnl-2017-314454
10.1038/nrg2969
10.2217/imt.14.95
10.1038/s41586-018-0175-2
10.1089/bio.2015.29031.hmm
10.1016/j.trsl.2018.07.009
10.1371/journal.pgen.1004383
10.1038/s41598-021-93346-x
ContentType Journal Article
Copyright 2021 by the American Diabetes Association.
Copyright American Diabetes Association Jan 2022
Copyright_xml – notice: 2021 by the American Diabetes Association.
– notice: Copyright American Diabetes Association Jan 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
NAPCQ
7X8
DOI 10.2337/dc21-1049
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1935-5548
EndPage 177
ExternalDocumentID 34758976
10_2337_dc21_1049
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-ET
..I
.XZ
08P
0R~
18M
29F
2WC
4.4
53G
5GY
5RE
5RS
5VS
6PF
8R4
8R5
AAFWJ
AAIKC
AAMNW
AAWTL
AAYEP
AAYXX
ABOCM
ABPPZ
ACGFO
ACGOD
ADBBV
AEGXH
AENEX
AERZD
AFOSN
AFRAH
AHMBA
AIAGR
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BENPR
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EDB
EMOBN
EX3
F5P
GX1
H13
HZ~
IAO
IEA
IHR
INH
INR
IOF
IPO
KQ8
L7B
M0K
M5~
O5R
O5S
O9-
OK1
OVD
P2P
PCD
Q2X
RHI
SV3
TDI
TEORI
TR2
TWZ
VVN
W8F
WH7
WOQ
WOW
YHG
YOC
ZCG
~KM
CGR
CUY
CVF
ECM
EIF
IGG
NPM
RHF
K9.
NAPCQ
7X8
ID FETCH-LOGICAL-c348t-e666af3ef7be852751e2c1cdd6bd60ee1f1fb72924b795cb1544abc8d365067c3
ISSN 0149-5992
1935-5548
IngestDate Fri Jul 11 07:09:30 EDT 2025
Mon Jun 30 11:11:30 EDT 2025
Thu Jan 02 22:54:30 EST 2025
Tue Jul 01 04:12:05 EDT 2025
Thu Apr 24 23:04:13 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021 by the American Diabetes Association.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-e666af3ef7be852751e2c1cdd6bd60ee1f1fb72924b795cb1544abc8d365067c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-4133-0618
0000-0002-3746-9086
0000-0002-7624-6635
OpenAccessLink https://diabetesjournals.org/care/article-pdf/45/1/169/636277/dc211049.pdf
PMID 34758976
PQID 2634590120
PQPubID 47715
PageCount 9
ParticipantIDs proquest_miscellaneous_2596457768
proquest_journals_2634590120
pubmed_primary_34758976
crossref_citationtrail_10_2337_dc21_1049
crossref_primary_10_2337_dc21_1049
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-01
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Alexandria
PublicationTitle Diabetes care
PublicationTitleAlternate Diabetes Care
PublicationYear 2022
Publisher American Diabetes Association
Publisher_xml – name: American Diabetes Association
References Price (2022051611042730300_B22) 2006; 38
Long (2022051611042730300_B3) 2012; 61
Nyaga (2022051611042730300_B45) 2021; 11
Katsogiannos (2022051611042730300_B37) 2021; 29
Nam (2022051611042730300_B36) 2016; 24
Zhi (2022051611042730300_B8) 2010; 4
Sinha (2022051611042730300_B31) 2018; 8
Zamani (2022051611042730300_B26) 2015; 5
Brion (2022051611042730300_B25) 2013; 42
Folkersen (2022051611042730300_B16) 2020; 2
Szabó (2022051611042730300_B43) 2012; 279
Stolerman (2022051611042730300_B47) 2009; 5
Brooke (2022051611042730300_B32) 2004; 173
do Nascimento de Oliveira (2022051611042730300_B9) 2018; 11
Sun (2022051611042730300_B18) 2018; 558
Barrett (2022051611042730300_B33) 2009; 41
Yi (2022051611042730300_B28) 2018; 201
Giambartolomei (2022051611042730300_B13) 2014; 10
Fujimoto (2022051611042730300_B39) 2011; 179
1000 Genomes Project Consortium (2022051611042730300_B14) 2012; 491
Ciecko (2022051611042730300_B38) 2019; 29
Inshaw (2022051611042730300_B46) 2021; 64
Bonifacio (2022051611042730300_B10) 2015; 38
Frohnert (2022051611042730300_B29) 2020; 69
Meka (2022051611042730300_B34) 2015; 14
Kasela (2022051611042730300_B40) 2017; 13
Carithers (2022051611042730300_B24) 2015; 13
t Hart (2022051611042730300_B42) 2013; 62
Chaimowitz (2022051611042730300_B5) 2020; 383
Sharp (2022051611042730300_B2) 2018; 50
Forgetta (2022051611042730300_B20) 2020; 69
Li (2022051611042730300_B35) 2015; 7
Moulder (2022051611042730300_B6) 2015; 64
Vehik (2022051611042730300_B1) 2011; 27
Smith (2022051611042730300_B11) 2003; 32
Yavorska (2022051611042730300_B21) 2017; 46
Zheng (2022051611042730300_B4) 2020; 52
Emilsson (2022051611042730300_B15) 2018; 361
Knip (2022051611042730300_B27) 2005; 54
Kamat (2022051611042730300_B23) 2019; 35
Łukawska-Tatarczuk (2022051611042730300_B41) 2021; 11
Suhre (2022051611042730300_B17) 2017; 8
Montgomery (2022051611042730300_B48) 2011; 12
Sinha (2022051611042730300_B30) 2020; 15
Yao (2022051611042730300_B19) 2018; 9
Burgess (2022051611042730300_B12) 2013; 37
McGuire (2022051611042730300_B7) 2010; 116
Rosendahl (2022051611042730300_B44) 2018; 67
References_xml – volume: 173
  start-page: 2562
  year: 2004
  ident: 2022051611042730300_B32
  article-title: Human lymphocytes interact directly with CD47 through a novel member of the signal regulatory protein (SIRP) family
  publication-title: J Immunol
  doi: 10.4049/jimmunol.173.4.2562
– volume: 62
  start-page: 3275
  year: 2013
  ident: 2022051611042730300_B42
  article-title: The CTRB1/2 locus affects diabetes susceptibility and treatment via the incretin pathway
  publication-title: Diabetes
  doi: 10.2337/db13-0227
– volume: 38
  start-page: 989
  year: 2015
  ident: 2022051611042730300_B10
  article-title: Predicting type 1 diabetes using biomarkers
  publication-title: Diabetes Care
  doi: 10.2337/dc15-0101
– volume: 24
  start-page: 157
  year: 2016
  ident: 2022051611042730300_B36
  article-title: Modulation of IL-27 in adipocytes during inflammatory stress
  publication-title: Obesity (Silver Spring)
  doi: 10.1002/oby.21351
– volume: 491
  start-page: 56
  year: 2012
  ident: 2022051611042730300_B14
  article-title: An integrated map of genetic variation from 1,092 human genomes
  publication-title: Nature
  doi: 10.1038/nature11632
– volume: 46
  start-page: 1734
  year: 2017
  ident: 2022051611042730300_B21
  article-title: MendelianRandomization: an R package for performing Mendelian randomization analyses using summarized data
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyx034
– volume: 383
  start-page: 1494
  year: 2020
  ident: 2022051611042730300_B5
  article-title: STAT1 gain of function, type 1 diabetes, and reversal with JAK inhibition
  publication-title: N Engl J Med
  doi: 10.1056/NEJMc2022226
– volume: 13
  start-page: e1006643
  year: 2017
  ident: 2022051611042730300_B40
  article-title: Pathogenic implications for autoimmune mechanisms derived by comparative eQTL analysis of CD4+ versus CD8+ T cells
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1006643
– volume: 2
  start-page: 1135
  year: 2020
  ident: 2022051611042730300_B16
  article-title: Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals
  publication-title: Nat Metab
  doi: 10.1038/s42255-020-00287-2
– volume: 9
  start-page: 3268
  year: 2018
  ident: 2022051611042730300_B19
  article-title: Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-05512-x
– volume: 69
  start-page: 784
  year: 2020
  ident: 2022051611042730300_B20
  article-title: Rare genetic variants of large effect influence risk of type 1 diabetes
  publication-title: Diabetes
  doi: 10.2337/db19-0831
– volume: 50
  start-page: 96
  year: 2018
  ident: 2022051611042730300_B2
  article-title: Clinical and research uses of genetic risk scores in type 1 diabetes
  publication-title: Curr Opin Genet Dev
  doi: 10.1016/j.gde.2018.03.009
– volume: 64
  start-page: 2265
  year: 2015
  ident: 2022051611042730300_B6
  article-title: Serum proteomes distinguish children developing type 1 diabetes in a cohort with HLA-conferred susceptibility
  publication-title: Diabetes
  doi: 10.2337/db14-0983
– volume: 11
  start-page: 1110
  year: 2021
  ident: 2022051611042730300_B41
  article-title: Sirtuin 1, visfatin and IL-27 serum levels of type 1 diabetic females in relation to cardiovascular parameters and autoimmune thyroid disease
  publication-title: Biomolecules
  doi: 10.3390/biom11081110
– volume: 27
  start-page: 3
  year: 2011
  ident: 2022051611042730300_B1
  article-title: The changing epidemiology of type 1 diabetes: why is it going through the roof?
  publication-title: Diabetes Metab Res Rev
  doi: 10.1002/dmrr.1141
– volume: 69
  start-page: 238
  year: 2020
  ident: 2022051611042730300_B29
  article-title: Predictive modeling of type 1 diabetes stages using disparate data sources
  publication-title: Diabetes
  doi: 10.2337/db18-1263
– volume: 8
  start-page: 14357
  year: 2017
  ident: 2022051611042730300_B17
  article-title: Connecting genetic risk to disease end points through the human blood plasma proteome
  publication-title: Nat Commun
  doi: 10.1038/ncomms14357
– volume: 29
  start-page: 535
  year: 2021
  ident: 2022051611042730300_B37
  article-title: Changes in circulating cytokines and adipokines after RYGB in patients with and without type 2 diabetes
  publication-title: Obesity (Silver Spring)
  doi: 10.1002/oby.23093
– volume: 35
  start-page: 4851
  year: 2019
  ident: 2022051611042730300_B23
  article-title: PhenoScanner V2: an expanded tool for searching human genotype-phenotype associations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz469
– volume: 54
  start-page: S125
  year: 2005
  ident: 2022051611042730300_B27
  article-title: Environmental triggers and determinants of type 1 diabetes
  publication-title: Diabetes
  doi: 10.2337/diabetes.54.suppl_2.S125
– volume: 29
  start-page: 3073
  year: 2019
  ident: 2022051611042730300_B38
  article-title: Interleukin-27 is essential for type 1 diabetes development and Sjögren syndrome-like inflammation
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2019.11.010
– volume: 37
  start-page: 658
  year: 2013
  ident: 2022051611042730300_B12
  article-title: Mendelian randomization analysis with multiple genetic variants using summarized data
  publication-title: Genet Epidemiol
  doi: 10.1002/gepi.21758
– volume: 5
  start-page: 429
  year: 2009
  ident: 2022051611042730300_B47
  article-title: Genomics of type 2 diabetes mellitus: implications for the clinician
  publication-title: Nat Rev Endocrinol
  doi: 10.1038/nrendo.2009.129
– volume: 52
  start-page: 1122
  year: 2020
  ident: 2022051611042730300_B4
  article-title: Phenome-wide Mendelian randomization mapping the influence of the plasma proteome on complex diseases
  publication-title: Nat Genet
  doi: 10.1038/s41588-020-0682-6
– volume: 8
  start-page: 15440
  year: 2018
  ident: 2022051611042730300_B31
  article-title: An autoimmune disease risk SNP, rs2281808, in SIRPG is associated with reduced expression of SIRPγ and heightened effector state in human CD8 T-cells
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-33901-1
– volume: 64
  start-page: 1342
  year: 2021
  ident: 2022051611042730300_B46
  article-title: Analysis of overlapping genetic association in type 1 and type 2 diabetes
  publication-title: Diabetologia
  doi: 10.1007/s00125-021-05428-0
– volume: 361
  start-page: 769
  year: 2018
  ident: 2022051611042730300_B15
  article-title: Co-regulatory networks of human serum proteins link genetics to disease
  publication-title: Science
  doi: 10.1126/science.aaq1327
– volume: 5
  start-page: 599
  year: 2015
  ident: 2022051611042730300_B26
  article-title: New approaches to the immunotherapy of type 1 diabetes mellitus using interleukin-27
  publication-title: Adv Pharm Bull
  doi: 10.15171/apb.2015.081
– volume: 32
  start-page: 1
  year: 2003
  ident: 2022051611042730300_B11
  article-title: ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease?
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyg070
– volume: 14
  start-page: 1131
  year: 2015
  ident: 2022051611042730300_B34
  article-title: IL-27-induced modulation of autoimmunity and its therapeutic potential
  publication-title: Autoimmun Rev
  doi: 10.1016/j.autrev.2015.08.001
– volume: 61
  start-page: 683
  year: 2012
  ident: 2022051611042730300_B3
  article-title: Rising incidence of type 1 diabetes is associated with altered immunophenotype at diagnosis
  publication-title: Diabetes
  doi: 10.2337/db11-0962
– volume: 42
  start-page: 1497
  year: 2013
  ident: 2022051611042730300_B25
  article-title: Calculating statistical power in Mendelian randomization studies
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/dyt179
– volume: 4
  start-page: 993
  year: 2010
  ident: 2022051611042730300_B8
  article-title: Proteomic technologies for the discovery of type 1 diabetes biomarkers
  publication-title: J Diabetes Sci Technol
  doi: 10.1177/193229681000400431
– volume: 179
  start-page: 2327
  year: 2011
  ident: 2022051611042730300_B39
  article-title: IL-27 inhibits hyperglycemia and pancreatic islet inflammation induced by streptozotocin in mice
  publication-title: Am J Pathol
  doi: 10.1016/j.ajpath.2011.08.001
– volume: 41
  start-page: 703
  year: 2009
  ident: 2022051611042730300_B33
  article-title: Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes
  publication-title: Nat Genet
  doi: 10.1038/ng.381
– volume: 11
  start-page: 289
  year: 2018
  ident: 2022051611042730300_B9
  article-title: Proteomic analysis to identify candidate biomarkers associated with type 1 diabetes
  publication-title: Diabetes Metab Syndr Obes
  doi: 10.2147/DMSO.S162008
– volume: 38
  start-page: 904
  year: 2006
  ident: 2022051611042730300_B22
  article-title: Principal components analysis corrects for stratification in genome-wide association studies
  publication-title: Nat Genet
  doi: 10.1038/ng1847
– volume: 279
  start-page: 4283
  year: 2012
  ident: 2022051611042730300_B43
  article-title: Determinants of chymotrypsin C cleavage specificity in the calcium-binding loop of human cationic trypsinogen
  publication-title: FEBS J
  doi: 10.1111/febs.12018
– volume: 116
  start-page: 227
  year: 2010
  ident: 2022051611042730300_B7
  article-title: Screening newborns for candidate biomarkers of type 1 diabetes
  publication-title: Arch Physiol Biochem
  doi: 10.3109/13813455.2010.501801
– volume: 15
  start-page: e0238070
  year: 2020
  ident: 2022051611042730300_B30
  article-title: Altered expression of SIRPγ on the T-cells of relapsing remitting multiple sclerosis and type 1 diabetes patients could potentiate effector responses from T-cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0238070
– volume: 67
  start-page: 1855
  year: 2018
  ident: 2022051611042730300_B44
  article-title: Genome-wide association study identifies inversion in the CTRB1-CTRB2 locus to modify risk for alcoholic and non-alcoholic chronic pancreatitis
  publication-title: Gut
  doi: 10.1136/gutjnl-2017-314454
– volume: 12
  start-page: 277
  year: 2011
  ident: 2022051611042730300_B48
  article-title: From expression QTLs to personalized transcriptomics
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg2969
– volume: 7
  start-page: 191
  year: 2015
  ident: 2022051611042730300_B35
  article-title: The Yin and Yang aspects of IL-27 in induction of cancer-specific T-cell responses and immunotherapy
  publication-title: Immunotherapy
  doi: 10.2217/imt.14.95
– volume: 558
  start-page: 73
  year: 2018
  ident: 2022051611042730300_B18
  article-title: Genomic atlas of the human plasma proteome
  publication-title: Nature
  doi: 10.1038/s41586-018-0175-2
– volume: 13
  start-page: 307
  year: 2015
  ident: 2022051611042730300_B24
  article-title: The Genotype-Tissue Expression (GTEx) Project
  publication-title: Biopreserv Biobank
  doi: 10.1089/bio.2015.29031.hmm
– volume: 201
  start-page: 13
  year: 2018
  ident: 2022051611042730300_B28
  article-title: Serum biomarkers for diagnosis and prediction of type 1 diabetes
  publication-title: Transl Res
  doi: 10.1016/j.trsl.2018.07.009
– volume: 10
  start-page: e1004383
  year: 2014
  ident: 2022051611042730300_B13
  article-title: Bayesian test for colocalisation between pairs of genetic association studies using summary statistics
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1004383
– volume: 11
  start-page: 13871
  year: 2021
  ident: 2022051611042730300_B45
  article-title: Untangling the genetic link between type 1 and type 2 diabetes using functional genomics
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-93346-x
SSID ssj0004488
Score 2.5374858
Snippet To identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR). We used a large-scale two-sample MR study,...
OBJECTIVE To identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR). RESEARCH DESIGN AND METHODS We used a...
To identify circulating proteins influencing type 1 diabetes susceptibility using Mendelian randomization (MR).OBJECTIVETo identify circulating proteins...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 169
SubjectTerms Biomarkers
Diabetes
Diabetes mellitus
Diabetes mellitus (insulin dependent)
Diabetes Mellitus, Type 1 - genetics
Drug development
Drug screening
Epstein-Barr virus
Epstein-Barr Virus Infections
Gene mapping
Genome-Wide Association Study - methods
Genomes
Health risks
Herpesvirus 4, Human
Humans
Interleukin 27
Interleukins
Mendelian Randomization Analysis - methods
Pleiotropy
Polymorphism, Single Nucleotide
Proteins
Quantitative trait loci
Randomization
Research design
Risk
Robust control
Sensitivity analysis
Title Clinically Relevant Circulating Protein Biomarkers for Type 1 Diabetes: Evidence From a Two-Sample Mendelian Randomization Study
URI https://www.ncbi.nlm.nih.gov/pubmed/34758976
https://www.proquest.com/docview/2634590120
https://www.proquest.com/docview/2596457768
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELfKkKa9IL7XMZBBPCBFgcT55g1NTBOoSEAH4ymyHXsbapOp64TUB8Sfzp3tfHRsEvASVbHrVPn9cr1z7n5HyPOUx7niQvhaV9qPZQR2MMkLX4NzrnIRCyumM_mQHhzG746So9Ho57C6ZCleytWVdSX_gyqcA1yxSvYfkO0WhRPwGfCFIyAMx7_C2Il6zmboSM8UOMVLb-90IU1LrvoYqwCwmSU2nJxjGs7CiC94GHt6oeeSYUxOXNtcFBzZZu5xb_qj8T9zVA7GvNdKmc2QT7yumrkr3DQZiGvvhNv1jNp1Z034quI1mBx-Yo35SZtC_8fYpPl-3HP1q9vI_tYttW927623--UUfmy9aoabFowNNi2UNbRFlPjgyuRDS2yFJdcYZ81qaNu5XDb3LDKCAZVkmJYXr82Be3c2N7hHMcRERXZJcNv9hduhG-QmgzAD7eT7jwO1ebBuVo0Kr_Squ84W2Wy_ue7OXBOjGF9lepvcckEGfWMZc4eMVH2XbE5cGsU98qsnDm2JQwfEoY44tCcOBeJQJA4NaQv0a9rShiJtKKc9bWhHG7pGG2poc58c7r-d7h34rhWHL6M4X_oKolyuI6UzofKEZUmomAxlVaWiSgOlQh1qAXEag4e7SKRAjScuZF5FEAGkmYwekI26qdU2obGUMmSSBzkuHYg80QGsI5NAB6ziekxetHe0lE6nHtulzEqIVxGHEnEoEYcxedZNPbPiLFdN2m1hKd2ze16yNIqx6poFY_K0GwbLiq_LeK2aC5iTFGmcZBCPj8lDC2d3lRb-nWtHHpGtnvi7ZGO5uFCPwX9diieGZL8BmNWfpg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinically+Relevant+Circulating+Protein+Biomarkers+for+Type+1+Diabetes%3A+Evidence+From+a+Two-Sample+Mendelian+Randomization+Study&rft.jtitle=Diabetes+care&rft.au=Yazdanpanah%2C+Nahid&rft.au=Yazdanpanah%2C+Mojgan&rft.au=Wang%2C+Ye&rft.au=Forgetta%2C+Vincenzo&rft.date=2022-01-01&rft.eissn=1935-5548&rft.volume=45&rft.issue=1&rft.spage=169&rft_id=info:doi/10.2337%2Fdc21-1049&rft_id=info%3Apmid%2F34758976&rft.externalDocID=34758976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0149-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0149-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0149-5992&client=summon