Squeezing flow of aqueous CNTs-Fe3O4 hybrid nanofluid through mass-based approach: Effect of heat source/sink, nanoparticle shape, and an oblique magnetic field

Here, the squeezing unsteady 2-dimensional incompressible hybrid nanofluid flow between two collateral sheets has been investigated numerically, considering the influences of magnetic field and the mutable thermal conductivity. The solid-particles are the magnetite (Fe3O4) and the carbon nanotubes (...

Full description

Saved in:
Bibliographic Details
Published inResults in engineering Vol. 17; p. 100976
Main Authors Dinarvand, Saeed, Berrehal, Hamza, Tamim, Hossein, Sowmya, G., Noeiaghdam, Samad, Abdollahzadeh, Mohsen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2023
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Here, the squeezing unsteady 2-dimensional incompressible hybrid nanofluid flow between two collateral sheets has been investigated numerically, considering the influences of magnetic field and the mutable thermal conductivity. The solid-particles are the magnetite (Fe3O4) and the carbon nanotubes (CNTs) inserted in the base liquid (water). To give a complete development investigation of the present problem, the influences of a heat source/sink have also been analyzed. The technique used is pursuant to the Tiwari-Das nanofluid method which nanoparticle weights are considered instead of the volumetric concentration of the solid-particles. At first, the controlling dimensional PDEs, including continuity, momentum conservation, and energy conservation, are changed to a non-dimensional ODEs system applying adequate similarity reduction. The Runge–Kutta–Fehlberg (RK4) approach and shooting procedure is utilized to solve nonlinear ODEs system numerically. The impression of the controlling parameters on the temperature and velocity of working fluid as well as the Nusselt number, and the skin friction has been studied and analyzed. The mass-based manner gives trustable results for the flow and heat transfer analysis in the presence heat generation source and also an oblique magnetic ground. The results demonstrate that the entity of temperature-dependent thermal conductivity and the oblique magnetic ground reduces heat transfer. Furthermore, the greatest temperature distribution was related to spherical solid-particles in the presence of a horizontal magnetic ground. •The presence of an oblique magnetic field and the temperature-dependent thermal conductivity realize a decrease in heat transfer rate.•The horizontally applied magnetic field has the highest temperature distribution and heat transfer rate.•Existence of heat source and more Eckert number raise the temperature distribution between the sheets.•The highest rate of heat transfer was related to spherical and single type solid-particles.•The effect of Hartmann parameter on the skin friction has been observed to be about 19 times greater than that the effect of squeeze parameter.
AbstractList Here, the squeezing unsteady 2-dimensional incompressible hybrid nanofluid flow between two collateral sheets has been investigated numerically, considering the influences of magnetic field and the mutable thermal conductivity. The solid-particles are the magnetite (Fe3O4) and the carbon nanotubes (CNTs) inserted in the base liquid (water). To give a complete development investigation of the present problem, the influences of a heat source/sink have also been analyzed. The technique used is pursuant to the Tiwari-Das nanofluid method which nanoparticle weights are considered instead of the volumetric concentration of the solid-particles. At first, the controlling dimensional PDEs, including continuity, momentum conservation, and energy conservation, are changed to a non-dimensional ODEs system applying adequate similarity reduction. The Runge–Kutta–Fehlberg (RK4) approach and shooting procedure is utilized to solve nonlinear ODEs system numerically. The impression of the controlling parameters on the temperature and velocity of working fluid as well as the Nusselt number, and the skin friction has been studied and analyzed. The mass-based manner gives trustable results for the flow and heat transfer analysis in the presence heat generation source and also an oblique magnetic ground. The results demonstrate that the entity of temperature-dependent thermal conductivity and the oblique magnetic ground reduces heat transfer. Furthermore, the greatest temperature distribution was related to spherical solid-particles in the presence of a horizontal magnetic ground. •The presence of an oblique magnetic field and the temperature-dependent thermal conductivity realize a decrease in heat transfer rate.•The horizontally applied magnetic field has the highest temperature distribution and heat transfer rate.•Existence of heat source and more Eckert number raise the temperature distribution between the sheets.•The highest rate of heat transfer was related to spherical and single type solid-particles.•The effect of Hartmann parameter on the skin friction has been observed to be about 19 times greater than that the effect of squeeze parameter.
Here, the squeezing unsteady 2-dimensional incompressible hybrid nanofluid flow between two collateral sheets has been investigated numerically, considering the influences of magnetic field and the mutable thermal conductivity. The solid-particles are the magnetite (Fe3O4) and the carbon nanotubes (CNTs) inserted in the base liquid (water). To give a complete development investigation of the present problem, the influences of a heat source/sink have also been analyzed. The technique used is pursuant to the Tiwari-Das nanofluid method which nanoparticle weights are considered instead of the volumetric concentration of the solid-particles. At first, the controlling dimensional PDEs, including continuity, momentum conservation, and energy conservation, are changed to a non-dimensional ODEs system applying adequate similarity reduction. The Runge–Kutta–Fehlberg (RK4) approach and shooting procedure is utilized to solve nonlinear ODEs system numerically. The impression of the controlling parameters on the temperature and velocity of working fluid as well as the Nusselt number, and the skin friction has been studied and analyzed. The mass-based manner gives trustable results for the flow and heat transfer analysis in the presence heat generation source and also an oblique magnetic ground. The results demonstrate that the entity of temperature-dependent thermal conductivity and the oblique magnetic ground reduces heat transfer. Furthermore, the greatest temperature distribution was related to spherical solid-particles in the presence of a horizontal magnetic ground.
ArticleNumber 100976
Author Sowmya, G.
Berrehal, Hamza
Abdollahzadeh, Mohsen
Dinarvand, Saeed
Tamim, Hossein
Noeiaghdam, Samad
Author_xml – sequence: 1
  givenname: Saeed
  surname: Dinarvand
  fullname: Dinarvand, Saeed
  email: sae.dinarvand@iauctb.ac.ir
  organization: Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
– sequence: 2
  givenname: Hamza
  surname: Berrehal
  fullname: Berrehal, Hamza
  organization: Department of Physics, Exact Science Faculty, Constantine 1 University, Constantine, 25000, Algeria
– sequence: 3
  givenname: Hossein
  surname: Tamim
  fullname: Tamim, Hossein
  organization: Department of Mechanical Engineering, Arak Branch, Islamic Azad University, Arak, Iran
– sequence: 4
  givenname: G.
  surname: Sowmya
  fullname: Sowmya, G.
  organization: Department of Mathematics, M.S. Ramaiah Institute of Technology, Bangalore, 560054, India
– sequence: 5
  givenname: Samad
  surname: Noeiaghdam
  fullname: Noeiaghdam, Samad
  email: snoei@istu.edu, noiagdams@susu.ru
  organization: Industrial Mathematics Laboratory, Baikal School of BRICS, Irkutsk National Research Technical University, Irkutsk, 664074, Russia
– sequence: 6
  givenname: Mohsen
  surname: Abdollahzadeh
  fullname: Abdollahzadeh, Mohsen
  email: mohsen@istu.edu
  organization: School of Information Technology and Data Science, Irkutsk National Research Technical University, Irkutsk, 664074, Russia
BookMark eNqFkUFO3TAQhqMKJCjlBix8APJwbCdOWFSqnqBFQmVRWFsTZ5z4NdipnVDR0_So9SOoqrpoVx6P_H1j-3-bHTjvMMvOCropaFFd7DbBOnT9hlHGU4s2snqTHbOyoXnBOD34oz7KTmPcUUpZnVguj7OfX74tiD-s64kZ_XfiDYHU8Usk28_3Mb9GfifI8NwG2xEHzptxSdU8BL_0A3mEGPMWInYEpil40MMluTIG9bxXDQgziX4JGi-idV_PXxQThNnqEUkcYMJzAi7Rjvh2tGl0cvYO0wFiLI7du-zQwBjx9HU9yR6ur-63n_Lbu4832w-3ueainnMUpqWlpLoyDQoqUbO6LBgIpmWjTcOR8k5WWFNDq6aVDMC0HAvZQKHTnp9kN6u387BTU7CPEJ6VB6teGj706vXaqhNdLWoB0Jal4MZAYySTDaKueQ0dJpdYXTr4GAOa376Cqn1oaqfW0NQ-NLWGlrDLvzBtZ5itd3MAO_4Pfr_CmD7pyWJQUVt0GjsbUhrpFfbfgl-577nQ
CitedBy_id crossref_primary_10_1016_j_jmmm_2023_171212
crossref_primary_10_1515_ntrev_2024_0040
crossref_primary_10_1016_j_csite_2025_106054
crossref_primary_10_1080_02286203_2024_2395900
crossref_primary_10_1016_j_padiff_2024_100666
crossref_primary_10_1016_j_hybadv_2024_100243
crossref_primary_10_1038_s41598_023_39176_5
crossref_primary_10_1016_j_rineng_2023_101658
crossref_primary_10_1080_19942060_2024_2411786
crossref_primary_10_1007_s10973_023_12565_8
crossref_primary_10_1007_s12668_024_01784_4
crossref_primary_10_1016_j_heliyon_2024_e35731
crossref_primary_10_1080_10407782_2024_2316845
crossref_primary_10_1016_j_csite_2024_104599
crossref_primary_10_1016_j_csite_2024_104798
crossref_primary_10_1016_j_rineng_2023_101380
crossref_primary_10_1007_s11814_024_00062_z
crossref_primary_10_1016_j_jmmm_2023_171102
crossref_primary_10_1016_j_rineng_2023_101227
crossref_primary_10_1016_j_rinp_2024_107972
crossref_primary_10_1016_j_aej_2023_06_080
crossref_primary_10_1016_j_rechem_2024_101730
crossref_primary_10_1080_01496395_2025_2462579
crossref_primary_10_1016_j_cjph_2024_11_024
crossref_primary_10_1080_02286203_2024_2327609
crossref_primary_10_1080_10407782_2024_2348758
crossref_primary_10_1016_j_precisioneng_2024_10_018
crossref_primary_10_1080_10407782_2023_2285398
crossref_primary_10_1515_ntrev_2022_0561
crossref_primary_10_1016_j_rineng_2024_103070
crossref_primary_10_1108_HFF_05_2024_0396
crossref_primary_10_1016_j_ceja_2024_100604
crossref_primary_10_1016_j_csite_2024_104504
crossref_primary_10_1016_j_asej_2024_102833
crossref_primary_10_1016_j_rineng_2023_101352
crossref_primary_10_1080_10407782_2024_2351604
crossref_primary_10_1016_j_asej_2024_102953
crossref_primary_10_1016_j_csite_2023_103438
crossref_primary_10_1016_j_csite_2024_104466
crossref_primary_10_1016_j_csite_2023_103281
crossref_primary_10_1007_s10973_024_12942_x
crossref_primary_10_1016_j_nxnano_2024_100123
crossref_primary_10_1177_16878132241304602
crossref_primary_10_1016_j_molliq_2024_125710
crossref_primary_10_1016_j_rineng_2025_104429
crossref_primary_10_1080_02286203_2024_2347332
crossref_primary_10_1016_j_rineng_2024_103464
crossref_primary_10_1007_s41939_025_00758_7
crossref_primary_10_1016_j_csite_2023_103764
crossref_primary_10_1016_j_csite_2025_105826
crossref_primary_10_1166_jon_2024_2167
crossref_primary_10_1016_j_csite_2024_104537
crossref_primary_10_1002_zamm_202400248
crossref_primary_10_1016_j_csite_2024_104775
crossref_primary_10_1080_10407790_2024_2337135
crossref_primary_10_1016_j_csite_2024_104883
crossref_primary_10_1007_s12668_024_01719_z
crossref_primary_10_1016_j_heliyon_2024_e36891
crossref_primary_10_1016_j_ijft_2024_101025
crossref_primary_10_1016_j_jmmm_2023_171128
crossref_primary_10_1038_s41598_023_35428_6
crossref_primary_10_1080_10407790_2024_2365897
crossref_primary_10_1007_s00521_024_10325_9
crossref_primary_10_1166_jon_2024_2177
crossref_primary_10_1080_10407790_2024_2316203
crossref_primary_10_1080_02286203_2024_2345245
Cites_doi 10.1016/j.powtec.2014.08.074
10.1016/j.aej.2014.11.002
10.1108/HFF-01-2019-0083
10.3390/nano12050876
10.1016/j.apt.2016.02.011
10.1016/j.cjph.2021.10.018
10.1016/j.icheatmasstransfer.2021.105215
10.1016/j.cjph.2021.10.012
10.1016/j.cjph.2019.04.015
10.1177/0954408920906274
10.1016/j.ijmecsci.2017.08.030
10.1108/HFF-10-2019-0732
10.4028/www.scientific.net/DDF.377.42
10.1371/journal.pone.0126486
10.1016/j.rineng.2022.100448
10.1016/j.csite.2021.101092
10.1016/j.jtice.2016.08.001
10.1016/j.rineng.2022.100601
10.1016/j.csite.2022.101972
10.1016/j.rineng.2022.100745
10.1007/s13204-019-01123-0
10.1115/1.4047008
10.1016/j.cjph.2020.10.015
10.1016/j.powtec.2013.02.006
10.1016/j.physa.2019.123138
10.1016/j.rser.2014.11.023
10.3846/1392-6292.2008.13.565-576
10.1016/j.aej.2022.03.001
10.1108/HFF-11-2021-0733
10.1016/j.matpr.2020.10.184
10.1016/j.rineng.2023.100879
10.3390/nano12020180
10.1166/jon.2019.1701
10.1016/j.egyr.2021.01.023
10.1016/j.ijheatmasstransfer.2006.09.034
10.1016/j.molliq.2019.02.102
10.1016/j.rineng.2022.100660
10.1016/j.molliq.2019.112014
10.1016/j.physleta.2017.07.028
10.1016/j.est.2022.104675
10.1016/j.icheatmasstransfer.2021.105470
10.1016/j.icheatmasstransfer.2022.105982
10.1016/j.tca.2007.06.009
10.1108/HFF-08-2022-0489
10.1016/j.rineng.2022.100394
10.1016/j.ijheatmasstransfer.2019.118635
10.1016/j.ijmultiphaseflow.2017.11.016
10.1016/j.cjph.2020.03.023
10.1108/HFF-05-2020-0301
10.1016/j.aej.2021.10.027
ContentType Journal Article
Copyright 2023 The Authors
Copyright_xml – notice: 2023 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.rineng.2023.100976
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2590-1230
ExternalDocumentID oai_doaj_org_article_d4d8484aab5543ffa9f7279eec838ade
10_1016_j_rineng_2023_100976
S2590123023001032
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
AAYWO
ACVFH
ADBBV
ADCNI
ADVLN
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BCNDV
EBS
FDB
GROUPED_DOAJ
M41
M~E
OK1
ROL
SSZ
AAYXX
CITATION
ID FETCH-LOGICAL-c348t-e4fb0570c6f9e407ec28512a42c79cf93e03d76e80f069b72aafb3e179a1c9b73
IEDL.DBID DOA
ISSN 2590-1230
IngestDate Wed Aug 27 01:29:42 EDT 2025
Thu Jul 03 08:36:54 EDT 2025
Thu Apr 24 23:01:16 EDT 2025
Sat Jul 05 17:11:31 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Squeezing flow
Mutable thermal conductivity
Magnetic field obliquation angle
Mass-based method
Hybrid nanofluid
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-e4fb0570c6f9e407ec28512a42c79cf93e03d76e80f069b72aafb3e179a1c9b73
OpenAccessLink https://doaj.org/article/d4d8484aab5543ffa9f7279eec838ade
ParticipantIDs doaj_primary_oai_doaj_org_article_d4d8484aab5543ffa9f7279eec838ade
crossref_primary_10_1016_j_rineng_2023_100976
crossref_citationtrail_10_1016_j_rineng_2023_100976
elsevier_sciencedirect_doi_10_1016_j_rineng_2023_100976
PublicationCentury 2000
PublicationDate March 2023
2023-03-00
2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: March 2023
PublicationDecade 2020
PublicationTitle Results in engineering
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References N. Hameed, S. Noeiaghdam, W. Khan, B. Pimpunchat, U. Fernandez-Gamiz, M. Sohail Khan, A. Rehman, Analytical Analysis of the Magnetic Field, Heat Generation and Absorption, Viscous Dissipation on Couple Stress Casson Hybrid Nano Fluid over a Nonlinear Stretching Surface, Results in Engineering. https://doi.org/10.1016/j. rineng.2022.100601.
Rong, Iwamoto, Ido (bib54) 2022; 16
Kashyap, Das, Debnath, Kashyap, Saha (bib7) 2021; 13
Garoosi, Rashidi (bib2) 2017; 131–132
Sheikholeslami, Ganji, Ashorynejad (bib34) 2013; 239
Dib, Haiahem, Bou-said (bib35) 2015; 269
Ahmad, Zahid, Ahmad, Raja, Baleanu (bib5) 2019; 59
Dawar, Saeed, Kuman (bib42) 2022; 133
Nayak, Pandey, Shaw, Makinde, Ramadan, Ben Henda, Tlili (bib57) 2021; 26
Pourmehran, Rahimi-Gorji, Gorji-Bandpy, Ganji (bib36) 2015; 54
Akram, SherAkbar, Tripathi (bib4) 2020; 68
Jana, Salehi, Zhong (bib28) 2007; 462
Dharmaiah, Dinarvand, Durgaprasad, Noeiaghdam (bib45) 2022; 16
Dinarvand, Nademi Rostami (bib53) 2020; 234
Arulmozhi, Sukkiramathi, Santra, Edwan, Fernandez-Gamiz, Noeiaghdam (bib50) 2022; 14
Das, Nath Jana, Daniel Makinde (bib55) 2017; 377
Muhammad, Hayat, Momani, Asghar (bib39) 2022; 61
Fallah, Dinarvand, Yazdi, Nademi Rostami, Pop (bib30) 2019; 5
Siddiqui, Irum, Ansari (bib33) 2008; 13
Ramesh, Roopa, Rauf, Shehzad, Abbasi (bib32) 2021; 126
Dinarvand, Berrehal, Pop, Chamkha (bib56) 2023; 33
Dharmaiah, Dinarvand, Rama Prasad, Noeiaghdam, Abdollahzadeh (bib48) 2023; 17
Sheikholeslami, Shamlooei (bib59) 2017; 381
Birjandi, Yazdi, Dinarvand, Salehi, Tehrani (bib24) 2021
Izady, Dinarvand, Pop, Chamkha (bib26) 2021; 74
Tawade, Guled, Noeiaghdam, Fernandez-Gamiz, Govindan, Balamuralitharan (bib47) 2022; 15
Alrowaili, Ezzeldien, Shaaalan, Hussein, Sharafeldin (bib17) 2022; 50
Nejad (bib14) 2020; 149
Abbas, Ali, Shah, Babar, Janjua, Sajjad, Amer (bib21) 2020; 297
Abdelaziz, El-Maghlany, El-Din, Alnakeeb (bib22) 2022; 61
Shojaie Chahregh, Dinarvand (bib23) 2020; 30
Ahmed, Khan (bib19) 2021; 7
Shaw, Samantaray, Misra, Nayak, Makinde (bib43) 2022; 130
Khan, Mei, Shabnam, Fernandez-Gamiz, Noeiaghdam, Shah, Khan (bib49) 2022; 12
Ghalambaz, Shermet, Pop, Wang (bib11) 2015; 10
Dinarvand, Rostami, Dinarvand, Pop (bib25) 2019; 29
Sindhu, Gireesha, Sowmya, Makinde (bib44) 2022; 32
Abdulkadhim, Abed, Said (bib8) 2021; 74
Saidi, Tamim (bib31) 2016; 27
Xiong, Altnji, Tayebi, Izadi, Hajjar, Sundén, Li (bib10) 2021; 47
Ghasemian, Dinarvand, Adamian, Sheremet (bib15) 2019; 8
Tiwari, Das (bib52) 2007; 50
Hussain, Alshomrani, Muhammad, Anwar (bib1) 2022; 34
Li, Renault, Gómez, Sarafraz, Khan, Safaei, Filho (bib16) 2019; 144
Khan, Mei, Shabnam, Fernandez-Gamiz, Noeiaghdam, Khan (bib40) 2022; 12
Acharya, Maity, Kundu (bib51) 2020; 10
Ajeeb, Murshed (bib12) 2022; 30
Choi (bib9) 1995; 66
Lahmar, Kezzar, Eid, Sari (bib58) 2020; 540
Rahimi-Gorji, Pourmehran, Gorji-Bandpy, Ganji (bib38) 2016; 67
Peddu, Chakraborty, Das (bib6) 2018; 100
Mabood, Akinshilo (bib27) 2021; 123
Sivasankaran, Bhuvaneswari, Chandrapushpam, Karthikeyan (bib37) 2021; 42
Bhatti, Arain, Zeeshan, Ellahi, Doranehgard (bib41) 2022; 45
Babar, Ali (bib20) 2019; 281
Contreras, Filho (bib13) 2022; 207
F. Hoseininejad, S. Dinarvand, M.E. Yazdi, Manninen's mixture model for conjugate conduction and mixed convection heat transfer of a nanofluid in a rotational/stationary circular enclosure, Int. J. Numer. Methods Heat Fluid Flow, 31 (5) 1662-1694.
Sarkar, Ghosh, Adil (bib29) 2015; 43
Baïri (bib3) 2021; 70
Sivasankaran (10.1016/j.rineng.2023.100976_bib37) 2021; 42
10.1016/j.rineng.2023.100976_bib18
Lahmar (10.1016/j.rineng.2023.100976_bib58) 2020; 540
Garoosi (10.1016/j.rineng.2023.100976_bib2) 2017; 131–132
Alrowaili (10.1016/j.rineng.2023.100976_bib17) 2022; 50
Peddu (10.1016/j.rineng.2023.100976_bib6) 2018; 100
Dharmaiah (10.1016/j.rineng.2023.100976_bib45) 2022; 16
Dinarvand (10.1016/j.rineng.2023.100976_bib56) 2023; 33
Jana (10.1016/j.rineng.2023.100976_bib28) 2007; 462
Tawade (10.1016/j.rineng.2023.100976_bib47) 2022; 15
Dharmaiah (10.1016/j.rineng.2023.100976_bib48) 2023; 17
Sheikholeslami (10.1016/j.rineng.2023.100976_bib59) 2017; 381
Dinarvand (10.1016/j.rineng.2023.100976_bib25) 2019; 29
Ajeeb (10.1016/j.rineng.2023.100976_bib12) 2022; 30
Hussain (10.1016/j.rineng.2023.100976_bib1) 2022; 34
Acharya (10.1016/j.rineng.2023.100976_bib51) 2020; 10
Khan (10.1016/j.rineng.2023.100976_bib49) 2022; 12
Tiwari (10.1016/j.rineng.2023.100976_bib52) 2007; 50
Das (10.1016/j.rineng.2023.100976_bib55) 2017; 377
Shojaie Chahregh (10.1016/j.rineng.2023.100976_bib23) 2020; 30
Kashyap (10.1016/j.rineng.2023.100976_bib7) 2021; 13
Ahmad (10.1016/j.rineng.2023.100976_bib5) 2019; 59
Akram (10.1016/j.rineng.2023.100976_bib4) 2020; 68
Li (10.1016/j.rineng.2023.100976_bib16) 2019; 144
Sarkar (10.1016/j.rineng.2023.100976_bib29) 2015; 43
Contreras (10.1016/j.rineng.2023.100976_bib13) 2022; 207
Shaw (10.1016/j.rineng.2023.100976_bib43) 2022; 130
Dib (10.1016/j.rineng.2023.100976_bib35) 2015; 269
Abdelaziz (10.1016/j.rineng.2023.100976_bib22) 2022; 61
Dinarvand (10.1016/j.rineng.2023.100976_bib53) 2020; 234
Izady (10.1016/j.rineng.2023.100976_bib26) 2021; 74
Muhammad (10.1016/j.rineng.2023.100976_bib39) 2022; 61
Bhatti (10.1016/j.rineng.2023.100976_bib41) 2022; 45
Ahmed (10.1016/j.rineng.2023.100976_bib19) 2021; 7
Pourmehran (10.1016/j.rineng.2023.100976_bib36) 2015; 54
Xiong (10.1016/j.rineng.2023.100976_bib10) 2021; 47
Fallah (10.1016/j.rineng.2023.100976_bib30) 2019; 5
Sheikholeslami (10.1016/j.rineng.2023.100976_bib34) 2013; 239
Sindhu (10.1016/j.rineng.2023.100976_bib44) 2022; 32
Nayak (10.1016/j.rineng.2023.100976_bib57) 2021; 26
Abbas (10.1016/j.rineng.2023.100976_bib21) 2020; 297
Choi (10.1016/j.rineng.2023.100976_bib9) 1995; 66
Rahimi-Gorji (10.1016/j.rineng.2023.100976_bib38) 2016; 67
Saidi (10.1016/j.rineng.2023.100976_bib31) 2016; 27
Ghalambaz (10.1016/j.rineng.2023.100976_bib11) 2015; 10
Birjandi (10.1016/j.rineng.2023.100976_bib24) 2021
Arulmozhi (10.1016/j.rineng.2023.100976_bib50) 2022; 14
Rong (10.1016/j.rineng.2023.100976_bib54) 2022; 16
Mabood (10.1016/j.rineng.2023.100976_bib27) 2021; 123
Babar (10.1016/j.rineng.2023.100976_bib20) 2019; 281
Siddiqui (10.1016/j.rineng.2023.100976_bib33) 2008; 13
Nejad (10.1016/j.rineng.2023.100976_bib14) 2020; 149
Baïri (10.1016/j.rineng.2023.100976_bib3) 2021; 70
Ghasemian (10.1016/j.rineng.2023.100976_bib15) 2019; 8
Ramesh (10.1016/j.rineng.2023.100976_bib32) 2021; 126
Khan (10.1016/j.rineng.2023.100976_bib40) 2022; 12
10.1016/j.rineng.2023.100976_bib46
Dawar (10.1016/j.rineng.2023.100976_bib42) 2022; 133
Abdulkadhim (10.1016/j.rineng.2023.100976_bib8) 2021; 74
References_xml – volume: 74
  start-page: 406
  year: 2021
  end-page: 420
  ident: bib26
  article-title: Flow of aqueous Fe2O3–CuO hybrid nanofluid over a permeable stretching/shrinking wedge: a development on Falkner–Skan problem
  publication-title: Chin. J. Phys.
– volume: 43
  start-page: 164
  year: 2015
  end-page: 177
  ident: bib29
  article-title: A review on hybrid nanofluids: recent research, development and applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 131–132
  start-page: 1026
  year: 2017
  end-page: 1048
  ident: bib2
  article-title: Conjugate-mixed convection heat transfer in a two-sided lid-driven cavity filled with nanofluid using Manninen's two phase model
  publication-title: Int. J. Mech. Sci.
– volume: 30
  year: 2022
  ident: bib12
  article-title: Nanofluids in compact heat exchangers for thermal applications: a State-of-the-art review
  publication-title: Therm. Sci. Eng. Prog.
– volume: 126
  year: 2021
  ident: bib32
  article-title: Time-dependent squeezing flow of Gasson-micropolar nanofluid with injection/suction and slip effects
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 68
  start-page: 745
  year: 2020
  end-page: 763
  ident: bib4
  article-title: Numerical simulation of electrokinetically driven peristaltic pumping of silver-water nanofluids in an asymmetric microchannel
  publication-title: Chin. J. Phys.
– volume: 61
  start-page: 9495
  year: 2022
  end-page: 9508
  ident: bib22
  article-title: Mixed convection heat transfer nanofluids, ionic nanofluids, and hybrid nanofluids in a horizontal tube
  publication-title: Alex. Eng. J.
– reference: F. Hoseininejad, S. Dinarvand, M.E. Yazdi, Manninen's mixture model for conjugate conduction and mixed convection heat transfer of a nanofluid in a rotational/stationary circular enclosure, Int. J. Numer. Methods Heat Fluid Flow, 31 (5) 1662-1694.
– volume: 50
  start-page: 2002
  year: 2007
  end-page: 2018
  ident: bib52
  article-title: Heat transfer augmentation in a two sided lid-driven differentially heated square cavity utilizing nanofluids
  publication-title: Int. J. Heat Mass Tran.
– volume: 74
  start-page: 365
  year: 2021
  end-page: 388
  ident: bib8
  article-title: An exhaustive review on natural convection within complex enclosures: influence of various parameters
  publication-title: Chin. J. Phys.
– volume: 27
  start-page: 564
  year: 2016
  end-page: 574
  ident: bib31
  article-title: Heat transfer and pressure drop characteristics of nanofluid in unsteady squeezing flow between rotating porous disks considering the effects of thermophoresis and Brownian motion
  publication-title: Adv. Powder Technol.
– volume: 123
  year: 2021
  ident: bib27
  article-title: Stability analysis and heat transfer of hybrid Cu-Al
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 30
  start-page: 4775
  year: 2020
  end-page: 4796
  ident: bib23
  article-title: TiO2-Ag/blood hybrid nanofluid flow through an artery with applications of drug delivery and blood circulation in the respiratory system
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 67
  start-page: 467
  year: 2016
  end-page: 475
  ident: bib38
  article-title: Unsteady squeezing nanofluid simulation and investigation of its effect on important heat transfer parameters in presence of magnetic field
  publication-title: J. Taiwan Inst. Chem. Eng.
– volume: 12
  start-page: 180
  year: 2022
  ident: bib49
  article-title: Numerical analysis of unsteady hybrid nanofluid flow comprising CNTs-ferrousoxide/water with variable magnetic field
  publication-title: Nanomaterials
– volume: 14
  year: 2022
  ident: bib50
  article-title: Heat and Mass transfer analysis of Radiative and Chemical reactive effects on MHD Nanofluid over an infinite moving vertical plate
  publication-title: Results Eng.
– volume: 540
  year: 2020
  ident: bib58
  article-title: Heat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivity
  publication-title: Phys. Stat. Mech. Appl.
– volume: 5
  start-page: 976
  year: 2019
  end-page: 988
  ident: bib30
  article-title: MHD flow and heat transfer of SiC-TiO
  publication-title: J. Appl. Comput. Mech.
– volume: 462
  start-page: 45
  year: 2007
  end-page: 55
  ident: bib28
  article-title: Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives
  publication-title: Thermochim. Acta
– volume: 33
  start-page: 1144
  year: 2023
  end-page: 1160
  ident: bib56
  article-title: Blood-based hybrid nanofluid flow through converging/diverging channel with multiple slips effect: a development of Jeffery-Hamel problem
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 26
  year: 2021
  ident: bib57
  article-title: Thermo-fluidic significance of non-Newtonian fluid with hybrid nanostructures
  publication-title: Case Stud. Therm. Eng.
– volume: 381
  start-page: 3071
  year: 2017
  end-page: 3078
  ident: bib59
  article-title: Magnetic source influence on nanofluid flow in porous medium considering shape factor effect
  publication-title: Phys. Lett.
– volume: 70
  start-page: 106
  year: 2021
  end-page: 116
  ident: bib3
  article-title: Using nanofluid saturated porous media to enhance free convective heat transfer around a spherical electronic device
  publication-title: Chin. J. Phys.
– volume: 29
  start-page: 4408
  year: 2019
  end-page: 4429
  ident: bib25
  article-title: Improvement of drug delivery micro-circulatory system with a novel pattern of CuO-Cu/blood hybrid nanofluid flow towards a porous stretching sheet
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 234
  start-page: 193
  year: 2020
  end-page: 205
  ident: bib53
  article-title: Three-dimensional squeezed flow of aqueous magnetite–graphene oxide hybrid nanofluid: a novel hybridity model with analysis of shape factor effects
  publication-title: J. Process Mech. Eng.
– volume: 47
  year: 2021
  ident: bib10
  article-title: A comprehensive review on the application of hybrid nanofluids in solar energy collectors
  publication-title: Sustain. Energy Technol. Assessments
– volume: 54
  start-page: 17
  year: 2015
  end-page: 26
  ident: bib36
  article-title: Analytical investigation of squeezing unsteady nanofluid flow between parallel plates by LSM and CM
  publication-title: Alex. Eng. J.
– volume: 207
  year: 2022
  ident: bib13
  article-title: Heat transfer performance of an automotive radiator with MWCNT nanofluid cooling in a high operating temperature range
  publication-title: Appl. Therm. Eng.
– volume: 15
  year: 2022
  ident: bib47
  article-title: Effects of thermophoresis and Brownian motion for thermal and chemically reacting Casson nanofluid flow over a linearly stretching sheet
  publication-title: Results Eng.
– volume: 13
  year: 2021
  ident: bib7
  article-title: Numerical study on effect of secondary surface on rectangular vortex generator
  publication-title: J. Therm. Sci. Eng. Appl.
– reference: N. Hameed, S. Noeiaghdam, W. Khan, B. Pimpunchat, U. Fernandez-Gamiz, M. Sohail Khan, A. Rehman, Analytical Analysis of the Magnetic Field, Heat Generation and Absorption, Viscous Dissipation on Couple Stress Casson Hybrid Nano Fluid over a Nonlinear Stretching Surface, Results in Engineering. https://doi.org/10.1016/j. rineng.2022.100601.
– volume: 34
  year: 2022
  ident: bib1
  article-title: Entropy analysis in mixed convection flow of hybrid nanofluid to melting heat and chemical reactions
  publication-title: Case Stud. Therm. Eng.
– volume: 239
  start-page: 259
  year: 2013
  end-page: 265
  ident: bib34
  article-title: Investigation of squeezing unsteady nanofluid flow using ADM
  publication-title: Powder Technol.
– volume: 45
  year: 2022
  ident: bib41
  article-title: Swimming of Gyrotactic microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium
  publication-title: Appl. Thermal Energy Storage
– volume: 281
  start-page: 598
  year: 2019
  end-page: 633
  ident: bib20
  article-title: Towards hybrid nanofluids: preparation, thermophysical properties, applications, and challenges
  publication-title: J. Mol. Liq.
– volume: 149
  year: 2020
  ident: bib14
  article-title: Enhancement of drying of paper with phase change material: a numerical study
  publication-title: Int. J. Heat Mass Tran.
– volume: 17
  year: 2023
  ident: bib48
  article-title: Non-homogeneous two-component buongiorno model for nanofluid flow toward Howarth's wavy cylinder with activation energy
  publication-title: Results Eng.
– volume: 59
  start-page: 641
  year: 2019
  end-page: 655
  ident: bib5
  article-title: Design of computational intelligent procedure for thermal analysis of porous fin model
  publication-title: Chin. J. Phys.
– volume: 42
  start-page: 457
  year: 2021
  end-page: 464
  ident: bib37
  article-title: Influence of thermal radiation on squeezing flow of copper-water nanofluid between parallel plates
  publication-title: Mater. Today Proc.
– volume: 16
  year: 2022
  ident: bib54
  article-title: Thermal flow analysis of self-driven temperature-sensitive magnetic fluid around two cylinders arranged in tandem
  publication-title: Results Eng.
– volume: 8
  start-page: 1
  year: 2019
  end-page: 16
  ident: bib15
  article-title: Unsteady general three-dimensional stagnation point flow of a maxwell/buongiorno non-Newtonian nanofluid
  publication-title: Journal of Nanofluids
– year: 2021
  ident: bib24
  article-title: Effect of using hybrid nanofluid in thermal management of photovoltaic panel in hot climates
  publication-title: Int. J. Photoenergy
– volume: 377
  start-page: 42
  year: 2017
  end-page: 61
  ident: bib55
  article-title: MHD flow of Cu-Al2O3/Water hybrid nanofluid in porous channel: analysis of entropy generation
  publication-title: Defect Diffusion Forum
– volume: 32
  start-page: 3388
  year: 2022
  end-page: 3410
  ident: bib44
  article-title: Hybrid nanoliquid flow through a microchannel with particle shape factor, slip and convective regime
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 66
  start-page: 99
  year: 1995
  end-page: 105
  ident: bib9
  article-title: Enhancing thermal conductivity of fluids with nanoparticles
  publication-title: the Proceedings of the ASME International Mechanical Engineering Congress and Exposition
– volume: 130
  year: 2022
  ident: bib43
  article-title: Hydromagnetic flow and thermal interpretations of Cross hybrid nanofluid influenced by linear, nonlinear and quadratic thermal radiations for any Prandtl number
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 10
  year: 2015
  ident: bib11
  article-title: Free convection in a parallelogrammic porous cavity filled with a nanofluid using Tiwari and Das' nanofluid model
  publication-title: PLoS One
– volume: 12
  start-page: 876
  year: 2022
  ident: bib40
  article-title: Numerical simulation of a time-dependent electroviscous and hybrid nanofluid with Darcy-forchheimer effect between squeezing plates
  publication-title: Nanomaterials
– volume: 297
  year: 2020
  ident: bib21
  article-title: Nanofluids: potential evaluation in automotive radiator
  publication-title: J. Mol. Liq.
– volume: 61
  start-page: 4719
  year: 2022
  end-page: 4727
  ident: bib39
  article-title: FDM analysis for squeezed flow of hybrid nanofluid in presence of Cattaneo-Christov (C-C) heat flux and convective boundary condition
  publication-title: Alex. Eng. J.
– volume: 100
  start-page: 1
  year: 2018
  end-page: 15
  ident: bib6
  article-title: Visualization and flow regime identification of downward air–water flow through a 12 mm diameter vertical tube using image analysis
  publication-title: Int. J. Multiphas. Flow
– volume: 10
  start-page: 633
  year: 2020
  end-page: 647
  ident: bib51
  article-title: Influence of inclined magnetic field on the flow of condensed nanomaterial over a slippery surface: the hybrid visualization
  publication-title: Appl. Nanosci.
– volume: 7
  start-page: 575
  year: 2021
  end-page: 583
  ident: bib19
  article-title: Efficiency enhancement of an air-conditioner utilizing nanofluids: an experimental study
  publication-title: Energy Rep.
– volume: 269
  start-page: 193
  year: 2015
  end-page: 199
  ident: bib35
  article-title: Approximate analytical solution of squeezing unsteady nanofluid flow
  publication-title: Powder Technol.
– volume: 50
  year: 2022
  ident: bib17
  article-title: Investigation of the effect of hybrid CuO-Cu/water nanofluid on the solar thermal energy storage system
  publication-title: J. Energy Storage
– volume: 133
  year: 2022
  ident: bib42
  article-title: Magneto-hydrothermal analysis of copper and copper oxide nanoparticles between two parallel plates with Brownian motion and thermophoresis
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 144
  year: 2019
  ident: bib16
  article-title: Nanofluids as secondary fluid in the refrigeration system: experimental data, regression, ANFIS, and NN modeling
  publication-title: Int. J. Heat Mass Tran.
– volume: 13
  start-page: 565
  year: 2008
  end-page: 576
  ident: bib33
  article-title: Unsteady squeezing flow of a viscous MHD fluid between parallel plates, a solution using the homotopy perturbation method
  publication-title: Mathematical Modeling and Analysis
– volume: 16
  year: 2022
  ident: bib45
  article-title: Arrhenius activation energy of tangent hyperbolic nanofluid over a cone with radiation absorption
  publication-title: Results Eng.
– volume: 269
  start-page: 193
  year: 2015
  ident: 10.1016/j.rineng.2023.100976_bib35
  article-title: Approximate analytical solution of squeezing unsteady nanofluid flow
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.08.074
– year: 2021
  ident: 10.1016/j.rineng.2023.100976_bib24
  article-title: Effect of using hybrid nanofluid in thermal management of photovoltaic panel in hot climates
  publication-title: Int. J. Photoenergy
– volume: 54
  start-page: 17
  year: 2015
  ident: 10.1016/j.rineng.2023.100976_bib36
  article-title: Analytical investigation of squeezing unsteady nanofluid flow between parallel plates by LSM and CM
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2014.11.002
– volume: 29
  start-page: 4408
  issue: 11
  year: 2019
  ident: 10.1016/j.rineng.2023.100976_bib25
  article-title: Improvement of drug delivery micro-circulatory system with a novel pattern of CuO-Cu/blood hybrid nanofluid flow towards a porous stretching sheet
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-01-2019-0083
– volume: 12
  start-page: 876
  year: 2022
  ident: 10.1016/j.rineng.2023.100976_bib40
  article-title: Numerical simulation of a time-dependent electroviscous and hybrid nanofluid with Darcy-forchheimer effect between squeezing plates
  publication-title: Nanomaterials
  doi: 10.3390/nano12050876
– volume: 27
  start-page: 564
  issue: 2
  year: 2016
  ident: 10.1016/j.rineng.2023.100976_bib31
  article-title: Heat transfer and pressure drop characteristics of nanofluid in unsteady squeezing flow between rotating porous disks considering the effects of thermophoresis and Brownian motion
  publication-title: Adv. Powder Technol.
  doi: 10.1016/j.apt.2016.02.011
– volume: 74
  start-page: 406
  year: 2021
  ident: 10.1016/j.rineng.2023.100976_bib26
  article-title: Flow of aqueous Fe2O3–CuO hybrid nanofluid over a permeable stretching/shrinking wedge: a development on Falkner–Skan problem
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2021.10.018
– volume: 123
  year: 2021
  ident: 10.1016/j.rineng.2023.100976_bib27
  article-title: Stability analysis and heat transfer of hybrid Cu-Al2O3/H2O nanofluids transport over a stretching surface
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2021.105215
– volume: 74
  start-page: 365
  year: 2021
  ident: 10.1016/j.rineng.2023.100976_bib8
  article-title: An exhaustive review on natural convection within complex enclosures: influence of various parameters
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2021.10.012
– volume: 59
  start-page: 641
  year: 2019
  ident: 10.1016/j.rineng.2023.100976_bib5
  article-title: Design of computational intelligent procedure for thermal analysis of porous fin model
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2019.04.015
– volume: 234
  start-page: 193
  year: 2020
  ident: 10.1016/j.rineng.2023.100976_bib53
  article-title: Three-dimensional squeezed flow of aqueous magnetite–graphene oxide hybrid nanofluid: a novel hybridity model with analysis of shape factor effects
  publication-title: J. Process Mech. Eng.
  doi: 10.1177/0954408920906274
– volume: 131–132
  start-page: 1026
  year: 2017
  ident: 10.1016/j.rineng.2023.100976_bib2
  article-title: Conjugate-mixed convection heat transfer in a two-sided lid-driven cavity filled with nanofluid using Manninen's two phase model
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2017.08.030
– volume: 30
  year: 2022
  ident: 10.1016/j.rineng.2023.100976_bib12
  article-title: Nanofluids in compact heat exchangers for thermal applications: a State-of-the-art review
  publication-title: Therm. Sci. Eng. Prog.
– volume: 30
  start-page: 4775
  year: 2020
  ident: 10.1016/j.rineng.2023.100976_bib23
  article-title: TiO2-Ag/blood hybrid nanofluid flow through an artery with applications of drug delivery and blood circulation in the respiratory system
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-10-2019-0732
– volume: 377
  start-page: 42
  year: 2017
  ident: 10.1016/j.rineng.2023.100976_bib55
  article-title: MHD flow of Cu-Al2O3/Water hybrid nanofluid in porous channel: analysis of entropy generation
  publication-title: Defect Diffusion Forum
  doi: 10.4028/www.scientific.net/DDF.377.42
– volume: 10
  issue: 5
  year: 2015
  ident: 10.1016/j.rineng.2023.100976_bib11
  article-title: Free convection in a parallelogrammic porous cavity filled with a nanofluid using Tiwari and Das' nanofluid model
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0126486
– volume: 15
  year: 2022
  ident: 10.1016/j.rineng.2023.100976_bib47
  article-title: Effects of thermophoresis and Brownian motion for thermal and chemically reacting Casson nanofluid flow over a linearly stretching sheet
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2022.100448
– volume: 26
  year: 2021
  ident: 10.1016/j.rineng.2023.100976_bib57
  article-title: Thermo-fluidic significance of non-Newtonian fluid with hybrid nanostructures
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2021.101092
– volume: 45
  year: 2022
  ident: 10.1016/j.rineng.2023.100976_bib41
  article-title: Swimming of Gyrotactic microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium
  publication-title: Appl. Thermal Energy Storage
– volume: 67
  start-page: 467
  year: 2016
  ident: 10.1016/j.rineng.2023.100976_bib38
  article-title: Unsteady squeezing nanofluid simulation and investigation of its effect on important heat transfer parameters in presence of magnetic field
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2016.08.001
– ident: 10.1016/j.rineng.2023.100976_bib46
  doi: 10.1016/j.rineng.2022.100601
– volume: 34
  year: 2022
  ident: 10.1016/j.rineng.2023.100976_bib1
  article-title: Entropy analysis in mixed convection flow of hybrid nanofluid to melting heat and chemical reactions
  publication-title: Case Stud. Therm. Eng.
  doi: 10.1016/j.csite.2022.101972
– volume: 16
  year: 2022
  ident: 10.1016/j.rineng.2023.100976_bib45
  article-title: Arrhenius activation energy of tangent hyperbolic nanofluid over a cone with radiation absorption
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2022.100745
– volume: 207
  year: 2022
  ident: 10.1016/j.rineng.2023.100976_bib13
  article-title: Heat transfer performance of an automotive radiator with MWCNT nanofluid cooling in a high operating temperature range
  publication-title: Appl. Therm. Eng.
– volume: 149
  year: 2020
  ident: 10.1016/j.rineng.2023.100976_bib14
  article-title: Enhancement of drying of paper with phase change material: a numerical study
  publication-title: Int. J. Heat Mass Tran.
– volume: 10
  start-page: 633
  year: 2020
  ident: 10.1016/j.rineng.2023.100976_bib51
  article-title: Influence of inclined magnetic field on the flow of condensed nanomaterial over a slippery surface: the hybrid visualization
  publication-title: Appl. Nanosci.
  doi: 10.1007/s13204-019-01123-0
– volume: 13
  issue: 1
  year: 2021
  ident: 10.1016/j.rineng.2023.100976_bib7
  article-title: Numerical study on effect of secondary surface on rectangular vortex generator
  publication-title: J. Therm. Sci. Eng. Appl.
  doi: 10.1115/1.4047008
– volume: 130
  issue: 11pages
  year: 2022
  ident: 10.1016/j.rineng.2023.100976_bib43
  article-title: Hydromagnetic flow and thermal interpretations of Cross hybrid nanofluid influenced by linear, nonlinear and quadratic thermal radiations for any Prandtl number
  publication-title: Int. Commun. Heat Mass Tran.
– volume: 68
  start-page: 745
  year: 2020
  ident: 10.1016/j.rineng.2023.100976_bib4
  article-title: Numerical simulation of electrokinetically driven peristaltic pumping of silver-water nanofluids in an asymmetric microchannel
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2020.10.015
– volume: 239
  start-page: 259
  year: 2013
  ident: 10.1016/j.rineng.2023.100976_bib34
  article-title: Investigation of squeezing unsteady nanofluid flow using ADM
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2013.02.006
– volume: 540
  year: 2020
  ident: 10.1016/j.rineng.2023.100976_bib58
  article-title: Heat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivity
  publication-title: Phys. Stat. Mech. Appl.
  doi: 10.1016/j.physa.2019.123138
– volume: 43
  start-page: 164
  year: 2015
  ident: 10.1016/j.rineng.2023.100976_bib29
  article-title: A review on hybrid nanofluids: recent research, development and applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.11.023
– volume: 13
  start-page: 565
  issue: 4
  year: 2008
  ident: 10.1016/j.rineng.2023.100976_bib33
  article-title: Unsteady squeezing flow of a viscous MHD fluid between parallel plates, a solution using the homotopy perturbation method
  publication-title: Mathematical Modeling and Analysis
  doi: 10.3846/1392-6292.2008.13.565-576
– volume: 61
  start-page: 9495
  year: 2022
  ident: 10.1016/j.rineng.2023.100976_bib22
  article-title: Mixed convection heat transfer nanofluids, ionic nanofluids, and hybrid nanofluids in a horizontal tube
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2022.03.001
– volume: 32
  start-page: 3388
  issue: 10
  year: 2022
  ident: 10.1016/j.rineng.2023.100976_bib44
  article-title: Hybrid nanoliquid flow through a microchannel with particle shape factor, slip and convective regime
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-11-2021-0733
– volume: 42
  start-page: 457
  issue: 2
  year: 2021
  ident: 10.1016/j.rineng.2023.100976_bib37
  article-title: Influence of thermal radiation on squeezing flow of copper-water nanofluid between parallel plates
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.10.184
– volume: 17
  year: 2023
  ident: 10.1016/j.rineng.2023.100976_bib48
  article-title: Non-homogeneous two-component buongiorno model for nanofluid flow toward Howarth's wavy cylinder with activation energy
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2023.100879
– volume: 12
  start-page: 180
  year: 2022
  ident: 10.1016/j.rineng.2023.100976_bib49
  article-title: Numerical analysis of unsteady hybrid nanofluid flow comprising CNTs-ferrousoxide/water with variable magnetic field
  publication-title: Nanomaterials
  doi: 10.3390/nano12020180
– volume: 5
  start-page: 976
  year: 2019
  ident: 10.1016/j.rineng.2023.100976_bib30
  article-title: MHD flow and heat transfer of SiC-TiO2/DO hybrid nanofluid due to a permeable spinning disk by a novel algorithm
  publication-title: J. Appl. Comput. Mech.
– volume: 8
  start-page: 1
  year: 2019
  ident: 10.1016/j.rineng.2023.100976_bib15
  article-title: Unsteady general three-dimensional stagnation point flow of a maxwell/buongiorno non-Newtonian nanofluid
  publication-title: Journal of Nanofluids
  doi: 10.1166/jon.2019.1701
– volume: 7
  start-page: 575
  year: 2021
  ident: 10.1016/j.rineng.2023.100976_bib19
  article-title: Efficiency enhancement of an air-conditioner utilizing nanofluids: an experimental study
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.01.023
– volume: 50
  start-page: 2002
  year: 2007
  ident: 10.1016/j.rineng.2023.100976_bib52
  article-title: Heat transfer augmentation in a two sided lid-driven differentially heated square cavity utilizing nanofluids
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2006.09.034
– volume: 281
  start-page: 598
  year: 2019
  ident: 10.1016/j.rineng.2023.100976_bib20
  article-title: Towards hybrid nanofluids: preparation, thermophysical properties, applications, and challenges
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.02.102
– volume: 16
  year: 2022
  ident: 10.1016/j.rineng.2023.100976_bib54
  article-title: Thermal flow analysis of self-driven temperature-sensitive magnetic fluid around two cylinders arranged in tandem
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2022.100660
– volume: 297
  year: 2020
  ident: 10.1016/j.rineng.2023.100976_bib21
  article-title: Nanofluids: potential evaluation in automotive radiator
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2019.112014
– volume: 381
  start-page: 3071
  year: 2017
  ident: 10.1016/j.rineng.2023.100976_bib59
  article-title: Magnetic source influence on nanofluid flow in porous medium considering shape factor effect
  publication-title: Phys. Lett.
  doi: 10.1016/j.physleta.2017.07.028
– volume: 50
  year: 2022
  ident: 10.1016/j.rineng.2023.100976_bib17
  article-title: Investigation of the effect of hybrid CuO-Cu/water nanofluid on the solar thermal energy storage system
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2022.104675
– volume: 126
  year: 2021
  ident: 10.1016/j.rineng.2023.100976_bib32
  article-title: Time-dependent squeezing flow of Gasson-micropolar nanofluid with injection/suction and slip effects
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2021.105470
– volume: 133
  year: 2022
  ident: 10.1016/j.rineng.2023.100976_bib42
  article-title: Magneto-hydrothermal analysis of copper and copper oxide nanoparticles between two parallel plates with Brownian motion and thermophoresis
  publication-title: Int. Commun. Heat Mass Tran.
  doi: 10.1016/j.icheatmasstransfer.2022.105982
– volume: 462
  start-page: 45
  year: 2007
  ident: 10.1016/j.rineng.2023.100976_bib28
  article-title: Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2007.06.009
– volume: 33
  start-page: 1144
  issue: 3
  year: 2023
  ident: 10.1016/j.rineng.2023.100976_bib56
  article-title: Blood-based hybrid nanofluid flow through converging/diverging channel with multiple slips effect: a development of Jeffery-Hamel problem
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-08-2022-0489
– volume: 66
  start-page: 99
  year: 1995
  ident: 10.1016/j.rineng.2023.100976_bib9
  article-title: Enhancing thermal conductivity of fluids with nanoparticles
  publication-title: the Proceedings of the ASME International Mechanical Engineering Congress and Exposition
– volume: 14
  year: 2022
  ident: 10.1016/j.rineng.2023.100976_bib50
  article-title: Heat and Mass transfer analysis of Radiative and Chemical reactive effects on MHD Nanofluid over an infinite moving vertical plate
  publication-title: Results Eng.
  doi: 10.1016/j.rineng.2022.100394
– volume: 47
  year: 2021
  ident: 10.1016/j.rineng.2023.100976_bib10
  article-title: A comprehensive review on the application of hybrid nanofluids in solar energy collectors
  publication-title: Sustain. Energy Technol. Assessments
– volume: 144
  year: 2019
  ident: 10.1016/j.rineng.2023.100976_bib16
  article-title: Nanofluids as secondary fluid in the refrigeration system: experimental data, regression, ANFIS, and NN modeling
  publication-title: Int. J. Heat Mass Tran.
  doi: 10.1016/j.ijheatmasstransfer.2019.118635
– volume: 100
  start-page: 1
  year: 2018
  ident: 10.1016/j.rineng.2023.100976_bib6
  article-title: Visualization and flow regime identification of downward air–water flow through a 12 mm diameter vertical tube using image analysis
  publication-title: Int. J. Multiphas. Flow
  doi: 10.1016/j.ijmultiphaseflow.2017.11.016
– volume: 70
  start-page: 106
  year: 2021
  ident: 10.1016/j.rineng.2023.100976_bib3
  article-title: Using nanofluid saturated porous media to enhance free convective heat transfer around a spherical electronic device
  publication-title: Chin. J. Phys.
  doi: 10.1016/j.cjph.2020.03.023
– ident: 10.1016/j.rineng.2023.100976_bib18
  doi: 10.1108/HFF-05-2020-0301
– volume: 61
  start-page: 4719
  issue: 6
  year: 2022
  ident: 10.1016/j.rineng.2023.100976_bib39
  article-title: FDM analysis for squeezed flow of hybrid nanofluid in presence of Cattaneo-Christov (C-C) heat flux and convective boundary condition
  publication-title: Alex. Eng. J.
  doi: 10.1016/j.aej.2021.10.027
SSID ssj0002810137
Score 2.4808652
Snippet Here, the squeezing unsteady 2-dimensional incompressible hybrid nanofluid flow between two collateral sheets has been investigated numerically, considering...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100976
SubjectTerms Hybrid nanofluid
Magnetic field obliquation angle
Mass-based method
Mutable thermal conductivity
Squeezing flow
Title Squeezing flow of aqueous CNTs-Fe3O4 hybrid nanofluid through mass-based approach: Effect of heat source/sink, nanoparticle shape, and an oblique magnetic field
URI https://dx.doi.org/10.1016/j.rineng.2023.100976
https://doaj.org/article/d4d8484aab5543ffa9f7279eec838ade
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJzggSqm6tCAfesSQxCab9FZWu0KVgAO7ErfIr-GhxVmxiyo49Lf0pzITJyincuESJVEyjmYczzfWzDeM_cD1D61qU1FIa4RSGKcYC4WQFpwG9BdpU19xfpGfzdTv65PrXqsvygmL9MBRccdOuUIVSmuDjk8C6BLQ5Zbe20IW2nlafdHn9YKp-2bLKG0JMxHeU_qBTLq6uSa5iyrrws0R9Q6nPIGSKEd6fqmh7--5p57LmWyzrRYr8l_xGz-xNR922GaPQfAz-3dFkegLnnOY1394DVzjHQzn-ehiuhQTLy8Vv32muiwedKhh_oRnbXce_oDQWZAjc7wjF__JI6ExiaKFmsft_eMlBq2HjYhFqzS-vNULf8h1wLcDr82cuGBR5k2gykjeJMftstlkPB2dibbpgrBSFSvhFRjEcInNofQY7XmbISjLtMrssLRQSp9IN8x9kUCSl2aYaQ1GevyvdWrxWn5h66EO_ivj4KzWicscghwFVpmUGmDpHOWfSEjSAZOdyivbMpJTY4x51aWe3VfRUBUZqoqGGjDx9tYiMnK88_wpWfPtWeLTbm7gLKtahVXvzbIBG3ZzoWqhSYQcKOruv8PvfcTw39gGiYy5b9_Z-urxye8jGFqZg2be4_H87_gVQWEKnw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Squeezing+flow+of+aqueous+CNTs-Fe3O4+hybrid+nanofluid+through+mass-based+approach%3A+Effect+of+heat+source%2Fsink%2C+nanoparticle+shape%2C+and+an+oblique+magnetic+field&rft.jtitle=Results+in+engineering&rft.au=Dinarvand%2C+Saeed&rft.au=Berrehal%2C+Hamza&rft.au=Tamim%2C+Hossein&rft.au=Sowmya%2C+G.&rft.date=2023-03-01&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=17&rft.spage=100976&rft_id=info:doi/10.1016%2Fj.rineng.2023.100976&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rineng_2023_100976
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon