Squeezing flow of aqueous CNTs-Fe3O4 hybrid nanofluid through mass-based approach: Effect of heat source/sink, nanoparticle shape, and an oblique magnetic field
Here, the squeezing unsteady 2-dimensional incompressible hybrid nanofluid flow between two collateral sheets has been investigated numerically, considering the influences of magnetic field and the mutable thermal conductivity. The solid-particles are the magnetite (Fe3O4) and the carbon nanotubes (...
Saved in:
Published in | Results in engineering Vol. 17; p. 100976 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.03.2023
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Here, the squeezing unsteady 2-dimensional incompressible hybrid nanofluid flow between two collateral sheets has been investigated numerically, considering the influences of magnetic field and the mutable thermal conductivity. The solid-particles are the magnetite (Fe3O4) and the carbon nanotubes (CNTs) inserted in the base liquid (water). To give a complete development investigation of the present problem, the influences of a heat source/sink have also been analyzed. The technique used is pursuant to the Tiwari-Das nanofluid method which nanoparticle weights are considered instead of the volumetric concentration of the solid-particles. At first, the controlling dimensional PDEs, including continuity, momentum conservation, and energy conservation, are changed to a non-dimensional ODEs system applying adequate similarity reduction. The Runge–Kutta–Fehlberg (RK4) approach and shooting procedure is utilized to solve nonlinear ODEs system numerically. The impression of the controlling parameters on the temperature and velocity of working fluid as well as the Nusselt number, and the skin friction has been studied and analyzed. The mass-based manner gives trustable results for the flow and heat transfer analysis in the presence heat generation source and also an oblique magnetic ground. The results demonstrate that the entity of temperature-dependent thermal conductivity and the oblique magnetic ground reduces heat transfer. Furthermore, the greatest temperature distribution was related to spherical solid-particles in the presence of a horizontal magnetic ground.
•The presence of an oblique magnetic field and the temperature-dependent thermal conductivity realize a decrease in heat transfer rate.•The horizontally applied magnetic field has the highest temperature distribution and heat transfer rate.•Existence of heat source and more Eckert number raise the temperature distribution between the sheets.•The highest rate of heat transfer was related to spherical and single type solid-particles.•The effect of Hartmann parameter on the skin friction has been observed to be about 19 times greater than that the effect of squeeze parameter. |
---|---|
AbstractList | Here, the squeezing unsteady 2-dimensional incompressible hybrid nanofluid flow between two collateral sheets has been investigated numerically, considering the influences of magnetic field and the mutable thermal conductivity. The solid-particles are the magnetite (Fe3O4) and the carbon nanotubes (CNTs) inserted in the base liquid (water). To give a complete development investigation of the present problem, the influences of a heat source/sink have also been analyzed. The technique used is pursuant to the Tiwari-Das nanofluid method which nanoparticle weights are considered instead of the volumetric concentration of the solid-particles. At first, the controlling dimensional PDEs, including continuity, momentum conservation, and energy conservation, are changed to a non-dimensional ODEs system applying adequate similarity reduction. The Runge–Kutta–Fehlberg (RK4) approach and shooting procedure is utilized to solve nonlinear ODEs system numerically. The impression of the controlling parameters on the temperature and velocity of working fluid as well as the Nusselt number, and the skin friction has been studied and analyzed. The mass-based manner gives trustable results for the flow and heat transfer analysis in the presence heat generation source and also an oblique magnetic ground. The results demonstrate that the entity of temperature-dependent thermal conductivity and the oblique magnetic ground reduces heat transfer. Furthermore, the greatest temperature distribution was related to spherical solid-particles in the presence of a horizontal magnetic ground.
•The presence of an oblique magnetic field and the temperature-dependent thermal conductivity realize a decrease in heat transfer rate.•The horizontally applied magnetic field has the highest temperature distribution and heat transfer rate.•Existence of heat source and more Eckert number raise the temperature distribution between the sheets.•The highest rate of heat transfer was related to spherical and single type solid-particles.•The effect of Hartmann parameter on the skin friction has been observed to be about 19 times greater than that the effect of squeeze parameter. Here, the squeezing unsteady 2-dimensional incompressible hybrid nanofluid flow between two collateral sheets has been investigated numerically, considering the influences of magnetic field and the mutable thermal conductivity. The solid-particles are the magnetite (Fe3O4) and the carbon nanotubes (CNTs) inserted in the base liquid (water). To give a complete development investigation of the present problem, the influences of a heat source/sink have also been analyzed. The technique used is pursuant to the Tiwari-Das nanofluid method which nanoparticle weights are considered instead of the volumetric concentration of the solid-particles. At first, the controlling dimensional PDEs, including continuity, momentum conservation, and energy conservation, are changed to a non-dimensional ODEs system applying adequate similarity reduction. The Runge–Kutta–Fehlberg (RK4) approach and shooting procedure is utilized to solve nonlinear ODEs system numerically. The impression of the controlling parameters on the temperature and velocity of working fluid as well as the Nusselt number, and the skin friction has been studied and analyzed. The mass-based manner gives trustable results for the flow and heat transfer analysis in the presence heat generation source and also an oblique magnetic ground. The results demonstrate that the entity of temperature-dependent thermal conductivity and the oblique magnetic ground reduces heat transfer. Furthermore, the greatest temperature distribution was related to spherical solid-particles in the presence of a horizontal magnetic ground. |
ArticleNumber | 100976 |
Author | Sowmya, G. Berrehal, Hamza Abdollahzadeh, Mohsen Dinarvand, Saeed Tamim, Hossein Noeiaghdam, Samad |
Author_xml | – sequence: 1 givenname: Saeed surname: Dinarvand fullname: Dinarvand, Saeed email: sae.dinarvand@iauctb.ac.ir organization: Department of Mechanical Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran – sequence: 2 givenname: Hamza surname: Berrehal fullname: Berrehal, Hamza organization: Department of Physics, Exact Science Faculty, Constantine 1 University, Constantine, 25000, Algeria – sequence: 3 givenname: Hossein surname: Tamim fullname: Tamim, Hossein organization: Department of Mechanical Engineering, Arak Branch, Islamic Azad University, Arak, Iran – sequence: 4 givenname: G. surname: Sowmya fullname: Sowmya, G. organization: Department of Mathematics, M.S. Ramaiah Institute of Technology, Bangalore, 560054, India – sequence: 5 givenname: Samad surname: Noeiaghdam fullname: Noeiaghdam, Samad email: snoei@istu.edu, noiagdams@susu.ru organization: Industrial Mathematics Laboratory, Baikal School of BRICS, Irkutsk National Research Technical University, Irkutsk, 664074, Russia – sequence: 6 givenname: Mohsen surname: Abdollahzadeh fullname: Abdollahzadeh, Mohsen email: mohsen@istu.edu organization: School of Information Technology and Data Science, Irkutsk National Research Technical University, Irkutsk, 664074, Russia |
BookMark | eNqFkUFO3TAQhqMKJCjlBix8APJwbCdOWFSqnqBFQmVRWFsTZ5z4NdipnVDR0_So9SOoqrpoVx6P_H1j-3-bHTjvMMvOCropaFFd7DbBOnT9hlHGU4s2snqTHbOyoXnBOD34oz7KTmPcUUpZnVguj7OfX74tiD-s64kZ_XfiDYHU8Usk28_3Mb9GfifI8NwG2xEHzptxSdU8BL_0A3mEGPMWInYEpil40MMluTIG9bxXDQgziX4JGi-idV_PXxQThNnqEUkcYMJzAi7Rjvh2tGl0cvYO0wFiLI7du-zQwBjx9HU9yR6ur-63n_Lbu4832w-3ueainnMUpqWlpLoyDQoqUbO6LBgIpmWjTcOR8k5WWFNDq6aVDMC0HAvZQKHTnp9kN6u387BTU7CPEJ6VB6teGj706vXaqhNdLWoB0Jal4MZAYySTDaKueQ0dJpdYXTr4GAOa376Cqn1oaqfW0NQ-NLWGlrDLvzBtZ5itd3MAO_4Pfr_CmD7pyWJQUVt0GjsbUhrpFfbfgl-577nQ |
CitedBy_id | crossref_primary_10_1016_j_jmmm_2023_171212 crossref_primary_10_1515_ntrev_2024_0040 crossref_primary_10_1016_j_csite_2025_106054 crossref_primary_10_1080_02286203_2024_2395900 crossref_primary_10_1016_j_padiff_2024_100666 crossref_primary_10_1016_j_hybadv_2024_100243 crossref_primary_10_1038_s41598_023_39176_5 crossref_primary_10_1016_j_rineng_2023_101658 crossref_primary_10_1080_19942060_2024_2411786 crossref_primary_10_1007_s10973_023_12565_8 crossref_primary_10_1007_s12668_024_01784_4 crossref_primary_10_1016_j_heliyon_2024_e35731 crossref_primary_10_1080_10407782_2024_2316845 crossref_primary_10_1016_j_csite_2024_104599 crossref_primary_10_1016_j_csite_2024_104798 crossref_primary_10_1016_j_rineng_2023_101380 crossref_primary_10_1007_s11814_024_00062_z crossref_primary_10_1016_j_jmmm_2023_171102 crossref_primary_10_1016_j_rineng_2023_101227 crossref_primary_10_1016_j_rinp_2024_107972 crossref_primary_10_1016_j_aej_2023_06_080 crossref_primary_10_1016_j_rechem_2024_101730 crossref_primary_10_1080_01496395_2025_2462579 crossref_primary_10_1016_j_cjph_2024_11_024 crossref_primary_10_1080_02286203_2024_2327609 crossref_primary_10_1080_10407782_2024_2348758 crossref_primary_10_1016_j_precisioneng_2024_10_018 crossref_primary_10_1080_10407782_2023_2285398 crossref_primary_10_1515_ntrev_2022_0561 crossref_primary_10_1016_j_rineng_2024_103070 crossref_primary_10_1108_HFF_05_2024_0396 crossref_primary_10_1016_j_ceja_2024_100604 crossref_primary_10_1016_j_csite_2024_104504 crossref_primary_10_1016_j_asej_2024_102833 crossref_primary_10_1016_j_rineng_2023_101352 crossref_primary_10_1080_10407782_2024_2351604 crossref_primary_10_1016_j_asej_2024_102953 crossref_primary_10_1016_j_csite_2023_103438 crossref_primary_10_1016_j_csite_2024_104466 crossref_primary_10_1016_j_csite_2023_103281 crossref_primary_10_1007_s10973_024_12942_x crossref_primary_10_1016_j_nxnano_2024_100123 crossref_primary_10_1177_16878132241304602 crossref_primary_10_1016_j_molliq_2024_125710 crossref_primary_10_1016_j_rineng_2025_104429 crossref_primary_10_1080_02286203_2024_2347332 crossref_primary_10_1016_j_rineng_2024_103464 crossref_primary_10_1007_s41939_025_00758_7 crossref_primary_10_1016_j_csite_2023_103764 crossref_primary_10_1016_j_csite_2025_105826 crossref_primary_10_1166_jon_2024_2167 crossref_primary_10_1016_j_csite_2024_104537 crossref_primary_10_1002_zamm_202400248 crossref_primary_10_1016_j_csite_2024_104775 crossref_primary_10_1080_10407790_2024_2337135 crossref_primary_10_1016_j_csite_2024_104883 crossref_primary_10_1007_s12668_024_01719_z crossref_primary_10_1016_j_heliyon_2024_e36891 crossref_primary_10_1016_j_ijft_2024_101025 crossref_primary_10_1016_j_jmmm_2023_171128 crossref_primary_10_1038_s41598_023_35428_6 crossref_primary_10_1080_10407790_2024_2365897 crossref_primary_10_1007_s00521_024_10325_9 crossref_primary_10_1166_jon_2024_2177 crossref_primary_10_1080_10407790_2024_2316203 crossref_primary_10_1080_02286203_2024_2345245 |
Cites_doi | 10.1016/j.powtec.2014.08.074 10.1016/j.aej.2014.11.002 10.1108/HFF-01-2019-0083 10.3390/nano12050876 10.1016/j.apt.2016.02.011 10.1016/j.cjph.2021.10.018 10.1016/j.icheatmasstransfer.2021.105215 10.1016/j.cjph.2021.10.012 10.1016/j.cjph.2019.04.015 10.1177/0954408920906274 10.1016/j.ijmecsci.2017.08.030 10.1108/HFF-10-2019-0732 10.4028/www.scientific.net/DDF.377.42 10.1371/journal.pone.0126486 10.1016/j.rineng.2022.100448 10.1016/j.csite.2021.101092 10.1016/j.jtice.2016.08.001 10.1016/j.rineng.2022.100601 10.1016/j.csite.2022.101972 10.1016/j.rineng.2022.100745 10.1007/s13204-019-01123-0 10.1115/1.4047008 10.1016/j.cjph.2020.10.015 10.1016/j.powtec.2013.02.006 10.1016/j.physa.2019.123138 10.1016/j.rser.2014.11.023 10.3846/1392-6292.2008.13.565-576 10.1016/j.aej.2022.03.001 10.1108/HFF-11-2021-0733 10.1016/j.matpr.2020.10.184 10.1016/j.rineng.2023.100879 10.3390/nano12020180 10.1166/jon.2019.1701 10.1016/j.egyr.2021.01.023 10.1016/j.ijheatmasstransfer.2006.09.034 10.1016/j.molliq.2019.02.102 10.1016/j.rineng.2022.100660 10.1016/j.molliq.2019.112014 10.1016/j.physleta.2017.07.028 10.1016/j.est.2022.104675 10.1016/j.icheatmasstransfer.2021.105470 10.1016/j.icheatmasstransfer.2022.105982 10.1016/j.tca.2007.06.009 10.1108/HFF-08-2022-0489 10.1016/j.rineng.2022.100394 10.1016/j.ijheatmasstransfer.2019.118635 10.1016/j.ijmultiphaseflow.2017.11.016 10.1016/j.cjph.2020.03.023 10.1108/HFF-05-2020-0301 10.1016/j.aej.2021.10.027 |
ContentType | Journal Article |
Copyright | 2023 The Authors |
Copyright_xml | – notice: 2023 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.rineng.2023.100976 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2590-1230 |
ExternalDocumentID | oai_doaj_org_article_d4d8484aab5543ffa9f7279eec838ade 10_1016_j_rineng_2023_100976 S2590123023001032 |
GroupedDBID | 0R~ 6I. AAEDW AAFTH AALRI AAXUO AAYWO ACVFH ADBBV ADCNI ADVLN AEUPX AEXQZ AFJKZ AFPUW AFTJW AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BCNDV EBS FDB GROUPED_DOAJ M41 M~E OK1 ROL SSZ AAYXX CITATION |
ID | FETCH-LOGICAL-c348t-e4fb0570c6f9e407ec28512a42c79cf93e03d76e80f069b72aafb3e179a1c9b73 |
IEDL.DBID | DOA |
ISSN | 2590-1230 |
IngestDate | Wed Aug 27 01:29:42 EDT 2025 Thu Jul 03 08:36:54 EDT 2025 Thu Apr 24 23:01:16 EDT 2025 Sat Jul 05 17:11:31 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Squeezing flow Mutable thermal conductivity Magnetic field obliquation angle Mass-based method Hybrid nanofluid |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-e4fb0570c6f9e407ec28512a42c79cf93e03d76e80f069b72aafb3e179a1c9b73 |
OpenAccessLink | https://doaj.org/article/d4d8484aab5543ffa9f7279eec838ade |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d4d8484aab5543ffa9f7279eec838ade crossref_primary_10_1016_j_rineng_2023_100976 crossref_citationtrail_10_1016_j_rineng_2023_100976 elsevier_sciencedirect_doi_10_1016_j_rineng_2023_100976 |
PublicationCentury | 2000 |
PublicationDate | March 2023 2023-03-00 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: March 2023 |
PublicationDecade | 2020 |
PublicationTitle | Results in engineering |
PublicationYear | 2023 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | N. Hameed, S. Noeiaghdam, W. Khan, B. Pimpunchat, U. Fernandez-Gamiz, M. Sohail Khan, A. Rehman, Analytical Analysis of the Magnetic Field, Heat Generation and Absorption, Viscous Dissipation on Couple Stress Casson Hybrid Nano Fluid over a Nonlinear Stretching Surface, Results in Engineering. https://doi.org/10.1016/j. rineng.2022.100601. Rong, Iwamoto, Ido (bib54) 2022; 16 Kashyap, Das, Debnath, Kashyap, Saha (bib7) 2021; 13 Garoosi, Rashidi (bib2) 2017; 131–132 Sheikholeslami, Ganji, Ashorynejad (bib34) 2013; 239 Dib, Haiahem, Bou-said (bib35) 2015; 269 Ahmad, Zahid, Ahmad, Raja, Baleanu (bib5) 2019; 59 Dawar, Saeed, Kuman (bib42) 2022; 133 Nayak, Pandey, Shaw, Makinde, Ramadan, Ben Henda, Tlili (bib57) 2021; 26 Pourmehran, Rahimi-Gorji, Gorji-Bandpy, Ganji (bib36) 2015; 54 Akram, SherAkbar, Tripathi (bib4) 2020; 68 Jana, Salehi, Zhong (bib28) 2007; 462 Dharmaiah, Dinarvand, Durgaprasad, Noeiaghdam (bib45) 2022; 16 Dinarvand, Nademi Rostami (bib53) 2020; 234 Arulmozhi, Sukkiramathi, Santra, Edwan, Fernandez-Gamiz, Noeiaghdam (bib50) 2022; 14 Das, Nath Jana, Daniel Makinde (bib55) 2017; 377 Muhammad, Hayat, Momani, Asghar (bib39) 2022; 61 Fallah, Dinarvand, Yazdi, Nademi Rostami, Pop (bib30) 2019; 5 Siddiqui, Irum, Ansari (bib33) 2008; 13 Ramesh, Roopa, Rauf, Shehzad, Abbasi (bib32) 2021; 126 Dinarvand, Berrehal, Pop, Chamkha (bib56) 2023; 33 Dharmaiah, Dinarvand, Rama Prasad, Noeiaghdam, Abdollahzadeh (bib48) 2023; 17 Sheikholeslami, Shamlooei (bib59) 2017; 381 Birjandi, Yazdi, Dinarvand, Salehi, Tehrani (bib24) 2021 Izady, Dinarvand, Pop, Chamkha (bib26) 2021; 74 Tawade, Guled, Noeiaghdam, Fernandez-Gamiz, Govindan, Balamuralitharan (bib47) 2022; 15 Alrowaili, Ezzeldien, Shaaalan, Hussein, Sharafeldin (bib17) 2022; 50 Nejad (bib14) 2020; 149 Abbas, Ali, Shah, Babar, Janjua, Sajjad, Amer (bib21) 2020; 297 Abdelaziz, El-Maghlany, El-Din, Alnakeeb (bib22) 2022; 61 Shojaie Chahregh, Dinarvand (bib23) 2020; 30 Ahmed, Khan (bib19) 2021; 7 Shaw, Samantaray, Misra, Nayak, Makinde (bib43) 2022; 130 Khan, Mei, Shabnam, Fernandez-Gamiz, Noeiaghdam, Shah, Khan (bib49) 2022; 12 Ghalambaz, Shermet, Pop, Wang (bib11) 2015; 10 Dinarvand, Rostami, Dinarvand, Pop (bib25) 2019; 29 Sindhu, Gireesha, Sowmya, Makinde (bib44) 2022; 32 Abdulkadhim, Abed, Said (bib8) 2021; 74 Saidi, Tamim (bib31) 2016; 27 Xiong, Altnji, Tayebi, Izadi, Hajjar, Sundén, Li (bib10) 2021; 47 Ghasemian, Dinarvand, Adamian, Sheremet (bib15) 2019; 8 Tiwari, Das (bib52) 2007; 50 Hussain, Alshomrani, Muhammad, Anwar (bib1) 2022; 34 Li, Renault, Gómez, Sarafraz, Khan, Safaei, Filho (bib16) 2019; 144 Khan, Mei, Shabnam, Fernandez-Gamiz, Noeiaghdam, Khan (bib40) 2022; 12 Acharya, Maity, Kundu (bib51) 2020; 10 Ajeeb, Murshed (bib12) 2022; 30 Choi (bib9) 1995; 66 Lahmar, Kezzar, Eid, Sari (bib58) 2020; 540 Rahimi-Gorji, Pourmehran, Gorji-Bandpy, Ganji (bib38) 2016; 67 Peddu, Chakraborty, Das (bib6) 2018; 100 Mabood, Akinshilo (bib27) 2021; 123 Sivasankaran, Bhuvaneswari, Chandrapushpam, Karthikeyan (bib37) 2021; 42 Bhatti, Arain, Zeeshan, Ellahi, Doranehgard (bib41) 2022; 45 Babar, Ali (bib20) 2019; 281 Contreras, Filho (bib13) 2022; 207 F. Hoseininejad, S. Dinarvand, M.E. Yazdi, Manninen's mixture model for conjugate conduction and mixed convection heat transfer of a nanofluid in a rotational/stationary circular enclosure, Int. J. Numer. Methods Heat Fluid Flow, 31 (5) 1662-1694. Sarkar, Ghosh, Adil (bib29) 2015; 43 Baïri (bib3) 2021; 70 Sivasankaran (10.1016/j.rineng.2023.100976_bib37) 2021; 42 10.1016/j.rineng.2023.100976_bib18 Lahmar (10.1016/j.rineng.2023.100976_bib58) 2020; 540 Garoosi (10.1016/j.rineng.2023.100976_bib2) 2017; 131–132 Alrowaili (10.1016/j.rineng.2023.100976_bib17) 2022; 50 Peddu (10.1016/j.rineng.2023.100976_bib6) 2018; 100 Dharmaiah (10.1016/j.rineng.2023.100976_bib45) 2022; 16 Dinarvand (10.1016/j.rineng.2023.100976_bib56) 2023; 33 Jana (10.1016/j.rineng.2023.100976_bib28) 2007; 462 Tawade (10.1016/j.rineng.2023.100976_bib47) 2022; 15 Dharmaiah (10.1016/j.rineng.2023.100976_bib48) 2023; 17 Sheikholeslami (10.1016/j.rineng.2023.100976_bib59) 2017; 381 Dinarvand (10.1016/j.rineng.2023.100976_bib25) 2019; 29 Ajeeb (10.1016/j.rineng.2023.100976_bib12) 2022; 30 Hussain (10.1016/j.rineng.2023.100976_bib1) 2022; 34 Acharya (10.1016/j.rineng.2023.100976_bib51) 2020; 10 Khan (10.1016/j.rineng.2023.100976_bib49) 2022; 12 Tiwari (10.1016/j.rineng.2023.100976_bib52) 2007; 50 Das (10.1016/j.rineng.2023.100976_bib55) 2017; 377 Shojaie Chahregh (10.1016/j.rineng.2023.100976_bib23) 2020; 30 Kashyap (10.1016/j.rineng.2023.100976_bib7) 2021; 13 Ahmad (10.1016/j.rineng.2023.100976_bib5) 2019; 59 Akram (10.1016/j.rineng.2023.100976_bib4) 2020; 68 Li (10.1016/j.rineng.2023.100976_bib16) 2019; 144 Sarkar (10.1016/j.rineng.2023.100976_bib29) 2015; 43 Contreras (10.1016/j.rineng.2023.100976_bib13) 2022; 207 Shaw (10.1016/j.rineng.2023.100976_bib43) 2022; 130 Dib (10.1016/j.rineng.2023.100976_bib35) 2015; 269 Abdelaziz (10.1016/j.rineng.2023.100976_bib22) 2022; 61 Dinarvand (10.1016/j.rineng.2023.100976_bib53) 2020; 234 Izady (10.1016/j.rineng.2023.100976_bib26) 2021; 74 Muhammad (10.1016/j.rineng.2023.100976_bib39) 2022; 61 Bhatti (10.1016/j.rineng.2023.100976_bib41) 2022; 45 Ahmed (10.1016/j.rineng.2023.100976_bib19) 2021; 7 Pourmehran (10.1016/j.rineng.2023.100976_bib36) 2015; 54 Xiong (10.1016/j.rineng.2023.100976_bib10) 2021; 47 Fallah (10.1016/j.rineng.2023.100976_bib30) 2019; 5 Sheikholeslami (10.1016/j.rineng.2023.100976_bib34) 2013; 239 Sindhu (10.1016/j.rineng.2023.100976_bib44) 2022; 32 Nayak (10.1016/j.rineng.2023.100976_bib57) 2021; 26 Abbas (10.1016/j.rineng.2023.100976_bib21) 2020; 297 Choi (10.1016/j.rineng.2023.100976_bib9) 1995; 66 Rahimi-Gorji (10.1016/j.rineng.2023.100976_bib38) 2016; 67 Saidi (10.1016/j.rineng.2023.100976_bib31) 2016; 27 Ghalambaz (10.1016/j.rineng.2023.100976_bib11) 2015; 10 Birjandi (10.1016/j.rineng.2023.100976_bib24) 2021 Arulmozhi (10.1016/j.rineng.2023.100976_bib50) 2022; 14 Rong (10.1016/j.rineng.2023.100976_bib54) 2022; 16 Mabood (10.1016/j.rineng.2023.100976_bib27) 2021; 123 Babar (10.1016/j.rineng.2023.100976_bib20) 2019; 281 Siddiqui (10.1016/j.rineng.2023.100976_bib33) 2008; 13 Nejad (10.1016/j.rineng.2023.100976_bib14) 2020; 149 Baïri (10.1016/j.rineng.2023.100976_bib3) 2021; 70 Ghasemian (10.1016/j.rineng.2023.100976_bib15) 2019; 8 Ramesh (10.1016/j.rineng.2023.100976_bib32) 2021; 126 Khan (10.1016/j.rineng.2023.100976_bib40) 2022; 12 10.1016/j.rineng.2023.100976_bib46 Dawar (10.1016/j.rineng.2023.100976_bib42) 2022; 133 Abdulkadhim (10.1016/j.rineng.2023.100976_bib8) 2021; 74 |
References_xml | – volume: 74 start-page: 406 year: 2021 end-page: 420 ident: bib26 article-title: Flow of aqueous Fe2O3–CuO hybrid nanofluid over a permeable stretching/shrinking wedge: a development on Falkner–Skan problem publication-title: Chin. J. Phys. – volume: 43 start-page: 164 year: 2015 end-page: 177 ident: bib29 article-title: A review on hybrid nanofluids: recent research, development and applications publication-title: Renew. Sustain. Energy Rev. – volume: 131–132 start-page: 1026 year: 2017 end-page: 1048 ident: bib2 article-title: Conjugate-mixed convection heat transfer in a two-sided lid-driven cavity filled with nanofluid using Manninen's two phase model publication-title: Int. J. Mech. Sci. – volume: 30 year: 2022 ident: bib12 article-title: Nanofluids in compact heat exchangers for thermal applications: a State-of-the-art review publication-title: Therm. Sci. Eng. Prog. – volume: 126 year: 2021 ident: bib32 article-title: Time-dependent squeezing flow of Gasson-micropolar nanofluid with injection/suction and slip effects publication-title: Int. Commun. Heat Mass Tran. – volume: 68 start-page: 745 year: 2020 end-page: 763 ident: bib4 article-title: Numerical simulation of electrokinetically driven peristaltic pumping of silver-water nanofluids in an asymmetric microchannel publication-title: Chin. J. Phys. – volume: 61 start-page: 9495 year: 2022 end-page: 9508 ident: bib22 article-title: Mixed convection heat transfer nanofluids, ionic nanofluids, and hybrid nanofluids in a horizontal tube publication-title: Alex. Eng. J. – reference: F. Hoseininejad, S. Dinarvand, M.E. Yazdi, Manninen's mixture model for conjugate conduction and mixed convection heat transfer of a nanofluid in a rotational/stationary circular enclosure, Int. J. Numer. Methods Heat Fluid Flow, 31 (5) 1662-1694. – volume: 50 start-page: 2002 year: 2007 end-page: 2018 ident: bib52 article-title: Heat transfer augmentation in a two sided lid-driven differentially heated square cavity utilizing nanofluids publication-title: Int. J. Heat Mass Tran. – volume: 74 start-page: 365 year: 2021 end-page: 388 ident: bib8 article-title: An exhaustive review on natural convection within complex enclosures: influence of various parameters publication-title: Chin. J. Phys. – volume: 27 start-page: 564 year: 2016 end-page: 574 ident: bib31 article-title: Heat transfer and pressure drop characteristics of nanofluid in unsteady squeezing flow between rotating porous disks considering the effects of thermophoresis and Brownian motion publication-title: Adv. Powder Technol. – volume: 123 year: 2021 ident: bib27 article-title: Stability analysis and heat transfer of hybrid Cu-Al publication-title: Int. Commun. Heat Mass Tran. – volume: 30 start-page: 4775 year: 2020 end-page: 4796 ident: bib23 article-title: TiO2-Ag/blood hybrid nanofluid flow through an artery with applications of drug delivery and blood circulation in the respiratory system publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 67 start-page: 467 year: 2016 end-page: 475 ident: bib38 article-title: Unsteady squeezing nanofluid simulation and investigation of its effect on important heat transfer parameters in presence of magnetic field publication-title: J. Taiwan Inst. Chem. Eng. – volume: 12 start-page: 180 year: 2022 ident: bib49 article-title: Numerical analysis of unsteady hybrid nanofluid flow comprising CNTs-ferrousoxide/water with variable magnetic field publication-title: Nanomaterials – volume: 14 year: 2022 ident: bib50 article-title: Heat and Mass transfer analysis of Radiative and Chemical reactive effects on MHD Nanofluid over an infinite moving vertical plate publication-title: Results Eng. – volume: 540 year: 2020 ident: bib58 article-title: Heat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivity publication-title: Phys. Stat. Mech. Appl. – volume: 5 start-page: 976 year: 2019 end-page: 988 ident: bib30 article-title: MHD flow and heat transfer of SiC-TiO publication-title: J. Appl. Comput. Mech. – volume: 462 start-page: 45 year: 2007 end-page: 55 ident: bib28 article-title: Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives publication-title: Thermochim. Acta – volume: 33 start-page: 1144 year: 2023 end-page: 1160 ident: bib56 article-title: Blood-based hybrid nanofluid flow through converging/diverging channel with multiple slips effect: a development of Jeffery-Hamel problem publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 26 year: 2021 ident: bib57 article-title: Thermo-fluidic significance of non-Newtonian fluid with hybrid nanostructures publication-title: Case Stud. Therm. Eng. – volume: 381 start-page: 3071 year: 2017 end-page: 3078 ident: bib59 article-title: Magnetic source influence on nanofluid flow in porous medium considering shape factor effect publication-title: Phys. Lett. – volume: 70 start-page: 106 year: 2021 end-page: 116 ident: bib3 article-title: Using nanofluid saturated porous media to enhance free convective heat transfer around a spherical electronic device publication-title: Chin. J. Phys. – volume: 29 start-page: 4408 year: 2019 end-page: 4429 ident: bib25 article-title: Improvement of drug delivery micro-circulatory system with a novel pattern of CuO-Cu/blood hybrid nanofluid flow towards a porous stretching sheet publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 234 start-page: 193 year: 2020 end-page: 205 ident: bib53 article-title: Three-dimensional squeezed flow of aqueous magnetite–graphene oxide hybrid nanofluid: a novel hybridity model with analysis of shape factor effects publication-title: J. Process Mech. Eng. – volume: 47 year: 2021 ident: bib10 article-title: A comprehensive review on the application of hybrid nanofluids in solar energy collectors publication-title: Sustain. Energy Technol. Assessments – volume: 54 start-page: 17 year: 2015 end-page: 26 ident: bib36 article-title: Analytical investigation of squeezing unsteady nanofluid flow between parallel plates by LSM and CM publication-title: Alex. Eng. J. – volume: 207 year: 2022 ident: bib13 article-title: Heat transfer performance of an automotive radiator with MWCNT nanofluid cooling in a high operating temperature range publication-title: Appl. Therm. Eng. – volume: 15 year: 2022 ident: bib47 article-title: Effects of thermophoresis and Brownian motion for thermal and chemically reacting Casson nanofluid flow over a linearly stretching sheet publication-title: Results Eng. – volume: 13 year: 2021 ident: bib7 article-title: Numerical study on effect of secondary surface on rectangular vortex generator publication-title: J. Therm. Sci. Eng. Appl. – reference: N. Hameed, S. Noeiaghdam, W. Khan, B. Pimpunchat, U. Fernandez-Gamiz, M. Sohail Khan, A. Rehman, Analytical Analysis of the Magnetic Field, Heat Generation and Absorption, Viscous Dissipation on Couple Stress Casson Hybrid Nano Fluid over a Nonlinear Stretching Surface, Results in Engineering. https://doi.org/10.1016/j. rineng.2022.100601. – volume: 34 year: 2022 ident: bib1 article-title: Entropy analysis in mixed convection flow of hybrid nanofluid to melting heat and chemical reactions publication-title: Case Stud. Therm. Eng. – volume: 239 start-page: 259 year: 2013 end-page: 265 ident: bib34 article-title: Investigation of squeezing unsteady nanofluid flow using ADM publication-title: Powder Technol. – volume: 45 year: 2022 ident: bib41 article-title: Swimming of Gyrotactic microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium publication-title: Appl. Thermal Energy Storage – volume: 281 start-page: 598 year: 2019 end-page: 633 ident: bib20 article-title: Towards hybrid nanofluids: preparation, thermophysical properties, applications, and challenges publication-title: J. Mol. Liq. – volume: 149 year: 2020 ident: bib14 article-title: Enhancement of drying of paper with phase change material: a numerical study publication-title: Int. J. Heat Mass Tran. – volume: 17 year: 2023 ident: bib48 article-title: Non-homogeneous two-component buongiorno model for nanofluid flow toward Howarth's wavy cylinder with activation energy publication-title: Results Eng. – volume: 59 start-page: 641 year: 2019 end-page: 655 ident: bib5 article-title: Design of computational intelligent procedure for thermal analysis of porous fin model publication-title: Chin. J. Phys. – volume: 42 start-page: 457 year: 2021 end-page: 464 ident: bib37 article-title: Influence of thermal radiation on squeezing flow of copper-water nanofluid between parallel plates publication-title: Mater. Today Proc. – volume: 16 year: 2022 ident: bib54 article-title: Thermal flow analysis of self-driven temperature-sensitive magnetic fluid around two cylinders arranged in tandem publication-title: Results Eng. – volume: 8 start-page: 1 year: 2019 end-page: 16 ident: bib15 article-title: Unsteady general three-dimensional stagnation point flow of a maxwell/buongiorno non-Newtonian nanofluid publication-title: Journal of Nanofluids – year: 2021 ident: bib24 article-title: Effect of using hybrid nanofluid in thermal management of photovoltaic panel in hot climates publication-title: Int. J. Photoenergy – volume: 377 start-page: 42 year: 2017 end-page: 61 ident: bib55 article-title: MHD flow of Cu-Al2O3/Water hybrid nanofluid in porous channel: analysis of entropy generation publication-title: Defect Diffusion Forum – volume: 32 start-page: 3388 year: 2022 end-page: 3410 ident: bib44 article-title: Hybrid nanoliquid flow through a microchannel with particle shape factor, slip and convective regime publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 66 start-page: 99 year: 1995 end-page: 105 ident: bib9 article-title: Enhancing thermal conductivity of fluids with nanoparticles publication-title: the Proceedings of the ASME International Mechanical Engineering Congress and Exposition – volume: 130 year: 2022 ident: bib43 article-title: Hydromagnetic flow and thermal interpretations of Cross hybrid nanofluid influenced by linear, nonlinear and quadratic thermal radiations for any Prandtl number publication-title: Int. Commun. Heat Mass Tran. – volume: 10 year: 2015 ident: bib11 article-title: Free convection in a parallelogrammic porous cavity filled with a nanofluid using Tiwari and Das' nanofluid model publication-title: PLoS One – volume: 12 start-page: 876 year: 2022 ident: bib40 article-title: Numerical simulation of a time-dependent electroviscous and hybrid nanofluid with Darcy-forchheimer effect between squeezing plates publication-title: Nanomaterials – volume: 297 year: 2020 ident: bib21 article-title: Nanofluids: potential evaluation in automotive radiator publication-title: J. Mol. Liq. – volume: 61 start-page: 4719 year: 2022 end-page: 4727 ident: bib39 article-title: FDM analysis for squeezed flow of hybrid nanofluid in presence of Cattaneo-Christov (C-C) heat flux and convective boundary condition publication-title: Alex. Eng. J. – volume: 100 start-page: 1 year: 2018 end-page: 15 ident: bib6 article-title: Visualization and flow regime identification of downward air–water flow through a 12 mm diameter vertical tube using image analysis publication-title: Int. J. Multiphas. Flow – volume: 10 start-page: 633 year: 2020 end-page: 647 ident: bib51 article-title: Influence of inclined magnetic field on the flow of condensed nanomaterial over a slippery surface: the hybrid visualization publication-title: Appl. Nanosci. – volume: 7 start-page: 575 year: 2021 end-page: 583 ident: bib19 article-title: Efficiency enhancement of an air-conditioner utilizing nanofluids: an experimental study publication-title: Energy Rep. – volume: 269 start-page: 193 year: 2015 end-page: 199 ident: bib35 article-title: Approximate analytical solution of squeezing unsteady nanofluid flow publication-title: Powder Technol. – volume: 50 year: 2022 ident: bib17 article-title: Investigation of the effect of hybrid CuO-Cu/water nanofluid on the solar thermal energy storage system publication-title: J. Energy Storage – volume: 133 year: 2022 ident: bib42 article-title: Magneto-hydrothermal analysis of copper and copper oxide nanoparticles between two parallel plates with Brownian motion and thermophoresis publication-title: Int. Commun. Heat Mass Tran. – volume: 144 year: 2019 ident: bib16 article-title: Nanofluids as secondary fluid in the refrigeration system: experimental data, regression, ANFIS, and NN modeling publication-title: Int. J. Heat Mass Tran. – volume: 13 start-page: 565 year: 2008 end-page: 576 ident: bib33 article-title: Unsteady squeezing flow of a viscous MHD fluid between parallel plates, a solution using the homotopy perturbation method publication-title: Mathematical Modeling and Analysis – volume: 16 year: 2022 ident: bib45 article-title: Arrhenius activation energy of tangent hyperbolic nanofluid over a cone with radiation absorption publication-title: Results Eng. – volume: 269 start-page: 193 year: 2015 ident: 10.1016/j.rineng.2023.100976_bib35 article-title: Approximate analytical solution of squeezing unsteady nanofluid flow publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.08.074 – year: 2021 ident: 10.1016/j.rineng.2023.100976_bib24 article-title: Effect of using hybrid nanofluid in thermal management of photovoltaic panel in hot climates publication-title: Int. J. Photoenergy – volume: 54 start-page: 17 year: 2015 ident: 10.1016/j.rineng.2023.100976_bib36 article-title: Analytical investigation of squeezing unsteady nanofluid flow between parallel plates by LSM and CM publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2014.11.002 – volume: 29 start-page: 4408 issue: 11 year: 2019 ident: 10.1016/j.rineng.2023.100976_bib25 article-title: Improvement of drug delivery micro-circulatory system with a novel pattern of CuO-Cu/blood hybrid nanofluid flow towards a porous stretching sheet publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-01-2019-0083 – volume: 12 start-page: 876 year: 2022 ident: 10.1016/j.rineng.2023.100976_bib40 article-title: Numerical simulation of a time-dependent electroviscous and hybrid nanofluid with Darcy-forchheimer effect between squeezing plates publication-title: Nanomaterials doi: 10.3390/nano12050876 – volume: 27 start-page: 564 issue: 2 year: 2016 ident: 10.1016/j.rineng.2023.100976_bib31 article-title: Heat transfer and pressure drop characteristics of nanofluid in unsteady squeezing flow between rotating porous disks considering the effects of thermophoresis and Brownian motion publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2016.02.011 – volume: 74 start-page: 406 year: 2021 ident: 10.1016/j.rineng.2023.100976_bib26 article-title: Flow of aqueous Fe2O3–CuO hybrid nanofluid over a permeable stretching/shrinking wedge: a development on Falkner–Skan problem publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2021.10.018 – volume: 123 year: 2021 ident: 10.1016/j.rineng.2023.100976_bib27 article-title: Stability analysis and heat transfer of hybrid Cu-Al2O3/H2O nanofluids transport over a stretching surface publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2021.105215 – volume: 74 start-page: 365 year: 2021 ident: 10.1016/j.rineng.2023.100976_bib8 article-title: An exhaustive review on natural convection within complex enclosures: influence of various parameters publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2021.10.012 – volume: 59 start-page: 641 year: 2019 ident: 10.1016/j.rineng.2023.100976_bib5 article-title: Design of computational intelligent procedure for thermal analysis of porous fin model publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2019.04.015 – volume: 234 start-page: 193 year: 2020 ident: 10.1016/j.rineng.2023.100976_bib53 article-title: Three-dimensional squeezed flow of aqueous magnetite–graphene oxide hybrid nanofluid: a novel hybridity model with analysis of shape factor effects publication-title: J. Process Mech. Eng. doi: 10.1177/0954408920906274 – volume: 131–132 start-page: 1026 year: 2017 ident: 10.1016/j.rineng.2023.100976_bib2 article-title: Conjugate-mixed convection heat transfer in a two-sided lid-driven cavity filled with nanofluid using Manninen's two phase model publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2017.08.030 – volume: 30 year: 2022 ident: 10.1016/j.rineng.2023.100976_bib12 article-title: Nanofluids in compact heat exchangers for thermal applications: a State-of-the-art review publication-title: Therm. Sci. Eng. Prog. – volume: 30 start-page: 4775 year: 2020 ident: 10.1016/j.rineng.2023.100976_bib23 article-title: TiO2-Ag/blood hybrid nanofluid flow through an artery with applications of drug delivery and blood circulation in the respiratory system publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-10-2019-0732 – volume: 377 start-page: 42 year: 2017 ident: 10.1016/j.rineng.2023.100976_bib55 article-title: MHD flow of Cu-Al2O3/Water hybrid nanofluid in porous channel: analysis of entropy generation publication-title: Defect Diffusion Forum doi: 10.4028/www.scientific.net/DDF.377.42 – volume: 10 issue: 5 year: 2015 ident: 10.1016/j.rineng.2023.100976_bib11 article-title: Free convection in a parallelogrammic porous cavity filled with a nanofluid using Tiwari and Das' nanofluid model publication-title: PLoS One doi: 10.1371/journal.pone.0126486 – volume: 15 year: 2022 ident: 10.1016/j.rineng.2023.100976_bib47 article-title: Effects of thermophoresis and Brownian motion for thermal and chemically reacting Casson nanofluid flow over a linearly stretching sheet publication-title: Results Eng. doi: 10.1016/j.rineng.2022.100448 – volume: 26 year: 2021 ident: 10.1016/j.rineng.2023.100976_bib57 article-title: Thermo-fluidic significance of non-Newtonian fluid with hybrid nanostructures publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2021.101092 – volume: 45 year: 2022 ident: 10.1016/j.rineng.2023.100976_bib41 article-title: Swimming of Gyrotactic microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium publication-title: Appl. Thermal Energy Storage – volume: 67 start-page: 467 year: 2016 ident: 10.1016/j.rineng.2023.100976_bib38 article-title: Unsteady squeezing nanofluid simulation and investigation of its effect on important heat transfer parameters in presence of magnetic field publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2016.08.001 – ident: 10.1016/j.rineng.2023.100976_bib46 doi: 10.1016/j.rineng.2022.100601 – volume: 34 year: 2022 ident: 10.1016/j.rineng.2023.100976_bib1 article-title: Entropy analysis in mixed convection flow of hybrid nanofluid to melting heat and chemical reactions publication-title: Case Stud. Therm. Eng. doi: 10.1016/j.csite.2022.101972 – volume: 16 year: 2022 ident: 10.1016/j.rineng.2023.100976_bib45 article-title: Arrhenius activation energy of tangent hyperbolic nanofluid over a cone with radiation absorption publication-title: Results Eng. doi: 10.1016/j.rineng.2022.100745 – volume: 207 year: 2022 ident: 10.1016/j.rineng.2023.100976_bib13 article-title: Heat transfer performance of an automotive radiator with MWCNT nanofluid cooling in a high operating temperature range publication-title: Appl. Therm. Eng. – volume: 149 year: 2020 ident: 10.1016/j.rineng.2023.100976_bib14 article-title: Enhancement of drying of paper with phase change material: a numerical study publication-title: Int. J. Heat Mass Tran. – volume: 10 start-page: 633 year: 2020 ident: 10.1016/j.rineng.2023.100976_bib51 article-title: Influence of inclined magnetic field on the flow of condensed nanomaterial over a slippery surface: the hybrid visualization publication-title: Appl. Nanosci. doi: 10.1007/s13204-019-01123-0 – volume: 13 issue: 1 year: 2021 ident: 10.1016/j.rineng.2023.100976_bib7 article-title: Numerical study on effect of secondary surface on rectangular vortex generator publication-title: J. Therm. Sci. Eng. Appl. doi: 10.1115/1.4047008 – volume: 130 issue: 11pages year: 2022 ident: 10.1016/j.rineng.2023.100976_bib43 article-title: Hydromagnetic flow and thermal interpretations of Cross hybrid nanofluid influenced by linear, nonlinear and quadratic thermal radiations for any Prandtl number publication-title: Int. Commun. Heat Mass Tran. – volume: 68 start-page: 745 year: 2020 ident: 10.1016/j.rineng.2023.100976_bib4 article-title: Numerical simulation of electrokinetically driven peristaltic pumping of silver-water nanofluids in an asymmetric microchannel publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2020.10.015 – volume: 239 start-page: 259 year: 2013 ident: 10.1016/j.rineng.2023.100976_bib34 article-title: Investigation of squeezing unsteady nanofluid flow using ADM publication-title: Powder Technol. doi: 10.1016/j.powtec.2013.02.006 – volume: 540 year: 2020 ident: 10.1016/j.rineng.2023.100976_bib58 article-title: Heat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivity publication-title: Phys. Stat. Mech. Appl. doi: 10.1016/j.physa.2019.123138 – volume: 43 start-page: 164 year: 2015 ident: 10.1016/j.rineng.2023.100976_bib29 article-title: A review on hybrid nanofluids: recent research, development and applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.11.023 – volume: 13 start-page: 565 issue: 4 year: 2008 ident: 10.1016/j.rineng.2023.100976_bib33 article-title: Unsteady squeezing flow of a viscous MHD fluid between parallel plates, a solution using the homotopy perturbation method publication-title: Mathematical Modeling and Analysis doi: 10.3846/1392-6292.2008.13.565-576 – volume: 61 start-page: 9495 year: 2022 ident: 10.1016/j.rineng.2023.100976_bib22 article-title: Mixed convection heat transfer nanofluids, ionic nanofluids, and hybrid nanofluids in a horizontal tube publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2022.03.001 – volume: 32 start-page: 3388 issue: 10 year: 2022 ident: 10.1016/j.rineng.2023.100976_bib44 article-title: Hybrid nanoliquid flow through a microchannel with particle shape factor, slip and convective regime publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-11-2021-0733 – volume: 42 start-page: 457 issue: 2 year: 2021 ident: 10.1016/j.rineng.2023.100976_bib37 article-title: Influence of thermal radiation on squeezing flow of copper-water nanofluid between parallel plates publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.10.184 – volume: 17 year: 2023 ident: 10.1016/j.rineng.2023.100976_bib48 article-title: Non-homogeneous two-component buongiorno model for nanofluid flow toward Howarth's wavy cylinder with activation energy publication-title: Results Eng. doi: 10.1016/j.rineng.2023.100879 – volume: 12 start-page: 180 year: 2022 ident: 10.1016/j.rineng.2023.100976_bib49 article-title: Numerical analysis of unsteady hybrid nanofluid flow comprising CNTs-ferrousoxide/water with variable magnetic field publication-title: Nanomaterials doi: 10.3390/nano12020180 – volume: 5 start-page: 976 year: 2019 ident: 10.1016/j.rineng.2023.100976_bib30 article-title: MHD flow and heat transfer of SiC-TiO2/DO hybrid nanofluid due to a permeable spinning disk by a novel algorithm publication-title: J. Appl. Comput. Mech. – volume: 8 start-page: 1 year: 2019 ident: 10.1016/j.rineng.2023.100976_bib15 article-title: Unsteady general three-dimensional stagnation point flow of a maxwell/buongiorno non-Newtonian nanofluid publication-title: Journal of Nanofluids doi: 10.1166/jon.2019.1701 – volume: 7 start-page: 575 year: 2021 ident: 10.1016/j.rineng.2023.100976_bib19 article-title: Efficiency enhancement of an air-conditioner utilizing nanofluids: an experimental study publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.01.023 – volume: 50 start-page: 2002 year: 2007 ident: 10.1016/j.rineng.2023.100976_bib52 article-title: Heat transfer augmentation in a two sided lid-driven differentially heated square cavity utilizing nanofluids publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2006.09.034 – volume: 281 start-page: 598 year: 2019 ident: 10.1016/j.rineng.2023.100976_bib20 article-title: Towards hybrid nanofluids: preparation, thermophysical properties, applications, and challenges publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.02.102 – volume: 16 year: 2022 ident: 10.1016/j.rineng.2023.100976_bib54 article-title: Thermal flow analysis of self-driven temperature-sensitive magnetic fluid around two cylinders arranged in tandem publication-title: Results Eng. doi: 10.1016/j.rineng.2022.100660 – volume: 297 year: 2020 ident: 10.1016/j.rineng.2023.100976_bib21 article-title: Nanofluids: potential evaluation in automotive radiator publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2019.112014 – volume: 381 start-page: 3071 year: 2017 ident: 10.1016/j.rineng.2023.100976_bib59 article-title: Magnetic source influence on nanofluid flow in porous medium considering shape factor effect publication-title: Phys. Lett. doi: 10.1016/j.physleta.2017.07.028 – volume: 50 year: 2022 ident: 10.1016/j.rineng.2023.100976_bib17 article-title: Investigation of the effect of hybrid CuO-Cu/water nanofluid on the solar thermal energy storage system publication-title: J. Energy Storage doi: 10.1016/j.est.2022.104675 – volume: 126 year: 2021 ident: 10.1016/j.rineng.2023.100976_bib32 article-title: Time-dependent squeezing flow of Gasson-micropolar nanofluid with injection/suction and slip effects publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2021.105470 – volume: 133 year: 2022 ident: 10.1016/j.rineng.2023.100976_bib42 article-title: Magneto-hydrothermal analysis of copper and copper oxide nanoparticles between two parallel plates with Brownian motion and thermophoresis publication-title: Int. Commun. Heat Mass Tran. doi: 10.1016/j.icheatmasstransfer.2022.105982 – volume: 462 start-page: 45 year: 2007 ident: 10.1016/j.rineng.2023.100976_bib28 article-title: Enhancement of fluid thermal conductivity by the addition of single and hybrid nano-additives publication-title: Thermochim. Acta doi: 10.1016/j.tca.2007.06.009 – volume: 33 start-page: 1144 issue: 3 year: 2023 ident: 10.1016/j.rineng.2023.100976_bib56 article-title: Blood-based hybrid nanofluid flow through converging/diverging channel with multiple slips effect: a development of Jeffery-Hamel problem publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-08-2022-0489 – volume: 66 start-page: 99 year: 1995 ident: 10.1016/j.rineng.2023.100976_bib9 article-title: Enhancing thermal conductivity of fluids with nanoparticles publication-title: the Proceedings of the ASME International Mechanical Engineering Congress and Exposition – volume: 14 year: 2022 ident: 10.1016/j.rineng.2023.100976_bib50 article-title: Heat and Mass transfer analysis of Radiative and Chemical reactive effects on MHD Nanofluid over an infinite moving vertical plate publication-title: Results Eng. doi: 10.1016/j.rineng.2022.100394 – volume: 47 year: 2021 ident: 10.1016/j.rineng.2023.100976_bib10 article-title: A comprehensive review on the application of hybrid nanofluids in solar energy collectors publication-title: Sustain. Energy Technol. Assessments – volume: 144 year: 2019 ident: 10.1016/j.rineng.2023.100976_bib16 article-title: Nanofluids as secondary fluid in the refrigeration system: experimental data, regression, ANFIS, and NN modeling publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2019.118635 – volume: 100 start-page: 1 year: 2018 ident: 10.1016/j.rineng.2023.100976_bib6 article-title: Visualization and flow regime identification of downward air–water flow through a 12 mm diameter vertical tube using image analysis publication-title: Int. J. Multiphas. Flow doi: 10.1016/j.ijmultiphaseflow.2017.11.016 – volume: 70 start-page: 106 year: 2021 ident: 10.1016/j.rineng.2023.100976_bib3 article-title: Using nanofluid saturated porous media to enhance free convective heat transfer around a spherical electronic device publication-title: Chin. J. Phys. doi: 10.1016/j.cjph.2020.03.023 – ident: 10.1016/j.rineng.2023.100976_bib18 doi: 10.1108/HFF-05-2020-0301 – volume: 61 start-page: 4719 issue: 6 year: 2022 ident: 10.1016/j.rineng.2023.100976_bib39 article-title: FDM analysis for squeezed flow of hybrid nanofluid in presence of Cattaneo-Christov (C-C) heat flux and convective boundary condition publication-title: Alex. Eng. J. doi: 10.1016/j.aej.2021.10.027 |
SSID | ssj0002810137 |
Score | 2.4808652 |
Snippet | Here, the squeezing unsteady 2-dimensional incompressible hybrid nanofluid flow between two collateral sheets has been investigated numerically, considering... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100976 |
SubjectTerms | Hybrid nanofluid Magnetic field obliquation angle Mass-based method Mutable thermal conductivity Squeezing flow |
Title | Squeezing flow of aqueous CNTs-Fe3O4 hybrid nanofluid through mass-based approach: Effect of heat source/sink, nanoparticle shape, and an oblique magnetic field |
URI | https://dx.doi.org/10.1016/j.rineng.2023.100976 https://doaj.org/article/d4d8484aab5543ffa9f7279eec838ade |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQJzggSqm6tCAfesSQxCab9FZWu0KVgAO7ErfIr-GhxVmxiyo49Lf0pzITJyincuESJVEyjmYczzfWzDeM_cD1D61qU1FIa4RSGKcYC4WQFpwG9BdpU19xfpGfzdTv65PrXqsvygmL9MBRccdOuUIVSmuDjk8C6BLQ5Zbe20IW2nlafdHn9YKp-2bLKG0JMxHeU_qBTLq6uSa5iyrrws0R9Q6nPIGSKEd6fqmh7--5p57LmWyzrRYr8l_xGz-xNR922GaPQfAz-3dFkegLnnOY1394DVzjHQzn-ehiuhQTLy8Vv32muiwedKhh_oRnbXce_oDQWZAjc7wjF__JI6ExiaKFmsft_eMlBq2HjYhFqzS-vNULf8h1wLcDr82cuGBR5k2gykjeJMftstlkPB2dibbpgrBSFSvhFRjEcInNofQY7XmbISjLtMrssLRQSp9IN8x9kUCSl2aYaQ1GevyvdWrxWn5h66EO_ivj4KzWicscghwFVpmUGmDpHOWfSEjSAZOdyivbMpJTY4x51aWe3VfRUBUZqoqGGjDx9tYiMnK88_wpWfPtWeLTbm7gLKtahVXvzbIBG3ZzoWqhSYQcKOruv8PvfcTw39gGiYy5b9_Z-urxye8jGFqZg2be4_H87_gVQWEKnw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Squeezing+flow+of+aqueous+CNTs-Fe3O4+hybrid+nanofluid+through+mass-based+approach%3A+Effect+of+heat+source%2Fsink%2C+nanoparticle+shape%2C+and+an+oblique+magnetic+field&rft.jtitle=Results+in+engineering&rft.au=Dinarvand%2C+Saeed&rft.au=Berrehal%2C+Hamza&rft.au=Tamim%2C+Hossein&rft.au=Sowmya%2C+G.&rft.date=2023-03-01&rft.issn=2590-1230&rft.eissn=2590-1230&rft.volume=17&rft.spage=100976&rft_id=info:doi/10.1016%2Fj.rineng.2023.100976&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_rineng_2023_100976 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-1230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-1230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-1230&client=summon |