Components and acyclicity of graphs. An exercise in combining precision with concision
Central to algorithmic graph theory are the concepts of acyclicity and strongly connected components of a graph, and the related search algorithms. This article is about combining mathematical precision and concision in the presentation of these concepts. Concise formulations are given for, for exam...
Saved in:
Published in | Journal of logical and algebraic methods in programming Vol. 124; p. 100730 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Central to algorithmic graph theory are the concepts of acyclicity and strongly connected components of a graph, and the related search algorithms. This article is about combining mathematical precision and concision in the presentation of these concepts. Concise formulations are given for, for example, the reflexive-transitive reduction of an acyclic graph, reachability properties of acyclic graphs and their relation to the fundamental concept of “definiteness”, and the decomposition of paths in a graph via the identification of its strongly connected components and a pathwise homomorphic acyclic subgraph. The relevant properties are established by precise algebraic calculation. The combination of concision and precision is achieved by the use of point-free relation algebra capturing the algebraic properties of paths in graphs, as opposed to the use of pointwise reasoning about paths between nodes in graphs. |
---|---|
ISSN: | 2352-2208 |
DOI: | 10.1016/j.jlamp.2021.100730 |