A review of self-healing hydrogels for bone repair and regeneration: Materials, mechanisms, and applications
Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreakin...
Saved in:
Published in | International journal of biological macromolecules Vol. 287; p. 138323 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.01.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreaking advancement in the field of biomaterials, displaying remarkable ability to regenerate damaged connections after partial severing, thus offering a promising solution for bone defect repair. This review first presents a comprehensive overview of the progress made in the design and preparation of these hydrogels, focusing on the self-healing mechanisms based on physical non-covalent interactions and dynamic chemical covalent bonds. Subsequently, the applications of self-healing hydrogels including natural polymers, synthetic polymers, and nano-hybrid materials, are discussed in detail, emphasizing their mechanisms in promoting bone tissue regeneration. Finally, the review addresses current challenges as well as future prospects for the use of hydrogels in bone repair and regeneration, identifying osteogenic properties, mechanical performance, and long-term biocompatibility as key areas for further improvement. In summary, this paper provides an in-depth analysis of recent advances in self-healing hydrogels for bone repair and regeneration, underscoring their immense potential for clinical application. |
---|---|
AbstractList | Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreaking advancement in the field of biomaterials, displaying remarkable ability to regenerate damaged connections after partial severing, thus offering a promising solution for bone defect repair. This review first presents a comprehensive overview of the progress made in the design and preparation of these hydrogels, focusing on the self-healing mechanisms based on physical non-covalent interactions and dynamic chemical covalent bonds. Subsequently, the applications of self-healing hydrogels including natural polymers, synthetic polymers, and nano-hybrid materials, are discussed in detail, emphasizing their mechanisms in promoting bone tissue regeneration. Finally, the review addresses current challenges as well as future prospects for the use of hydrogels in bone repair and regeneration, identifying osteogenic properties, mechanical performance, and long-term biocompatibility as key areas for further improvement. In summary, this paper provides an in-depth analysis of recent advances in self-healing hydrogels for bone repair and regeneration, underscoring their immense potential for clinical application. Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreaking advancement in the field of biomaterials, displaying remarkable ability to regenerate damaged connections after partial severing, thus offering a promising solution for bone defect repair. This review first presents a comprehensive overview of the progress made in the design and preparation of these hydrogels, focusing on the self-healing mechanisms based on physical non-covalent interactions and dynamic chemical covalent bonds. Subsequently, the applications of self-healing hydrogels including natural polymers, synthetic polymers, and nano-hybrid materials, are discussed in detail, emphasizing their mechanisms in promoting bone tissue regeneration. Finally, the review addresses current challenges as well as future prospects for the use of hydrogels in bone repair and regeneration, identifying osteogenic properties, mechanical performance, and long-term biocompatibility as key areas for further improvement. In summary, this paper provides an in-depth analysis of recent advances in self-healing hydrogels for bone repair and regeneration, underscoring their immense potential for clinical application.Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreaking advancement in the field of biomaterials, displaying remarkable ability to regenerate damaged connections after partial severing, thus offering a promising solution for bone defect repair. This review first presents a comprehensive overview of the progress made in the design and preparation of these hydrogels, focusing on the self-healing mechanisms based on physical non-covalent interactions and dynamic chemical covalent bonds. Subsequently, the applications of self-healing hydrogels including natural polymers, synthetic polymers, and nano-hybrid materials, are discussed in detail, emphasizing their mechanisms in promoting bone tissue regeneration. Finally, the review addresses current challenges as well as future prospects for the use of hydrogels in bone repair and regeneration, identifying osteogenic properties, mechanical performance, and long-term biocompatibility as key areas for further improvement. In summary, this paper provides an in-depth analysis of recent advances in self-healing hydrogels for bone repair and regeneration, underscoring their immense potential for clinical application. |
ArticleNumber | 138323 |
Author | Li, Bo Liao, Xiaoling Zhang, Dawei Yan, Ziyi Liu, Zhongning Xiao, Wenqian Li, Chenchen Yang, Xiaoling |
Author_xml | – sequence: 1 givenname: Bo surname: Li fullname: Li, Bo organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China – sequence: 2 givenname: Chenchen surname: Li fullname: Li, Chenchen organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China – sequence: 3 givenname: Ziyi surname: Yan fullname: Yan, Ziyi organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China – sequence: 4 givenname: Xiaoling surname: Yang fullname: Yang, Xiaoling organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China – sequence: 5 givenname: Wenqian surname: Xiao fullname: Xiao, Wenqian email: wqxiao@cqust.edu.cn organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China – sequence: 6 givenname: Dawei surname: Zhang fullname: Zhang, Dawei email: zdwasy6161@163.com organization: Department of Orthopedics, The 960th Hospital of the PLA Joint Logistice Support Force, Jinan 250031, China – sequence: 7 givenname: Zhongning surname: Liu fullname: Liu, Zhongning email: liuzhongning@bjmu.edu.cn organization: Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China – sequence: 8 givenname: Xiaoling surname: Liao fullname: Liao, Xiaoling organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39645113$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0UFPHCEUB3DSaOqq_QqGowdnyxsYHHrSmLaaaHqpZ8LAm102MzCFWY3fXrarvdoTL-T3HuH9j8lBiAEJOQO2BAby62bpN52Po7HLmtViCbzlNf9EFtBeqooxxg_IgoGAqgXOjshxzptyKxtoP5MjrqRoAPiCDNc04ZPHZxp7mnHoqzWawYcVXb-4FFc4ZNrHRLvyfJGT8Yma4Eq5woDJzD6Gb_TBzJi8GfIFHdGuTfB5LPUOmmkavP3r8ik57AvCL2_nCXn88f33zW11_-vn3c31fWW5aOcKBWPGgQElwDrZO2mYMiAFdrVoFOedtcpwJ2ooH-lrzlWnurqtOTqUXc9PyPl-7pTiny3mWY8-WxwGEzBus-Ygm_aSKyH-gwrZSMUUK_TsjW67EZ2ekh9NetHvyyxA7oFNMeeE_T8CTO9S0xv9nprepab3qZXGq31j2fYujKSz9RgsOp_QztpF_9GIVwM9oug |
Cites_doi | 10.1016/j.carbpol.2020.116432 10.1002/jlac.19284600106 10.1021/acsbiomaterials.8b00657 10.1039/C9NR09283H 10.1021/acs.biomac.7b00587 10.1039/C9SM01543D 10.1016/j.cej.2019.01.028 10.1002/anie.201801063 10.1021/acs.biomac.3c00379 10.1002/adma.202203049 10.1002/adfm.202214726 10.1016/j.carbpol.2020.116922 10.1039/D1RA05896G 10.1126/science.aao0350 10.1016/j.polymer.2019.121882 10.1016/j.cej.2023.147095 10.1039/C7TB02223A 10.1016/j.ijbiomac.2023.128320 10.3390/molecules24163005 10.1039/D0CS01382J 10.1016/j.ijbiomac.2020.10.004 10.3390/polym14214539 10.1021/acs.biomac.7b01331 10.1039/D3MH00891F 10.1016/j.bioactmat.2022.01.048 10.1021/cr800427g 10.3390/polym9040137 10.1021/acsapm.9b00143 10.1126/science.aam7588 10.1039/D0TB02691C 10.1016/j.bioactmat.2022.02.011 10.1016/j.carbpol.2022.120243 10.1002/adma.201900332 10.1016/j.indcrop.2023.117876 10.1016/j.cej.2023.146536 10.1039/D3RA01700A 10.1016/j.matdes.2020.108723 10.1021/acsami.3c02108 10.1016/j.ijbiomac.2019.01.065 10.1016/j.foodchem.2020.127819 10.1039/C7TB00776K 10.1016/j.matlet.2021.129755 10.3390/polym14112184 10.1016/B978-0-323-88450-1.00018-1 10.1016/j.actbio.2019.03.057 10.1016/j.polymer.2018.11.051 10.1016/j.ccr.2024.215790 10.1016/j.actbio.2022.09.036 10.1039/D2NR07110J 10.3390/polym13213782 10.1080/01932691.2024.2340674 10.1016/j.bioactmat.2017.09.002 10.1016/j.ijbiomac.2023.127612 10.1016/j.bioactmat.2022.10.010 10.1002/adfm.202304470 10.1039/C9TB02643F 10.1016/j.actbio.2019.07.035 10.3390/ma12132074 10.1021/acs.biomac.7b00089 10.1016/j.jconrel.2020.12.008 10.1039/D0NJ04923A 10.1021/acs.biomac.1c01647 10.1002/adma.201901244 10.1016/j.reactfunctpolym.2023.105513 10.1016/j.colsurfa.2019.01.034 10.1016/j.cej.2020.125335 10.1038/s41467-022-30243-5 10.1039/C6RA17327F 10.1016/j.clay.2022.106812 10.1186/s12951-024-02555-9 10.1002/adfm.202003717 10.1016/j.matdes.2021.109490 10.1002/advs.202206450 10.1007/s10570-019-02797-z 10.1016/j.cej.2019.02.020 10.1016/j.molliq.2022.118712 10.1002/adfm.202009189 10.1111/jcpe.13725 10.1021/acs.biomac.2c00260 10.1021/acsbiomaterials.2c00321 10.1016/j.eurpolymj.2018.11.005 10.1021/acs.biomac.6b01604 10.1002/macp.202300228 10.1016/B978-0-12-809551-5.00009-6 10.1021/acs.chemrev.2c00179 10.1002/adhm.202303592 10.1039/D2RA00122E 10.1021/acsami.1c02089 10.1038/s41467-021-24680-x 10.1016/j.compositesb.2019.107647 10.1021/acsbiomaterials.1c00719 10.1016/j.carbpol.2021.118311 10.1016/j.polymer.2018.08.063 10.1002/adfm.202010609 10.1088/1758-5090/ac8dc7 10.1016/j.matlet.2024.136315 10.1016/j.compositesb.2024.111492 10.1021/acs.iecr.2c03253 10.1021/acsami.9b19415 10.1016/j.carbpol.2021.118547 10.1002/wnan.1641 10.1002/pat.5707 10.1039/C9TB00831D 10.1016/j.cej.2023.144117 10.1039/D0BM00055H 10.1039/D0TB01005G 10.1016/j.actbio.2018.12.008 10.1021/acsbiomaterials.2c00496 10.1002/anie.201804400 10.1002/macp.201900320 10.1016/j.carbpol.2021.118244 10.1016/j.compositesb.2019.107449 10.3390/polym13162680 10.3390/polym15040966 10.1002/admi.201800384 10.1002/adfm.201700591 10.1016/j.cej.2023.146160 10.3390/polym15051065 10.1021/acsapm.9b00317 10.3390/md19050264 10.1016/j.cej.2022.141137 10.1039/D0TA10850B 10.1002/adfm.202009432 10.15171/apb.2017.064 10.1002/mame.202000045 10.1002/mame.201800144 10.1021/acsami.2c01739 10.1007/s12192-018-0880-7 10.1021/acsnano.0c09814 10.1016/j.cclet.2017.05.007 10.1002/adfm.202101303 10.1016/j.cclet.2020.12.001 10.1016/j.jconrel.2019.01.026 10.1016/j.mtbio.2023.100558 10.1039/C7SM00916J 10.3390/gels9020102 10.3390/jfb13020047 10.1016/j.cej.2024.150551 10.1039/D0TB00833H 10.1021/acsbiomaterials.3c00564 10.1016/j.ijbiomac.2021.12.155 10.1016/j.cej.2023.142868 10.1016/j.ijpharm.2021.120727 10.1016/j.ijbiomac.2023.125674 10.1016/j.eurpolymj.2023.112370 10.3390/ijms23020842 10.1088/1748-605X/ace39b 10.1016/j.eurpolymj.2020.110038 10.1016/j.ajps.2020.10.001 10.1002/cplu.202100474 10.1016/j.matdes.2023.111705 10.1007/s13726-020-00821-9 10.1021/acsami.0c11167 10.1039/D1BM01294K 10.1002/marc.201800121 10.3390/md20050314 10.1021/acs.chemmater.9b01301 10.3390/gels7040169 10.1016/j.bioactmat.2023.07.018 10.3390/polym12020487 10.1021/acsapm.0c00150 10.3389/fchem.2018.00449 10.1021/acs.macromol.8b01496 10.1016/j.carbpol.2020.117286 10.1016/j.actbio.2020.01.021 10.1016/j.compositesb.2022.110257 10.1016/j.compositesb.2018.08.082 10.1002/pi.5554 10.1016/j.cej.2020.127512 10.1016/j.cej.2022.141110 10.1039/D2BM01154A 10.1016/j.biomaterials.2024.122875 10.1016/j.eurpolymj.2023.112034 10.1002/adfm.202208639 10.1016/j.biomaterials.2018.07.031 10.1016/j.bioactmat.2024.03.002 10.1016/j.ijbiomac.2023.124962 10.1016/j.msec.2019.02.035 10.3390/gels7040216 10.1002/marc.201800837 10.1002/mabi.201800313 10.1021/acsbiomaterials.2c01547 10.1021/acssuschemeng.7b01060 10.1021/acsami.4c07057 10.1016/j.jiec.2022.11.034 10.1016/j.carbpol.2020.116979 10.1186/s13036-023-00368-2 10.3390/biology13040237 10.1021/acsapm.2c01849 10.1016/j.colsurfa.2018.10.071 10.1007/s13233-021-9016-5 |
ContentType | Journal Article |
Copyright | 2024 Elsevier B.V. Copyright © 2024 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2024 Elsevier B.V. – notice: Copyright © 2024 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.ijbiomac.2024.138323 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-0003 |
ExternalDocumentID | 39645113 10_1016_j_ijbiomac_2024_138323 S0141813024091347 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSH SSU SSZ T5K UHS UNMZH WUQ ~02 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION CGR CUY CVF ECM EFKBS EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c348t-e400ad1a1941cd6fd6a09a164eb245933bcc9a3d421396f2339b9b2823ede6bf3 |
IEDL.DBID | .~1 |
ISSN | 0141-8130 1879-0003 |
IngestDate | Fri Jul 11 03:32:03 EDT 2025 Fri Jul 11 06:20:20 EDT 2025 Mon Jul 21 06:04:19 EDT 2025 Tue Jul 01 02:43:16 EDT 2025 Sun Apr 06 06:54:26 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Bone repair Self-healing Hydrogel |
Language | English |
License | Copyright © 2024 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-e400ad1a1941cd6fd6a09a164eb245933bcc9a3d421396f2339b9b2823ede6bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 39645113 |
PQID | 3146569090 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3165873944 proquest_miscellaneous_3146569090 pubmed_primary_39645113 crossref_primary_10_1016_j_ijbiomac_2024_138323 elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2024_138323 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | International journal of biological macromolecules |
PublicationTitleAlternate | Int J Biol Macromol |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Meng, Shao, Cui, Xu, Lei, Yang (bb0845) 2019; 12 P. Li, H. Zong, G. Li, Z. Shi, X. Yu, K. Zhang, P. Xia, S. Yan, J. Yin, Building a Poly (amino acid)/Chitosan-Based Self-Healing Hydrogel via Host–Guest Interaction for Cartilage Regeneration, ACS Biomater Sci. Eng. 9(8) (2023) 4855–4866. Wong, Pasbakhsh, Cheng, Goh, Tan (bb0070) 2023; 232 Shi, Dong, Hu, Guo (bb0895) 2023; 457 Huang, Wang, Xu, Ma, Gao (bb0765) 2017; 2 Kazemi-Aghdam, Jahed, Dehghan-Niri, Ganji, Vasheghani-Farahani (bb0715) 2021; 269 Gaharwar, Cross, Peak, Gold, Carrow, Brokesh, Singh (bb0950) 2019; 31 Li, Wu, Zhang, Wu, Huang, Wang, Liao (bb0085) 2023; 13 Saiz-Poseu, Mancebo-Aracil, Nador, Busqué, Ruiz-Molina (bb0645) 2019; 58 Qin, Wang, You, Zhang, Chen, Liu (bb0015) 2022; 10 Li, Shi, Zong, Zhang, Yan, Yin (bb0135) 2023; 18 C. Shao, M. Wang, H. Chang, F. Xu, J. Yang, A self-healing cellulose nanocrystal-poly (ethylene glycol) nanocomposite hydrogel via Diels–Alder click reaction, ACS Sustain. Chem. Eng. 5(7) (2017) 6167–6174. Jiang, Zhang, Yang, Huang, Shi, Long, Qian, Liu, Guan, Liu (bb0865) 2021; 12 Parhi (bb0430) 2017; 7 Wattanaanek, Suttapreyasri, Samruajbenjakun (bb0835) 2022; 13 Zhao, Jia, Zhang, Liu, Li, Zhao, Xie, Chen, Jiang, He, Wang, Peng, Zheng (bb0975) 2025; 314 Gong, Zhao, Wang, Luo, Zhang (bb0360) 2022; 8 Feng, Zhao, Tang, Yang, Tian, Peng, Pan, Shuai (bb0030) 2023; 33 S.M. Morozova, Recent advances in hydrogels via Diels–Alder crosslinking: design and applications, Gels 9(2) (2023) 102. Lee, Kang, Kang, Huh (bb0770) 2020; 244 Chen, Chen, Geng, Su (bb0010) 2022; 18 Wan, Li, Yan, Wang, Li (bb0875) 2023; 191 Lee, Hwang, Kim, Fan, Aghaloo, Lee (bb0175) 2020; 30 Chen, Bu, Li, Liu, Chen, Wan, Li (bb0435) 2020; 27 Zhang, Liow, Xue, Zhang, Li, Loh (bb0465) 2019; 1 Lü, Bai, Liu, Ning, Wang, Gao, Ni, Liu (bb0195) 2017; 5 Rumon, Akib, Sultana, Moniruzzaman, Niloy, Shakil, Roy (bb0575) 2022; 14 Greco, Gigimon, Varon, Bogdanova, Iorio (bb0280) 2024; 363 Wang, Liu, Guo, Bao, Qi, Yin, Xu, Yan (bb0980) 2024; 280 Li, Du, Gao, Tang, Chen, Liu, Yang, Zhao, Niu, Ruan (bb0910) 2022; 14 Chang, Jia, Gu (bb0585) 2019; 112 Zhang, Wu, Hu, Lu, Wang, Li, Zhao (bb0390) 2020; 221 Zhang, Zhou, Du, Ha, Xu, Ao, He (bb0795) 2023; 9 Vuornos, Ojansivu, Koivisto, Häkkänen, Belay, Montonen, Huhtala, Kääriäinen, Hupa, Kellomäki (bb0075) 2019; 99 Xue, Wu, Liu, Guo, Liu, Zhang, Wang (bb0600) 2021; 9 Deng, Dong, Song, Chen (bb0040) 2019; 297 Liu, Jiang, Chi, Peng, Dai, Qian, Xu, Zhong, Yue (bb0495) 2022; 8 Das Mahapatra, Imani, Yoon (bb0640) 2020; 12 Ma, Yang, Liu, Guo, Zhang, Kang, Yu, Wei (bb0535) 2023; 184 Guo, Su, Zhang, Dong, Lin, Zhang (bb0620) 2017; 18 Li, Li, Kong, Li, Yang, Wang, Teng (bb0935) 2023; 21 Wei, Ma, Cheng, Sun, Chen, Zhao, Lu, Song, Yang, Jia (bb0455) 2020; 2 Lueckgen, Garske, Ellinghaus, Desai, Stafford, Mooney, Duda, Cipitria (bb0720) 2018; 181 Apostolides, Patrickios (bb0525) 2018; 67 Zhu, Jin, Shao, Li, Liu, Gan, Long (bb0660) 2020; 192 Wang, Lu, Sun, Yu, Xia (bb0705) 2019; 7 Tang, Yang, Bao, Yu, Wu, Li, Guo, Guo (bb0185) 2023; 478 Li, Zhou, Chen, Luo, Li, Chen, Zou, Wang (bb0120) 2022; 18 Li, Mu, Xu, Jin, Fu (bb0315) 2024; 208 Fukao, Tanaka, Kiyama, Nonoyama, Gong (bb0925) 2020; 8 Rizwan, Yahya, Hassan, Yar, Azzahari, Selvanathan, Sonsudin, Abouloula (bb0045) 2017; 9 Yang, Li, Fang, Liu (bb0080) 2023; 253 He, Tian, Zhang, Wang, Yang, Li, Ge, Bai, Li (bb0500) 2022; 202 Song, Wang (bb0345) 2020; 32 Zhao, Peng, Wang, Diaz-Dussan, Tian, Duan, Kong, Hao, Narain (bb0375) 2022; 23 Devi, Shyam, Palaniappan, Jaiswal, Oh, Nathanael (bb0240) 2021; 13 L. Shi, P. Ding, Y. Wang, Y. Zhang, D. Ossipov, J. Hilborn, Self-Healing Polymeric Hydrogel Formed by Metal–Ligand Coordination Assembly: Design, Fabrication, and Biomedical Applications, Macromol. Rapid Commun. 40(7) (2019) 1800837. Halperin-Sternfeld, Pokhojaev, Ghosh, Rachmiel, Kannan, Grinberg, Asher, Aviv, Ma, Binderman, Sarig, Adler-Abramovich (bb0410) 2023; 50 Li, Pei, Wan, Yang, Gu, Tao, Liu, Zhou, Xu, Xiao (bb0490) 2020; 250 Zhang, Wang, Sun, Hou, Wu, Wu, Zheng (bb0380) 2018; 51 Guadagno, Vertuccio, Naddeo, Calabrese, Barra, Raimondo, Sorrentino, Binder, Michael, Rana (bb0330) 2019; 157 Filippidi, Cristiani, Eisenbach, Waite, Israelachvili, Ahn, Valentine (bb0650) 2017; 358 Hu, Xu (bb0350) 2020; 8 Wang, Song, Xue, Qian, Wang, Wang (bb0635) 2018; 153 Raus, Nawawi, Nasaruddin (bb0830) 2021; 16 Kong, Chen, Li, Quan, Wu (bb0820) 2021; 9 Ma, Rong, Zhang, Lu (bb0255) 2023; 456 Van Hoorick, Tytgat, Dobos, Ottevaere, Van Erps, Thienpont, Ovsianikov, Dubruel, Van Vlierberghe (bb0780) 2019; 97 Cui, Zhang, Coseri (bb0855) 2023; 300 An, Xue, Ye, Zhao, Liu, Li, Chen, Huang, Hu (bb0335) 2023; 15 Li, Li, Zheng, Liu, Zou, Sun, Guo, Yan (bb0450) 2022; 34 Yang, Cho, Eom, Park, Hwang, Jeon, Oh, Park (bb0625) 2021; 29 Bai, Zhang, Huang, Zhang, Lu, Song, Yang (bb0160) 2021; 413 Wang, Narain, Zeng (bb0395) 2018; 6 Jiang, Yang, Yang, Zhang, Lu (bb0510) 2021; 273 Pan, Chen, Xing, Deng, Chen, Alharthi, Alghamdi, Su (bb0930) 2021; 32 Diels, Alder (bb0665) 1928; 460 Li, Hu, Tian, Wang, Li, Qayum, Bilawal, Gantumur, Jiang, Hou (bb0560) 2021; 338 Geng, Zhao, Tao, Yang, Duan, Gao, He, Liu, Feng, Zhao (bb0155) 2024; 36 Niu, Fan, Guo, Du, Yang, Feng, Fan (bb0755) 2017; 5 Huang, Cheng, Wang, Zhang, Chen, Zhang (bb0180) 2021; 31 Dong, Xu, Lun, Wu, Deng, Sun (bb0480) 2024; 16 Liu, Liu, Wang, Han, Chen, Tan (bb0530) 2020; 12 Li, Yang, Zeng, Wu, Wei, Tao (bb0285) 2019; 31 Ghandforoushan, Alehosseini, Golafshan, Castilho, Dolatshahi-Pirouz, Hanaee, Davaran, Orive (bb0115) 2023; 246 Kim, Kim, Hwang, Lee, Lee (bb0200) 2024; 487 Vahedi, Shokrolahi, Barzin, Shokrollahi, Taghiyar, Ashtiani (bb0790) 2020; 305 Saunders, Ma (bb0090) 2019; 19 Quan, Xin, Wu, Ao (bb0420) 2022; 14 Yuan, Liu, Xiong, Lei (bb0295) 2024 Khattab, Kamel (bb0505) 2022; 352 Du, Niu, Hou, Xu, Li, Li, Fan (bb0760) 2020; 8 Yang, Yang, Chen, Dong, Yang, Gu, Zhou (bb0300) 2024; 256 Xing, Sun, Tan, Yuan, Li, Jia, Xiong, Chen, Lai, Ling (bb0810) 2019; 127 Cao, Wu, Cheng, He, Chen, Zhou (bb0065) 2021; 13 He, Liu, Fan, Song, Gu (bb0385) 2022; 61 Rumon, Sarkar, Uddin, Alam, Karobi, Ayfar, Azam, Roy (bb0700) 2022; 12 Chen, Tan, Xu, Wang, Zhang, Li, Zhou, Niu (bb0915) 2022; 153 Li, Yang, Lee (bb0745) 2021; 330 Liu, Wang, Luo, Zhao, Liao, Dai, Li, Li, Cao (bb0210) 2023; 10 Lu, Xu, Tian, Zhang, Niu, Zhao, Ming, Ren (bb0275) 2023; 465 Sun, Jia, Lei, Zhu, Gao, Zheng, Wang (bb0540) 2019; 160 Ahmadian, Kazeminava, Afrouz, Abbaszadeh, Mehr, Shiran, Gouda, Adeli, Kafil (bb0320) 2023; 126535 M. Gregoritza, V. Messmann, K. Abstiens, F.P. Brandl, A.M. Goepferich, Controlled antibody release from degradable Thermoresponsive hydrogels cross-linked by Diels–Alder chemistry, Biomacromolecules 18(8) (2017) 2410–2418. Wu, Wang, Liu, Chen, Zhang, Wu, Deng, Cai (bb0145) 2023; 227 Wang, He, Wang, Liu, Wang, Yang, Pan, Li (bb0140) 2023; 30 Song, Li, Song, Zhang, Liu, Jing, Luo, Zhang, Zhang, Li (bb0260) 2023; 5 Erezuma, Lukin, Desimone, Zhang, Dolatshahi-Pirouz, Orive (bb0740) 2022; 146 Buwalda, Vermonden, Hennink (bb0035) 2017; 18 Xu, Yao, Fan, Zhou, Wei (bb0570) 2021; 254 Bauso, La Fauci, Longo, Calabrese (bb0025) 2024; 13 Zhang, Lv, Zhao, Ling, Zhang (bb0055) 2023; 197 Wang, Zhang, Hu, Jing, Geng, Su (bb0020) 2022; 32 Briou, Améduri, Boutevin (bb0685) 2021; 50 Tu, Chen, Li, Liu, Zhu, Chen, Xiao, Liu, Ramakrishna, He (bb0365) 2019; 90 Chen, Dai, Zhu, Hu, Yuan, Ding (bb0460) 2021; 45 Zhang, Qiu, Zhu, Guo, Li (bb0545) 2018; 39 Gu, Yang, Yuan, Ni, Zhou, Si, Xia, Yuan, Xu, Xu, Xu, Du, Zhang, Sun, Zheng, Yang (bb0190) 2023; 24 Chen, Liang, Bai, Xu, Zhang, Guo, Yin (bb0130) 2020; 396 Menikheim, Lavik (bb0750) 2020; 12 Zhang, Yin, Liu, Hou, Shi, Liu, Wang, Yang, Pan, He, Zhu (bb0225) 2022; 246 Bertsch, Diba, Mooney, Leeuwenburgh (bb0100) 2022; 123 Ji, Li, Zhang, Lan, Sun, Wong (bb0305) 2019; 184 Ding, Fan, Wang, Zhou, Wang, Zhao (bb0110) 2023; 10 Huang, Tan, Bai, Wang, Makvandi, Ali Khan, Hu, Wu (bb0150) 2023; 470 Chen, Wang, Guo, Hu (bb0520) 2022; 33 Xue, Hu, Deng, Su (bb0060) 2021; 31 Zhang, Cheng, Ao (bb0825) 2021; 19 Wang, Chen, Khan, Liu, Chen, Chen, Zhang, Li (bb0630) 2019; 567 Piras, Smith (bb0815) 2020; 8 Deng, Wang, Ma, Guo (bb0245) 2020; 12 J. Xu, Y. Liu, S.-h. Hsu, Hydrogels based on Schiff base linkages for biomedical applications, Molecules 24(16) (2019) 3005. Steinman, Domb (bb0565) 2021; 7 Lu, Li, Feng, Guan, Guo (bb0370) 2019; 561 S. Thambidurai, K. Pandiselvi, Polyaniline/natural polymer composites and nanocomposites, polyaniline blends, composites, and nanocomposites, Elsevier2018, pp. 235–256. Reakasame, Boccaccini (bb0850) 2018; 19 Hafezi, Khorasani, Khalili, Neisiany (bb0955) 2023; 242 Ma, Su, Ran, Ma, Yi, Chen, Chen, Deng, Tong, Wang, Li (bb0860) 2020; 165 Tang, Ma, Yang, Liang, Yin, Wan, Zhang, Wang (bb0615) 2023; 118 Pishavar, Khosravi, Naserifar, Rezvani Ghomi, Luo, Zavan, Seifalian, Ramakrishna (bb0125) 2021; 13 Jiang, Zeng, Zhang, Yu, Lu (bb0805) 2023; 15 Luo, Yang, Ho, Li, Chiu, Li, Dai, Li, Zhang (bb0215) 2024; 22 Shi, Wang, Zhu, Xu, Fuchs, Hilborn, Zhu, Ma, Wang, Weng, Ossipov (bb0220) 2017; 27 Xie, Yu, Wang, Li (bb0445) 2022; 23 Wang, Tavakoli, Parvathaneni, Nawale, Oommen, Hilborn, Varghese (bb0485) 2022; 10 Wolfel, Igarzabal, Romero (bb0470) 2020; 140 Collins, Ren, Young, Pina, Reis, Oliveira (bb0050) 2021; 31 Iliou, Kikionis, Ioannou, Roussis (bb0735) 2022; 20 Zhang, Wang, Song, Pei, Sun, Wu, Zhou, Wang, Fan, Zhang (bb0905) 2021; 201 Lu, Xu, Liu, Chen, Sun, Wang, Li, Wang, Li, Hui, Luo, Liu, Jiang, Liang, Fan, Sun, Zhang (bb0775) 2022; 13 Guo, Ma, Gu, Feng, He, Chen, Mao, Zhang, Zheng (bb0515) 2017; 13 Wang, Zhuge, Li, Jiang, Yang (bb0610) 2020; 29 Guo, Qu, Zhao, Zhang (bb0730) 2019; 84 Gantar, Drnovšek, Casuso, Pérez-San Vicente, Rodriguez, Dupin, Novak, Loinaz (bb0970) 2016; 6 Nada, Eckstein Andicsová, Mosnáček (bb0870) 2022; 23 Yanagisawa, Nan, Okuro, Aida (bb0340) 2018; 359 Lin, Wang, Sun, Liang, Xu, Hu, Luo, Zhang, Li (bb0940) 2021; 11 Chen, Li, Xu, Kang, Lee, Aghaloo, Lee (bb0170) 2024; 13 Y. Liu, S.-h. Hsu, Synthesis and biomedical applications of self-healing hydrogels, Front. Chem. 6 (2018) 449. Mosaddegh, Takalloo, Sajedi, Nichifor (10.1016/j.ijbiomac.2024.138323_bb0405) 2023; 15 Collins (10.1016/j.ijbiomac.2024.138323_bb0050) 2021; 31 Wang (10.1016/j.ijbiomac.2024.138323_bb0610) 2020; 29 Yang (10.1016/j.ijbiomac.2024.138323_bb0440) 2018; 5 Guo (10.1016/j.ijbiomac.2024.138323_bb0515) 2017; 13 Oluwasanmi (10.1016/j.ijbiomac.2024.138323_bb0680) 2021; 604 Lei (10.1016/j.ijbiomac.2024.138323_bb0290) 2019; 1 Liu (10.1016/j.ijbiomac.2024.138323_bb0890) 2023; 17 Zhang (10.1016/j.ijbiomac.2024.138323_bb0545) 2018; 39 Kim (10.1016/j.ijbiomac.2024.138323_bb0200) 2024; 487 Li (10.1016/j.ijbiomac.2024.138323_bb0135) 2023; 18 10.1016/j.ijbiomac.2024.138323_bb0885 Devi (10.1016/j.ijbiomac.2024.138323_bb0240) 2021; 13 Wang (10.1016/j.ijbiomac.2024.138323_bb0265) 2023; 33 Qu (10.1016/j.ijbiomac.2024.138323_bb0725) 2019; 362 Lee (10.1016/j.ijbiomac.2024.138323_bb0785) 2019; 365 Zhang (10.1016/j.ijbiomac.2024.138323_bb0605) 2018; 303 Qin (10.1016/j.ijbiomac.2024.138323_bb0015) 2022; 10 Zhang (10.1016/j.ijbiomac.2024.138323_bb0095) 2021; 7 Zhang (10.1016/j.ijbiomac.2024.138323_bb0695) 2021; 86 Niu (10.1016/j.ijbiomac.2024.138323_bb0755) 2017; 5 Gaharwar (10.1016/j.ijbiomac.2024.138323_bb0950) 2019; 31 Li (10.1016/j.ijbiomac.2024.138323_bb0285) 2019; 31 Lee (10.1016/j.ijbiomac.2024.138323_bb0175) 2020; 30 Krishnakumar (10.1016/j.ijbiomac.2024.138323_bb0580) 2020; 184 Chen (10.1016/j.ijbiomac.2024.138323_bb0520) 2022; 33 Saiz-Poseu (10.1016/j.ijbiomac.2024.138323_bb0645) 2019; 58 Chen (10.1016/j.ijbiomac.2024.138323_bb0915) 2022; 153 Li (10.1016/j.ijbiomac.2024.138323_bb0710) 2017; 28 Bertsch (10.1016/j.ijbiomac.2024.138323_bb0100) 2022; 123 Chen (10.1016/j.ijbiomac.2024.138323_bb0435) 2020; 27 Cao (10.1016/j.ijbiomac.2024.138323_bb0065) 2021; 13 Wan (10.1016/j.ijbiomac.2024.138323_bb0875) 2023; 191 Basu (10.1016/j.ijbiomac.2024.138323_bb0945) 2020; 105 Tang (10.1016/j.ijbiomac.2024.138323_bb0185) 2023; 478 Pérez (10.1016/j.ijbiomac.2024.138323_bb0550) 2023; 15 Iliou (10.1016/j.ijbiomac.2024.138323_bb0735) 2022; 20 Van Hoorick (10.1016/j.ijbiomac.2024.138323_bb0780) 2019; 97 An (10.1016/j.ijbiomac.2024.138323_bb0335) 2023; 15 Shi (10.1016/j.ijbiomac.2024.138323_bb0895) 2023; 457 Kazemi-Aghdam (10.1016/j.ijbiomac.2024.138323_bb0715) 2021; 269 Jiang (10.1016/j.ijbiomac.2024.138323_bb0865) 2021; 12 Liu (10.1016/j.ijbiomac.2024.138323_bb0530) 2020; 12 Yanagisawa (10.1016/j.ijbiomac.2024.138323_bb0340) 2018; 359 Bastos (10.1016/j.ijbiomac.2024.138323_bb0900) 2019; 12 Lin (10.1016/j.ijbiomac.2024.138323_bb0940) 2021; 11 Xue (10.1016/j.ijbiomac.2024.138323_bb0600) 2021; 9 Kong (10.1016/j.ijbiomac.2024.138323_bb0820) 2021; 9 Hafezi (10.1016/j.ijbiomac.2024.138323_bb0955) 2023; 242 Greco (10.1016/j.ijbiomac.2024.138323_bb0280) 2024; 363 Lee (10.1016/j.ijbiomac.2024.138323_bb0770) 2020; 244 Wattanaanek (10.1016/j.ijbiomac.2024.138323_bb0835) 2022; 13 Hu (10.1016/j.ijbiomac.2024.138323_bb0965) 2023; 10 Duan (10.1016/j.ijbiomac.2024.138323_bb0325) 2023; 476 Menikheim (10.1016/j.ijbiomac.2024.138323_bb0750) 2020; 12 Nada (10.1016/j.ijbiomac.2024.138323_bb0870) 2022; 23 Zhu (10.1016/j.ijbiomac.2024.138323_bb0660) 2020; 192 Mosaddegh (10.1016/j.ijbiomac.2024.138323_bb0555) 2018; 23 Li (10.1016/j.ijbiomac.2024.138323_bb0560) 2021; 338 Guo (10.1016/j.ijbiomac.2024.138323_bb0620) 2017; 18 Zhang (10.1016/j.ijbiomac.2024.138323_bb0595) 2019; 15 Zhang (10.1016/j.ijbiomac.2024.138323_bb0225) 2022; 246 He (10.1016/j.ijbiomac.2024.138323_bb0500) 2022; 202 Piras (10.1016/j.ijbiomac.2024.138323_bb0815) 2020; 8 Du (10.1016/j.ijbiomac.2024.138323_bb0760) 2020; 8 Saunders (10.1016/j.ijbiomac.2024.138323_bb0090) 2019; 19 Apostolides (10.1016/j.ijbiomac.2024.138323_bb0525) 2018; 67 Zhao (10.1016/j.ijbiomac.2024.138323_bb0375) 2022; 23 Reakasame (10.1016/j.ijbiomac.2024.138323_bb0850) 2018; 19 Park (10.1016/j.ijbiomac.2024.138323_bb0920) 2019; 178 Bauso (10.1016/j.ijbiomac.2024.138323_bb0025) 2024; 13 Xing (10.1016/j.ijbiomac.2024.138323_bb0810) 2019; 127 Luo (10.1016/j.ijbiomac.2024.138323_bb0215) 2024; 22 Rizwan (10.1016/j.ijbiomac.2024.138323_bb0045) 2017; 9 Xu (10.1016/j.ijbiomac.2024.138323_bb0570) 2021; 254 Quan (10.1016/j.ijbiomac.2024.138323_bb0420) 2022; 14 Vahedi (10.1016/j.ijbiomac.2024.138323_bb0790) 2020; 305 Parhi (10.1016/j.ijbiomac.2024.138323_bb0430) 2017; 7 Lu (10.1016/j.ijbiomac.2024.138323_bb0370) 2019; 561 Bo (10.1016/j.ijbiomac.2024.138323_bb0590) 2021; 7 Tu (10.1016/j.ijbiomac.2024.138323_bb0365) 2019; 90 Li (10.1016/j.ijbiomac.2024.138323_bb0490) 2020; 250 Zhang (10.1016/j.ijbiomac.2024.138323_bb0390) 2020; 221 LeGeros (10.1016/j.ijbiomac.2024.138323_bb0005) 2008; 108 Khattab (10.1016/j.ijbiomac.2024.138323_bb0505) 2022; 352 Wong (10.1016/j.ijbiomac.2024.138323_bb0070) 2023; 232 Guo (10.1016/j.ijbiomac.2024.138323_bb0730) 2019; 84 Ma (10.1016/j.ijbiomac.2024.138323_bb0535) 2023; 184 Li (10.1016/j.ijbiomac.2024.138323_bb0120) 2022; 18 Gu (10.1016/j.ijbiomac.2024.138323_bb0190) 2023; 24 Liu (10.1016/j.ijbiomac.2024.138323_bb0495) 2022; 8 Erezuma (10.1016/j.ijbiomac.2024.138323_bb0740) 2022; 146 Wang (10.1016/j.ijbiomac.2024.138323_bb0635) 2018; 153 10.1016/j.ijbiomac.2024.138323_bb0475 10.1016/j.ijbiomac.2024.138323_bb0230 10.1016/j.ijbiomac.2024.138323_bb0235 Yang (10.1016/j.ijbiomac.2024.138323_bb0625) 2021; 29 Huang (10.1016/j.ijbiomac.2024.138323_bb0765) 2017; 2 Xu (10.1016/j.ijbiomac.2024.138323_bb0205) 2020; 250 Ahmadian (10.1016/j.ijbiomac.2024.138323_bb0320) 2023; 126535 Cheng (10.1016/j.ijbiomac.2024.138323_bb0400) 2021; 31 Das Mahapatra (10.1016/j.ijbiomac.2024.138323_bb0640) 2020; 12 Lu (10.1016/j.ijbiomac.2024.138323_bb0275) 2023; 465 Bai (10.1016/j.ijbiomac.2024.138323_bb0160) 2021; 413 Wang (10.1016/j.ijbiomac.2024.138323_bb0705) 2019; 7 Briou (10.1016/j.ijbiomac.2024.138323_bb0685) 2021; 50 Tang (10.1016/j.ijbiomac.2024.138323_bb0615) 2023; 118 Wang (10.1016/j.ijbiomac.2024.138323_bb0630) 2019; 567 Zhang (10.1016/j.ijbiomac.2024.138323_bb0465) 2019; 1 Lü (10.1016/j.ijbiomac.2024.138323_bb0195) 2017; 5 Wu (10.1016/j.ijbiomac.2024.138323_bb0145) 2023; 227 Yu (10.1016/j.ijbiomac.2024.138323_bb0165) 2023; 19 Ghosh (10.1016/j.ijbiomac.2024.138323_bb0310) 2023; 475 Zhang (10.1016/j.ijbiomac.2024.138323_bb0825) 2021; 19 Zhao (10.1016/j.ijbiomac.2024.138323_bb0840) 2022; 14 Yang (10.1016/j.ijbiomac.2024.138323_bb0300) 2024; 256 Li (10.1016/j.ijbiomac.2024.138323_bb0315) 2024; 208 Li (10.1016/j.ijbiomac.2024.138323_bb0105) 2023; 22 Jiang (10.1016/j.ijbiomac.2024.138323_bb0805) 2023; 15 Buwalda (10.1016/j.ijbiomac.2024.138323_bb0035) 2017; 18 Lueckgen (10.1016/j.ijbiomac.2024.138323_bb0720) 2018; 181 Ma (10.1016/j.ijbiomac.2024.138323_bb0255) 2023; 456 Yang (10.1016/j.ijbiomac.2024.138323_bb0080) 2023; 253 Deng (10.1016/j.ijbiomac.2024.138323_bb0040) 2019; 297 Chen (10.1016/j.ijbiomac.2024.138323_bb0170) 2024; 13 Wang (10.1016/j.ijbiomac.2024.138323_bb0020) 2022; 32 10.1016/j.ijbiomac.2024.138323_bb0690 Zhang (10.1016/j.ijbiomac.2024.138323_bb0795) 2023; 9 Feng (10.1016/j.ijbiomac.2024.138323_bb0030) 2023; 33 Ding (10.1016/j.ijbiomac.2024.138323_bb0110) 2023; 10 Li (10.1016/j.ijbiomac.2024.138323_bb0745) 2021; 330 Upadhyay (10.1016/j.ijbiomac.2024.138323_bb0880) 2022 Sun (10.1016/j.ijbiomac.2024.138323_bb0540) 2019; 160 Zhao (10.1016/j.ijbiomac.2024.138323_bb0975) 2025; 314 Khattak (10.1016/j.ijbiomac.2024.138323_bb0250) 2024; 509 Fukao (10.1016/j.ijbiomac.2024.138323_bb0925) 2020; 8 Deng (10.1016/j.ijbiomac.2024.138323_bb0245) 2020; 12 Li (10.1016/j.ijbiomac.2024.138323_bb0450) 2022; 34 Rumon (10.1016/j.ijbiomac.2024.138323_bb0700) 2022; 12 Chen (10.1016/j.ijbiomac.2024.138323_bb0130) 2020; 396 Guadagno (10.1016/j.ijbiomac.2024.138323_bb0330) 2019; 157 Ji (10.1016/j.ijbiomac.2024.138323_bb0305) 2019; 184 Steinman (10.1016/j.ijbiomac.2024.138323_bb0565) 2021; 7 Wang (10.1016/j.ijbiomac.2024.138323_bb0140) 2023; 30 10.1016/j.ijbiomac.2024.138323_bb0670 10.1016/j.ijbiomac.2024.138323_bb0675 Chang (10.1016/j.ijbiomac.2024.138323_bb0585) 2019; 112 Zhang (10.1016/j.ijbiomac.2024.138323_bb0905) 2021; 201 Cui (10.1016/j.ijbiomac.2024.138323_bb0855) 2023; 300 Ma (10.1016/j.ijbiomac.2024.138323_bb0860) 2020; 165 Chen (10.1016/j.ijbiomac.2024.138323_bb0460) 2021; 45 Gantar (10.1016/j.ijbiomac.2024.138323_bb0970) 2016; 6 Cao (10.1016/j.ijbiomac.2024.138323_bb0800) 2021; 293 10.1016/j.ijbiomac.2024.138323_bb0425 Huang (10.1016/j.ijbiomac.2024.138323_bb0180) 2021; 31 Pan (10.1016/j.ijbiomac.2024.138323_bb0930) 2021; 32 Pishavar (10.1016/j.ijbiomac.2024.138323_bb0125) 2021; 13 Geng (10.1016/j.ijbiomac.2024.138323_bb0155) 2024; 36 Zhang (10.1016/j.ijbiomac.2024.138323_bb0380) 2018; 51 Jiang (10.1016/j.ijbiomac.2024.138323_bb0510) 2021; 273 Halperin-Sternfeld (10.1016/j.ijbiomac.2024.138323_bb0410) 2023; 50 Wolfel (10.1016/j.ijbiomac.2024.138323_bb0470) 2020; 140 Wei (10.1016/j.ijbiomac.2024.138323_bb0455) 2020; 2 Raus (10.1016/j.ijbiomac.2024.138323_bb0830) 2021; 16 Huang (10.1016/j.ijbiomac.2024.138323_bb0150) 2023; 470 10.1016/j.ijbiomac.2024.138323_bb0655 Yuan (10.1016/j.ijbiomac.2024.138323_bb0295) 2024 Wang (10.1016/j.ijbiomac.2024.138323_bb0395) 2018; 6 Diels (10.1016/j.ijbiomac.2024.138323_bb0665) 1928; 460 Wang (10.1016/j.ijbiomac.2024.138323_bb0980) 2024; 280 Filippidi (10.1016/j.ijbiomac.2024.138323_bb0650) 2017; 358 Vuornos (10.1016/j.ijbiomac.2024.138323_bb0075) 2019; 99 He (10.1016/j.ijbiomac.2024.138323_bb0385) 2022; 61 Gong (10.1016/j.ijbiomac.2024.138323_bb0360) 2022; 8 Rumon (10.1016/j.ijbiomac.2024.138323_bb0575) 2022; 14 Li (10.1016/j.ijbiomac.2024.138323_bb0085) 2023; 13 Ghandforoushan (10.1016/j.ijbiomac.2024.138323_bb0115) 2023; 246 Pan (10.1016/j.ijbiomac.2024.138323_bb0355) 2018; 4 Okesola (10.1016/j.ijbiomac.2024.138323_bb0960) 2021; 15 Xie (10.1016/j.ijbiomac.2024.138323_bb0445) 2022; 23 Xue (10.1016/j.ijbiomac.2024.138323_bb0060) 2021; 31 Meng (10.1016/j.ijbiomac.2024.138323_bb0845) 2019; 12 Li (10.1016/j.ijbiomac.2024.138323_bb0935) 2023; 21 Shi (10.1016/j.ijbiomac.2024.138323_bb0220) 2017; 27 Hu (10.1016/j.ijbiomac.2024.138323_bb0350) 2020; 8 Chen (10.1016/j.ijbiomac.2024.138323_bb0010) 2022; 18 Song (10.1016/j.ijbiomac.2024.138323_bb0345) 2020; 32 Dong (10.1016/j.ijbiomac.2024.138323_bb0480) 2024; 16 Wang (10.1016/j.ijbiom |
References_xml | – volume: 27 start-page: 1700591 year: 2017 ident: bb0220 article-title: Self-healing silk fibroin-based hydrogel for bone regeneration: dynamic metal-ligand self-assembly approach publication-title: Adv. Funct. Mater. – volume: 67 start-page: 627 year: 2018 end-page: 649 ident: bb0525 article-title: Dynamic covalent polymer hydrogels and organogels crosslinked through acylhydrazone bonds: synthesis, characterization and applications publication-title: Polym. Int. – volume: 250 year: 2020 ident: bb0205 article-title: Redox and pH dual-responsive injectable hyaluronan hydrogels with shape-recovery and self-healing properties for protein and cell delivery publication-title: Carbohydr. Polym. – volume: 12 start-page: 7453 year: 2022 end-page: 7463 ident: bb0700 article-title: Graphene oxide based crosslinker for simultaneous enhancement of mechanical toughness and self-healing capability of conventional hydrogels publication-title: RSC Adv. – volume: 8 start-page: 3754 year: 2022 end-page: 3764 ident: bb0495 article-title: Injectable and self-healing hydrogel based on chitosan-tannic acid and oxidized hyaluronic acid for wound healing publication-title: ACS Biomater Sci. Eng. – volume: 12 start-page: 1628 year: 2019 end-page: 1639 ident: bb0845 article-title: Autonomous self-healing silk fibroin injectable hydrogels formed via surfactant-free hydrophobic association publication-title: ACS Appl. Mater. Interfaces – volume: 5 start-page: 9141 year: 2017 end-page: 9147 ident: bb0755 article-title: Shear-mediated orientational mineralization of bone apatite on collagen fibrils publication-title: J. Mater. Chem. B – volume: 11 start-page: 32988 year: 2021 end-page: 32995 ident: bb0940 article-title: Highly tough and rapid self-healing dual-physical crosslinking poly(DMAA-co-AM) hydrogel publication-title: RSC Adv. – volume: 12 start-page: 40786 year: 2020 end-page: 40793 ident: bb0640 article-title: Integration of macro-cross-linker and metal coordination: a super stretchable hydrogel with high toughness publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 487 year: 2020 ident: bb0530 article-title: Doubly dynamic hydrogel formed by combining boronate ester and acylhydrazone bonds publication-title: Polymers – volume: 5 start-page: 1800384 year: 2018 ident: bb0440 article-title: Self-healing of polymers via supramolecular chemistry publication-title: Adv. Mater. Interfaces – volume: 31 start-page: 2101303 year: 2021 ident: bb0400 article-title: Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors publication-title: Adv. Funct. Mater. – reference: C. Shao, M. Wang, H. Chang, F. Xu, J. Yang, A self-healing cellulose nanocrystal-poly (ethylene glycol) nanocomposite hydrogel via Diels–Alder click reaction, ACS Sustain. Chem. Eng. 5(7) (2017) 6167–6174. – volume: 224 start-page: 2300228 year: 2023 ident: bb0270 article-title: Self-healable, self-adhesive conductive hydrogels based on integrated multiple interactions for wearable sensing publication-title: Macromol. Chem. Phys. – volume: 153 start-page: 637 year: 2018 end-page: 642 ident: bb0635 article-title: Mechanically strong and tough hydrogels with excellent anti-fatigue, self-healing and reprocessing performance enabled by dynamic metal-coordination chemistry publication-title: Polymer – volume: 14 start-page: 4539 year: 2022 ident: bb0575 article-title: Self-healing hydrogels: development, biomedical applications, and challenges publication-title: Polymers – volume: 12 start-page: 2074 year: 2019 ident: bb0900 article-title: Lactoferrin-hydroxyapatite containing spongy-like hydrogels for bone tissue engineering publication-title: Materials – volume: 153 start-page: 159 year: 2022 end-page: 177 ident: bb0915 article-title: A self-healing, magnetic and injectable biopolymer hydrogel generated by dual cross-linking for drug delivery and bone repair publication-title: Acta Biomater. – volume: 32 start-page: 2159 year: 2021 end-page: 2163 ident: bb0930 article-title: A fast on-demand preparation of injectable self-healing nanocomposite hydrogels for efficient osteoinduction publication-title: Chin. Chem. Lett. – volume: 32 year: 2022 ident: bb0020 article-title: Bone repair biomaterials: a perspective from immunomodulation publication-title: Adv. Funct. Mater. – volume: 23 start-page: 685 year: 2018 end-page: 693 ident: bb0555 article-title: An inter-subunit disulfide bond of artemin acts as a redox switch for its chaperone-like activity publication-title: Cell Stress Chaperones – volume: 15 start-page: 11202 year: 2021 end-page: 11217 ident: bb0960 article-title: De novo design of functional coassembling organic–inorganic hydrogels for hierarchical mineralization and neovascularization publication-title: ACS Nano – volume: 24 start-page: 3345 year: 2023 end-page: 3356 ident: bb0190 article-title: Polysaccharide-based injectable hydrogels with fast gelation and self-strengthening mechanical kinetics for Oral tissue regeneration publication-title: Biomacromolecules – volume: 6 start-page: 497 year: 2018 ident: bb0395 article-title: Rational design of self-healing tough hydrogels: a mini review publication-title: ACS Nano – volume: 13 start-page: 3782 year: 2021 ident: bb0240 article-title: Self-healing hydrogels: preparation, mechanism and advancement in biomedical applications publication-title: Polymers – volume: 457 year: 2023 ident: bb0895 article-title: Conductive self-healing biodegradable hydrogel based on hyaluronic acid-grafted-polyaniline as cell recruitment niches and cell delivery carrier for myogenic differentiation and skeletal muscle regeneration publication-title: Chem. Eng. J. – volume: 396 year: 2020 ident: bb0130 article-title: Sustained release of magnesium ions mediated by injectable self-healing adhesive hydrogel promotes fibrocartilaginous interface regeneration in the rabbit rotator cuff tear model publication-title: Chem. Eng. J. – volume: 465 year: 2023 ident: bb0275 article-title: Robust antifogging coatings with ultra-fast self-healing performances through host-guest strategy publication-title: Chem. Eng. J. – volume: 90 start-page: 1 year: 2019 end-page: 20 ident: bb0365 article-title: Advances in injectable self-healing biomedical hydrogels publication-title: Acta Biomater. – volume: 314 year: 2025 ident: bb0975 article-title: A MnO2 nanosheets doping double crosslinked hydrogel for cartilage defect repair through alleviating inflammation and guiding chondrogenic differentiation publication-title: Biomaterials – volume: 184 year: 2020 ident: bb0580 article-title: Catalyst free self-healable vitrimer/graphene oxide nanocomposites publication-title: Compos. Part B Eng. – volume: 1 start-page: 1350 year: 2019 end-page: 1358 ident: bb0290 article-title: Facile fabrication of biocompatible gelatin-based self-healing hydrogels publication-title: ACS Applied Polymer Materials – volume: 330 start-page: 151 year: 2021 end-page: 160 ident: bb0745 article-title: Advances in biodegradable and injectable hydrogels for biomedical applications publication-title: J. Control. Release – volume: 244 year: 2020 ident: bb0770 article-title: Thermo-irreversible glycol chitosan/hyaluronic acid blend hydrogel for injectable tissue engineering publication-title: Carbohydr. Polym. – volume: 23 start-page: 641 year: 2022 end-page: 660 ident: bb0445 article-title: Recent advances of self-healing polymer materials via supramolecular forces for biomedical applications publication-title: Biomacromolecules – volume: 50 start-page: 11055 year: 2021 end-page: 11097 ident: bb0685 article-title: Trends in the Diels–Alder reaction in polymer chemistry publication-title: Chem. Soc. Rev. – volume: 7 start-page: 5135 year: 2021 end-page: 5143 ident: bb0590 article-title: Antibacterial hydrogel with self-healing property for wound-healing applications publication-title: ACS Biomater Sci. Eng. – volume: 31 start-page: 1900332 year: 2019 ident: bb0950 article-title: 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing publication-title: Adv. Mater. – volume: 27 start-page: 853 year: 2020 end-page: 865 ident: bb0435 article-title: High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose publication-title: Cellulose – volume: 192 year: 2020 ident: bb0660 article-title: Polysaccharide-based fast self-healing ion gel based on acylhydrazone and metal coordination bonds publication-title: Mater. Des. – volume: 118 start-page: 511 year: 2023 end-page: 518 ident: bb0615 article-title: A self-healing hydrogel derived flexible all-solid-state supercapacitors based on dynamic borate bonds publication-title: J. Ind. Eng. Chem. – reference: L. Shi, P. Ding, Y. Wang, Y. Zhang, D. Ossipov, J. Hilborn, Self-Healing Polymeric Hydrogel Formed by Metal–Ligand Coordination Assembly: Design, Fabrication, and Biomedical Applications, Macromol. Rapid Commun. 40(7) (2019) 1800837. – volume: 352 year: 2022 ident: bb0505 article-title: Advances in polysaccharide-based hydrogels: self-healing and electrical conductivity publication-title: J. Mol. Liq. – volume: 105 start-page: 159 year: 2020 end-page: 169 ident: bb0945 article-title: Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery publication-title: Acta Biomater. – volume: 127 start-page: 340 year: 2019 end-page: 348 ident: bb0810 article-title: Covalently polysaccharide-based alginate/chitosan hydrogel embedded alginate microspheres for BSA encapsulation and soft tissue engineering publication-title: Int. J. Biol. Macromol. – volume: 18 year: 2023 ident: bb0135 article-title: Injectable, self-healing poly (amino acid)-hydrogel based on phenylboronate ester bond for osteochondral tissue engineering publication-title: Biomed. Mater. – volume: 10 start-page: 6399 year: 2022 end-page: 6412 ident: bb0485 article-title: Dynamic covalent crosslinked hyaluronic acid hydrogels and nanomaterials for biomedical applications publication-title: Biomater. Sci. – volume: 160 start-page: 246 year: 2019 end-page: 253 ident: bb0540 article-title: Self-healing hydrogels with stimuli responsiveness based on acylhydrazone bonds publication-title: Polymer – volume: 10 start-page: 3929 year: 2023 end-page: 3947 ident: bb0110 article-title: Designing self-healing hydrogels for biomedical applications publication-title: Mater. Horiz. – volume: 8 start-page: 2562 year: 2020 end-page: 2572 ident: bb0760 article-title: Highly aligned hierarchical intrafibrillar mineralization of collagen induced by periodic fluid shear stress publication-title: J. Mater. Chem. B – volume: 470 year: 2023 ident: bb0150 article-title: Harnessing immunomodulation for efficient bone regeneration: bioengineered black phosphorus-incorporated self-healing hydrogel publication-title: Chem. Eng. J. – volume: 8 start-page: 5184 year: 2020 end-page: 5188 ident: bb0925 article-title: Hydrogels toughened by biominerals providing energy-dissipative sacrificial bonds publication-title: J. Mater. Chem. B – volume: 157 start-page: 1 year: 2019 end-page: 13 ident: bb0330 article-title: Self-healing epoxy nanocomposites via reversible hydrogen bonding publication-title: Compos. Part B Eng. – volume: 15 start-page: 966 year: 2023 ident: bb0550 article-title: Granular disulfide-crosslinked hyaluronic hydrogels: a systematic study of reaction conditions on thiol substitution and injectability parameters publication-title: Polymers – volume: 17 start-page: 48 year: 2023 ident: bb0890 article-title: An injectable, self-healing, electroconductive hydrogel loaded with neural stem cells and donepezil for enhancing local therapy effect of spinal cord injury publication-title: J. Biol. Eng. – volume: 7 start-page: 515 year: 2017 end-page: 530 ident: bb0430 article-title: Cross-linked hydrogel for pharmaceutical applications: a review publication-title: Advanced Pharmaceutical Bulletin – volume: 2 start-page: 2541 year: 2020 end-page: 2549 ident: bb0455 article-title: Adhesive, conductive, self-healing, and antibacterial hydrogel based on chitosan–polyoxometalate complexes for wearable strain sensor publication-title: ACS Applied Polymer Materials – volume: 97 start-page: 46 year: 2019 end-page: 73 ident: bb0780 article-title: (photo-) crosslinkable gelatin derivatives for biofabrication applications publication-title: Acta Biomater. – volume: 58 start-page: 696 year: 2019 end-page: 714 ident: bb0645 article-title: The chemistry behind catechol-based adhesion publication-title: Angew. Chem. Int. Ed. – volume: 18 start-page: 316 year: 2017 end-page: 330 ident: bb0035 article-title: Hydrogels for therapeutic delivery: current developments and future directions publication-title: Biomacromolecules – volume: 13 start-page: 2303592 year: 2024 ident: bb0170 article-title: Self-assembled nanocomposite hydrogels as carriers for demineralized bone matrix particles and enhanced bone repair publication-title: Adv. Healthc. Mater. – volume: 33 year: 2023 ident: bb0030 article-title: Structural and functional adaptive artificial bone: materials, fabrications, and properties publication-title: Adv. Funct. Mater. – volume: 15 start-page: 6505 year: 2023 end-page: 6520 ident: bb0335 article-title: Recent advances in self-healing polyurethane based on dynamic covalent bonds combined with other self-healing methods publication-title: Nanoscale – volume: 305 start-page: 2000045 year: 2020 ident: bb0790 article-title: Amylopectin multiple aldehyde crosslinked hydrogel as an injectable and self-healing cell carrier for bone tissue engineering publication-title: Macromolecular Materials and Engineering – volume: 22 start-page: 287 year: 2024 ident: bb0215 article-title: Dynamic hydrogel–metal–organic framework system promotes bone regeneration in periodontitis through controlled drug delivery publication-title: J. Nanobiotechnol. – volume: 61 start-page: 17915 year: 2022 end-page: 17929 ident: bb0385 article-title: Tara tannin-cross-linked, underwater-adhesive, super self-healing, and recyclable gelatin-based conductive hydrogel as a strain sensor publication-title: Ind. Eng. Chem. Res. – volume: 33 start-page: 2304470 year: 2023 ident: bb0265 article-title: Multi-healable, mechanically durable double Cross-linked polyacrylamide electrolyte incorporating hydrophobic interactions for dendrite-free flexible zinc-ion batteries publication-title: Adv. Funct. Mater. – volume: 14 start-page: 21886 year: 2022 end-page: 21905 ident: bb0840 article-title: Degradation-kinetics-controllable and tissue-regeneration-Matchable Photocross-linked alginate hydrogels for bone repair publication-title: ACS Appl. Mater. Interfaces – volume: 4 start-page: 3397 year: 2018 end-page: 3404 ident: bb0355 article-title: Ultraflexible self-healing guar gum-glycerol hydrogel with injectable, antifreeze, and strain-sensitive properties publication-title: Acs Biomaterials Science & Engineering – reference: Y. Liu, S.-h. Hsu, Synthesis and biomedical applications of self-healing hydrogels, Front. Chem. 6 (2018) 449. – volume: 232 year: 2023 ident: bb0070 article-title: One-pot synthesis of injectable self-healing thermoresponsive halloysite nanotube-reinforced nanocomposite hydrogels for tissue engineering publication-title: Appl. Clay Sci. – volume: 256 year: 2024 ident: bb0300 article-title: Antibacterial hyaluronic acid hydrogels with enhanced self-healing properties via multiple dynamic bond crosslinking publication-title: Int. J. Biol. Macromol. – volume: 13 start-page: 16773 year: 2023 end-page: 16788 ident: bb0085 article-title: Self-healing hydrogels for bone defect repair publication-title: RSC Adv. – volume: 50 start-page: 200 year: 2023 end-page: 219 ident: bb0410 article-title: Immunomodulatory fibrous hyaluronic acid-Fmoc-diphenylalanine-based hydrogel induces bone regeneration publication-title: J. Clin. Periodontol. – volume: 86 start-page: 1524 year: 2021 end-page: 1529 ident: bb0695 article-title: Strong, self-healing gelatin hydrogels cross-linked by double dynamic covalent chemistry publication-title: ChemPlusChem – volume: 165 start-page: 1164 year: 2020 end-page: 1174 ident: bb0860 article-title: Synthesis and characterization of injectable self-healing hydrogels based on oxidized alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan publication-title: Int. J. Biol. Macromol. – volume: 14 start-page: 2184 year: 2022 ident: bb0420 article-title: Mechanism of self-healing hydrogels and application in tissue engineering publication-title: Polymers – volume: 254 year: 2021 ident: bb0570 article-title: Hyaluronic acid thiol modified injectable hydrogel: synthesis, characterization, drug release, cellular drug uptake and anticancer activity publication-title: Carbohydr. Polym. – volume: 300 year: 2023 ident: bb0855 article-title: An injectable and self-healing cellulose nanofiber-reinforced alginate hydrogel for bone repair publication-title: Carbohydr. Polym. – volume: 253 year: 2023 ident: bb0080 article-title: Self-healing hydrogels based on biological macromolecules in wound healing: a review publication-title: Int. J. Biol. Macromol. – volume: 16 start-page: 39035 year: 2024 end-page: 39050 ident: bb0480 article-title: Dynamic Cross-linking, self-healing, antibacterial hydrogel for regenerating irregular cranial bone defects publication-title: ACS Appl. Mater. Interfaces – volume: 30 start-page: 2003717 year: 2020 ident: bb0175 article-title: Inspired by Nature: Facile Design of Nanoclay–Organic Hydrogel Bone Sealant with Multifunctional Properties for Robust Bone Regeneration publication-title: Adv. Funct. Mater. – volume: 19 year: 2023 ident: bb0165 article-title: An injectable and self-healing hydrogel with dual physical crosslinking for in-situ bone formation publication-title: Materials Today Bio – volume: 359 start-page: 72 year: 2018 end-page: 76 ident: bb0340 article-title: Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking publication-title: Science – volume: 2 start-page: 253 year: 2017 end-page: 259 ident: bb0765 article-title: In situ assembly of fibrinogen/hyaluronic acid hydrogel via knob-hole interaction for 3D cellular engineering publication-title: Bioactive Materials – volume: 23 start-page: 842 year: 2022 ident: bb0870 article-title: Irreversible and self-healing electrically conductive hydrogels made of bio-based polymers publication-title: Int. J. Mol. Sci. – volume: 191 year: 2023 ident: bb0875 article-title: Strong, self-healing, shape memory PAA-PANI/PVA/PDA/AOP conductive hydrogels with interpenetrating network and hydrogen bond interaction publication-title: Eur. Polym. J. – volume: 15 start-page: 7583 year: 2019 end-page: 7589 ident: bb0595 article-title: Injectable and fast self-healing protein hydrogels publication-title: Soft Matter – volume: 10 start-page: 318 year: 2022 end-page: 353 ident: bb0015 article-title: Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives publication-title: Biomater. Sci. – volume: 31 year: 2021 ident: bb0050 article-title: Scaffold fabrication technologies and structure/function properties in bone tissue engineering publication-title: Adv. Funct. Mater. – volume: 246 year: 2022 ident: bb0225 article-title: Dynamic protein hydrogel with supramolecularly enveloped kartogenin promotes cartilage regeneration through mitochondrial activation publication-title: Compos. Part B Eng. – volume: 9 start-page: 2785 year: 2021 end-page: 2801 ident: bb0820 article-title: Applications of oxidized alginate in regenerative medicine publication-title: J. Mater. Chem. B – reference: D.-q. Li, S.-y. Wang, Y.-j. Meng, Z.-w. Guo, M.-m. Cheng, J. Li, Fabrication of self-healing pectin/chitosan hybrid hydrogel via Diels-Alder reactions for drug delivery with high swelling property, pH-responsiveness, and cytocompatibility, Carbohydr. Polym. 268 (2021) 118244. – volume: 460 start-page: 98 year: 1928 end-page: 122 ident: bb0665 article-title: Synthesen in der hydroaromatischen Reihe publication-title: Justus Liebigs Ann. Chem. – volume: 413 year: 2021 ident: bb0160 article-title: A bioinspired mineral-organic composite hydrogel as a self-healable and mechanically robust bone graft for promoting bone regeneration publication-title: Chem. Eng. J. – volume: 509 year: 2024 ident: bb0250 article-title: Self-healing hydrogels as injectable implants: advances in translational wound healing publication-title: Coord. Chem. Rev. – volume: 29 start-page: 569 year: 2020 end-page: 579 ident: bb0610 article-title: Self-healing quadruple shape memory hydrogels based on coordination, borate bonds and temperature with tunable mechanical properties publication-title: Iran. Polym. J. – volume: 293 year: 2021 ident: bb0800 article-title: A simple polysaccharide based injectable hydrogel compositing nano-hydroxyapatite for bone tissue engineering publication-title: Mater. Lett. – volume: 273 year: 2021 ident: bb0510 article-title: Highly self-healable and injectable cellulose hydrogels via rapid hydrazone linkage for drug delivery and 3D cell culture publication-title: Carbohydr. Polym. – volume: 178 year: 2019 ident: bb0920 article-title: High strength PLGA/hydroxyapatite composites with tunable surface structure using PLGA direct grafting method for orthopedic implants publication-title: Compos. Part B Eng. – volume: 184 year: 2019 ident: bb0305 article-title: Alkaline monomer for mechanical enhanced and self-healing hydrogels based on dynamic borate ester bonds publication-title: Polymer – volume: 1 start-page: 1769 year: 2019 end-page: 1777 ident: bb0465 article-title: Autonomous chitosan-based self-healing hydrogel formed through noncovalent interactions publication-title: ACS Applied Polymer Materials – volume: 250 year: 2020 ident: bb0490 article-title: Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials publication-title: Carbohydr. Polym. – volume: 9 start-page: 4583 year: 2023 end-page: 4596 ident: bb0795 article-title: Bifunctional hydrogel-integrated 3D printed scaffold for repairing infected bone defects publication-title: ACS Biomater Sci. Eng. – volume: 146 year: 2022 ident: bb0740 article-title: Progress in self-healing hydrogels and their applications in bone tissue engineering, biomaterials publication-title: Advances – volume: 12 start-page: 1224 year: 2020 end-page: 1246 ident: bb0245 article-title: Self-healing conductive hydrogels: preparation, properties and applications publication-title: Nanoscale – volume: 18 start-page: 267 year: 2022 end-page: 283 ident: bb0120 article-title: Synergistic osteogenic and angiogenic effects of KP and QK peptides incorporated with an injectable and self-healing hydrogel for efficient bone regeneration publication-title: Bioactive Materials – volume: 13 start-page: 24095 year: 2021 end-page: 24105 ident: bb0065 article-title: Ultrafast fabrication of self-healing and injectable carboxymethyl chitosan hydrogel dressing for wound healing publication-title: ACS Appl. Mater. Interfaces – volume: 34 start-page: 2203049 year: 2022 ident: bb0450 article-title: Recyclable, healable, and tough ionogels insensitive to crack propagation publication-title: Adv. Mater. – volume: 303 start-page: 1800144 year: 2018 ident: bb0605 article-title: An “off-the-shelf” shape memory hydrogel based on the dynamic borax-diol Ester bonds publication-title: Macromol. Mater. Eng. – volume: 567 start-page: 139 year: 2019 end-page: 149 ident: bb0630 article-title: A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor publication-title: Colloids Surf. A Physicochem. Eng. Asp. – reference: S. Thambidurai, K. Pandiselvi, Polyaniline/natural polymer composites and nanocomposites, polyaniline blends, composites, and nanocomposites, Elsevier2018, pp. 235–256. – volume: 475 year: 2023 ident: bb0310 article-title: Designing dynamic metal-coordinated hydrophobically associated mechanically robust and stretchable hydrogels for versatile, multifunctional applications in strain sensing, actuation and flexible supercapacitors publication-title: Chem. Eng. J. – volume: 208 year: 2024 ident: bb0315 article-title: Injectable, rapid self-healing, antioxidant and antibacterial nanocellulose-tannin hydrogels formed via metal-ligand coordination for drug delivery and wound dressing publication-title: Ind. Crop. Prod. – volume: 5 start-page: 3739 year: 2017 end-page: 3748 ident: bb0195 article-title: An injectable and self-healing hydrogel with covalent cross-linking in vivo for cranial bone repair publication-title: J. Mater. Chem. B – reference: M. Gregoritza, V. Messmann, K. Abstiens, F.P. Brandl, A.M. Goepferich, Controlled antibody release from degradable Thermoresponsive hydrogels cross-linked by Diels–Alder chemistry, Biomacromolecules 18(8) (2017) 2410–2418. – volume: 297 start-page: 60 year: 2019 end-page: 70 ident: bb0040 article-title: Injectable thermosensitive hydrogel systems based on functional PEG/PCL block polymer for local drug delivery publication-title: J. Control. Release – volume: 123 start-page: 834 year: 2022 end-page: 873 ident: bb0100 article-title: Self-healing injectable hydrogels for tissue regeneration publication-title: Chem. Rev. – volume: 8 start-page: 3633 year: 2022 end-page: 3643 ident: bb0360 article-title: Antifreezing, ionically conductive, transparent, and antidrying carboxymethyl chitosan self-healing hydrogels as multifunctional sensors publication-title: Acs Biomaterials Science & Engineering – volume: 14 year: 2022 ident: bb0910 article-title: In-situ mineralized homogeneous collagen-based scaffolds for potential guided bone regeneration publication-title: Biofabrication – volume: 487 year: 2024 ident: bb0200 article-title: Decoupling stiffness and toughness of self-healing hydrogels for complex tissue regeneration via 3D bioprinting publication-title: Chem. Eng. J. – start-page: 1 year: 2024 end-page: 7 ident: bb0295 article-title: High-strength self-healing hydrogels based on boronate-diol complexation cross-linking with good bioavailability publication-title: J. Dispers. Sci. Technol. – volume: 7 start-page: 169 year: 2021 ident: bb0565 article-title: Instantaneous Degelling Thermoresponsive hydrogel publication-title: Gels – volume: 7 start-page: 4876 year: 2019 end-page: 4926 ident: bb0705 article-title: Preparation, characterization and properties of intrinsic self-healing elastomers publication-title: J. Mater. Chem. B – volume: 280 year: 2024 ident: bb0980 article-title: Biomimetic dually cross-linked injectable poly(l-glutamic acid) based nanofiber composite hydrogels with self-healing, osteogenic and angiogenic properties for bone regeneration publication-title: Compos. Part B Eng. – volume: 7 start-page: 216 year: 2021 ident: bb0095 article-title: Self-healing mechanism and conductivity of the hydrogel flexible sensors: a review publication-title: Gels – volume: 39 start-page: 1800121 year: 2018 ident: bb0545 article-title: Self-healing Polycaprolactone networks through thermo-induced reversible disulfide bond formation publication-title: Macromol. Rapid Commun. – volume: 202 start-page: 55 year: 2022 end-page: 67 ident: bb0500 article-title: Fabrication of oxidized sodium alginate-collagen heterogeneous bilayer barrier membrane with osteogenesis-promoting ability publication-title: Int. J. Biol. Macromol. – volume: 221 start-page: 1900320 year: 2020 ident: bb0390 article-title: A novel double-network, self-healing hydrogel based on hydrogen bonding and hydrophobic effect publication-title: Macromolecular Chemistry and Physics – start-page: 533 year: 2022 end-page: 554 ident: bb0880 article-title: Nanomaterials in tissue engineering: applications and challenges publication-title: Advances in Nanotechnology-Based Drug Delivery Systems – volume: 16 start-page: 280 year: 2021 end-page: 306 ident: bb0830 article-title: Alginate and alginate composites for biomedical applications publication-title: Asian Journal of Pharmaceutical Sciences – volume: 31 start-page: 2009432 year: 2021 ident: bb0060 article-title: Recent advances in design of functional biocompatible hydrogels for bone tissue engineering publication-title: Adv. Funct. Mater. – volume: 33 start-page: 2528 year: 2022 end-page: 2541 ident: bb0520 article-title: Double dynamic bonds tough hydrogel with high self-healing properties based on acylhydrazone bonds and borate bonds publication-title: Polym. Adv. Technol. – volume: 32 start-page: 1901244 year: 2020 ident: bb0345 article-title: High-performance polymeric materials through hydrogen-bond cross-linking publication-title: Adv. Mater. – volume: 18 start-page: 1356 year: 2017 end-page: 1364 ident: bb0620 article-title: Facile access to multisensitive and self-healing hydrogels with reversible and dynamic boronic ester and disulfide linkages publication-title: Biomacromolecules – volume: 15 start-page: 20761 year: 2023 end-page: 20773 ident: bb0805 article-title: Engineered injectable cell-laden chitin/chitosan hydrogel with adhesion and biodegradability for Calvarial defect regeneration publication-title: ACS Appl. Mater. Interfaces – volume: 12 start-page: 4395 year: 2021 ident: bb0865 article-title: Self-healing polyurethane-elastomer with mechanical tunability for multiple biomedical applications in vivo publication-title: Nat. Commun. – reference: S.M. Morozova, Recent advances in hydrogels via Diels–Alder crosslinking: design and applications, Gels 9(2) (2023) 102. – volume: 5 start-page: 1302 year: 2023 end-page: 1311 ident: bb0260 article-title: Self-healing polyurethane elastomers with high mechanical properties based on synergistically thermo-reversible and quadruple hydrogen bonds publication-title: ACS Applied Polymer Materials – volume: 13 start-page: 2680 year: 2021 ident: bb0125 article-title: Multifunctional and self-healable intelligent hydrogels for cancer drug delivery and promoting tissue regeneration in vivo publication-title: Polymers – volume: 31 start-page: 2009189 year: 2021 ident: bb0180 article-title: Noncompressible hemostasis and bone regeneration induced by an absorbable bioadhesive self-healing hydrogel publication-title: Adv. Funct. Mater. – volume: 9 start-page: 137 year: 2017 ident: bb0045 article-title: pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications publication-title: Polymers – volume: 363 year: 2024 ident: bb0280 article-title: Temperature induced self-healing properties of alginate gelatin hydrogels publication-title: Mater. Lett. – volume: 9 start-page: 5730 year: 2021 end-page: 5739 ident: bb0600 article-title: Hierarchically reversible crosslinking polymeric hydrogels with highly efficient self-healing, robust mechanical properties, and double-driven shape memory behavior publication-title: J. Mater. Chem. A – volume: 358 start-page: 502 year: 2017 end-page: 505 ident: bb0650 article-title: Toughening elastomers using mussel-inspired iron-catechol complexes publication-title: Science – reference: J. Xu, Y. Liu, S.-h. Hsu, Hydrogels based on Schiff base linkages for biomedical applications, Molecules 24(16) (2019) 3005. – volume: 22 start-page: 312 year: 2023 end-page: 324 ident: bb0105 article-title: Enhancing cartilage repair with optimized supramolecular hydrogel-based scaffold and pulsed electromagnetic field publication-title: Bioactive Materials – reference: Z. Wang, Y. Ren, Y. Zhu, L. Hao, Y. Chen, G. An, H. Wu, X. Shi, C. Mao, A Rapidly Self-Healing Host–Guest Supramolecular Hydrogel with High Mechanical Strength and Excellent Biocompatibility, Angew. Chem. Int. Ed. 57(29) (2018) 9008–9012. – volume: 12 year: 2020 ident: bb0750 article-title: Self-healing biomaterials: the next generation is nano publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. – volume: 30 start-page: 73 year: 2023 end-page: 84 ident: bb0140 article-title: Hematoma-like dynamic hydrogelation through natural glycopeptide molecular recognition for infected bone fracture repair publication-title: Bioactive Materials – volume: 45 start-page: 314 year: 2021 end-page: 320 ident: bb0460 article-title: Self-healing hydrogel sensors with multiple shape memory properties for human motion monitoring publication-title: New J. Chem. – volume: 338 year: 2021 ident: bb0560 article-title: Citric acid promotes disulfide bond formation of whey protein isolate in non-acidic aqueous system publication-title: Food Chem. – volume: 36 start-page: 287 year: 2024 end-page: 300 ident: bb0155 article-title: Regulation of rheumatoid arthritis microenvironment via a self-healing injectable hydrogel for improved inflammation elimination and bone repair publication-title: Bioactive Materials – volume: 201 year: 2021 ident: bb0905 article-title: 3D printed bone tissue regenerative PLA/HA scaffolds with comprehensive performance optimizations publication-title: Materials & Design – volume: 29 start-page: 140 year: 2021 end-page: 148 ident: bb0625 article-title: Preparation of self-healable and spinnable hydrogel by dynamic boronate ester bond from hyperbranched polyglycerol and boronic acid-containing polymer publication-title: Macromol. Res. – volume: 10 start-page: 2206450 year: 2023 ident: bb0965 article-title: A mechanically reinforced super bone glue makes a leap in hard tissue strong adhesion and augmented bone regeneration publication-title: Adv. Sci. – volume: 15 start-page: 1065 year: 2023 ident: bb0405 article-title: Role of hydrophobic associations in self-healing hydrogels based on amphiphilic polysaccharides publication-title: Polymers – volume: 19 start-page: 264 year: 2021 ident: bb0825 article-title: Preparation of alginate-based biomaterials and their applications in biomedicine publication-title: Mar. Drugs – volume: 604 year: 2021 ident: bb0680 article-title: Potential use of the Diels-Alder reaction in biomedical and nanomedicine applications publication-title: Int. J. Pharm. – volume: 10 start-page: rbad054 year: 2023 ident: bb0210 article-title: Phosphoserine enhanced cu-doped bioactive glass dynamic dual-network hydrogel for craniofacial bone defect repair, regenerative publication-title: Biomaterials – volume: 362 start-page: 548 year: 2019 end-page: 560 ident: bb0725 article-title: Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing publication-title: Chem. Eng. J. – volume: 184 year: 2023 ident: bb0535 article-title: Fabrication of thermo and pH-dual sensitive hydrogels with optimized physiochemical properties via host-guest interactions and acylhydrazone dynamic bonding publication-title: React. Funct. Polym. – volume: 197 year: 2023 ident: bb0055 article-title: A versatile GelMA composite hydrogel: designing principles, delivery forms and biomedical applications publication-title: Eur. Polym. J. – volume: 227 year: 2023 ident: bb0145 article-title: Engineering mussel-inspired multifunctional nanocomposite hydrogels to orchestrate osteoimmune microenvironment and promote bone healing publication-title: Materials & Design – volume: 112 start-page: 822 year: 2019 end-page: 831 ident: bb0585 article-title: A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds publication-title: Eur. Polym. J. – volume: 21 start-page: 1 year: 2023 end-page: 20 ident: bb0935 article-title: Self-healing hybrid hydrogels with sustained bioactive components release for guided bone regeneration publication-title: J. Nanobiotechnol. – volume: 478 year: 2023 ident: bb0185 article-title: Biomimetic and spatiotemporally sequential hydrogel delivery system with self-healing and adhesion: triple growth factor for bone defect repair publication-title: Chem. Eng. J. – volume: 19 year: 2019 ident: bb0090 article-title: Self-healing supramolecular hydrogels for tissue engineering applications publication-title: Macromol. Biosci. – volume: 13 start-page: 7371 year: 2017 end-page: 7380 ident: bb0515 article-title: pH-switchable and self-healable hydrogels based on ketone type acylhydrazone dynamic covalent bonds publication-title: Soft Matter – volume: 18 start-page: 15 year: 2022 end-page: 25 ident: bb0010 article-title: The horizon of bone organoid: a perspective on construction and application publication-title: Bioactive Materials – volume: 84 start-page: 180 year: 2019 end-page: 193 ident: bb0730 article-title: Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration publication-title: Acta Biomater. – volume: 126535 year: 2023 ident: bb0320 article-title: A review on the impacts of metal/metal nanoparticles on characteristics of hydrogels: special focus on carbohydrate polymers publication-title: Int. J. Biol. Macromol. – volume: 246 year: 2023 ident: bb0115 article-title: Injectable hydrogels for cartilage and bone tissue regeneration: a review publication-title: Int. J. Biol. Macromol. – volume: 20 start-page: 314 year: 2022 ident: bb0735 article-title: Marine biopolymers as bioactive functional ingredients of electrospun nanofibrous scaffolds for biomedical applications publication-title: Mar. Drugs – volume: 8 start-page: 2084 year: 2020 end-page: 2101 ident: bb0350 article-title: Rational design and latest advances of polysaccharide-based hydrogels for wound healing publication-title: Biomater. Sci. – volume: 23 start-page: 2552 year: 2022 end-page: 2561 ident: bb0375 article-title: Temperature-responsive aldehyde hydrogels with injectable, self-healing, and tunable mechanical properties publication-title: Biomacromolecules – volume: 242 year: 2023 ident: bb0955 article-title: Self-healing interpenetrating network hydrogel based on GelMA/alginate/nano-clay publication-title: Int. J. Biol. Macromol. – volume: 99 start-page: 905 year: 2019 end-page: 918 ident: bb0075 article-title: Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels publication-title: Mater. Sci. Eng. C – volume: 28 start-page: 1857 year: 2017 end-page: 1874 ident: bb0710 article-title: The design, mechanism and biomedical application of self-healing hydrogels publication-title: Chin. Chem. Lett. – volume: 269 year: 2021 ident: bb0715 article-title: Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering publication-title: Carbohydr. Polym. – reference: P. Li, H. Zong, G. Li, Z. Shi, X. Yu, K. Zhang, P. Xia, S. Yan, J. Yin, Building a Poly (amino acid)/Chitosan-Based Self-Healing Hydrogel via Host–Guest Interaction for Cartilage Regeneration, ACS Biomater Sci. Eng. 9(8) (2023) 4855–4866. – volume: 561 start-page: 325 year: 2019 end-page: 331 ident: bb0370 article-title: Self-healing hydroxypropyl guar gum/poly (acrylamide-co-3-acrylamidophenyl boronic acid) composite hydrogels with yield phenomenon based on dynamic PBA ester bonds and H-bond publication-title: Colloids Surf. A Physicochem. Eng. Asp. – volume: 476 year: 2023 ident: bb0325 article-title: Realization of dual crosslinked network robust, high toughness self-healing polyurethane elastomers for electronics applications publication-title: Chem. Eng. J. – volume: 13 start-page: 47 year: 2022 ident: bb0835 article-title: 3D printing of calcium phosphate/calcium sulfate with alginate/cellulose-based scaffolds for bone regeneration: multilayer fabrication and characterization publication-title: Journal of Functional Biomaterials – volume: 365 start-page: 30 year: 2019 end-page: 39 ident: bb0785 article-title: Injectable biodegradable gelatin-methacrylate/β-tricalcium phosphate composite for the repair of bone defects publication-title: Chem. Eng. J. – volume: 51 start-page: 8136 year: 2018 end-page: 8146 ident: bb0380 article-title: A tough and stiff hydrogel with tunable water content and mechanical properties based on the synergistic effect of hydrogen bonding and hydrophobic interaction publication-title: Macromolecules – volume: 108 start-page: 4742 year: 2008 ident: bb0005 article-title: Calcium phosphate-based osteoinductive materials publication-title: Chem. Rev. – volume: 31 start-page: 5576 year: 2019 end-page: 5583 ident: bb0285 article-title: Self-healing hydrogel with a double dynamic network comprising imine and borate ester linkages publication-title: Chem. Mater. – volume: 140 year: 2020 ident: bb0470 article-title: Imine bonding self-repair hydrogels after periodate-triggered breakage of their cross-links publication-title: Eur. Polym. J. – volume: 6 start-page: 69156 year: 2016 end-page: 69166 ident: bb0970 article-title: Injectable and self-healing dynamic hydrogel containing bioactive glass nanoparticles as a potential biomaterial for bone regeneration publication-title: RSC Adv. – volume: 456 year: 2023 ident: bb0255 article-title: A self-repairing transparent film with reprocessable, ultra-high strength and outstanding elasticity based on interlocking hydrogen bonds and reversible topological networks publication-title: Chem. Eng. J. – volume: 13 start-page: 2499 year: 2022 ident: bb0775 article-title: An instantly fixable and self-adaptive scaffold for skull regeneration by autologous stem cell recruitment and angiogenesis publication-title: Nat. Commun. – volume: 13 start-page: 237 year: 2024 ident: bb0025 article-title: Bone tissue engineering and nanotechnology: a promising combination for bone regeneration publication-title: Biology – volume: 181 start-page: 189 year: 2018 end-page: 198 ident: bb0720 article-title: Hydrolytically-degradable click-crosslinked alginate hydrogels publication-title: Biomaterials – volume: 8 start-page: 8171 year: 2020 end-page: 8188 ident: bb0815 article-title: Multicomponent polysaccharide alginate-based bioinks publication-title: J. Mater. Chem. B – volume: 19 start-page: 3 year: 2018 end-page: 21 ident: bb0850 article-title: Oxidized alginate-based hydrogels for tissue engineering applications: a review publication-title: Biomacromolecules – volume: 244 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0770 article-title: Thermo-irreversible glycol chitosan/hyaluronic acid blend hydrogel for injectable tissue engineering publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116432 – volume: 460 start-page: 98 issue: 1 year: 1928 ident: 10.1016/j.ijbiomac.2024.138323_bb0665 article-title: Synthesen in der hydroaromatischen Reihe publication-title: Justus Liebigs Ann. Chem. doi: 10.1002/jlac.19284600106 – volume: 4 start-page: 3397 issue: 9 year: 2018 ident: 10.1016/j.ijbiomac.2024.138323_bb0355 article-title: Ultraflexible self-healing guar gum-glycerol hydrogel with injectable, antifreeze, and strain-sensitive properties publication-title: Acs Biomaterials Science & Engineering doi: 10.1021/acsbiomaterials.8b00657 – volume: 12 start-page: 1224 issue: 3 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0245 article-title: Self-healing conductive hydrogels: preparation, properties and applications publication-title: Nanoscale doi: 10.1039/C9NR09283H – ident: 10.1016/j.ijbiomac.2024.138323_bb0675 doi: 10.1021/acs.biomac.7b00587 – volume: 15 start-page: 7583 issue: 38 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0595 article-title: Injectable and fast self-healing protein hydrogels publication-title: Soft Matter doi: 10.1039/C9SM01543D – volume: 362 start-page: 548 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0725 article-title: Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.028 – volume: 58 start-page: 696 issue: 3 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0645 article-title: The chemistry behind catechol-based adhesion publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201801063 – volume: 24 start-page: 3345 issue: 7 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0190 article-title: Polysaccharide-based injectable hydrogels with fast gelation and self-strengthening mechanical kinetics for Oral tissue regeneration publication-title: Biomacromolecules doi: 10.1021/acs.biomac.3c00379 – volume: 34 start-page: 2203049 issue: 28 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0450 article-title: Recyclable, healable, and tough ionogels insensitive to crack propagation publication-title: Adv. Mater. doi: 10.1002/adma.202203049 – volume: 33 issue: 23 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0030 article-title: Structural and functional adaptive artificial bone: materials, fabrications, and properties publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202214726 – volume: 250 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0490 article-title: Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116922 – volume: 11 start-page: 32988 issue: 52 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0940 article-title: Highly tough and rapid self-healing dual-physical crosslinking poly(DMAA-co-AM) hydrogel publication-title: RSC Adv. doi: 10.1039/D1RA05896G – volume: 358 start-page: 502 issue: 6362 year: 2017 ident: 10.1016/j.ijbiomac.2024.138323_bb0650 article-title: Toughening elastomers using mussel-inspired iron-catechol complexes publication-title: Science doi: 10.1126/science.aao0350 – volume: 184 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0305 article-title: Alkaline monomer for mechanical enhanced and self-healing hydrogels based on dynamic borate ester bonds publication-title: Polymer doi: 10.1016/j.polymer.2019.121882 – volume: 478 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0185 article-title: Biomimetic and spatiotemporally sequential hydrogel delivery system with self-healing and adhesion: triple growth factor for bone defect repair publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.147095 – volume: 5 start-page: 9141 issue: 46 year: 2017 ident: 10.1016/j.ijbiomac.2024.138323_bb0755 article-title: Shear-mediated orientational mineralization of bone apatite on collagen fibrils publication-title: J. Mater. Chem. B doi: 10.1039/C7TB02223A – volume: 256 year: 2024 ident: 10.1016/j.ijbiomac.2024.138323_bb0300 article-title: Antibacterial hyaluronic acid hydrogels with enhanced self-healing properties via multiple dynamic bond crosslinking publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.128320 – ident: 10.1016/j.ijbiomac.2024.138323_bb0475 doi: 10.3390/molecules24163005 – volume: 50 start-page: 11055 issue: 19 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0685 article-title: Trends in the Diels–Alder reaction in polymer chemistry publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01382J – volume: 165 start-page: 1164 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0860 article-title: Synthesis and characterization of injectable self-healing hydrogels based on oxidized alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2020.10.004 – volume: 14 start-page: 4539 issue: 21 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0575 article-title: Self-healing hydrogels: development, biomedical applications, and challenges publication-title: Polymers doi: 10.3390/polym14214539 – volume: 19 start-page: 3 issue: 1 year: 2018 ident: 10.1016/j.ijbiomac.2024.138323_bb0850 article-title: Oxidized alginate-based hydrogels for tissue engineering applications: a review publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b01331 – volume: 21 start-page: 1 issue: 1 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0935 article-title: Self-healing hybrid hydrogels with sustained bioactive components release for guided bone regeneration publication-title: J. Nanobiotechnol. – volume: 10 start-page: 3929 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0110 article-title: Designing self-healing hydrogels for biomedical applications publication-title: Mater. Horiz. doi: 10.1039/D3MH00891F – volume: 18 start-page: 15 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0010 article-title: The horizon of bone organoid: a perspective on construction and application publication-title: Bioactive Materials doi: 10.1016/j.bioactmat.2022.01.048 – volume: 108 start-page: 4742 issue: 11 year: 2008 ident: 10.1016/j.ijbiomac.2024.138323_bb0005 article-title: Calcium phosphate-based osteoinductive materials publication-title: Chem. Rev. doi: 10.1021/cr800427g – volume: 9 start-page: 137 issue: 4 year: 2017 ident: 10.1016/j.ijbiomac.2024.138323_bb0045 article-title: pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications publication-title: Polymers doi: 10.3390/polym9040137 – volume: 1 start-page: 1350 issue: 6 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0290 article-title: Facile fabrication of biocompatible gelatin-based self-healing hydrogels publication-title: ACS Applied Polymer Materials doi: 10.1021/acsapm.9b00143 – volume: 359 start-page: 72 issue: 6371 year: 2018 ident: 10.1016/j.ijbiomac.2024.138323_bb0340 article-title: Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking publication-title: Science doi: 10.1126/science.aam7588 – volume: 9 start-page: 2785 issue: 12 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0820 article-title: Applications of oxidized alginate in regenerative medicine publication-title: J. Mater. Chem. B doi: 10.1039/D0TB02691C – volume: 18 start-page: 267 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0120 article-title: Synergistic osteogenic and angiogenic effects of KP and QK peptides incorporated with an injectable and self-healing hydrogel for efficient bone regeneration publication-title: Bioactive Materials doi: 10.1016/j.bioactmat.2022.02.011 – volume: 300 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0855 article-title: An injectable and self-healing cellulose nanofiber-reinforced alginate hydrogel for bone repair publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2022.120243 – volume: 31 start-page: 1900332 issue: 23 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0950 article-title: 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing publication-title: Adv. Mater. doi: 10.1002/adma.201900332 – volume: 208 year: 2024 ident: 10.1016/j.ijbiomac.2024.138323_bb0315 article-title: Injectable, rapid self-healing, antioxidant and antibacterial nanocellulose-tannin hydrogels formed via metal-ligand coordination for drug delivery and wound dressing publication-title: Ind. Crop. Prod. doi: 10.1016/j.indcrop.2023.117876 – volume: 476 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0325 article-title: Realization of dual crosslinked network robust, high toughness self-healing polyurethane elastomers for electronics applications publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.146536 – volume: 13 start-page: 16773 issue: 25 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0085 article-title: Self-healing hydrogels for bone defect repair publication-title: RSC Adv. doi: 10.1039/D3RA01700A – volume: 192 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0660 article-title: Polysaccharide-based fast self-healing ion gel based on acylhydrazone and metal coordination bonds publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108723 – volume: 15 start-page: 20761 issue: 17 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0805 article-title: Engineered injectable cell-laden chitin/chitosan hydrogel with adhesion and biodegradability for Calvarial defect regeneration publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.3c02108 – volume: 127 start-page: 340 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0810 article-title: Covalently polysaccharide-based alginate/chitosan hydrogel embedded alginate microspheres for BSA encapsulation and soft tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.01.065 – volume: 338 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0560 article-title: Citric acid promotes disulfide bond formation of whey protein isolate in non-acidic aqueous system publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.127819 – volume: 5 start-page: 3739 issue: 20 year: 2017 ident: 10.1016/j.ijbiomac.2024.138323_bb0195 article-title: An injectable and self-healing hydrogel with covalent cross-linking in vivo for cranial bone repair publication-title: J. Mater. Chem. B doi: 10.1039/C7TB00776K – volume: 293 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0800 article-title: A simple polysaccharide based injectable hydrogel compositing nano-hydroxyapatite for bone tissue engineering publication-title: Mater. Lett. doi: 10.1016/j.matlet.2021.129755 – volume: 14 start-page: 2184 issue: 11 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0420 article-title: Mechanism of self-healing hydrogels and application in tissue engineering publication-title: Polymers doi: 10.3390/polym14112184 – start-page: 533 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0880 article-title: Nanomaterials in tissue engineering: applications and challenges publication-title: Advances in Nanotechnology-Based Drug Delivery Systems doi: 10.1016/B978-0-323-88450-1.00018-1 – volume: 90 start-page: 1 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0365 article-title: Advances in injectable self-healing biomedical hydrogels publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.03.057 – volume: 160 start-page: 246 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0540 article-title: Self-healing hydrogels with stimuli responsiveness based on acylhydrazone bonds publication-title: Polymer doi: 10.1016/j.polymer.2018.11.051 – volume: 509 year: 2024 ident: 10.1016/j.ijbiomac.2024.138323_bb0250 article-title: Self-healing hydrogels as injectable implants: advances in translational wound healing publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2024.215790 – volume: 153 start-page: 159 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0915 article-title: A self-healing, magnetic and injectable biopolymer hydrogel generated by dual cross-linking for drug delivery and bone repair publication-title: Acta Biomater. doi: 10.1016/j.actbio.2022.09.036 – volume: 15 start-page: 6505 issue: 14 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0335 article-title: Recent advances in self-healing polyurethane based on dynamic covalent bonds combined with other self-healing methods publication-title: Nanoscale doi: 10.1039/D2NR07110J – volume: 13 start-page: 3782 issue: 21 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0240 article-title: Self-healing hydrogels: preparation, mechanism and advancement in biomedical applications publication-title: Polymers doi: 10.3390/polym13213782 – start-page: 1 year: 2024 ident: 10.1016/j.ijbiomac.2024.138323_bb0295 article-title: High-strength self-healing hydrogels based on boronate-diol complexation cross-linking with good bioavailability publication-title: J. Dispers. Sci. Technol. doi: 10.1080/01932691.2024.2340674 – volume: 2 start-page: 253 issue: 4 year: 2017 ident: 10.1016/j.ijbiomac.2024.138323_bb0765 article-title: In situ assembly of fibrinogen/hyaluronic acid hydrogel via knob-hole interaction for 3D cellular engineering publication-title: Bioactive Materials doi: 10.1016/j.bioactmat.2017.09.002 – volume: 253 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0080 article-title: Self-healing hydrogels based on biological macromolecules in wound healing: a review publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.127612 – volume: 22 start-page: 312 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0105 article-title: Enhancing cartilage repair with optimized supramolecular hydrogel-based scaffold and pulsed electromagnetic field publication-title: Bioactive Materials doi: 10.1016/j.bioactmat.2022.10.010 – volume: 33 start-page: 2304470 issue: 43 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0265 article-title: Multi-healable, mechanically durable double Cross-linked polyacrylamide electrolyte incorporating hydrophobic interactions for dendrite-free flexible zinc-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202304470 – volume: 8 start-page: 2562 issue: 13 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0760 article-title: Highly aligned hierarchical intrafibrillar mineralization of collagen induced by periodic fluid shear stress publication-title: J. Mater. Chem. B doi: 10.1039/C9TB02643F – volume: 97 start-page: 46 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0780 article-title: (photo-) crosslinkable gelatin derivatives for biofabrication applications publication-title: Acta Biomater. doi: 10.1016/j.actbio.2019.07.035 – volume: 12 start-page: 2074 issue: 13 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0900 article-title: Lactoferrin-hydroxyapatite containing spongy-like hydrogels for bone tissue engineering publication-title: Materials doi: 10.3390/ma12132074 – volume: 18 start-page: 1356 issue: 4 year: 2017 ident: 10.1016/j.ijbiomac.2024.138323_bb0620 article-title: Facile access to multisensitive and self-healing hydrogels with reversible and dynamic boronic ester and disulfide linkages publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b00089 – volume: 330 start-page: 151 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0745 article-title: Advances in biodegradable and injectable hydrogels for biomedical applications publication-title: J. Control. Release doi: 10.1016/j.jconrel.2020.12.008 – volume: 45 start-page: 314 issue: 1 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0460 article-title: Self-healing hydrogel sensors with multiple shape memory properties for human motion monitoring publication-title: New J. Chem. doi: 10.1039/D0NJ04923A – volume: 23 start-page: 641 issue: 3 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0445 article-title: Recent advances of self-healing polymer materials via supramolecular forces for biomedical applications publication-title: Biomacromolecules doi: 10.1021/acs.biomac.1c01647 – volume: 32 start-page: 1901244 issue: 18 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0345 article-title: High-performance polymeric materials through hydrogen-bond cross-linking publication-title: Adv. Mater. doi: 10.1002/adma.201901244 – volume: 184 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0535 article-title: Fabrication of thermo and pH-dual sensitive hydrogels with optimized physiochemical properties via host-guest interactions and acylhydrazone dynamic bonding publication-title: React. Funct. Polym. doi: 10.1016/j.reactfunctpolym.2023.105513 – volume: 567 start-page: 139 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0630 article-title: A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2019.01.034 – volume: 396 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0130 article-title: Sustained release of magnesium ions mediated by injectable self-healing adhesive hydrogel promotes fibrocartilaginous interface regeneration in the rabbit rotator cuff tear model publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.125335 – volume: 13 start-page: 2499 issue: 1 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0775 article-title: An instantly fixable and self-adaptive scaffold for skull regeneration by autologous stem cell recruitment and angiogenesis publication-title: Nat. Commun. doi: 10.1038/s41467-022-30243-5 – volume: 6 start-page: 69156 issue: 73 year: 2016 ident: 10.1016/j.ijbiomac.2024.138323_bb0970 article-title: Injectable and self-healing dynamic hydrogel containing bioactive glass nanoparticles as a potential biomaterial for bone regeneration publication-title: RSC Adv. doi: 10.1039/C6RA17327F – volume: 232 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0070 article-title: One-pot synthesis of injectable self-healing thermoresponsive halloysite nanotube-reinforced nanocomposite hydrogels for tissue engineering publication-title: Appl. Clay Sci. doi: 10.1016/j.clay.2022.106812 – volume: 22 start-page: 287 issue: 1 year: 2024 ident: 10.1016/j.ijbiomac.2024.138323_bb0215 article-title: Dynamic hydrogel–metal–organic framework system promotes bone regeneration in periodontitis through controlled drug delivery publication-title: J. Nanobiotechnol. doi: 10.1186/s12951-024-02555-9 – volume: 30 start-page: 2003717 issue: 43 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0175 article-title: Inspired by Nature: Facile Design of Nanoclay–Organic Hydrogel Bone Sealant with Multifunctional Properties for Robust Bone Regeneration publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202003717 – volume: 201 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0905 article-title: 3D printed bone tissue regenerative PLA/HA scaffolds with comprehensive performance optimizations publication-title: Materials & Design doi: 10.1016/j.matdes.2021.109490 – volume: 10 start-page: 2206450 issue: 11 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0965 article-title: A mechanically reinforced super bone glue makes a leap in hard tissue strong adhesion and augmented bone regeneration publication-title: Adv. Sci. doi: 10.1002/advs.202206450 – volume: 27 start-page: 853 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0435 article-title: High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose publication-title: Cellulose doi: 10.1007/s10570-019-02797-z – volume: 365 start-page: 30 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0785 article-title: Injectable biodegradable gelatin-methacrylate/β-tricalcium phosphate composite for the repair of bone defects publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.020 – volume: 146 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0740 article-title: Progress in self-healing hydrogels and their applications in bone tissue engineering, biomaterials publication-title: Advances – volume: 352 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0505 article-title: Advances in polysaccharide-based hydrogels: self-healing and electrical conductivity publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2022.118712 – volume: 31 start-page: 2009189 issue: 22 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0180 article-title: Noncompressible hemostasis and bone regeneration induced by an absorbable bioadhesive self-healing hydrogel publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009189 – volume: 50 start-page: 200 issue: 2 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0410 article-title: Immunomodulatory fibrous hyaluronic acid-Fmoc-diphenylalanine-based hydrogel induces bone regeneration publication-title: J. Clin. Periodontol. doi: 10.1111/jcpe.13725 – volume: 23 start-page: 2552 issue: 6 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0375 article-title: Temperature-responsive aldehyde hydrogels with injectable, self-healing, and tunable mechanical properties publication-title: Biomacromolecules doi: 10.1021/acs.biomac.2c00260 – volume: 8 start-page: 3754 issue: 9 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0495 article-title: Injectable and self-healing hydrogel based on chitosan-tannic acid and oxidized hyaluronic acid for wound healing publication-title: ACS Biomater Sci. Eng. doi: 10.1021/acsbiomaterials.2c00321 – volume: 112 start-page: 822 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0585 article-title: A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2018.11.005 – volume: 18 start-page: 316 issue: 2 year: 2017 ident: 10.1016/j.ijbiomac.2024.138323_bb0035 article-title: Hydrogels for therapeutic delivery: current developments and future directions publication-title: Biomacromolecules doi: 10.1021/acs.biomac.6b01604 – volume: 224 start-page: 2300228 issue: 24 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0270 article-title: Self-healable, self-adhesive conductive hydrogels based on integrated multiple interactions for wearable sensing publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.202300228 – ident: 10.1016/j.ijbiomac.2024.138323_bb0885 doi: 10.1016/B978-0-12-809551-5.00009-6 – volume: 123 start-page: 834 issue: 2 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0100 article-title: Self-healing injectable hydrogels for tissue regeneration publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00179 – volume: 13 start-page: 2303592 issue: 10 year: 2024 ident: 10.1016/j.ijbiomac.2024.138323_bb0170 article-title: Self-assembled nanocomposite hydrogels as carriers for demineralized bone matrix particles and enhanced bone repair publication-title: Adv. Healthc. Mater. doi: 10.1002/adhm.202303592 – volume: 12 start-page: 7453 issue: 12 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0700 article-title: Graphene oxide based crosslinker for simultaneous enhancement of mechanical toughness and self-healing capability of conventional hydrogels publication-title: RSC Adv. doi: 10.1039/D2RA00122E – volume: 13 start-page: 24095 issue: 20 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0065 article-title: Ultrafast fabrication of self-healing and injectable carboxymethyl chitosan hydrogel dressing for wound healing publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c02089 – volume: 12 start-page: 4395 issue: 1 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0865 article-title: Self-healing polyurethane-elastomer with mechanical tunability for multiple biomedical applications in vivo publication-title: Nat. Commun. doi: 10.1038/s41467-021-24680-x – volume: 184 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0580 article-title: Catalyst free self-healable vitrimer/graphene oxide nanocomposites publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2019.107647 – volume: 7 start-page: 5135 issue: 11 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0590 article-title: Antibacterial hydrogel with self-healing property for wound-healing applications publication-title: ACS Biomater Sci. Eng. doi: 10.1021/acsbiomaterials.1c00719 – volume: 269 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0715 article-title: Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118311 – volume: 153 start-page: 637 year: 2018 ident: 10.1016/j.ijbiomac.2024.138323_bb0635 article-title: Mechanically strong and tough hydrogels with excellent anti-fatigue, self-healing and reprocessing performance enabled by dynamic metal-coordination chemistry publication-title: Polymer doi: 10.1016/j.polymer.2018.08.063 – volume: 31 issue: 21 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0050 article-title: Scaffold fabrication technologies and structure/function properties in bone tissue engineering publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202010609 – volume: 14 issue: 4 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0910 article-title: In-situ mineralized homogeneous collagen-based scaffolds for potential guided bone regeneration publication-title: Biofabrication doi: 10.1088/1758-5090/ac8dc7 – volume: 363 year: 2024 ident: 10.1016/j.ijbiomac.2024.138323_bb0280 article-title: Temperature induced self-healing properties of alginate gelatin hydrogels publication-title: Mater. Lett. doi: 10.1016/j.matlet.2024.136315 – volume: 280 year: 2024 ident: 10.1016/j.ijbiomac.2024.138323_bb0980 article-title: Biomimetic dually cross-linked injectable poly(l-glutamic acid) based nanofiber composite hydrogels with self-healing, osteogenic and angiogenic properties for bone regeneration publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2024.111492 – volume: 61 start-page: 17915 issue: 49 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0385 article-title: Tara tannin-cross-linked, underwater-adhesive, super self-healing, and recyclable gelatin-based conductive hydrogel as a strain sensor publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.2c03253 – volume: 12 start-page: 1628 issue: 1 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0845 article-title: Autonomous self-healing silk fibroin injectable hydrogels formed via surfactant-free hydrophobic association publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b19415 – volume: 273 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0510 article-title: Highly self-healable and injectable cellulose hydrogels via rapid hydrazone linkage for drug delivery and 3D cell culture publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2021.118547 – volume: 12 issue: 6 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0750 article-title: Self-healing biomaterials: the next generation is nano publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. doi: 10.1002/wnan.1641 – volume: 33 start-page: 2528 issue: 8 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0520 article-title: Double dynamic bonds tough hydrogel with high self-healing properties based on acylhydrazone bonds and borate bonds publication-title: Polym. Adv. Technol. doi: 10.1002/pat.5707 – volume: 7 start-page: 4876 issue: 32 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0705 article-title: Preparation, characterization and properties of intrinsic self-healing elastomers publication-title: J. Mater. Chem. B doi: 10.1039/C9TB00831D – volume: 470 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0150 article-title: Harnessing immunomodulation for efficient bone regeneration: bioengineered black phosphorus-incorporated self-healing hydrogel publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.144117 – volume: 8 start-page: 2084 issue: 8 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0350 article-title: Rational design and latest advances of polysaccharide-based hydrogels for wound healing publication-title: Biomater. Sci. doi: 10.1039/D0BM00055H – volume: 8 start-page: 8171 issue: 36 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0815 article-title: Multicomponent polysaccharide alginate-based bioinks publication-title: J. Mater. Chem. B doi: 10.1039/D0TB01005G – volume: 84 start-page: 180 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0730 article-title: Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration publication-title: Acta Biomater. doi: 10.1016/j.actbio.2018.12.008 – volume: 8 start-page: 3633 issue: 8 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0360 article-title: Antifreezing, ionically conductive, transparent, and antidrying carboxymethyl chitosan self-healing hydrogels as multifunctional sensors publication-title: Acs Biomaterials Science & Engineering doi: 10.1021/acsbiomaterials.2c00496 – ident: 10.1016/j.ijbiomac.2024.138323_bb0415 doi: 10.1002/anie.201804400 – volume: 221 start-page: 1900320 issue: 3 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0390 article-title: A novel double-network, self-healing hydrogel based on hydrogen bonding and hydrophobic effect publication-title: Macromolecular Chemistry and Physics doi: 10.1002/macp.201900320 – ident: 10.1016/j.ijbiomac.2024.138323_bb0230 doi: 10.1016/j.carbpol.2021.118244 – volume: 178 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0920 article-title: High strength PLGA/hydroxyapatite composites with tunable surface structure using PLGA direct grafting method for orthopedic implants publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2019.107449 – volume: 13 start-page: 2680 issue: 16 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0125 article-title: Multifunctional and self-healable intelligent hydrogels for cancer drug delivery and promoting tissue regeneration in vivo publication-title: Polymers doi: 10.3390/polym13162680 – volume: 15 start-page: 966 issue: 4 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0550 article-title: Granular disulfide-crosslinked hyaluronic hydrogels: a systematic study of reaction conditions on thiol substitution and injectability parameters publication-title: Polymers doi: 10.3390/polym15040966 – volume: 5 start-page: 1800384 issue: 17 year: 2018 ident: 10.1016/j.ijbiomac.2024.138323_bb0440 article-title: Self-healing of polymers via supramolecular chemistry publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201800384 – volume: 27 start-page: 1700591 issue: 37 year: 2017 ident: 10.1016/j.ijbiomac.2024.138323_bb0220 article-title: Self-healing silk fibroin-based hydrogel for bone regeneration: dynamic metal-ligand self-assembly approach publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201700591 – volume: 475 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0310 article-title: Designing dynamic metal-coordinated hydrophobically associated mechanically robust and stretchable hydrogels for versatile, multifunctional applications in strain sensing, actuation and flexible supercapacitors publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.146160 – volume: 6 start-page: 497 year: 2018 ident: 10.1016/j.ijbiomac.2024.138323_bb0395 article-title: Rational design of self-healing tough hydrogels: a mini review publication-title: ACS Nano – volume: 15 start-page: 1065 issue: 5 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0405 article-title: Role of hydrophobic associations in self-healing hydrogels based on amphiphilic polysaccharides publication-title: Polymers doi: 10.3390/polym15051065 – volume: 1 start-page: 1769 issue: 7 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0465 article-title: Autonomous chitosan-based self-healing hydrogel formed through noncovalent interactions publication-title: ACS Applied Polymer Materials doi: 10.1021/acsapm.9b00317 – volume: 19 start-page: 264 issue: 5 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0825 article-title: Preparation of alginate-based biomaterials and their applications in biomedicine publication-title: Mar. Drugs doi: 10.3390/md19050264 – volume: 456 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0255 article-title: A self-repairing transparent film with reprocessable, ultra-high strength and outstanding elasticity based on interlocking hydrogen bonds and reversible topological networks publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.141137 – volume: 9 start-page: 5730 issue: 9 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0600 article-title: Hierarchically reversible crosslinking polymeric hydrogels with highly efficient self-healing, robust mechanical properties, and double-driven shape memory behavior publication-title: J. Mater. Chem. A doi: 10.1039/D0TA10850B – volume: 31 start-page: 2009432 issue: 19 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0060 article-title: Recent advances in design of functional biocompatible hydrogels for bone tissue engineering publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202009432 – volume: 7 start-page: 515 issue: 4 year: 2017 ident: 10.1016/j.ijbiomac.2024.138323_bb0430 article-title: Cross-linked hydrogel for pharmaceutical applications: a review publication-title: Advanced Pharmaceutical Bulletin doi: 10.15171/apb.2017.064 – volume: 305 start-page: 2000045 issue: 4 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0790 article-title: Amylopectin multiple aldehyde crosslinked hydrogel as an injectable and self-healing cell carrier for bone tissue engineering publication-title: Macromolecular Materials and Engineering doi: 10.1002/mame.202000045 – volume: 303 start-page: 1800144 issue: 7 year: 2018 ident: 10.1016/j.ijbiomac.2024.138323_bb0605 article-title: An “off-the-shelf” shape memory hydrogel based on the dynamic borax-diol Ester bonds publication-title: Macromol. Mater. Eng. doi: 10.1002/mame.201800144 – volume: 14 start-page: 21886 issue: 19 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0840 article-title: Degradation-kinetics-controllable and tissue-regeneration-Matchable Photocross-linked alginate hydrogels for bone repair publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.2c01739 – volume: 23 start-page: 685 year: 2018 ident: 10.1016/j.ijbiomac.2024.138323_bb0555 article-title: An inter-subunit disulfide bond of artemin acts as a redox switch for its chaperone-like activity publication-title: Cell Stress Chaperones doi: 10.1007/s12192-018-0880-7 – volume: 15 start-page: 11202 issue: 7 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0960 article-title: De novo design of functional coassembling organic–inorganic hydrogels for hierarchical mineralization and neovascularization publication-title: ACS Nano doi: 10.1021/acsnano.0c09814 – volume: 28 start-page: 1857 issue: 9 year: 2017 ident: 10.1016/j.ijbiomac.2024.138323_bb0710 article-title: The design, mechanism and biomedical application of self-healing hydrogels publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2017.05.007 – volume: 31 start-page: 2101303 issue: 24 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0400 article-title: Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202101303 – volume: 32 start-page: 2159 issue: 7 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0930 article-title: A fast on-demand preparation of injectable self-healing nanocomposite hydrogels for efficient osteoinduction publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.12.001 – volume: 297 start-page: 60 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0040 article-title: Injectable thermosensitive hydrogel systems based on functional PEG/PCL block polymer for local drug delivery publication-title: J. Control. Release doi: 10.1016/j.jconrel.2019.01.026 – volume: 19 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0165 article-title: An injectable and self-healing hydrogel with dual physical crosslinking for in-situ bone formation publication-title: Materials Today Bio doi: 10.1016/j.mtbio.2023.100558 – volume: 13 start-page: 7371 issue: 40 year: 2017 ident: 10.1016/j.ijbiomac.2024.138323_bb0515 article-title: pH-switchable and self-healable hydrogels based on ketone type acylhydrazone dynamic covalent bonds publication-title: Soft Matter doi: 10.1039/C7SM00916J – ident: 10.1016/j.ijbiomac.2024.138323_bb0690 doi: 10.3390/gels9020102 – volume: 13 start-page: 47 issue: 2 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0835 article-title: 3D printing of calcium phosphate/calcium sulfate with alginate/cellulose-based scaffolds for bone regeneration: multilayer fabrication and characterization publication-title: Journal of Functional Biomaterials doi: 10.3390/jfb13020047 – volume: 487 year: 2024 ident: 10.1016/j.ijbiomac.2024.138323_bb0200 article-title: Decoupling stiffness and toughness of self-healing hydrogels for complex tissue regeneration via 3D bioprinting publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2024.150551 – volume: 8 start-page: 5184 issue: 24 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0925 article-title: Hydrogels toughened by biominerals providing energy-dissipative sacrificial bonds publication-title: J. Mater. Chem. B doi: 10.1039/D0TB00833H – volume: 9 start-page: 4583 issue: 8 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0795 article-title: Bifunctional hydrogel-integrated 3D printed scaffold for repairing infected bone defects publication-title: ACS Biomater Sci. Eng. doi: 10.1021/acsbiomaterials.3c00564 – volume: 10 start-page: rbad054 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0210 article-title: Phosphoserine enhanced cu-doped bioactive glass dynamic dual-network hydrogel for craniofacial bone defect repair, regenerative publication-title: Biomaterials – volume: 202 start-page: 55 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0500 article-title: Fabrication of oxidized sodium alginate-collagen heterogeneous bilayer barrier membrane with osteogenesis-promoting ability publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.12.155 – volume: 465 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0275 article-title: Robust antifogging coatings with ultra-fast self-healing performances through host-guest strategy publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2023.142868 – volume: 604 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0680 article-title: Potential use of the Diels-Alder reaction in biomedical and nanomedicine applications publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.120727 – volume: 246 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0115 article-title: Injectable hydrogels for cartilage and bone tissue regeneration: a review publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.125674 – volume: 197 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0055 article-title: A versatile GelMA composite hydrogel: designing principles, delivery forms and biomedical applications publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2023.112370 – volume: 23 start-page: 842 issue: 2 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0870 article-title: Irreversible and self-healing electrically conductive hydrogels made of bio-based polymers publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms23020842 – volume: 18 issue: 5 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0135 article-title: Injectable, self-healing poly (amino acid)-hydrogel based on phenylboronate ester bond for osteochondral tissue engineering publication-title: Biomed. Mater. doi: 10.1088/1748-605X/ace39b – volume: 140 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0470 article-title: Imine bonding self-repair hydrogels after periodate-triggered breakage of their cross-links publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2020.110038 – volume: 16 start-page: 280 issue: 3 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0830 article-title: Alginate and alginate composites for biomedical applications publication-title: Asian Journal of Pharmaceutical Sciences doi: 10.1016/j.ajps.2020.10.001 – volume: 86 start-page: 1524 issue: 11 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0695 article-title: Strong, self-healing gelatin hydrogels cross-linked by double dynamic covalent chemistry publication-title: ChemPlusChem doi: 10.1002/cplu.202100474 – volume: 227 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0145 article-title: Engineering mussel-inspired multifunctional nanocomposite hydrogels to orchestrate osteoimmune microenvironment and promote bone healing publication-title: Materials & Design doi: 10.1016/j.matdes.2023.111705 – volume: 29 start-page: 569 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0610 article-title: Self-healing quadruple shape memory hydrogels based on coordination, borate bonds and temperature with tunable mechanical properties publication-title: Iran. Polym. J. doi: 10.1007/s13726-020-00821-9 – volume: 12 start-page: 40786 issue: 36 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0640 article-title: Integration of macro-cross-linker and metal coordination: a super stretchable hydrogel with high toughness publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c11167 – volume: 10 start-page: 318 issue: 2 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0015 article-title: Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives publication-title: Biomater. Sci. doi: 10.1039/D1BM01294K – volume: 39 start-page: 1800121 issue: 20 year: 2018 ident: 10.1016/j.ijbiomac.2024.138323_bb0545 article-title: Self-healing Polycaprolactone networks through thermo-induced reversible disulfide bond formation publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201800121 – volume: 20 start-page: 314 issue: 5 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0735 article-title: Marine biopolymers as bioactive functional ingredients of electrospun nanofibrous scaffolds for biomedical applications publication-title: Mar. Drugs doi: 10.3390/md20050314 – volume: 31 start-page: 5576 issue: 15 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0285 article-title: Self-healing hydrogel with a double dynamic network comprising imine and borate ester linkages publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b01301 – volume: 7 start-page: 169 issue: 4 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0565 article-title: Instantaneous Degelling Thermoresponsive hydrogel publication-title: Gels doi: 10.3390/gels7040169 – volume: 30 start-page: 73 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0140 article-title: Hematoma-like dynamic hydrogelation through natural glycopeptide molecular recognition for infected bone fracture repair publication-title: Bioactive Materials doi: 10.1016/j.bioactmat.2023.07.018 – volume: 12 start-page: 487 issue: 2 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0530 article-title: Doubly dynamic hydrogel formed by combining boronate ester and acylhydrazone bonds publication-title: Polymers doi: 10.3390/polym12020487 – volume: 2 start-page: 2541 issue: 7 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0455 article-title: Adhesive, conductive, self-healing, and antibacterial hydrogel based on chitosan–polyoxometalate complexes for wearable strain sensor publication-title: ACS Applied Polymer Materials doi: 10.1021/acsapm.0c00150 – ident: 10.1016/j.ijbiomac.2024.138323_bb0235 doi: 10.3389/fchem.2018.00449 – volume: 126535 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0320 article-title: A review on the impacts of metal/metal nanoparticles on characteristics of hydrogels: special focus on carbohydrate polymers publication-title: Int. J. Biol. Macromol. – volume: 51 start-page: 8136 issue: 20 year: 2018 ident: 10.1016/j.ijbiomac.2024.138323_bb0380 article-title: A tough and stiff hydrogel with tunable water content and mechanical properties based on the synergistic effect of hydrogen bonding and hydrophobic interaction publication-title: Macromolecules doi: 10.1021/acs.macromol.8b01496 – volume: 254 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0570 article-title: Hyaluronic acid thiol modified injectable hydrogel: synthesis, characterization, drug release, cellular drug uptake and anticancer activity publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.117286 – volume: 105 start-page: 159 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0945 article-title: Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery publication-title: Acta Biomater. doi: 10.1016/j.actbio.2020.01.021 – volume: 246 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0225 article-title: Dynamic protein hydrogel with supramolecularly enveloped kartogenin promotes cartilage regeneration through mitochondrial activation publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2022.110257 – volume: 157 start-page: 1 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0330 article-title: Self-healing epoxy nanocomposites via reversible hydrogen bonding publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2018.08.082 – volume: 67 start-page: 627 issue: 6 year: 2018 ident: 10.1016/j.ijbiomac.2024.138323_bb0525 article-title: Dynamic covalent polymer hydrogels and organogels crosslinked through acylhydrazone bonds: synthesis, characterization and applications publication-title: Polym. Int. doi: 10.1002/pi.5554 – volume: 413 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0160 article-title: A bioinspired mineral-organic composite hydrogel as a self-healable and mechanically robust bone graft for promoting bone regeneration publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.127512 – volume: 457 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0895 article-title: Conductive self-healing biodegradable hydrogel based on hyaluronic acid-grafted-polyaniline as cell recruitment niches and cell delivery carrier for myogenic differentiation and skeletal muscle regeneration publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.141110 – volume: 10 start-page: 6399 issue: 22 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0485 article-title: Dynamic covalent crosslinked hyaluronic acid hydrogels and nanomaterials for biomedical applications publication-title: Biomater. Sci. doi: 10.1039/D2BM01154A – volume: 314 year: 2025 ident: 10.1016/j.ijbiomac.2024.138323_bb0975 article-title: A MnO2 nanosheets doping double crosslinked hydrogel for cartilage defect repair through alleviating inflammation and guiding chondrogenic differentiation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2024.122875 – volume: 191 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0875 article-title: Strong, self-healing, shape memory PAA-PANI/PVA/PDA/AOP conductive hydrogels with interpenetrating network and hydrogen bond interaction publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2023.112034 – volume: 32 issue: 51 year: 2022 ident: 10.1016/j.ijbiomac.2024.138323_bb0020 article-title: Bone repair biomaterials: a perspective from immunomodulation publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202208639 – volume: 181 start-page: 189 year: 2018 ident: 10.1016/j.ijbiomac.2024.138323_bb0720 article-title: Hydrolytically-degradable click-crosslinked alginate hydrogels publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.07.031 – volume: 36 start-page: 287 year: 2024 ident: 10.1016/j.ijbiomac.2024.138323_bb0155 article-title: Regulation of rheumatoid arthritis microenvironment via a self-healing injectable hydrogel for improved inflammation elimination and bone repair publication-title: Bioactive Materials doi: 10.1016/j.bioactmat.2024.03.002 – volume: 242 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0955 article-title: Self-healing interpenetrating network hydrogel based on GelMA/alginate/nano-clay publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2023.124962 – volume: 99 start-page: 905 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0075 article-title: Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.02.035 – volume: 7 start-page: 216 issue: 4 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0095 article-title: Self-healing mechanism and conductivity of the hydrogel flexible sensors: a review publication-title: Gels doi: 10.3390/gels7040216 – ident: 10.1016/j.ijbiomac.2024.138323_bb0655 doi: 10.1002/marc.201800837 – volume: 19 issue: 1 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0090 article-title: Self-healing supramolecular hydrogels for tissue engineering applications publication-title: Macromol. Biosci. doi: 10.1002/mabi.201800313 – ident: 10.1016/j.ijbiomac.2024.138323_bb0425 doi: 10.1021/acsbiomaterials.2c01547 – ident: 10.1016/j.ijbiomac.2024.138323_bb0670 doi: 10.1021/acssuschemeng.7b01060 – volume: 16 start-page: 39035 issue: 30 year: 2024 ident: 10.1016/j.ijbiomac.2024.138323_bb0480 article-title: Dynamic Cross-linking, self-healing, antibacterial hydrogel for regenerating irregular cranial bone defects publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.4c07057 – volume: 118 start-page: 511 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0615 article-title: A self-healing hydrogel derived flexible all-solid-state supercapacitors based on dynamic borate bonds publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2022.11.034 – volume: 250 year: 2020 ident: 10.1016/j.ijbiomac.2024.138323_bb0205 article-title: Redox and pH dual-responsive injectable hyaluronan hydrogels with shape-recovery and self-healing properties for protein and cell delivery publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2020.116979 – volume: 17 start-page: 48 issue: 1 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0890 article-title: An injectable, self-healing, electroconductive hydrogel loaded with neural stem cells and donepezil for enhancing local therapy effect of spinal cord injury publication-title: J. Biol. Eng. doi: 10.1186/s13036-023-00368-2 – volume: 13 start-page: 237 issue: 4 year: 2024 ident: 10.1016/j.ijbiomac.2024.138323_bb0025 article-title: Bone tissue engineering and nanotechnology: a promising combination for bone regeneration publication-title: Biology doi: 10.3390/biology13040237 – volume: 5 start-page: 1302 issue: 2 year: 2023 ident: 10.1016/j.ijbiomac.2024.138323_bb0260 article-title: Self-healing polyurethane elastomers with high mechanical properties based on synergistically thermo-reversible and quadruple hydrogen bonds publication-title: ACS Applied Polymer Materials doi: 10.1021/acsapm.2c01849 – volume: 561 start-page: 325 year: 2019 ident: 10.1016/j.ijbiomac.2024.138323_bb0370 article-title: Self-healing hydroxypropyl guar gum/poly (acrylamide-co-3-acrylamidophenyl boronic acid) composite hydrogels with yield phenomenon based on dynamic PBA ester bonds and H-bond publication-title: Colloids Surf. A Physicochem. Eng. Asp. doi: 10.1016/j.colsurfa.2018.10.071 – volume: 29 start-page: 140 issue: 2 year: 2021 ident: 10.1016/j.ijbiomac.2024.138323_bb0625 article-title: Preparation of self-healable and spinnable hydrogel by dynamic boronate ester bond from hyperbranched polyglycerol and boronic acid-containing polymer publication-title: Macromol. Res. doi: 10.1007/s13233-021-9016-5 |
SSID | ssj0006518 |
Score | 2.4740782 |
SecondaryResourceType | review_article |
Snippet | Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 138323 |
SubjectTerms | Animals biocompatibility biocompatible materials Biocompatible Materials - chemistry Biocompatible Materials - pharmacology Bone and Bones - drug effects bone formation Bone Regeneration - drug effects Bone repair bones Humans Hydrogel hydrogels Hydrogels - chemistry Hydrogels - pharmacology Hydrogels - therapeutic use neoplasms Osteogenesis - drug effects resection Self-healing Tissue Engineering tissue repair Wound Healing - drug effects |
Title | A review of self-healing hydrogels for bone repair and regeneration: Materials, mechanisms, and applications |
URI | https://dx.doi.org/10.1016/j.ijbiomac.2024.138323 https://www.ncbi.nlm.nih.gov/pubmed/39645113 https://www.proquest.com/docview/3146569090 https://www.proquest.com/docview/3165873944 |
Volume | 287 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGGBBvCmPykiMpE1iJ8FsVQUqIJhAYrP8hFSQVm0ZWPjt3OXBYwAGNsu6KKfvLnfn3MOEHGUGfDTD1L_nacCNV4FmxgUJatOJ9onJsDn5-iYd3vHL--S-RQZNLwyWVda2v7LppbWud3o1mr1JnvewLAncE8MhXZg-xo5yzjPU8u7bZ5lHmpT_-JA4QOovXcKjbj7CJneFowxj3o3gtBaznxzUTwFo6YjOV8lKHUHSfsXkGmm5Yp0sDZqL2zbIU59WDSl07OnMPfkAo0FwUfTx1U7HD_AyCqEq1ePCAeVE5VOqCgvLh3IGNYrqlF6reaWcx_TZYXtwPnuGNRJ-TXpvkrvzs9vBMKgvVQgM4yfzwMFHq2ykIsEjY1NvUxUKBYcmOGLzRDCmjRGKWR5DbJh6EKTQQsPBjDnrUu3ZFlkogL8drIqCjZRrr0LLnQ2FC2NltBeJYrHLwjbpNUjKSTU7QzZFZSPZYC8Re1lh3yaiAVx-0wIJBv7PZw8bCUkAHPMeqnDjl5lkEQ6FE6EIf6OBUCzDLuE22a7E-8Ez4IBT3NjuP7jbI8sx3hxc_rzZJwvz6Ys7gHBmrjulvnbIYv_ianjzDt3l9Tg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LTttAcETDgV4qSktJoWWReqyJ7V3bLLcoKgqP5AQSt9U-wRE4URIO_fvO-IHoAXrobbWalUcz43nsPBbgR2HRRnNK_QeRR8IGHRlufZSRNJ2YkNmCmpMn03x8Iy5us9sNGHW9MFRW2er-RqfX2rrdGbTUHCzKckBlSWieOA3povRx8Q42aTpV1oPN4fnlePqskPOsvuYj-IgOvGgUnh2XM-pz1zTNMBXHCQZsKX_NRr3mg9a26GwbPrROJBs2eH6EDV_twNaoe7vtEzwMWdOTwuaBrfxDiMghRCvF7n-75fwOP8bQW2VmXnmEXOhyyXTlcHlXj6Embp2yiV438vmTPXrqEC5Xj7gmwJd5789wc_brejSO2ncVIsvFyTry-N9ql-hEisS6PLhcx1Jj3IRRtsgk58ZaqbkTKbqHeUBeSiMNxmbcO5-bwHehVyF-e1QYhRu5MEHHTngXSx-n2pogM81TX8R9GHSUVItmfIbq6spmqqO9ItqrhvZ9kB3B1V-CoFDH__PsUcchhQSn1Ieu_PxppXhCc-FkLOO3YNAbK6hRuA9fGvY-44x0oEFu_Ot_YHcIW-PryZW6Op9e7sP7lB4Sru9yDqC3Xj75b-jdrM33Vnr_AENI9-k |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+self-healing+hydrogels+for+bone+repair+and+regeneration%3A+Materials%2C+mechanisms%2C+and+applications&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Li%2C+Bo&rft.au=Li%2C+Chenchen&rft.au=Yan%2C+Ziyi&rft.au=Yang%2C+Xiaoling&rft.date=2025-01-01&rft.issn=0141-8130&rft.volume=287+p.138323-&rft_id=info:doi/10.1016%2Fj.ijbiomac.2024.138323&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon |