A review of self-healing hydrogels for bone repair and regeneration: Materials, mechanisms, and applications

Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreakin...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of biological macromolecules Vol. 287; p. 138323
Main Authors Li, Bo, Li, Chenchen, Yan, Ziyi, Yang, Xiaoling, Xiao, Wenqian, Zhang, Dawei, Liu, Zhongning, Liao, Xiaoling
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreaking advancement in the field of biomaterials, displaying remarkable ability to regenerate damaged connections after partial severing, thus offering a promising solution for bone defect repair. This review first presents a comprehensive overview of the progress made in the design and preparation of these hydrogels, focusing on the self-healing mechanisms based on physical non-covalent interactions and dynamic chemical covalent bonds. Subsequently, the applications of self-healing hydrogels including natural polymers, synthetic polymers, and nano-hybrid materials, are discussed in detail, emphasizing their mechanisms in promoting bone tissue regeneration. Finally, the review addresses current challenges as well as future prospects for the use of hydrogels in bone repair and regeneration, identifying osteogenic properties, mechanical performance, and long-term biocompatibility as key areas for further improvement. In summary, this paper provides an in-depth analysis of recent advances in self-healing hydrogels for bone repair and regeneration, underscoring their immense potential for clinical application.
AbstractList Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreaking advancement in the field of biomaterials, displaying remarkable ability to regenerate damaged connections after partial severing, thus offering a promising solution for bone defect repair. This review first presents a comprehensive overview of the progress made in the design and preparation of these hydrogels, focusing on the self-healing mechanisms based on physical non-covalent interactions and dynamic chemical covalent bonds. Subsequently, the applications of self-healing hydrogels including natural polymers, synthetic polymers, and nano-hybrid materials, are discussed in detail, emphasizing their mechanisms in promoting bone tissue regeneration. Finally, the review addresses current challenges as well as future prospects for the use of hydrogels in bone repair and regeneration, identifying osteogenic properties, mechanical performance, and long-term biocompatibility as key areas for further improvement. In summary, this paper provides an in-depth analysis of recent advances in self-healing hydrogels for bone repair and regeneration, underscoring their immense potential for clinical application.
Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreaking advancement in the field of biomaterials, displaying remarkable ability to regenerate damaged connections after partial severing, thus offering a promising solution for bone defect repair. This review first presents a comprehensive overview of the progress made in the design and preparation of these hydrogels, focusing on the self-healing mechanisms based on physical non-covalent interactions and dynamic chemical covalent bonds. Subsequently, the applications of self-healing hydrogels including natural polymers, synthetic polymers, and nano-hybrid materials, are discussed in detail, emphasizing their mechanisms in promoting bone tissue regeneration. Finally, the review addresses current challenges as well as future prospects for the use of hydrogels in bone repair and regeneration, identifying osteogenic properties, mechanical performance, and long-term biocompatibility as key areas for further improvement. In summary, this paper provides an in-depth analysis of recent advances in self-healing hydrogels for bone repair and regeneration, underscoring their immense potential for clinical application.Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent need to develop new biomaterials capable of repairing a wide array of damage and defects in bone tissue. Self-healing hydrogels, a groundbreaking advancement in the field of biomaterials, displaying remarkable ability to regenerate damaged connections after partial severing, thus offering a promising solution for bone defect repair. This review first presents a comprehensive overview of the progress made in the design and preparation of these hydrogels, focusing on the self-healing mechanisms based on physical non-covalent interactions and dynamic chemical covalent bonds. Subsequently, the applications of self-healing hydrogels including natural polymers, synthetic polymers, and nano-hybrid materials, are discussed in detail, emphasizing their mechanisms in promoting bone tissue regeneration. Finally, the review addresses current challenges as well as future prospects for the use of hydrogels in bone repair and regeneration, identifying osteogenic properties, mechanical performance, and long-term biocompatibility as key areas for further improvement. In summary, this paper provides an in-depth analysis of recent advances in self-healing hydrogels for bone repair and regeneration, underscoring their immense potential for clinical application.
ArticleNumber 138323
Author Li, Bo
Liao, Xiaoling
Zhang, Dawei
Yan, Ziyi
Liu, Zhongning
Xiao, Wenqian
Li, Chenchen
Yang, Xiaoling
Author_xml – sequence: 1
  givenname: Bo
  surname: Li
  fullname: Li, Bo
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
– sequence: 2
  givenname: Chenchen
  surname: Li
  fullname: Li, Chenchen
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
– sequence: 3
  givenname: Ziyi
  surname: Yan
  fullname: Yan, Ziyi
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
– sequence: 4
  givenname: Xiaoling
  surname: Yang
  fullname: Yang, Xiaoling
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
– sequence: 5
  givenname: Wenqian
  surname: Xiao
  fullname: Xiao, Wenqian
  email: wqxiao@cqust.edu.cn
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
– sequence: 6
  givenname: Dawei
  surname: Zhang
  fullname: Zhang, Dawei
  email: zdwasy6161@163.com
  organization: Department of Orthopedics, The 960th Hospital of the PLA Joint Logistice Support Force, Jinan 250031, China
– sequence: 7
  givenname: Zhongning
  surname: Liu
  fullname: Liu, Zhongning
  email: liuzhongning@bjmu.edu.cn
  organization: Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
– sequence: 8
  givenname: Xiaoling
  surname: Liao
  fullname: Liao, Xiaoling
  organization: Chongqing Key Laboratory of Nano/Micro Composite Materials and Devices, Chongqing Engineering Laboratory of Nano/Micro Biomedical Detection Technology, Chongqing University of Science and Technology, Chongqing 401331, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39645113$$D View this record in MEDLINE/PubMed
BookMark eNqN0UFPHCEUB3DSaOqq_QqGowdnyxsYHHrSmLaaaHqpZ8LAm102MzCFWY3fXrarvdoTL-T3HuH9j8lBiAEJOQO2BAby62bpN52Po7HLmtViCbzlNf9EFtBeqooxxg_IgoGAqgXOjshxzptyKxtoP5MjrqRoAPiCDNc04ZPHZxp7mnHoqzWawYcVXb-4FFc4ZNrHRLvyfJGT8Yma4Eq5woDJzD6Gb_TBzJi8GfIFHdGuTfB5LPUOmmkavP3r8ik57AvCL2_nCXn88f33zW11_-vn3c31fWW5aOcKBWPGgQElwDrZO2mYMiAFdrVoFOedtcpwJ2ooH-lrzlWnurqtOTqUXc9PyPl-7pTiny3mWY8-WxwGEzBus-Ygm_aSKyH-gwrZSMUUK_TsjW67EZ2ekh9NetHvyyxA7oFNMeeE_T8CTO9S0xv9nprepab3qZXGq31j2fYujKSz9RgsOp_QztpF_9GIVwM9oug
Cites_doi 10.1016/j.carbpol.2020.116432
10.1002/jlac.19284600106
10.1021/acsbiomaterials.8b00657
10.1039/C9NR09283H
10.1021/acs.biomac.7b00587
10.1039/C9SM01543D
10.1016/j.cej.2019.01.028
10.1002/anie.201801063
10.1021/acs.biomac.3c00379
10.1002/adma.202203049
10.1002/adfm.202214726
10.1016/j.carbpol.2020.116922
10.1039/D1RA05896G
10.1126/science.aao0350
10.1016/j.polymer.2019.121882
10.1016/j.cej.2023.147095
10.1039/C7TB02223A
10.1016/j.ijbiomac.2023.128320
10.3390/molecules24163005
10.1039/D0CS01382J
10.1016/j.ijbiomac.2020.10.004
10.3390/polym14214539
10.1021/acs.biomac.7b01331
10.1039/D3MH00891F
10.1016/j.bioactmat.2022.01.048
10.1021/cr800427g
10.3390/polym9040137
10.1021/acsapm.9b00143
10.1126/science.aam7588
10.1039/D0TB02691C
10.1016/j.bioactmat.2022.02.011
10.1016/j.carbpol.2022.120243
10.1002/adma.201900332
10.1016/j.indcrop.2023.117876
10.1016/j.cej.2023.146536
10.1039/D3RA01700A
10.1016/j.matdes.2020.108723
10.1021/acsami.3c02108
10.1016/j.ijbiomac.2019.01.065
10.1016/j.foodchem.2020.127819
10.1039/C7TB00776K
10.1016/j.matlet.2021.129755
10.3390/polym14112184
10.1016/B978-0-323-88450-1.00018-1
10.1016/j.actbio.2019.03.057
10.1016/j.polymer.2018.11.051
10.1016/j.ccr.2024.215790
10.1016/j.actbio.2022.09.036
10.1039/D2NR07110J
10.3390/polym13213782
10.1080/01932691.2024.2340674
10.1016/j.bioactmat.2017.09.002
10.1016/j.ijbiomac.2023.127612
10.1016/j.bioactmat.2022.10.010
10.1002/adfm.202304470
10.1039/C9TB02643F
10.1016/j.actbio.2019.07.035
10.3390/ma12132074
10.1021/acs.biomac.7b00089
10.1016/j.jconrel.2020.12.008
10.1039/D0NJ04923A
10.1021/acs.biomac.1c01647
10.1002/adma.201901244
10.1016/j.reactfunctpolym.2023.105513
10.1016/j.colsurfa.2019.01.034
10.1016/j.cej.2020.125335
10.1038/s41467-022-30243-5
10.1039/C6RA17327F
10.1016/j.clay.2022.106812
10.1186/s12951-024-02555-9
10.1002/adfm.202003717
10.1016/j.matdes.2021.109490
10.1002/advs.202206450
10.1007/s10570-019-02797-z
10.1016/j.cej.2019.02.020
10.1016/j.molliq.2022.118712
10.1002/adfm.202009189
10.1111/jcpe.13725
10.1021/acs.biomac.2c00260
10.1021/acsbiomaterials.2c00321
10.1016/j.eurpolymj.2018.11.005
10.1021/acs.biomac.6b01604
10.1002/macp.202300228
10.1016/B978-0-12-809551-5.00009-6
10.1021/acs.chemrev.2c00179
10.1002/adhm.202303592
10.1039/D2RA00122E
10.1021/acsami.1c02089
10.1038/s41467-021-24680-x
10.1016/j.compositesb.2019.107647
10.1021/acsbiomaterials.1c00719
10.1016/j.carbpol.2021.118311
10.1016/j.polymer.2018.08.063
10.1002/adfm.202010609
10.1088/1758-5090/ac8dc7
10.1016/j.matlet.2024.136315
10.1016/j.compositesb.2024.111492
10.1021/acs.iecr.2c03253
10.1021/acsami.9b19415
10.1016/j.carbpol.2021.118547
10.1002/wnan.1641
10.1002/pat.5707
10.1039/C9TB00831D
10.1016/j.cej.2023.144117
10.1039/D0BM00055H
10.1039/D0TB01005G
10.1016/j.actbio.2018.12.008
10.1021/acsbiomaterials.2c00496
10.1002/anie.201804400
10.1002/macp.201900320
10.1016/j.carbpol.2021.118244
10.1016/j.compositesb.2019.107449
10.3390/polym13162680
10.3390/polym15040966
10.1002/admi.201800384
10.1002/adfm.201700591
10.1016/j.cej.2023.146160
10.3390/polym15051065
10.1021/acsapm.9b00317
10.3390/md19050264
10.1016/j.cej.2022.141137
10.1039/D0TA10850B
10.1002/adfm.202009432
10.15171/apb.2017.064
10.1002/mame.202000045
10.1002/mame.201800144
10.1021/acsami.2c01739
10.1007/s12192-018-0880-7
10.1021/acsnano.0c09814
10.1016/j.cclet.2017.05.007
10.1002/adfm.202101303
10.1016/j.cclet.2020.12.001
10.1016/j.jconrel.2019.01.026
10.1016/j.mtbio.2023.100558
10.1039/C7SM00916J
10.3390/gels9020102
10.3390/jfb13020047
10.1016/j.cej.2024.150551
10.1039/D0TB00833H
10.1021/acsbiomaterials.3c00564
10.1016/j.ijbiomac.2021.12.155
10.1016/j.cej.2023.142868
10.1016/j.ijpharm.2021.120727
10.1016/j.ijbiomac.2023.125674
10.1016/j.eurpolymj.2023.112370
10.3390/ijms23020842
10.1088/1748-605X/ace39b
10.1016/j.eurpolymj.2020.110038
10.1016/j.ajps.2020.10.001
10.1002/cplu.202100474
10.1016/j.matdes.2023.111705
10.1007/s13726-020-00821-9
10.1021/acsami.0c11167
10.1039/D1BM01294K
10.1002/marc.201800121
10.3390/md20050314
10.1021/acs.chemmater.9b01301
10.3390/gels7040169
10.1016/j.bioactmat.2023.07.018
10.3390/polym12020487
10.1021/acsapm.0c00150
10.3389/fchem.2018.00449
10.1021/acs.macromol.8b01496
10.1016/j.carbpol.2020.117286
10.1016/j.actbio.2020.01.021
10.1016/j.compositesb.2022.110257
10.1016/j.compositesb.2018.08.082
10.1002/pi.5554
10.1016/j.cej.2020.127512
10.1016/j.cej.2022.141110
10.1039/D2BM01154A
10.1016/j.biomaterials.2024.122875
10.1016/j.eurpolymj.2023.112034
10.1002/adfm.202208639
10.1016/j.biomaterials.2018.07.031
10.1016/j.bioactmat.2024.03.002
10.1016/j.ijbiomac.2023.124962
10.1016/j.msec.2019.02.035
10.3390/gels7040216
10.1002/marc.201800837
10.1002/mabi.201800313
10.1021/acsbiomaterials.2c01547
10.1021/acssuschemeng.7b01060
10.1021/acsami.4c07057
10.1016/j.jiec.2022.11.034
10.1016/j.carbpol.2020.116979
10.1186/s13036-023-00368-2
10.3390/biology13040237
10.1021/acsapm.2c01849
10.1016/j.colsurfa.2018.10.071
10.1007/s13233-021-9016-5
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright © 2024 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2024 Elsevier B.V.
– notice: Copyright © 2024 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.ijbiomac.2024.138323
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-0003
ExternalDocumentID 39645113
10_1016_j_ijbiomac_2024_138323
S0141813024091347
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ACRPL
ADBBV
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
UHS
UNMZH
WUQ
~02
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
CGR
CUY
CVF
ECM
EFKBS
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c348t-e400ad1a1941cd6fd6a09a164eb245933bcc9a3d421396f2339b9b2823ede6bf3
IEDL.DBID .~1
ISSN 0141-8130
1879-0003
IngestDate Fri Jul 11 03:32:03 EDT 2025
Fri Jul 11 06:20:20 EDT 2025
Mon Jul 21 06:04:19 EDT 2025
Tue Jul 01 02:43:16 EDT 2025
Sun Apr 06 06:54:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Bone repair
Self-healing
Hydrogel
Language English
License Copyright © 2024 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-e400ad1a1941cd6fd6a09a164eb245933bcc9a3d421396f2339b9b2823ede6bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 39645113
PQID 3146569090
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3165873944
proquest_miscellaneous_3146569090
pubmed_primary_39645113
crossref_primary_10_1016_j_ijbiomac_2024_138323
elsevier_sciencedirect_doi_10_1016_j_ijbiomac_2024_138323
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle International journal of biological macromolecules
PublicationTitleAlternate Int J Biol Macromol
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Meng, Shao, Cui, Xu, Lei, Yang (bb0845) 2019; 12
P. Li, H. Zong, G. Li, Z. Shi, X. Yu, K. Zhang, P. Xia, S. Yan, J. Yin, Building a Poly (amino acid)/Chitosan-Based Self-Healing Hydrogel via Host–Guest Interaction for Cartilage Regeneration, ACS Biomater Sci. Eng. 9(8) (2023) 4855–4866.
Wong, Pasbakhsh, Cheng, Goh, Tan (bb0070) 2023; 232
Shi, Dong, Hu, Guo (bb0895) 2023; 457
Huang, Wang, Xu, Ma, Gao (bb0765) 2017; 2
Kazemi-Aghdam, Jahed, Dehghan-Niri, Ganji, Vasheghani-Farahani (bb0715) 2021; 269
Gaharwar, Cross, Peak, Gold, Carrow, Brokesh, Singh (bb0950) 2019; 31
Li, Wu, Zhang, Wu, Huang, Wang, Liao (bb0085) 2023; 13
Saiz-Poseu, Mancebo-Aracil, Nador, Busqué, Ruiz-Molina (bb0645) 2019; 58
Qin, Wang, You, Zhang, Chen, Liu (bb0015) 2022; 10
Li, Shi, Zong, Zhang, Yan, Yin (bb0135) 2023; 18
C. Shao, M. Wang, H. Chang, F. Xu, J. Yang, A self-healing cellulose nanocrystal-poly (ethylene glycol) nanocomposite hydrogel via Diels–Alder click reaction, ACS Sustain. Chem. Eng. 5(7) (2017) 6167–6174.
Jiang, Zhang, Yang, Huang, Shi, Long, Qian, Liu, Guan, Liu (bb0865) 2021; 12
Parhi (bb0430) 2017; 7
Wattanaanek, Suttapreyasri, Samruajbenjakun (bb0835) 2022; 13
Zhao, Jia, Zhang, Liu, Li, Zhao, Xie, Chen, Jiang, He, Wang, Peng, Zheng (bb0975) 2025; 314
Gong, Zhao, Wang, Luo, Zhang (bb0360) 2022; 8
Feng, Zhao, Tang, Yang, Tian, Peng, Pan, Shuai (bb0030) 2023; 33
S.M. Morozova, Recent advances in hydrogels via Diels–Alder crosslinking: design and applications, Gels 9(2) (2023) 102.
Lee, Kang, Kang, Huh (bb0770) 2020; 244
Chen, Chen, Geng, Su (bb0010) 2022; 18
Wan, Li, Yan, Wang, Li (bb0875) 2023; 191
Lee, Hwang, Kim, Fan, Aghaloo, Lee (bb0175) 2020; 30
Chen, Bu, Li, Liu, Chen, Wan, Li (bb0435) 2020; 27
Zhang, Liow, Xue, Zhang, Li, Loh (bb0465) 2019; 1
Lü, Bai, Liu, Ning, Wang, Gao, Ni, Liu (bb0195) 2017; 5
Rumon, Akib, Sultana, Moniruzzaman, Niloy, Shakil, Roy (bb0575) 2022; 14
Greco, Gigimon, Varon, Bogdanova, Iorio (bb0280) 2024; 363
Wang, Liu, Guo, Bao, Qi, Yin, Xu, Yan (bb0980) 2024; 280
Li, Du, Gao, Tang, Chen, Liu, Yang, Zhao, Niu, Ruan (bb0910) 2022; 14
Chang, Jia, Gu (bb0585) 2019; 112
Zhang, Wu, Hu, Lu, Wang, Li, Zhao (bb0390) 2020; 221
Zhang, Zhou, Du, Ha, Xu, Ao, He (bb0795) 2023; 9
Vuornos, Ojansivu, Koivisto, Häkkänen, Belay, Montonen, Huhtala, Kääriäinen, Hupa, Kellomäki (bb0075) 2019; 99
Xue, Wu, Liu, Guo, Liu, Zhang, Wang (bb0600) 2021; 9
Deng, Dong, Song, Chen (bb0040) 2019; 297
Liu, Jiang, Chi, Peng, Dai, Qian, Xu, Zhong, Yue (bb0495) 2022; 8
Das Mahapatra, Imani, Yoon (bb0640) 2020; 12
Ma, Yang, Liu, Guo, Zhang, Kang, Yu, Wei (bb0535) 2023; 184
Guo, Su, Zhang, Dong, Lin, Zhang (bb0620) 2017; 18
Li, Li, Kong, Li, Yang, Wang, Teng (bb0935) 2023; 21
Wei, Ma, Cheng, Sun, Chen, Zhao, Lu, Song, Yang, Jia (bb0455) 2020; 2
Lueckgen, Garske, Ellinghaus, Desai, Stafford, Mooney, Duda, Cipitria (bb0720) 2018; 181
Apostolides, Patrickios (bb0525) 2018; 67
Zhu, Jin, Shao, Li, Liu, Gan, Long (bb0660) 2020; 192
Wang, Lu, Sun, Yu, Xia (bb0705) 2019; 7
Tang, Yang, Bao, Yu, Wu, Li, Guo, Guo (bb0185) 2023; 478
Li, Zhou, Chen, Luo, Li, Chen, Zou, Wang (bb0120) 2022; 18
Li, Mu, Xu, Jin, Fu (bb0315) 2024; 208
Fukao, Tanaka, Kiyama, Nonoyama, Gong (bb0925) 2020; 8
Rizwan, Yahya, Hassan, Yar, Azzahari, Selvanathan, Sonsudin, Abouloula (bb0045) 2017; 9
Yang, Li, Fang, Liu (bb0080) 2023; 253
He, Tian, Zhang, Wang, Yang, Li, Ge, Bai, Li (bb0500) 2022; 202
Song, Wang (bb0345) 2020; 32
Zhao, Peng, Wang, Diaz-Dussan, Tian, Duan, Kong, Hao, Narain (bb0375) 2022; 23
Devi, Shyam, Palaniappan, Jaiswal, Oh, Nathanael (bb0240) 2021; 13
L. Shi, P. Ding, Y. Wang, Y. Zhang, D. Ossipov, J. Hilborn, Self-Healing Polymeric Hydrogel Formed by Metal–Ligand Coordination Assembly: Design, Fabrication, and Biomedical Applications, Macromol. Rapid Commun. 40(7) (2019) 1800837.
Halperin-Sternfeld, Pokhojaev, Ghosh, Rachmiel, Kannan, Grinberg, Asher, Aviv, Ma, Binderman, Sarig, Adler-Abramovich (bb0410) 2023; 50
Li, Pei, Wan, Yang, Gu, Tao, Liu, Zhou, Xu, Xiao (bb0490) 2020; 250
Zhang, Wang, Sun, Hou, Wu, Wu, Zheng (bb0380) 2018; 51
Guadagno, Vertuccio, Naddeo, Calabrese, Barra, Raimondo, Sorrentino, Binder, Michael, Rana (bb0330) 2019; 157
Filippidi, Cristiani, Eisenbach, Waite, Israelachvili, Ahn, Valentine (bb0650) 2017; 358
Hu, Xu (bb0350) 2020; 8
Wang, Song, Xue, Qian, Wang, Wang (bb0635) 2018; 153
Raus, Nawawi, Nasaruddin (bb0830) 2021; 16
Kong, Chen, Li, Quan, Wu (bb0820) 2021; 9
Ma, Rong, Zhang, Lu (bb0255) 2023; 456
Van Hoorick, Tytgat, Dobos, Ottevaere, Van Erps, Thienpont, Ovsianikov, Dubruel, Van Vlierberghe (bb0780) 2019; 97
Cui, Zhang, Coseri (bb0855) 2023; 300
An, Xue, Ye, Zhao, Liu, Li, Chen, Huang, Hu (bb0335) 2023; 15
Li, Li, Zheng, Liu, Zou, Sun, Guo, Yan (bb0450) 2022; 34
Yang, Cho, Eom, Park, Hwang, Jeon, Oh, Park (bb0625) 2021; 29
Bai, Zhang, Huang, Zhang, Lu, Song, Yang (bb0160) 2021; 413
Wang, Narain, Zeng (bb0395) 2018; 6
Jiang, Yang, Yang, Zhang, Lu (bb0510) 2021; 273
Pan, Chen, Xing, Deng, Chen, Alharthi, Alghamdi, Su (bb0930) 2021; 32
Diels, Alder (bb0665) 1928; 460
Li, Hu, Tian, Wang, Li, Qayum, Bilawal, Gantumur, Jiang, Hou (bb0560) 2021; 338
Geng, Zhao, Tao, Yang, Duan, Gao, He, Liu, Feng, Zhao (bb0155) 2024; 36
Niu, Fan, Guo, Du, Yang, Feng, Fan (bb0755) 2017; 5
Huang, Cheng, Wang, Zhang, Chen, Zhang (bb0180) 2021; 31
Dong, Xu, Lun, Wu, Deng, Sun (bb0480) 2024; 16
Liu, Liu, Wang, Han, Chen, Tan (bb0530) 2020; 12
Li, Yang, Zeng, Wu, Wei, Tao (bb0285) 2019; 31
Ghandforoushan, Alehosseini, Golafshan, Castilho, Dolatshahi-Pirouz, Hanaee, Davaran, Orive (bb0115) 2023; 246
Kim, Kim, Hwang, Lee, Lee (bb0200) 2024; 487
Vahedi, Shokrolahi, Barzin, Shokrollahi, Taghiyar, Ashtiani (bb0790) 2020; 305
Saunders, Ma (bb0090) 2019; 19
Quan, Xin, Wu, Ao (bb0420) 2022; 14
Yuan, Liu, Xiong, Lei (bb0295) 2024
Khattab, Kamel (bb0505) 2022; 352
Du, Niu, Hou, Xu, Li, Li, Fan (bb0760) 2020; 8
Yang, Yang, Chen, Dong, Yang, Gu, Zhou (bb0300) 2024; 256
Xing, Sun, Tan, Yuan, Li, Jia, Xiong, Chen, Lai, Ling (bb0810) 2019; 127
Cao, Wu, Cheng, He, Chen, Zhou (bb0065) 2021; 13
He, Liu, Fan, Song, Gu (bb0385) 2022; 61
Rumon, Sarkar, Uddin, Alam, Karobi, Ayfar, Azam, Roy (bb0700) 2022; 12
Chen, Tan, Xu, Wang, Zhang, Li, Zhou, Niu (bb0915) 2022; 153
Li, Yang, Lee (bb0745) 2021; 330
Liu, Wang, Luo, Zhao, Liao, Dai, Li, Li, Cao (bb0210) 2023; 10
Lu, Xu, Tian, Zhang, Niu, Zhao, Ming, Ren (bb0275) 2023; 465
Sun, Jia, Lei, Zhu, Gao, Zheng, Wang (bb0540) 2019; 160
Ahmadian, Kazeminava, Afrouz, Abbaszadeh, Mehr, Shiran, Gouda, Adeli, Kafil (bb0320) 2023; 126535
M. Gregoritza, V. Messmann, K. Abstiens, F.P. Brandl, A.M. Goepferich, Controlled antibody release from degradable Thermoresponsive hydrogels cross-linked by Diels–Alder chemistry, Biomacromolecules 18(8) (2017) 2410–2418.
Wu, Wang, Liu, Chen, Zhang, Wu, Deng, Cai (bb0145) 2023; 227
Wang, He, Wang, Liu, Wang, Yang, Pan, Li (bb0140) 2023; 30
Song, Li, Song, Zhang, Liu, Jing, Luo, Zhang, Zhang, Li (bb0260) 2023; 5
Erezuma, Lukin, Desimone, Zhang, Dolatshahi-Pirouz, Orive (bb0740) 2022; 146
Buwalda, Vermonden, Hennink (bb0035) 2017; 18
Xu, Yao, Fan, Zhou, Wei (bb0570) 2021; 254
Bauso, La Fauci, Longo, Calabrese (bb0025) 2024; 13
Zhang, Lv, Zhao, Ling, Zhang (bb0055) 2023; 197
Wang, Zhang, Hu, Jing, Geng, Su (bb0020) 2022; 32
Briou, Améduri, Boutevin (bb0685) 2021; 50
Tu, Chen, Li, Liu, Zhu, Chen, Xiao, Liu, Ramakrishna, He (bb0365) 2019; 90
Chen, Dai, Zhu, Hu, Yuan, Ding (bb0460) 2021; 45
Zhang, Qiu, Zhu, Guo, Li (bb0545) 2018; 39
Gu, Yang, Yuan, Ni, Zhou, Si, Xia, Yuan, Xu, Xu, Xu, Du, Zhang, Sun, Zheng, Yang (bb0190) 2023; 24
Chen, Liang, Bai, Xu, Zhang, Guo, Yin (bb0130) 2020; 396
Menikheim, Lavik (bb0750) 2020; 12
Zhang, Yin, Liu, Hou, Shi, Liu, Wang, Yang, Pan, He, Zhu (bb0225) 2022; 246
Bertsch, Diba, Mooney, Leeuwenburgh (bb0100) 2022; 123
Ji, Li, Zhang, Lan, Sun, Wong (bb0305) 2019; 184
Ding, Fan, Wang, Zhou, Wang, Zhao (bb0110) 2023; 10
Huang, Tan, Bai, Wang, Makvandi, Ali Khan, Hu, Wu (bb0150) 2023; 470
Chen, Wang, Guo, Hu (bb0520) 2022; 33
Xue, Hu, Deng, Su (bb0060) 2021; 31
Zhang, Cheng, Ao (bb0825) 2021; 19
Wang, Chen, Khan, Liu, Chen, Chen, Zhang, Li (bb0630) 2019; 567
Piras, Smith (bb0815) 2020; 8
Deng, Wang, Ma, Guo (bb0245) 2020; 12
J. Xu, Y. Liu, S.-h. Hsu, Hydrogels based on Schiff base linkages for biomedical applications, Molecules 24(16) (2019) 3005.
Steinman, Domb (bb0565) 2021; 7
Lu, Li, Feng, Guan, Guo (bb0370) 2019; 561
S. Thambidurai, K. Pandiselvi, Polyaniline/natural polymer composites and nanocomposites, polyaniline blends, composites, and nanocomposites, Elsevier2018, pp. 235–256.
Reakasame, Boccaccini (bb0850) 2018; 19
Hafezi, Khorasani, Khalili, Neisiany (bb0955) 2023; 242
Ma, Su, Ran, Ma, Yi, Chen, Chen, Deng, Tong, Wang, Li (bb0860) 2020; 165
Tang, Ma, Yang, Liang, Yin, Wan, Zhang, Wang (bb0615) 2023; 118
Pishavar, Khosravi, Naserifar, Rezvani Ghomi, Luo, Zavan, Seifalian, Ramakrishna (bb0125) 2021; 13
Jiang, Zeng, Zhang, Yu, Lu (bb0805) 2023; 15
Luo, Yang, Ho, Li, Chiu, Li, Dai, Li, Zhang (bb0215) 2024; 22
Shi, Wang, Zhu, Xu, Fuchs, Hilborn, Zhu, Ma, Wang, Weng, Ossipov (bb0220) 2017; 27
Xie, Yu, Wang, Li (bb0445) 2022; 23
Wang, Tavakoli, Parvathaneni, Nawale, Oommen, Hilborn, Varghese (bb0485) 2022; 10
Wolfel, Igarzabal, Romero (bb0470) 2020; 140
Collins, Ren, Young, Pina, Reis, Oliveira (bb0050) 2021; 31
Iliou, Kikionis, Ioannou, Roussis (bb0735) 2022; 20
Zhang, Wang, Song, Pei, Sun, Wu, Zhou, Wang, Fan, Zhang (bb0905) 2021; 201
Lu, Xu, Liu, Chen, Sun, Wang, Li, Wang, Li, Hui, Luo, Liu, Jiang, Liang, Fan, Sun, Zhang (bb0775) 2022; 13
Guo, Ma, Gu, Feng, He, Chen, Mao, Zhang, Zheng (bb0515) 2017; 13
Wang, Zhuge, Li, Jiang, Yang (bb0610) 2020; 29
Guo, Qu, Zhao, Zhang (bb0730) 2019; 84
Gantar, Drnovšek, Casuso, Pérez-San Vicente, Rodriguez, Dupin, Novak, Loinaz (bb0970) 2016; 6
Nada, Eckstein Andicsová, Mosnáček (bb0870) 2022; 23
Yanagisawa, Nan, Okuro, Aida (bb0340) 2018; 359
Lin, Wang, Sun, Liang, Xu, Hu, Luo, Zhang, Li (bb0940) 2021; 11
Chen, Li, Xu, Kang, Lee, Aghaloo, Lee (bb0170) 2024; 13
Y. Liu, S.-h. Hsu, Synthesis and biomedical applications of self-healing hydrogels, Front. Chem. 6 (2018) 449.
Mosaddegh, Takalloo, Sajedi,
Nichifor (10.1016/j.ijbiomac.2024.138323_bb0405) 2023; 15
Collins (10.1016/j.ijbiomac.2024.138323_bb0050) 2021; 31
Wang (10.1016/j.ijbiomac.2024.138323_bb0610) 2020; 29
Yang (10.1016/j.ijbiomac.2024.138323_bb0440) 2018; 5
Guo (10.1016/j.ijbiomac.2024.138323_bb0515) 2017; 13
Oluwasanmi (10.1016/j.ijbiomac.2024.138323_bb0680) 2021; 604
Lei (10.1016/j.ijbiomac.2024.138323_bb0290) 2019; 1
Liu (10.1016/j.ijbiomac.2024.138323_bb0890) 2023; 17
Zhang (10.1016/j.ijbiomac.2024.138323_bb0545) 2018; 39
Kim (10.1016/j.ijbiomac.2024.138323_bb0200) 2024; 487
Li (10.1016/j.ijbiomac.2024.138323_bb0135) 2023; 18
10.1016/j.ijbiomac.2024.138323_bb0885
Devi (10.1016/j.ijbiomac.2024.138323_bb0240) 2021; 13
Wang (10.1016/j.ijbiomac.2024.138323_bb0265) 2023; 33
Qu (10.1016/j.ijbiomac.2024.138323_bb0725) 2019; 362
Lee (10.1016/j.ijbiomac.2024.138323_bb0785) 2019; 365
Zhang (10.1016/j.ijbiomac.2024.138323_bb0605) 2018; 303
Qin (10.1016/j.ijbiomac.2024.138323_bb0015) 2022; 10
Zhang (10.1016/j.ijbiomac.2024.138323_bb0095) 2021; 7
Zhang (10.1016/j.ijbiomac.2024.138323_bb0695) 2021; 86
Niu (10.1016/j.ijbiomac.2024.138323_bb0755) 2017; 5
Gaharwar (10.1016/j.ijbiomac.2024.138323_bb0950) 2019; 31
Li (10.1016/j.ijbiomac.2024.138323_bb0285) 2019; 31
Lee (10.1016/j.ijbiomac.2024.138323_bb0175) 2020; 30
Krishnakumar (10.1016/j.ijbiomac.2024.138323_bb0580) 2020; 184
Chen (10.1016/j.ijbiomac.2024.138323_bb0520) 2022; 33
Saiz-Poseu (10.1016/j.ijbiomac.2024.138323_bb0645) 2019; 58
Chen (10.1016/j.ijbiomac.2024.138323_bb0915) 2022; 153
Li (10.1016/j.ijbiomac.2024.138323_bb0710) 2017; 28
Bertsch (10.1016/j.ijbiomac.2024.138323_bb0100) 2022; 123
Chen (10.1016/j.ijbiomac.2024.138323_bb0435) 2020; 27
Cao (10.1016/j.ijbiomac.2024.138323_bb0065) 2021; 13
Wan (10.1016/j.ijbiomac.2024.138323_bb0875) 2023; 191
Basu (10.1016/j.ijbiomac.2024.138323_bb0945) 2020; 105
Tang (10.1016/j.ijbiomac.2024.138323_bb0185) 2023; 478
Pérez (10.1016/j.ijbiomac.2024.138323_bb0550) 2023; 15
Iliou (10.1016/j.ijbiomac.2024.138323_bb0735) 2022; 20
Van Hoorick (10.1016/j.ijbiomac.2024.138323_bb0780) 2019; 97
An (10.1016/j.ijbiomac.2024.138323_bb0335) 2023; 15
Shi (10.1016/j.ijbiomac.2024.138323_bb0895) 2023; 457
Kazemi-Aghdam (10.1016/j.ijbiomac.2024.138323_bb0715) 2021; 269
Jiang (10.1016/j.ijbiomac.2024.138323_bb0865) 2021; 12
Liu (10.1016/j.ijbiomac.2024.138323_bb0530) 2020; 12
Yanagisawa (10.1016/j.ijbiomac.2024.138323_bb0340) 2018; 359
Bastos (10.1016/j.ijbiomac.2024.138323_bb0900) 2019; 12
Lin (10.1016/j.ijbiomac.2024.138323_bb0940) 2021; 11
Xue (10.1016/j.ijbiomac.2024.138323_bb0600) 2021; 9
Kong (10.1016/j.ijbiomac.2024.138323_bb0820) 2021; 9
Hafezi (10.1016/j.ijbiomac.2024.138323_bb0955) 2023; 242
Greco (10.1016/j.ijbiomac.2024.138323_bb0280) 2024; 363
Lee (10.1016/j.ijbiomac.2024.138323_bb0770) 2020; 244
Wattanaanek (10.1016/j.ijbiomac.2024.138323_bb0835) 2022; 13
Hu (10.1016/j.ijbiomac.2024.138323_bb0965) 2023; 10
Duan (10.1016/j.ijbiomac.2024.138323_bb0325) 2023; 476
Menikheim (10.1016/j.ijbiomac.2024.138323_bb0750) 2020; 12
Nada (10.1016/j.ijbiomac.2024.138323_bb0870) 2022; 23
Zhu (10.1016/j.ijbiomac.2024.138323_bb0660) 2020; 192
Mosaddegh (10.1016/j.ijbiomac.2024.138323_bb0555) 2018; 23
Li (10.1016/j.ijbiomac.2024.138323_bb0560) 2021; 338
Guo (10.1016/j.ijbiomac.2024.138323_bb0620) 2017; 18
Zhang (10.1016/j.ijbiomac.2024.138323_bb0595) 2019; 15
Zhang (10.1016/j.ijbiomac.2024.138323_bb0225) 2022; 246
He (10.1016/j.ijbiomac.2024.138323_bb0500) 2022; 202
Piras (10.1016/j.ijbiomac.2024.138323_bb0815) 2020; 8
Du (10.1016/j.ijbiomac.2024.138323_bb0760) 2020; 8
Saunders (10.1016/j.ijbiomac.2024.138323_bb0090) 2019; 19
Apostolides (10.1016/j.ijbiomac.2024.138323_bb0525) 2018; 67
Zhao (10.1016/j.ijbiomac.2024.138323_bb0375) 2022; 23
Reakasame (10.1016/j.ijbiomac.2024.138323_bb0850) 2018; 19
Park (10.1016/j.ijbiomac.2024.138323_bb0920) 2019; 178
Bauso (10.1016/j.ijbiomac.2024.138323_bb0025) 2024; 13
Xing (10.1016/j.ijbiomac.2024.138323_bb0810) 2019; 127
Luo (10.1016/j.ijbiomac.2024.138323_bb0215) 2024; 22
Rizwan (10.1016/j.ijbiomac.2024.138323_bb0045) 2017; 9
Xu (10.1016/j.ijbiomac.2024.138323_bb0570) 2021; 254
Quan (10.1016/j.ijbiomac.2024.138323_bb0420) 2022; 14
Vahedi (10.1016/j.ijbiomac.2024.138323_bb0790) 2020; 305
Parhi (10.1016/j.ijbiomac.2024.138323_bb0430) 2017; 7
Lu (10.1016/j.ijbiomac.2024.138323_bb0370) 2019; 561
Bo (10.1016/j.ijbiomac.2024.138323_bb0590) 2021; 7
Tu (10.1016/j.ijbiomac.2024.138323_bb0365) 2019; 90
Li (10.1016/j.ijbiomac.2024.138323_bb0490) 2020; 250
Zhang (10.1016/j.ijbiomac.2024.138323_bb0390) 2020; 221
LeGeros (10.1016/j.ijbiomac.2024.138323_bb0005) 2008; 108
Khattab (10.1016/j.ijbiomac.2024.138323_bb0505) 2022; 352
Wong (10.1016/j.ijbiomac.2024.138323_bb0070) 2023; 232
Guo (10.1016/j.ijbiomac.2024.138323_bb0730) 2019; 84
Ma (10.1016/j.ijbiomac.2024.138323_bb0535) 2023; 184
Li (10.1016/j.ijbiomac.2024.138323_bb0120) 2022; 18
Gu (10.1016/j.ijbiomac.2024.138323_bb0190) 2023; 24
Liu (10.1016/j.ijbiomac.2024.138323_bb0495) 2022; 8
Erezuma (10.1016/j.ijbiomac.2024.138323_bb0740) 2022; 146
Wang (10.1016/j.ijbiomac.2024.138323_bb0635) 2018; 153
10.1016/j.ijbiomac.2024.138323_bb0475
10.1016/j.ijbiomac.2024.138323_bb0230
10.1016/j.ijbiomac.2024.138323_bb0235
Yang (10.1016/j.ijbiomac.2024.138323_bb0625) 2021; 29
Huang (10.1016/j.ijbiomac.2024.138323_bb0765) 2017; 2
Xu (10.1016/j.ijbiomac.2024.138323_bb0205) 2020; 250
Ahmadian (10.1016/j.ijbiomac.2024.138323_bb0320) 2023; 126535
Cheng (10.1016/j.ijbiomac.2024.138323_bb0400) 2021; 31
Das Mahapatra (10.1016/j.ijbiomac.2024.138323_bb0640) 2020; 12
Lu (10.1016/j.ijbiomac.2024.138323_bb0275) 2023; 465
Bai (10.1016/j.ijbiomac.2024.138323_bb0160) 2021; 413
Wang (10.1016/j.ijbiomac.2024.138323_bb0705) 2019; 7
Briou (10.1016/j.ijbiomac.2024.138323_bb0685) 2021; 50
Tang (10.1016/j.ijbiomac.2024.138323_bb0615) 2023; 118
Wang (10.1016/j.ijbiomac.2024.138323_bb0630) 2019; 567
Zhang (10.1016/j.ijbiomac.2024.138323_bb0465) 2019; 1
Lü (10.1016/j.ijbiomac.2024.138323_bb0195) 2017; 5
Wu (10.1016/j.ijbiomac.2024.138323_bb0145) 2023; 227
Yu (10.1016/j.ijbiomac.2024.138323_bb0165) 2023; 19
Ghosh (10.1016/j.ijbiomac.2024.138323_bb0310) 2023; 475
Zhang (10.1016/j.ijbiomac.2024.138323_bb0825) 2021; 19
Zhao (10.1016/j.ijbiomac.2024.138323_bb0840) 2022; 14
Yang (10.1016/j.ijbiomac.2024.138323_bb0300) 2024; 256
Li (10.1016/j.ijbiomac.2024.138323_bb0315) 2024; 208
Li (10.1016/j.ijbiomac.2024.138323_bb0105) 2023; 22
Jiang (10.1016/j.ijbiomac.2024.138323_bb0805) 2023; 15
Buwalda (10.1016/j.ijbiomac.2024.138323_bb0035) 2017; 18
Lueckgen (10.1016/j.ijbiomac.2024.138323_bb0720) 2018; 181
Ma (10.1016/j.ijbiomac.2024.138323_bb0255) 2023; 456
Yang (10.1016/j.ijbiomac.2024.138323_bb0080) 2023; 253
Deng (10.1016/j.ijbiomac.2024.138323_bb0040) 2019; 297
Chen (10.1016/j.ijbiomac.2024.138323_bb0170) 2024; 13
Wang (10.1016/j.ijbiomac.2024.138323_bb0020) 2022; 32
10.1016/j.ijbiomac.2024.138323_bb0690
Zhang (10.1016/j.ijbiomac.2024.138323_bb0795) 2023; 9
Feng (10.1016/j.ijbiomac.2024.138323_bb0030) 2023; 33
Ding (10.1016/j.ijbiomac.2024.138323_bb0110) 2023; 10
Li (10.1016/j.ijbiomac.2024.138323_bb0745) 2021; 330
Upadhyay (10.1016/j.ijbiomac.2024.138323_bb0880) 2022
Sun (10.1016/j.ijbiomac.2024.138323_bb0540) 2019; 160
Zhao (10.1016/j.ijbiomac.2024.138323_bb0975) 2025; 314
Khattak (10.1016/j.ijbiomac.2024.138323_bb0250) 2024; 509
Fukao (10.1016/j.ijbiomac.2024.138323_bb0925) 2020; 8
Deng (10.1016/j.ijbiomac.2024.138323_bb0245) 2020; 12
Li (10.1016/j.ijbiomac.2024.138323_bb0450) 2022; 34
Rumon (10.1016/j.ijbiomac.2024.138323_bb0700) 2022; 12
Chen (10.1016/j.ijbiomac.2024.138323_bb0130) 2020; 396
Guadagno (10.1016/j.ijbiomac.2024.138323_bb0330) 2019; 157
Ji (10.1016/j.ijbiomac.2024.138323_bb0305) 2019; 184
Steinman (10.1016/j.ijbiomac.2024.138323_bb0565) 2021; 7
Wang (10.1016/j.ijbiomac.2024.138323_bb0140) 2023; 30
10.1016/j.ijbiomac.2024.138323_bb0670
10.1016/j.ijbiomac.2024.138323_bb0675
Chang (10.1016/j.ijbiomac.2024.138323_bb0585) 2019; 112
Zhang (10.1016/j.ijbiomac.2024.138323_bb0905) 2021; 201
Cui (10.1016/j.ijbiomac.2024.138323_bb0855) 2023; 300
Ma (10.1016/j.ijbiomac.2024.138323_bb0860) 2020; 165
Chen (10.1016/j.ijbiomac.2024.138323_bb0460) 2021; 45
Gantar (10.1016/j.ijbiomac.2024.138323_bb0970) 2016; 6
Cao (10.1016/j.ijbiomac.2024.138323_bb0800) 2021; 293
10.1016/j.ijbiomac.2024.138323_bb0425
Huang (10.1016/j.ijbiomac.2024.138323_bb0180) 2021; 31
Pan (10.1016/j.ijbiomac.2024.138323_bb0930) 2021; 32
Pishavar (10.1016/j.ijbiomac.2024.138323_bb0125) 2021; 13
Geng (10.1016/j.ijbiomac.2024.138323_bb0155) 2024; 36
Zhang (10.1016/j.ijbiomac.2024.138323_bb0380) 2018; 51
Jiang (10.1016/j.ijbiomac.2024.138323_bb0510) 2021; 273
Halperin-Sternfeld (10.1016/j.ijbiomac.2024.138323_bb0410) 2023; 50
Wolfel (10.1016/j.ijbiomac.2024.138323_bb0470) 2020; 140
Wei (10.1016/j.ijbiomac.2024.138323_bb0455) 2020; 2
Raus (10.1016/j.ijbiomac.2024.138323_bb0830) 2021; 16
Huang (10.1016/j.ijbiomac.2024.138323_bb0150) 2023; 470
10.1016/j.ijbiomac.2024.138323_bb0655
Yuan (10.1016/j.ijbiomac.2024.138323_bb0295) 2024
Wang (10.1016/j.ijbiomac.2024.138323_bb0395) 2018; 6
Diels (10.1016/j.ijbiomac.2024.138323_bb0665) 1928; 460
Wang (10.1016/j.ijbiomac.2024.138323_bb0980) 2024; 280
Filippidi (10.1016/j.ijbiomac.2024.138323_bb0650) 2017; 358
Vuornos (10.1016/j.ijbiomac.2024.138323_bb0075) 2019; 99
He (10.1016/j.ijbiomac.2024.138323_bb0385) 2022; 61
Gong (10.1016/j.ijbiomac.2024.138323_bb0360) 2022; 8
Rumon (10.1016/j.ijbiomac.2024.138323_bb0575) 2022; 14
Li (10.1016/j.ijbiomac.2024.138323_bb0085) 2023; 13
Ghandforoushan (10.1016/j.ijbiomac.2024.138323_bb0115) 2023; 246
Pan (10.1016/j.ijbiomac.2024.138323_bb0355) 2018; 4
Okesola (10.1016/j.ijbiomac.2024.138323_bb0960) 2021; 15
Xie (10.1016/j.ijbiomac.2024.138323_bb0445) 2022; 23
Xue (10.1016/j.ijbiomac.2024.138323_bb0060) 2021; 31
Meng (10.1016/j.ijbiomac.2024.138323_bb0845) 2019; 12
Li (10.1016/j.ijbiomac.2024.138323_bb0935) 2023; 21
Shi (10.1016/j.ijbiomac.2024.138323_bb0220) 2017; 27
Hu (10.1016/j.ijbiomac.2024.138323_bb0350) 2020; 8
Chen (10.1016/j.ijbiomac.2024.138323_bb0010) 2022; 18
Song (10.1016/j.ijbiomac.2024.138323_bb0345) 2020; 32
Dong (10.1016/j.ijbiomac.2024.138323_bb0480) 2024; 16
Wang (10.1016/j.ijbiom
References_xml – volume: 27
  start-page: 1700591
  year: 2017
  ident: bb0220
  article-title: Self-healing silk fibroin-based hydrogel for bone regeneration: dynamic metal-ligand self-assembly approach
  publication-title: Adv. Funct. Mater.
– volume: 67
  start-page: 627
  year: 2018
  end-page: 649
  ident: bb0525
  article-title: Dynamic covalent polymer hydrogels and organogels crosslinked through acylhydrazone bonds: synthesis, characterization and applications
  publication-title: Polym. Int.
– volume: 250
  year: 2020
  ident: bb0205
  article-title: Redox and pH dual-responsive injectable hyaluronan hydrogels with shape-recovery and self-healing properties for protein and cell delivery
  publication-title: Carbohydr. Polym.
– volume: 12
  start-page: 7453
  year: 2022
  end-page: 7463
  ident: bb0700
  article-title: Graphene oxide based crosslinker for simultaneous enhancement of mechanical toughness and self-healing capability of conventional hydrogels
  publication-title: RSC Adv.
– volume: 8
  start-page: 3754
  year: 2022
  end-page: 3764
  ident: bb0495
  article-title: Injectable and self-healing hydrogel based on chitosan-tannic acid and oxidized hyaluronic acid for wound healing
  publication-title: ACS Biomater Sci. Eng.
– volume: 12
  start-page: 1628
  year: 2019
  end-page: 1639
  ident: bb0845
  article-title: Autonomous self-healing silk fibroin injectable hydrogels formed via surfactant-free hydrophobic association
  publication-title: ACS Appl. Mater. Interfaces
– volume: 5
  start-page: 9141
  year: 2017
  end-page: 9147
  ident: bb0755
  article-title: Shear-mediated orientational mineralization of bone apatite on collagen fibrils
  publication-title: J. Mater. Chem. B
– volume: 11
  start-page: 32988
  year: 2021
  end-page: 32995
  ident: bb0940
  article-title: Highly tough and rapid self-healing dual-physical crosslinking poly(DMAA-co-AM) hydrogel
  publication-title: RSC Adv.
– volume: 12
  start-page: 40786
  year: 2020
  end-page: 40793
  ident: bb0640
  article-title: Integration of macro-cross-linker and metal coordination: a super stretchable hydrogel with high toughness
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 487
  year: 2020
  ident: bb0530
  article-title: Doubly dynamic hydrogel formed by combining boronate ester and acylhydrazone bonds
  publication-title: Polymers
– volume: 5
  start-page: 1800384
  year: 2018
  ident: bb0440
  article-title: Self-healing of polymers via supramolecular chemistry
  publication-title: Adv. Mater. Interfaces
– volume: 31
  start-page: 2101303
  year: 2021
  ident: bb0400
  article-title: Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors
  publication-title: Adv. Funct. Mater.
– reference: C. Shao, M. Wang, H. Chang, F. Xu, J. Yang, A self-healing cellulose nanocrystal-poly (ethylene glycol) nanocomposite hydrogel via Diels–Alder click reaction, ACS Sustain. Chem. Eng. 5(7) (2017) 6167–6174.
– volume: 224
  start-page: 2300228
  year: 2023
  ident: bb0270
  article-title: Self-healable, self-adhesive conductive hydrogels based on integrated multiple interactions for wearable sensing
  publication-title: Macromol. Chem. Phys.
– volume: 153
  start-page: 637
  year: 2018
  end-page: 642
  ident: bb0635
  article-title: Mechanically strong and tough hydrogels with excellent anti-fatigue, self-healing and reprocessing performance enabled by dynamic metal-coordination chemistry
  publication-title: Polymer
– volume: 14
  start-page: 4539
  year: 2022
  ident: bb0575
  article-title: Self-healing hydrogels: development, biomedical applications, and challenges
  publication-title: Polymers
– volume: 12
  start-page: 2074
  year: 2019
  ident: bb0900
  article-title: Lactoferrin-hydroxyapatite containing spongy-like hydrogels for bone tissue engineering
  publication-title: Materials
– volume: 153
  start-page: 159
  year: 2022
  end-page: 177
  ident: bb0915
  article-title: A self-healing, magnetic and injectable biopolymer hydrogel generated by dual cross-linking for drug delivery and bone repair
  publication-title: Acta Biomater.
– volume: 32
  start-page: 2159
  year: 2021
  end-page: 2163
  ident: bb0930
  article-title: A fast on-demand preparation of injectable self-healing nanocomposite hydrogels for efficient osteoinduction
  publication-title: Chin. Chem. Lett.
– volume: 32
  year: 2022
  ident: bb0020
  article-title: Bone repair biomaterials: a perspective from immunomodulation
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 685
  year: 2018
  end-page: 693
  ident: bb0555
  article-title: An inter-subunit disulfide bond of artemin acts as a redox switch for its chaperone-like activity
  publication-title: Cell Stress Chaperones
– volume: 15
  start-page: 11202
  year: 2021
  end-page: 11217
  ident: bb0960
  article-title: De novo design of functional coassembling organic–inorganic hydrogels for hierarchical mineralization and neovascularization
  publication-title: ACS Nano
– volume: 24
  start-page: 3345
  year: 2023
  end-page: 3356
  ident: bb0190
  article-title: Polysaccharide-based injectable hydrogels with fast gelation and self-strengthening mechanical kinetics for Oral tissue regeneration
  publication-title: Biomacromolecules
– volume: 6
  start-page: 497
  year: 2018
  ident: bb0395
  article-title: Rational design of self-healing tough hydrogels: a mini review
  publication-title: ACS Nano
– volume: 13
  start-page: 3782
  year: 2021
  ident: bb0240
  article-title: Self-healing hydrogels: preparation, mechanism and advancement in biomedical applications
  publication-title: Polymers
– volume: 457
  year: 2023
  ident: bb0895
  article-title: Conductive self-healing biodegradable hydrogel based on hyaluronic acid-grafted-polyaniline as cell recruitment niches and cell delivery carrier for myogenic differentiation and skeletal muscle regeneration
  publication-title: Chem. Eng. J.
– volume: 396
  year: 2020
  ident: bb0130
  article-title: Sustained release of magnesium ions mediated by injectable self-healing adhesive hydrogel promotes fibrocartilaginous interface regeneration in the rabbit rotator cuff tear model
  publication-title: Chem. Eng. J.
– volume: 465
  year: 2023
  ident: bb0275
  article-title: Robust antifogging coatings with ultra-fast self-healing performances through host-guest strategy
  publication-title: Chem. Eng. J.
– volume: 90
  start-page: 1
  year: 2019
  end-page: 20
  ident: bb0365
  article-title: Advances in injectable self-healing biomedical hydrogels
  publication-title: Acta Biomater.
– volume: 314
  year: 2025
  ident: bb0975
  article-title: A MnO2 nanosheets doping double crosslinked hydrogel for cartilage defect repair through alleviating inflammation and guiding chondrogenic differentiation
  publication-title: Biomaterials
– volume: 184
  year: 2020
  ident: bb0580
  article-title: Catalyst free self-healable vitrimer/graphene oxide nanocomposites
  publication-title: Compos. Part B Eng.
– volume: 1
  start-page: 1350
  year: 2019
  end-page: 1358
  ident: bb0290
  article-title: Facile fabrication of biocompatible gelatin-based self-healing hydrogels
  publication-title: ACS Applied Polymer Materials
– volume: 330
  start-page: 151
  year: 2021
  end-page: 160
  ident: bb0745
  article-title: Advances in biodegradable and injectable hydrogels for biomedical applications
  publication-title: J. Control. Release
– volume: 244
  year: 2020
  ident: bb0770
  article-title: Thermo-irreversible glycol chitosan/hyaluronic acid blend hydrogel for injectable tissue engineering
  publication-title: Carbohydr. Polym.
– volume: 23
  start-page: 641
  year: 2022
  end-page: 660
  ident: bb0445
  article-title: Recent advances of self-healing polymer materials via supramolecular forces for biomedical applications
  publication-title: Biomacromolecules
– volume: 50
  start-page: 11055
  year: 2021
  end-page: 11097
  ident: bb0685
  article-title: Trends in the Diels–Alder reaction in polymer chemistry
  publication-title: Chem. Soc. Rev.
– volume: 7
  start-page: 5135
  year: 2021
  end-page: 5143
  ident: bb0590
  article-title: Antibacterial hydrogel with self-healing property for wound-healing applications
  publication-title: ACS Biomater Sci. Eng.
– volume: 31
  start-page: 1900332
  year: 2019
  ident: bb0950
  article-title: 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing
  publication-title: Adv. Mater.
– volume: 27
  start-page: 853
  year: 2020
  end-page: 865
  ident: bb0435
  article-title: High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose
  publication-title: Cellulose
– volume: 192
  year: 2020
  ident: bb0660
  article-title: Polysaccharide-based fast self-healing ion gel based on acylhydrazone and metal coordination bonds
  publication-title: Mater. Des.
– volume: 118
  start-page: 511
  year: 2023
  end-page: 518
  ident: bb0615
  article-title: A self-healing hydrogel derived flexible all-solid-state supercapacitors based on dynamic borate bonds
  publication-title: J. Ind. Eng. Chem.
– reference: L. Shi, P. Ding, Y. Wang, Y. Zhang, D. Ossipov, J. Hilborn, Self-Healing Polymeric Hydrogel Formed by Metal–Ligand Coordination Assembly: Design, Fabrication, and Biomedical Applications, Macromol. Rapid Commun. 40(7) (2019) 1800837.
– volume: 352
  year: 2022
  ident: bb0505
  article-title: Advances in polysaccharide-based hydrogels: self-healing and electrical conductivity
  publication-title: J. Mol. Liq.
– volume: 105
  start-page: 159
  year: 2020
  end-page: 169
  ident: bb0945
  article-title: Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery
  publication-title: Acta Biomater.
– volume: 127
  start-page: 340
  year: 2019
  end-page: 348
  ident: bb0810
  article-title: Covalently polysaccharide-based alginate/chitosan hydrogel embedded alginate microspheres for BSA encapsulation and soft tissue engineering
  publication-title: Int. J. Biol. Macromol.
– volume: 18
  year: 2023
  ident: bb0135
  article-title: Injectable, self-healing poly (amino acid)-hydrogel based on phenylboronate ester bond for osteochondral tissue engineering
  publication-title: Biomed. Mater.
– volume: 10
  start-page: 6399
  year: 2022
  end-page: 6412
  ident: bb0485
  article-title: Dynamic covalent crosslinked hyaluronic acid hydrogels and nanomaterials for biomedical applications
  publication-title: Biomater. Sci.
– volume: 160
  start-page: 246
  year: 2019
  end-page: 253
  ident: bb0540
  article-title: Self-healing hydrogels with stimuli responsiveness based on acylhydrazone bonds
  publication-title: Polymer
– volume: 10
  start-page: 3929
  year: 2023
  end-page: 3947
  ident: bb0110
  article-title: Designing self-healing hydrogels for biomedical applications
  publication-title: Mater. Horiz.
– volume: 8
  start-page: 2562
  year: 2020
  end-page: 2572
  ident: bb0760
  article-title: Highly aligned hierarchical intrafibrillar mineralization of collagen induced by periodic fluid shear stress
  publication-title: J. Mater. Chem. B
– volume: 470
  year: 2023
  ident: bb0150
  article-title: Harnessing immunomodulation for efficient bone regeneration: bioengineered black phosphorus-incorporated self-healing hydrogel
  publication-title: Chem. Eng. J.
– volume: 8
  start-page: 5184
  year: 2020
  end-page: 5188
  ident: bb0925
  article-title: Hydrogels toughened by biominerals providing energy-dissipative sacrificial bonds
  publication-title: J. Mater. Chem. B
– volume: 157
  start-page: 1
  year: 2019
  end-page: 13
  ident: bb0330
  article-title: Self-healing epoxy nanocomposites via reversible hydrogen bonding
  publication-title: Compos. Part B Eng.
– volume: 15
  start-page: 966
  year: 2023
  ident: bb0550
  article-title: Granular disulfide-crosslinked hyaluronic hydrogels: a systematic study of reaction conditions on thiol substitution and injectability parameters
  publication-title: Polymers
– volume: 17
  start-page: 48
  year: 2023
  ident: bb0890
  article-title: An injectable, self-healing, electroconductive hydrogel loaded with neural stem cells and donepezil for enhancing local therapy effect of spinal cord injury
  publication-title: J. Biol. Eng.
– volume: 7
  start-page: 515
  year: 2017
  end-page: 530
  ident: bb0430
  article-title: Cross-linked hydrogel for pharmaceutical applications: a review
  publication-title: Advanced Pharmaceutical Bulletin
– volume: 2
  start-page: 2541
  year: 2020
  end-page: 2549
  ident: bb0455
  article-title: Adhesive, conductive, self-healing, and antibacterial hydrogel based on chitosan–polyoxometalate complexes for wearable strain sensor
  publication-title: ACS Applied Polymer Materials
– volume: 97
  start-page: 46
  year: 2019
  end-page: 73
  ident: bb0780
  article-title: (photo-) crosslinkable gelatin derivatives for biofabrication applications
  publication-title: Acta Biomater.
– volume: 58
  start-page: 696
  year: 2019
  end-page: 714
  ident: bb0645
  article-title: The chemistry behind catechol-based adhesion
  publication-title: Angew. Chem. Int. Ed.
– volume: 18
  start-page: 316
  year: 2017
  end-page: 330
  ident: bb0035
  article-title: Hydrogels for therapeutic delivery: current developments and future directions
  publication-title: Biomacromolecules
– volume: 13
  start-page: 2303592
  year: 2024
  ident: bb0170
  article-title: Self-assembled nanocomposite hydrogels as carriers for demineralized bone matrix particles and enhanced bone repair
  publication-title: Adv. Healthc. Mater.
– volume: 33
  year: 2023
  ident: bb0030
  article-title: Structural and functional adaptive artificial bone: materials, fabrications, and properties
  publication-title: Adv. Funct. Mater.
– volume: 15
  start-page: 6505
  year: 2023
  end-page: 6520
  ident: bb0335
  article-title: Recent advances in self-healing polyurethane based on dynamic covalent bonds combined with other self-healing methods
  publication-title: Nanoscale
– volume: 305
  start-page: 2000045
  year: 2020
  ident: bb0790
  article-title: Amylopectin multiple aldehyde crosslinked hydrogel as an injectable and self-healing cell carrier for bone tissue engineering
  publication-title: Macromolecular Materials and Engineering
– volume: 22
  start-page: 287
  year: 2024
  ident: bb0215
  article-title: Dynamic hydrogel–metal–organic framework system promotes bone regeneration in periodontitis through controlled drug delivery
  publication-title: J. Nanobiotechnol.
– volume: 61
  start-page: 17915
  year: 2022
  end-page: 17929
  ident: bb0385
  article-title: Tara tannin-cross-linked, underwater-adhesive, super self-healing, and recyclable gelatin-based conductive hydrogel as a strain sensor
  publication-title: Ind. Eng. Chem. Res.
– volume: 33
  start-page: 2304470
  year: 2023
  ident: bb0265
  article-title: Multi-healable, mechanically durable double Cross-linked polyacrylamide electrolyte incorporating hydrophobic interactions for dendrite-free flexible zinc-ion batteries
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 21886
  year: 2022
  end-page: 21905
  ident: bb0840
  article-title: Degradation-kinetics-controllable and tissue-regeneration-Matchable Photocross-linked alginate hydrogels for bone repair
  publication-title: ACS Appl. Mater. Interfaces
– volume: 4
  start-page: 3397
  year: 2018
  end-page: 3404
  ident: bb0355
  article-title: Ultraflexible self-healing guar gum-glycerol hydrogel with injectable, antifreeze, and strain-sensitive properties
  publication-title: Acs Biomaterials Science & Engineering
– reference: Y. Liu, S.-h. Hsu, Synthesis and biomedical applications of self-healing hydrogels, Front. Chem. 6 (2018) 449.
– volume: 232
  year: 2023
  ident: bb0070
  article-title: One-pot synthesis of injectable self-healing thermoresponsive halloysite nanotube-reinforced nanocomposite hydrogels for tissue engineering
  publication-title: Appl. Clay Sci.
– volume: 256
  year: 2024
  ident: bb0300
  article-title: Antibacterial hyaluronic acid hydrogels with enhanced self-healing properties via multiple dynamic bond crosslinking
  publication-title: Int. J. Biol. Macromol.
– volume: 13
  start-page: 16773
  year: 2023
  end-page: 16788
  ident: bb0085
  article-title: Self-healing hydrogels for bone defect repair
  publication-title: RSC Adv.
– volume: 50
  start-page: 200
  year: 2023
  end-page: 219
  ident: bb0410
  article-title: Immunomodulatory fibrous hyaluronic acid-Fmoc-diphenylalanine-based hydrogel induces bone regeneration
  publication-title: J. Clin. Periodontol.
– volume: 86
  start-page: 1524
  year: 2021
  end-page: 1529
  ident: bb0695
  article-title: Strong, self-healing gelatin hydrogels cross-linked by double dynamic covalent chemistry
  publication-title: ChemPlusChem
– volume: 165
  start-page: 1164
  year: 2020
  end-page: 1174
  ident: bb0860
  article-title: Synthesis and characterization of injectable self-healing hydrogels based on oxidized alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan
  publication-title: Int. J. Biol. Macromol.
– volume: 14
  start-page: 2184
  year: 2022
  ident: bb0420
  article-title: Mechanism of self-healing hydrogels and application in tissue engineering
  publication-title: Polymers
– volume: 254
  year: 2021
  ident: bb0570
  article-title: Hyaluronic acid thiol modified injectable hydrogel: synthesis, characterization, drug release, cellular drug uptake and anticancer activity
  publication-title: Carbohydr. Polym.
– volume: 300
  year: 2023
  ident: bb0855
  article-title: An injectable and self-healing cellulose nanofiber-reinforced alginate hydrogel for bone repair
  publication-title: Carbohydr. Polym.
– volume: 253
  year: 2023
  ident: bb0080
  article-title: Self-healing hydrogels based on biological macromolecules in wound healing: a review
  publication-title: Int. J. Biol. Macromol.
– volume: 16
  start-page: 39035
  year: 2024
  end-page: 39050
  ident: bb0480
  article-title: Dynamic Cross-linking, self-healing, antibacterial hydrogel for regenerating irregular cranial bone defects
  publication-title: ACS Appl. Mater. Interfaces
– volume: 30
  start-page: 2003717
  year: 2020
  ident: bb0175
  article-title: Inspired by Nature: Facile Design of Nanoclay–Organic Hydrogel Bone Sealant with Multifunctional Properties for Robust Bone Regeneration
  publication-title: Adv. Funct. Mater.
– volume: 19
  year: 2023
  ident: bb0165
  article-title: An injectable and self-healing hydrogel with dual physical crosslinking for in-situ bone formation
  publication-title: Materials Today Bio
– volume: 359
  start-page: 72
  year: 2018
  end-page: 76
  ident: bb0340
  article-title: Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking
  publication-title: Science
– volume: 2
  start-page: 253
  year: 2017
  end-page: 259
  ident: bb0765
  article-title: In situ assembly of fibrinogen/hyaluronic acid hydrogel via knob-hole interaction for 3D cellular engineering
  publication-title: Bioactive Materials
– volume: 23
  start-page: 842
  year: 2022
  ident: bb0870
  article-title: Irreversible and self-healing electrically conductive hydrogels made of bio-based polymers
  publication-title: Int. J. Mol. Sci.
– volume: 191
  year: 2023
  ident: bb0875
  article-title: Strong, self-healing, shape memory PAA-PANI/PVA/PDA/AOP conductive hydrogels with interpenetrating network and hydrogen bond interaction
  publication-title: Eur. Polym. J.
– volume: 15
  start-page: 7583
  year: 2019
  end-page: 7589
  ident: bb0595
  article-title: Injectable and fast self-healing protein hydrogels
  publication-title: Soft Matter
– volume: 10
  start-page: 318
  year: 2022
  end-page: 353
  ident: bb0015
  article-title: Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives
  publication-title: Biomater. Sci.
– volume: 31
  year: 2021
  ident: bb0050
  article-title: Scaffold fabrication technologies and structure/function properties in bone tissue engineering
  publication-title: Adv. Funct. Mater.
– volume: 246
  year: 2022
  ident: bb0225
  article-title: Dynamic protein hydrogel with supramolecularly enveloped kartogenin promotes cartilage regeneration through mitochondrial activation
  publication-title: Compos. Part B Eng.
– volume: 9
  start-page: 2785
  year: 2021
  end-page: 2801
  ident: bb0820
  article-title: Applications of oxidized alginate in regenerative medicine
  publication-title: J. Mater. Chem. B
– reference: D.-q. Li, S.-y. Wang, Y.-j. Meng, Z.-w. Guo, M.-m. Cheng, J. Li, Fabrication of self-healing pectin/chitosan hybrid hydrogel via Diels-Alder reactions for drug delivery with high swelling property, pH-responsiveness, and cytocompatibility, Carbohydr. Polym. 268 (2021) 118244.
– volume: 460
  start-page: 98
  year: 1928
  end-page: 122
  ident: bb0665
  article-title: Synthesen in der hydroaromatischen Reihe
  publication-title: Justus Liebigs Ann. Chem.
– volume: 413
  year: 2021
  ident: bb0160
  article-title: A bioinspired mineral-organic composite hydrogel as a self-healable and mechanically robust bone graft for promoting bone regeneration
  publication-title: Chem. Eng. J.
– volume: 509
  year: 2024
  ident: bb0250
  article-title: Self-healing hydrogels as injectable implants: advances in translational wound healing
  publication-title: Coord. Chem. Rev.
– volume: 29
  start-page: 569
  year: 2020
  end-page: 579
  ident: bb0610
  article-title: Self-healing quadruple shape memory hydrogels based on coordination, borate bonds and temperature with tunable mechanical properties
  publication-title: Iran. Polym. J.
– volume: 293
  year: 2021
  ident: bb0800
  article-title: A simple polysaccharide based injectable hydrogel compositing nano-hydroxyapatite for bone tissue engineering
  publication-title: Mater. Lett.
– volume: 273
  year: 2021
  ident: bb0510
  article-title: Highly self-healable and injectable cellulose hydrogels via rapid hydrazone linkage for drug delivery and 3D cell culture
  publication-title: Carbohydr. Polym.
– volume: 178
  year: 2019
  ident: bb0920
  article-title: High strength PLGA/hydroxyapatite composites with tunable surface structure using PLGA direct grafting method for orthopedic implants
  publication-title: Compos. Part B Eng.
– volume: 184
  year: 2019
  ident: bb0305
  article-title: Alkaline monomer for mechanical enhanced and self-healing hydrogels based on dynamic borate ester bonds
  publication-title: Polymer
– volume: 1
  start-page: 1769
  year: 2019
  end-page: 1777
  ident: bb0465
  article-title: Autonomous chitosan-based self-healing hydrogel formed through noncovalent interactions
  publication-title: ACS Applied Polymer Materials
– volume: 250
  year: 2020
  ident: bb0490
  article-title: Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials
  publication-title: Carbohydr. Polym.
– volume: 9
  start-page: 4583
  year: 2023
  end-page: 4596
  ident: bb0795
  article-title: Bifunctional hydrogel-integrated 3D printed scaffold for repairing infected bone defects
  publication-title: ACS Biomater Sci. Eng.
– volume: 146
  year: 2022
  ident: bb0740
  article-title: Progress in self-healing hydrogels and their applications in bone tissue engineering, biomaterials
  publication-title: Advances
– volume: 12
  start-page: 1224
  year: 2020
  end-page: 1246
  ident: bb0245
  article-title: Self-healing conductive hydrogels: preparation, properties and applications
  publication-title: Nanoscale
– volume: 18
  start-page: 267
  year: 2022
  end-page: 283
  ident: bb0120
  article-title: Synergistic osteogenic and angiogenic effects of KP and QK peptides incorporated with an injectable and self-healing hydrogel for efficient bone regeneration
  publication-title: Bioactive Materials
– volume: 13
  start-page: 24095
  year: 2021
  end-page: 24105
  ident: bb0065
  article-title: Ultrafast fabrication of self-healing and injectable carboxymethyl chitosan hydrogel dressing for wound healing
  publication-title: ACS Appl. Mater. Interfaces
– volume: 34
  start-page: 2203049
  year: 2022
  ident: bb0450
  article-title: Recyclable, healable, and tough ionogels insensitive to crack propagation
  publication-title: Adv. Mater.
– volume: 303
  start-page: 1800144
  year: 2018
  ident: bb0605
  article-title: An “off-the-shelf” shape memory hydrogel based on the dynamic borax-diol Ester bonds
  publication-title: Macromol. Mater. Eng.
– volume: 567
  start-page: 139
  year: 2019
  end-page: 149
  ident: bb0630
  article-title: A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– reference: S. Thambidurai, K. Pandiselvi, Polyaniline/natural polymer composites and nanocomposites, polyaniline blends, composites, and nanocomposites, Elsevier2018, pp. 235–256.
– volume: 475
  year: 2023
  ident: bb0310
  article-title: Designing dynamic metal-coordinated hydrophobically associated mechanically robust and stretchable hydrogels for versatile, multifunctional applications in strain sensing, actuation and flexible supercapacitors
  publication-title: Chem. Eng. J.
– volume: 208
  year: 2024
  ident: bb0315
  article-title: Injectable, rapid self-healing, antioxidant and antibacterial nanocellulose-tannin hydrogels formed via metal-ligand coordination for drug delivery and wound dressing
  publication-title: Ind. Crop. Prod.
– volume: 5
  start-page: 3739
  year: 2017
  end-page: 3748
  ident: bb0195
  article-title: An injectable and self-healing hydrogel with covalent cross-linking in vivo for cranial bone repair
  publication-title: J. Mater. Chem. B
– reference: M. Gregoritza, V. Messmann, K. Abstiens, F.P. Brandl, A.M. Goepferich, Controlled antibody release from degradable Thermoresponsive hydrogels cross-linked by Diels–Alder chemistry, Biomacromolecules 18(8) (2017) 2410–2418.
– volume: 297
  start-page: 60
  year: 2019
  end-page: 70
  ident: bb0040
  article-title: Injectable thermosensitive hydrogel systems based on functional PEG/PCL block polymer for local drug delivery
  publication-title: J. Control. Release
– volume: 123
  start-page: 834
  year: 2022
  end-page: 873
  ident: bb0100
  article-title: Self-healing injectable hydrogels for tissue regeneration
  publication-title: Chem. Rev.
– volume: 8
  start-page: 3633
  year: 2022
  end-page: 3643
  ident: bb0360
  article-title: Antifreezing, ionically conductive, transparent, and antidrying carboxymethyl chitosan self-healing hydrogels as multifunctional sensors
  publication-title: Acs Biomaterials Science & Engineering
– volume: 14
  year: 2022
  ident: bb0910
  article-title: In-situ mineralized homogeneous collagen-based scaffolds for potential guided bone regeneration
  publication-title: Biofabrication
– volume: 487
  year: 2024
  ident: bb0200
  article-title: Decoupling stiffness and toughness of self-healing hydrogels for complex tissue regeneration via 3D bioprinting
  publication-title: Chem. Eng. J.
– start-page: 1
  year: 2024
  end-page: 7
  ident: bb0295
  article-title: High-strength self-healing hydrogels based on boronate-diol complexation cross-linking with good bioavailability
  publication-title: J. Dispers. Sci. Technol.
– volume: 7
  start-page: 169
  year: 2021
  ident: bb0565
  article-title: Instantaneous Degelling Thermoresponsive hydrogel
  publication-title: Gels
– volume: 7
  start-page: 4876
  year: 2019
  end-page: 4926
  ident: bb0705
  article-title: Preparation, characterization and properties of intrinsic self-healing elastomers
  publication-title: J. Mater. Chem. B
– volume: 280
  year: 2024
  ident: bb0980
  article-title: Biomimetic dually cross-linked injectable poly(l-glutamic acid) based nanofiber composite hydrogels with self-healing, osteogenic and angiogenic properties for bone regeneration
  publication-title: Compos. Part B Eng.
– volume: 7
  start-page: 216
  year: 2021
  ident: bb0095
  article-title: Self-healing mechanism and conductivity of the hydrogel flexible sensors: a review
  publication-title: Gels
– volume: 39
  start-page: 1800121
  year: 2018
  ident: bb0545
  article-title: Self-healing Polycaprolactone networks through thermo-induced reversible disulfide bond formation
  publication-title: Macromol. Rapid Commun.
– volume: 202
  start-page: 55
  year: 2022
  end-page: 67
  ident: bb0500
  article-title: Fabrication of oxidized sodium alginate-collagen heterogeneous bilayer barrier membrane with osteogenesis-promoting ability
  publication-title: Int. J. Biol. Macromol.
– volume: 221
  start-page: 1900320
  year: 2020
  ident: bb0390
  article-title: A novel double-network, self-healing hydrogel based on hydrogen bonding and hydrophobic effect
  publication-title: Macromolecular Chemistry and Physics
– start-page: 533
  year: 2022
  end-page: 554
  ident: bb0880
  article-title: Nanomaterials in tissue engineering: applications and challenges
  publication-title: Advances in Nanotechnology-Based Drug Delivery Systems
– volume: 16
  start-page: 280
  year: 2021
  end-page: 306
  ident: bb0830
  article-title: Alginate and alginate composites for biomedical applications
  publication-title: Asian Journal of Pharmaceutical Sciences
– volume: 31
  start-page: 2009432
  year: 2021
  ident: bb0060
  article-title: Recent advances in design of functional biocompatible hydrogels for bone tissue engineering
  publication-title: Adv. Funct. Mater.
– volume: 33
  start-page: 2528
  year: 2022
  end-page: 2541
  ident: bb0520
  article-title: Double dynamic bonds tough hydrogel with high self-healing properties based on acylhydrazone bonds and borate bonds
  publication-title: Polym. Adv. Technol.
– volume: 32
  start-page: 1901244
  year: 2020
  ident: bb0345
  article-title: High-performance polymeric materials through hydrogen-bond cross-linking
  publication-title: Adv. Mater.
– volume: 18
  start-page: 1356
  year: 2017
  end-page: 1364
  ident: bb0620
  article-title: Facile access to multisensitive and self-healing hydrogels with reversible and dynamic boronic ester and disulfide linkages
  publication-title: Biomacromolecules
– volume: 15
  start-page: 20761
  year: 2023
  end-page: 20773
  ident: bb0805
  article-title: Engineered injectable cell-laden chitin/chitosan hydrogel with adhesion and biodegradability for Calvarial defect regeneration
  publication-title: ACS Appl. Mater. Interfaces
– volume: 12
  start-page: 4395
  year: 2021
  ident: bb0865
  article-title: Self-healing polyurethane-elastomer with mechanical tunability for multiple biomedical applications in vivo
  publication-title: Nat. Commun.
– reference: S.M. Morozova, Recent advances in hydrogels via Diels–Alder crosslinking: design and applications, Gels 9(2) (2023) 102.
– volume: 5
  start-page: 1302
  year: 2023
  end-page: 1311
  ident: bb0260
  article-title: Self-healing polyurethane elastomers with high mechanical properties based on synergistically thermo-reversible and quadruple hydrogen bonds
  publication-title: ACS Applied Polymer Materials
– volume: 13
  start-page: 2680
  year: 2021
  ident: bb0125
  article-title: Multifunctional and self-healable intelligent hydrogels for cancer drug delivery and promoting tissue regeneration in vivo
  publication-title: Polymers
– volume: 31
  start-page: 2009189
  year: 2021
  ident: bb0180
  article-title: Noncompressible hemostasis and bone regeneration induced by an absorbable bioadhesive self-healing hydrogel
  publication-title: Adv. Funct. Mater.
– volume: 9
  start-page: 137
  year: 2017
  ident: bb0045
  article-title: pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications
  publication-title: Polymers
– volume: 363
  year: 2024
  ident: bb0280
  article-title: Temperature induced self-healing properties of alginate gelatin hydrogels
  publication-title: Mater. Lett.
– volume: 9
  start-page: 5730
  year: 2021
  end-page: 5739
  ident: bb0600
  article-title: Hierarchically reversible crosslinking polymeric hydrogels with highly efficient self-healing, robust mechanical properties, and double-driven shape memory behavior
  publication-title: J. Mater. Chem. A
– volume: 358
  start-page: 502
  year: 2017
  end-page: 505
  ident: bb0650
  article-title: Toughening elastomers using mussel-inspired iron-catechol complexes
  publication-title: Science
– reference: J. Xu, Y. Liu, S.-h. Hsu, Hydrogels based on Schiff base linkages for biomedical applications, Molecules 24(16) (2019) 3005.
– volume: 22
  start-page: 312
  year: 2023
  end-page: 324
  ident: bb0105
  article-title: Enhancing cartilage repair with optimized supramolecular hydrogel-based scaffold and pulsed electromagnetic field
  publication-title: Bioactive Materials
– reference: Z. Wang, Y. Ren, Y. Zhu, L. Hao, Y. Chen, G. An, H. Wu, X. Shi, C. Mao, A Rapidly Self-Healing Host–Guest Supramolecular Hydrogel with High Mechanical Strength and Excellent Biocompatibility, Angew. Chem. Int. Ed. 57(29) (2018) 9008–9012.
– volume: 12
  year: 2020
  ident: bb0750
  article-title: Self-healing biomaterials: the next generation is nano
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
– volume: 30
  start-page: 73
  year: 2023
  end-page: 84
  ident: bb0140
  article-title: Hematoma-like dynamic hydrogelation through natural glycopeptide molecular recognition for infected bone fracture repair
  publication-title: Bioactive Materials
– volume: 45
  start-page: 314
  year: 2021
  end-page: 320
  ident: bb0460
  article-title: Self-healing hydrogel sensors with multiple shape memory properties for human motion monitoring
  publication-title: New J. Chem.
– volume: 338
  year: 2021
  ident: bb0560
  article-title: Citric acid promotes disulfide bond formation of whey protein isolate in non-acidic aqueous system
  publication-title: Food Chem.
– volume: 36
  start-page: 287
  year: 2024
  end-page: 300
  ident: bb0155
  article-title: Regulation of rheumatoid arthritis microenvironment via a self-healing injectable hydrogel for improved inflammation elimination and bone repair
  publication-title: Bioactive Materials
– volume: 201
  year: 2021
  ident: bb0905
  article-title: 3D printed bone tissue regenerative PLA/HA scaffolds with comprehensive performance optimizations
  publication-title: Materials & Design
– volume: 29
  start-page: 140
  year: 2021
  end-page: 148
  ident: bb0625
  article-title: Preparation of self-healable and spinnable hydrogel by dynamic boronate ester bond from hyperbranched polyglycerol and boronic acid-containing polymer
  publication-title: Macromol. Res.
– volume: 10
  start-page: 2206450
  year: 2023
  ident: bb0965
  article-title: A mechanically reinforced super bone glue makes a leap in hard tissue strong adhesion and augmented bone regeneration
  publication-title: Adv. Sci.
– volume: 15
  start-page: 1065
  year: 2023
  ident: bb0405
  article-title: Role of hydrophobic associations in self-healing hydrogels based on amphiphilic polysaccharides
  publication-title: Polymers
– volume: 19
  start-page: 264
  year: 2021
  ident: bb0825
  article-title: Preparation of alginate-based biomaterials and their applications in biomedicine
  publication-title: Mar. Drugs
– volume: 604
  year: 2021
  ident: bb0680
  article-title: Potential use of the Diels-Alder reaction in biomedical and nanomedicine applications
  publication-title: Int. J. Pharm.
– volume: 10
  start-page: rbad054
  year: 2023
  ident: bb0210
  article-title: Phosphoserine enhanced cu-doped bioactive glass dynamic dual-network hydrogel for craniofacial bone defect repair, regenerative
  publication-title: Biomaterials
– volume: 362
  start-page: 548
  year: 2019
  end-page: 560
  ident: bb0725
  article-title: Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing
  publication-title: Chem. Eng. J.
– volume: 184
  year: 2023
  ident: bb0535
  article-title: Fabrication of thermo and pH-dual sensitive hydrogels with optimized physiochemical properties via host-guest interactions and acylhydrazone dynamic bonding
  publication-title: React. Funct. Polym.
– volume: 197
  year: 2023
  ident: bb0055
  article-title: A versatile GelMA composite hydrogel: designing principles, delivery forms and biomedical applications
  publication-title: Eur. Polym. J.
– volume: 227
  year: 2023
  ident: bb0145
  article-title: Engineering mussel-inspired multifunctional nanocomposite hydrogels to orchestrate osteoimmune microenvironment and promote bone healing
  publication-title: Materials & Design
– volume: 112
  start-page: 822
  year: 2019
  end-page: 831
  ident: bb0585
  article-title: A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds
  publication-title: Eur. Polym. J.
– volume: 21
  start-page: 1
  year: 2023
  end-page: 20
  ident: bb0935
  article-title: Self-healing hybrid hydrogels with sustained bioactive components release for guided bone regeneration
  publication-title: J. Nanobiotechnol.
– volume: 478
  year: 2023
  ident: bb0185
  article-title: Biomimetic and spatiotemporally sequential hydrogel delivery system with self-healing and adhesion: triple growth factor for bone defect repair
  publication-title: Chem. Eng. J.
– volume: 19
  year: 2019
  ident: bb0090
  article-title: Self-healing supramolecular hydrogels for tissue engineering applications
  publication-title: Macromol. Biosci.
– volume: 13
  start-page: 7371
  year: 2017
  end-page: 7380
  ident: bb0515
  article-title: pH-switchable and self-healable hydrogels based on ketone type acylhydrazone dynamic covalent bonds
  publication-title: Soft Matter
– volume: 18
  start-page: 15
  year: 2022
  end-page: 25
  ident: bb0010
  article-title: The horizon of bone organoid: a perspective on construction and application
  publication-title: Bioactive Materials
– volume: 84
  start-page: 180
  year: 2019
  end-page: 193
  ident: bb0730
  article-title: Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration
  publication-title: Acta Biomater.
– volume: 126535
  year: 2023
  ident: bb0320
  article-title: A review on the impacts of metal/metal nanoparticles on characteristics of hydrogels: special focus on carbohydrate polymers
  publication-title: Int. J. Biol. Macromol.
– volume: 246
  year: 2023
  ident: bb0115
  article-title: Injectable hydrogels for cartilage and bone tissue regeneration: a review
  publication-title: Int. J. Biol. Macromol.
– volume: 20
  start-page: 314
  year: 2022
  ident: bb0735
  article-title: Marine biopolymers as bioactive functional ingredients of electrospun nanofibrous scaffolds for biomedical applications
  publication-title: Mar. Drugs
– volume: 8
  start-page: 2084
  year: 2020
  end-page: 2101
  ident: bb0350
  article-title: Rational design and latest advances of polysaccharide-based hydrogels for wound healing
  publication-title: Biomater. Sci.
– volume: 23
  start-page: 2552
  year: 2022
  end-page: 2561
  ident: bb0375
  article-title: Temperature-responsive aldehyde hydrogels with injectable, self-healing, and tunable mechanical properties
  publication-title: Biomacromolecules
– volume: 242
  year: 2023
  ident: bb0955
  article-title: Self-healing interpenetrating network hydrogel based on GelMA/alginate/nano-clay
  publication-title: Int. J. Biol. Macromol.
– volume: 99
  start-page: 905
  year: 2019
  end-page: 918
  ident: bb0075
  article-title: Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels
  publication-title: Mater. Sci. Eng. C
– volume: 28
  start-page: 1857
  year: 2017
  end-page: 1874
  ident: bb0710
  article-title: The design, mechanism and biomedical application of self-healing hydrogels
  publication-title: Chin. Chem. Lett.
– volume: 269
  year: 2021
  ident: bb0715
  article-title: Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering
  publication-title: Carbohydr. Polym.
– reference: P. Li, H. Zong, G. Li, Z. Shi, X. Yu, K. Zhang, P. Xia, S. Yan, J. Yin, Building a Poly (amino acid)/Chitosan-Based Self-Healing Hydrogel via Host–Guest Interaction for Cartilage Regeneration, ACS Biomater Sci. Eng. 9(8) (2023) 4855–4866.
– volume: 561
  start-page: 325
  year: 2019
  end-page: 331
  ident: bb0370
  article-title: Self-healing hydroxypropyl guar gum/poly (acrylamide-co-3-acrylamidophenyl boronic acid) composite hydrogels with yield phenomenon based on dynamic PBA ester bonds and H-bond
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
– volume: 476
  year: 2023
  ident: bb0325
  article-title: Realization of dual crosslinked network robust, high toughness self-healing polyurethane elastomers for electronics applications
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 47
  year: 2022
  ident: bb0835
  article-title: 3D printing of calcium phosphate/calcium sulfate with alginate/cellulose-based scaffolds for bone regeneration: multilayer fabrication and characterization
  publication-title: Journal of Functional Biomaterials
– volume: 365
  start-page: 30
  year: 2019
  end-page: 39
  ident: bb0785
  article-title: Injectable biodegradable gelatin-methacrylate/β-tricalcium phosphate composite for the repair of bone defects
  publication-title: Chem. Eng. J.
– volume: 51
  start-page: 8136
  year: 2018
  end-page: 8146
  ident: bb0380
  article-title: A tough and stiff hydrogel with tunable water content and mechanical properties based on the synergistic effect of hydrogen bonding and hydrophobic interaction
  publication-title: Macromolecules
– volume: 108
  start-page: 4742
  year: 2008
  ident: bb0005
  article-title: Calcium phosphate-based osteoinductive materials
  publication-title: Chem. Rev.
– volume: 31
  start-page: 5576
  year: 2019
  end-page: 5583
  ident: bb0285
  article-title: Self-healing hydrogel with a double dynamic network comprising imine and borate ester linkages
  publication-title: Chem. Mater.
– volume: 140
  year: 2020
  ident: bb0470
  article-title: Imine bonding self-repair hydrogels after periodate-triggered breakage of their cross-links
  publication-title: Eur. Polym. J.
– volume: 6
  start-page: 69156
  year: 2016
  end-page: 69166
  ident: bb0970
  article-title: Injectable and self-healing dynamic hydrogel containing bioactive glass nanoparticles as a potential biomaterial for bone regeneration
  publication-title: RSC Adv.
– volume: 456
  year: 2023
  ident: bb0255
  article-title: A self-repairing transparent film with reprocessable, ultra-high strength and outstanding elasticity based on interlocking hydrogen bonds and reversible topological networks
  publication-title: Chem. Eng. J.
– volume: 13
  start-page: 2499
  year: 2022
  ident: bb0775
  article-title: An instantly fixable and self-adaptive scaffold for skull regeneration by autologous stem cell recruitment and angiogenesis
  publication-title: Nat. Commun.
– volume: 13
  start-page: 237
  year: 2024
  ident: bb0025
  article-title: Bone tissue engineering and nanotechnology: a promising combination for bone regeneration
  publication-title: Biology
– volume: 181
  start-page: 189
  year: 2018
  end-page: 198
  ident: bb0720
  article-title: Hydrolytically-degradable click-crosslinked alginate hydrogels
  publication-title: Biomaterials
– volume: 8
  start-page: 8171
  year: 2020
  end-page: 8188
  ident: bb0815
  article-title: Multicomponent polysaccharide alginate-based bioinks
  publication-title: J. Mater. Chem. B
– volume: 19
  start-page: 3
  year: 2018
  end-page: 21
  ident: bb0850
  article-title: Oxidized alginate-based hydrogels for tissue engineering applications: a review
  publication-title: Biomacromolecules
– volume: 244
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0770
  article-title: Thermo-irreversible glycol chitosan/hyaluronic acid blend hydrogel for injectable tissue engineering
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.116432
– volume: 460
  start-page: 98
  issue: 1
  year: 1928
  ident: 10.1016/j.ijbiomac.2024.138323_bb0665
  article-title: Synthesen in der hydroaromatischen Reihe
  publication-title: Justus Liebigs Ann. Chem.
  doi: 10.1002/jlac.19284600106
– volume: 4
  start-page: 3397
  issue: 9
  year: 2018
  ident: 10.1016/j.ijbiomac.2024.138323_bb0355
  article-title: Ultraflexible self-healing guar gum-glycerol hydrogel with injectable, antifreeze, and strain-sensitive properties
  publication-title: Acs Biomaterials Science & Engineering
  doi: 10.1021/acsbiomaterials.8b00657
– volume: 12
  start-page: 1224
  issue: 3
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0245
  article-title: Self-healing conductive hydrogels: preparation, properties and applications
  publication-title: Nanoscale
  doi: 10.1039/C9NR09283H
– ident: 10.1016/j.ijbiomac.2024.138323_bb0675
  doi: 10.1021/acs.biomac.7b00587
– volume: 15
  start-page: 7583
  issue: 38
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0595
  article-title: Injectable and fast self-healing protein hydrogels
  publication-title: Soft Matter
  doi: 10.1039/C9SM01543D
– volume: 362
  start-page: 548
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0725
  article-title: Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.028
– volume: 58
  start-page: 696
  issue: 3
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0645
  article-title: The chemistry behind catechol-based adhesion
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201801063
– volume: 24
  start-page: 3345
  issue: 7
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0190
  article-title: Polysaccharide-based injectable hydrogels with fast gelation and self-strengthening mechanical kinetics for Oral tissue regeneration
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.3c00379
– volume: 34
  start-page: 2203049
  issue: 28
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0450
  article-title: Recyclable, healable, and tough ionogels insensitive to crack propagation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202203049
– volume: 33
  issue: 23
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0030
  article-title: Structural and functional adaptive artificial bone: materials, fabrications, and properties
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202214726
– volume: 250
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0490
  article-title: Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.116922
– volume: 11
  start-page: 32988
  issue: 52
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0940
  article-title: Highly tough and rapid self-healing dual-physical crosslinking poly(DMAA-co-AM) hydrogel
  publication-title: RSC Adv.
  doi: 10.1039/D1RA05896G
– volume: 358
  start-page: 502
  issue: 6362
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.138323_bb0650
  article-title: Toughening elastomers using mussel-inspired iron-catechol complexes
  publication-title: Science
  doi: 10.1126/science.aao0350
– volume: 184
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0305
  article-title: Alkaline monomer for mechanical enhanced and self-healing hydrogels based on dynamic borate ester bonds
  publication-title: Polymer
  doi: 10.1016/j.polymer.2019.121882
– volume: 478
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0185
  article-title: Biomimetic and spatiotemporally sequential hydrogel delivery system with self-healing and adhesion: triple growth factor for bone defect repair
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.147095
– volume: 5
  start-page: 9141
  issue: 46
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.138323_bb0755
  article-title: Shear-mediated orientational mineralization of bone apatite on collagen fibrils
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB02223A
– volume: 256
  year: 2024
  ident: 10.1016/j.ijbiomac.2024.138323_bb0300
  article-title: Antibacterial hyaluronic acid hydrogels with enhanced self-healing properties via multiple dynamic bond crosslinking
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.128320
– ident: 10.1016/j.ijbiomac.2024.138323_bb0475
  doi: 10.3390/molecules24163005
– volume: 50
  start-page: 11055
  issue: 19
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0685
  article-title: Trends in the Diels–Alder reaction in polymer chemistry
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS01382J
– volume: 165
  start-page: 1164
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0860
  article-title: Synthesis and characterization of injectable self-healing hydrogels based on oxidized alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2020.10.004
– volume: 14
  start-page: 4539
  issue: 21
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0575
  article-title: Self-healing hydrogels: development, biomedical applications, and challenges
  publication-title: Polymers
  doi: 10.3390/polym14214539
– volume: 19
  start-page: 3
  issue: 1
  year: 2018
  ident: 10.1016/j.ijbiomac.2024.138323_bb0850
  article-title: Oxidized alginate-based hydrogels for tissue engineering applications: a review
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b01331
– volume: 21
  start-page: 1
  issue: 1
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0935
  article-title: Self-healing hybrid hydrogels with sustained bioactive components release for guided bone regeneration
  publication-title: J. Nanobiotechnol.
– volume: 10
  start-page: 3929
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0110
  article-title: Designing self-healing hydrogels for biomedical applications
  publication-title: Mater. Horiz.
  doi: 10.1039/D3MH00891F
– volume: 18
  start-page: 15
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0010
  article-title: The horizon of bone organoid: a perspective on construction and application
  publication-title: Bioactive Materials
  doi: 10.1016/j.bioactmat.2022.01.048
– volume: 108
  start-page: 4742
  issue: 11
  year: 2008
  ident: 10.1016/j.ijbiomac.2024.138323_bb0005
  article-title: Calcium phosphate-based osteoinductive materials
  publication-title: Chem. Rev.
  doi: 10.1021/cr800427g
– volume: 9
  start-page: 137
  issue: 4
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.138323_bb0045
  article-title: pH sensitive hydrogels in drug delivery: brief history, properties, swelling, and release mechanism, material selection and applications
  publication-title: Polymers
  doi: 10.3390/polym9040137
– volume: 1
  start-page: 1350
  issue: 6
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0290
  article-title: Facile fabrication of biocompatible gelatin-based self-healing hydrogels
  publication-title: ACS Applied Polymer Materials
  doi: 10.1021/acsapm.9b00143
– volume: 359
  start-page: 72
  issue: 6371
  year: 2018
  ident: 10.1016/j.ijbiomac.2024.138323_bb0340
  article-title: Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking
  publication-title: Science
  doi: 10.1126/science.aam7588
– volume: 9
  start-page: 2785
  issue: 12
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0820
  article-title: Applications of oxidized alginate in regenerative medicine
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB02691C
– volume: 18
  start-page: 267
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0120
  article-title: Synergistic osteogenic and angiogenic effects of KP and QK peptides incorporated with an injectable and self-healing hydrogel for efficient bone regeneration
  publication-title: Bioactive Materials
  doi: 10.1016/j.bioactmat.2022.02.011
– volume: 300
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0855
  article-title: An injectable and self-healing cellulose nanofiber-reinforced alginate hydrogel for bone repair
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2022.120243
– volume: 31
  start-page: 1900332
  issue: 23
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0950
  article-title: 2D nanoclay for biomedical applications: regenerative medicine, therapeutic delivery, and additive manufacturing
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900332
– volume: 208
  year: 2024
  ident: 10.1016/j.ijbiomac.2024.138323_bb0315
  article-title: Injectable, rapid self-healing, antioxidant and antibacterial nanocellulose-tannin hydrogels formed via metal-ligand coordination for drug delivery and wound dressing
  publication-title: Ind. Crop. Prod.
  doi: 10.1016/j.indcrop.2023.117876
– volume: 476
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0325
  article-title: Realization of dual crosslinked network robust, high toughness self-healing polyurethane elastomers for electronics applications
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.146536
– volume: 13
  start-page: 16773
  issue: 25
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0085
  article-title: Self-healing hydrogels for bone defect repair
  publication-title: RSC Adv.
  doi: 10.1039/D3RA01700A
– volume: 192
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0660
  article-title: Polysaccharide-based fast self-healing ion gel based on acylhydrazone and metal coordination bonds
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108723
– volume: 15
  start-page: 20761
  issue: 17
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0805
  article-title: Engineered injectable cell-laden chitin/chitosan hydrogel with adhesion and biodegradability for Calvarial defect regeneration
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.3c02108
– volume: 127
  start-page: 340
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0810
  article-title: Covalently polysaccharide-based alginate/chitosan hydrogel embedded alginate microspheres for BSA encapsulation and soft tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.01.065
– volume: 338
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0560
  article-title: Citric acid promotes disulfide bond formation of whey protein isolate in non-acidic aqueous system
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2020.127819
– volume: 5
  start-page: 3739
  issue: 20
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.138323_bb0195
  article-title: An injectable and self-healing hydrogel with covalent cross-linking in vivo for cranial bone repair
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C7TB00776K
– volume: 293
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0800
  article-title: A simple polysaccharide based injectable hydrogel compositing nano-hydroxyapatite for bone tissue engineering
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2021.129755
– volume: 14
  start-page: 2184
  issue: 11
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0420
  article-title: Mechanism of self-healing hydrogels and application in tissue engineering
  publication-title: Polymers
  doi: 10.3390/polym14112184
– start-page: 533
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0880
  article-title: Nanomaterials in tissue engineering: applications and challenges
  publication-title: Advances in Nanotechnology-Based Drug Delivery Systems
  doi: 10.1016/B978-0-323-88450-1.00018-1
– volume: 90
  start-page: 1
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0365
  article-title: Advances in injectable self-healing biomedical hydrogels
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.03.057
– volume: 160
  start-page: 246
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0540
  article-title: Self-healing hydrogels with stimuli responsiveness based on acylhydrazone bonds
  publication-title: Polymer
  doi: 10.1016/j.polymer.2018.11.051
– volume: 509
  year: 2024
  ident: 10.1016/j.ijbiomac.2024.138323_bb0250
  article-title: Self-healing hydrogels as injectable implants: advances in translational wound healing
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2024.215790
– volume: 153
  start-page: 159
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0915
  article-title: A self-healing, magnetic and injectable biopolymer hydrogel generated by dual cross-linking for drug delivery and bone repair
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2022.09.036
– volume: 15
  start-page: 6505
  issue: 14
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0335
  article-title: Recent advances in self-healing polyurethane based on dynamic covalent bonds combined with other self-healing methods
  publication-title: Nanoscale
  doi: 10.1039/D2NR07110J
– volume: 13
  start-page: 3782
  issue: 21
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0240
  article-title: Self-healing hydrogels: preparation, mechanism and advancement in biomedical applications
  publication-title: Polymers
  doi: 10.3390/polym13213782
– start-page: 1
  year: 2024
  ident: 10.1016/j.ijbiomac.2024.138323_bb0295
  article-title: High-strength self-healing hydrogels based on boronate-diol complexation cross-linking with good bioavailability
  publication-title: J. Dispers. Sci. Technol.
  doi: 10.1080/01932691.2024.2340674
– volume: 2
  start-page: 253
  issue: 4
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.138323_bb0765
  article-title: In situ assembly of fibrinogen/hyaluronic acid hydrogel via knob-hole interaction for 3D cellular engineering
  publication-title: Bioactive Materials
  doi: 10.1016/j.bioactmat.2017.09.002
– volume: 253
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0080
  article-title: Self-healing hydrogels based on biological macromolecules in wound healing: a review
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.127612
– volume: 22
  start-page: 312
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0105
  article-title: Enhancing cartilage repair with optimized supramolecular hydrogel-based scaffold and pulsed electromagnetic field
  publication-title: Bioactive Materials
  doi: 10.1016/j.bioactmat.2022.10.010
– volume: 33
  start-page: 2304470
  issue: 43
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0265
  article-title: Multi-healable, mechanically durable double Cross-linked polyacrylamide electrolyte incorporating hydrophobic interactions for dendrite-free flexible zinc-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202304470
– volume: 8
  start-page: 2562
  issue: 13
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0760
  article-title: Highly aligned hierarchical intrafibrillar mineralization of collagen induced by periodic fluid shear stress
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C9TB02643F
– volume: 97
  start-page: 46
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0780
  article-title: (photo-) crosslinkable gelatin derivatives for biofabrication applications
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2019.07.035
– volume: 12
  start-page: 2074
  issue: 13
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0900
  article-title: Lactoferrin-hydroxyapatite containing spongy-like hydrogels for bone tissue engineering
  publication-title: Materials
  doi: 10.3390/ma12132074
– volume: 18
  start-page: 1356
  issue: 4
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.138323_bb0620
  article-title: Facile access to multisensitive and self-healing hydrogels with reversible and dynamic boronic ester and disulfide linkages
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.7b00089
– volume: 330
  start-page: 151
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0745
  article-title: Advances in biodegradable and injectable hydrogels for biomedical applications
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2020.12.008
– volume: 45
  start-page: 314
  issue: 1
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0460
  article-title: Self-healing hydrogel sensors with multiple shape memory properties for human motion monitoring
  publication-title: New J. Chem.
  doi: 10.1039/D0NJ04923A
– volume: 23
  start-page: 641
  issue: 3
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0445
  article-title: Recent advances of self-healing polymer materials via supramolecular forces for biomedical applications
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.1c01647
– volume: 32
  start-page: 1901244
  issue: 18
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0345
  article-title: High-performance polymeric materials through hydrogen-bond cross-linking
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901244
– volume: 184
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0535
  article-title: Fabrication of thermo and pH-dual sensitive hydrogels with optimized physiochemical properties via host-guest interactions and acylhydrazone dynamic bonding
  publication-title: React. Funct. Polym.
  doi: 10.1016/j.reactfunctpolym.2023.105513
– volume: 567
  start-page: 139
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0630
  article-title: A fast self-healing and conductive nanocomposite hydrogel as soft strain sensor
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2019.01.034
– volume: 396
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0130
  article-title: Sustained release of magnesium ions mediated by injectable self-healing adhesive hydrogel promotes fibrocartilaginous interface regeneration in the rabbit rotator cuff tear model
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.125335
– volume: 13
  start-page: 2499
  issue: 1
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0775
  article-title: An instantly fixable and self-adaptive scaffold for skull regeneration by autologous stem cell recruitment and angiogenesis
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30243-5
– volume: 6
  start-page: 69156
  issue: 73
  year: 2016
  ident: 10.1016/j.ijbiomac.2024.138323_bb0970
  article-title: Injectable and self-healing dynamic hydrogel containing bioactive glass nanoparticles as a potential biomaterial for bone regeneration
  publication-title: RSC Adv.
  doi: 10.1039/C6RA17327F
– volume: 232
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0070
  article-title: One-pot synthesis of injectable self-healing thermoresponsive halloysite nanotube-reinforced nanocomposite hydrogels for tissue engineering
  publication-title: Appl. Clay Sci.
  doi: 10.1016/j.clay.2022.106812
– volume: 22
  start-page: 287
  issue: 1
  year: 2024
  ident: 10.1016/j.ijbiomac.2024.138323_bb0215
  article-title: Dynamic hydrogel–metal–organic framework system promotes bone regeneration in periodontitis through controlled drug delivery
  publication-title: J. Nanobiotechnol.
  doi: 10.1186/s12951-024-02555-9
– volume: 30
  start-page: 2003717
  issue: 43
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0175
  article-title: Inspired by Nature: Facile Design of Nanoclay–Organic Hydrogel Bone Sealant with Multifunctional Properties for Robust Bone Regeneration
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202003717
– volume: 201
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0905
  article-title: 3D printed bone tissue regenerative PLA/HA scaffolds with comprehensive performance optimizations
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2021.109490
– volume: 10
  start-page: 2206450
  issue: 11
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0965
  article-title: A mechanically reinforced super bone glue makes a leap in hard tissue strong adhesion and augmented bone regeneration
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202206450
– volume: 27
  start-page: 853
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0435
  article-title: High-strength, tough, and self-healing hydrogel based on carboxymethyl cellulose
  publication-title: Cellulose
  doi: 10.1007/s10570-019-02797-z
– volume: 365
  start-page: 30
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0785
  article-title: Injectable biodegradable gelatin-methacrylate/β-tricalcium phosphate composite for the repair of bone defects
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.02.020
– volume: 146
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0740
  article-title: Progress in self-healing hydrogels and their applications in bone tissue engineering, biomaterials
  publication-title: Advances
– volume: 352
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0505
  article-title: Advances in polysaccharide-based hydrogels: self-healing and electrical conductivity
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2022.118712
– volume: 31
  start-page: 2009189
  issue: 22
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0180
  article-title: Noncompressible hemostasis and bone regeneration induced by an absorbable bioadhesive self-healing hydrogel
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202009189
– volume: 50
  start-page: 200
  issue: 2
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0410
  article-title: Immunomodulatory fibrous hyaluronic acid-Fmoc-diphenylalanine-based hydrogel induces bone regeneration
  publication-title: J. Clin. Periodontol.
  doi: 10.1111/jcpe.13725
– volume: 23
  start-page: 2552
  issue: 6
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0375
  article-title: Temperature-responsive aldehyde hydrogels with injectable, self-healing, and tunable mechanical properties
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.2c00260
– volume: 8
  start-page: 3754
  issue: 9
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0495
  article-title: Injectable and self-healing hydrogel based on chitosan-tannic acid and oxidized hyaluronic acid for wound healing
  publication-title: ACS Biomater Sci. Eng.
  doi: 10.1021/acsbiomaterials.2c00321
– volume: 112
  start-page: 822
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0585
  article-title: A transparent, highly stretchable, self-healing polyurethane based on disulfide bonds
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2018.11.005
– volume: 18
  start-page: 316
  issue: 2
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.138323_bb0035
  article-title: Hydrogels for therapeutic delivery: current developments and future directions
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.6b01604
– volume: 224
  start-page: 2300228
  issue: 24
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0270
  article-title: Self-healable, self-adhesive conductive hydrogels based on integrated multiple interactions for wearable sensing
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.202300228
– ident: 10.1016/j.ijbiomac.2024.138323_bb0885
  doi: 10.1016/B978-0-12-809551-5.00009-6
– volume: 123
  start-page: 834
  issue: 2
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0100
  article-title: Self-healing injectable hydrogels for tissue regeneration
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00179
– volume: 13
  start-page: 2303592
  issue: 10
  year: 2024
  ident: 10.1016/j.ijbiomac.2024.138323_bb0170
  article-title: Self-assembled nanocomposite hydrogels as carriers for demineralized bone matrix particles and enhanced bone repair
  publication-title: Adv. Healthc. Mater.
  doi: 10.1002/adhm.202303592
– volume: 12
  start-page: 7453
  issue: 12
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0700
  article-title: Graphene oxide based crosslinker for simultaneous enhancement of mechanical toughness and self-healing capability of conventional hydrogels
  publication-title: RSC Adv.
  doi: 10.1039/D2RA00122E
– volume: 13
  start-page: 24095
  issue: 20
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0065
  article-title: Ultrafast fabrication of self-healing and injectable carboxymethyl chitosan hydrogel dressing for wound healing
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c02089
– volume: 12
  start-page: 4395
  issue: 1
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0865
  article-title: Self-healing polyurethane-elastomer with mechanical tunability for multiple biomedical applications in vivo
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-24680-x
– volume: 184
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0580
  article-title: Catalyst free self-healable vitrimer/graphene oxide nanocomposites
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2019.107647
– volume: 7
  start-page: 5135
  issue: 11
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0590
  article-title: Antibacterial hydrogel with self-healing property for wound-healing applications
  publication-title: ACS Biomater Sci. Eng.
  doi: 10.1021/acsbiomaterials.1c00719
– volume: 269
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0715
  article-title: Injectable chitosan hydrogel embedding modified halloysite nanotubes for bone tissue engineering
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2021.118311
– volume: 153
  start-page: 637
  year: 2018
  ident: 10.1016/j.ijbiomac.2024.138323_bb0635
  article-title: Mechanically strong and tough hydrogels with excellent anti-fatigue, self-healing and reprocessing performance enabled by dynamic metal-coordination chemistry
  publication-title: Polymer
  doi: 10.1016/j.polymer.2018.08.063
– volume: 31
  issue: 21
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0050
  article-title: Scaffold fabrication technologies and structure/function properties in bone tissue engineering
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202010609
– volume: 14
  issue: 4
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0910
  article-title: In-situ mineralized homogeneous collagen-based scaffolds for potential guided bone regeneration
  publication-title: Biofabrication
  doi: 10.1088/1758-5090/ac8dc7
– volume: 363
  year: 2024
  ident: 10.1016/j.ijbiomac.2024.138323_bb0280
  article-title: Temperature induced self-healing properties of alginate gelatin hydrogels
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2024.136315
– volume: 280
  year: 2024
  ident: 10.1016/j.ijbiomac.2024.138323_bb0980
  article-title: Biomimetic dually cross-linked injectable poly(l-glutamic acid) based nanofiber composite hydrogels with self-healing, osteogenic and angiogenic properties for bone regeneration
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2024.111492
– volume: 61
  start-page: 17915
  issue: 49
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0385
  article-title: Tara tannin-cross-linked, underwater-adhesive, super self-healing, and recyclable gelatin-based conductive hydrogel as a strain sensor
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.2c03253
– volume: 12
  start-page: 1628
  issue: 1
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0845
  article-title: Autonomous self-healing silk fibroin injectable hydrogels formed via surfactant-free hydrophobic association
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b19415
– volume: 273
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0510
  article-title: Highly self-healable and injectable cellulose hydrogels via rapid hydrazone linkage for drug delivery and 3D cell culture
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2021.118547
– volume: 12
  issue: 6
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0750
  article-title: Self-healing biomaterials: the next generation is nano
  publication-title: Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
  doi: 10.1002/wnan.1641
– volume: 33
  start-page: 2528
  issue: 8
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0520
  article-title: Double dynamic bonds tough hydrogel with high self-healing properties based on acylhydrazone bonds and borate bonds
  publication-title: Polym. Adv. Technol.
  doi: 10.1002/pat.5707
– volume: 7
  start-page: 4876
  issue: 32
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0705
  article-title: Preparation, characterization and properties of intrinsic self-healing elastomers
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C9TB00831D
– volume: 470
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0150
  article-title: Harnessing immunomodulation for efficient bone regeneration: bioengineered black phosphorus-incorporated self-healing hydrogel
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144117
– volume: 8
  start-page: 2084
  issue: 8
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0350
  article-title: Rational design and latest advances of polysaccharide-based hydrogels for wound healing
  publication-title: Biomater. Sci.
  doi: 10.1039/D0BM00055H
– volume: 8
  start-page: 8171
  issue: 36
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0815
  article-title: Multicomponent polysaccharide alginate-based bioinks
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB01005G
– volume: 84
  start-page: 180
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0730
  article-title: Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2018.12.008
– volume: 8
  start-page: 3633
  issue: 8
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0360
  article-title: Antifreezing, ionically conductive, transparent, and antidrying carboxymethyl chitosan self-healing hydrogels as multifunctional sensors
  publication-title: Acs Biomaterials Science & Engineering
  doi: 10.1021/acsbiomaterials.2c00496
– ident: 10.1016/j.ijbiomac.2024.138323_bb0415
  doi: 10.1002/anie.201804400
– volume: 221
  start-page: 1900320
  issue: 3
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0390
  article-title: A novel double-network, self-healing hydrogel based on hydrogen bonding and hydrophobic effect
  publication-title: Macromolecular Chemistry and Physics
  doi: 10.1002/macp.201900320
– ident: 10.1016/j.ijbiomac.2024.138323_bb0230
  doi: 10.1016/j.carbpol.2021.118244
– volume: 178
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0920
  article-title: High strength PLGA/hydroxyapatite composites with tunable surface structure using PLGA direct grafting method for orthopedic implants
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2019.107449
– volume: 13
  start-page: 2680
  issue: 16
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0125
  article-title: Multifunctional and self-healable intelligent hydrogels for cancer drug delivery and promoting tissue regeneration in vivo
  publication-title: Polymers
  doi: 10.3390/polym13162680
– volume: 15
  start-page: 966
  issue: 4
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0550
  article-title: Granular disulfide-crosslinked hyaluronic hydrogels: a systematic study of reaction conditions on thiol substitution and injectability parameters
  publication-title: Polymers
  doi: 10.3390/polym15040966
– volume: 5
  start-page: 1800384
  issue: 17
  year: 2018
  ident: 10.1016/j.ijbiomac.2024.138323_bb0440
  article-title: Self-healing of polymers via supramolecular chemistry
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201800384
– volume: 27
  start-page: 1700591
  issue: 37
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.138323_bb0220
  article-title: Self-healing silk fibroin-based hydrogel for bone regeneration: dynamic metal-ligand self-assembly approach
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201700591
– volume: 475
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0310
  article-title: Designing dynamic metal-coordinated hydrophobically associated mechanically robust and stretchable hydrogels for versatile, multifunctional applications in strain sensing, actuation and flexible supercapacitors
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.146160
– volume: 6
  start-page: 497
  year: 2018
  ident: 10.1016/j.ijbiomac.2024.138323_bb0395
  article-title: Rational design of self-healing tough hydrogels: a mini review
  publication-title: ACS Nano
– volume: 15
  start-page: 1065
  issue: 5
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0405
  article-title: Role of hydrophobic associations in self-healing hydrogels based on amphiphilic polysaccharides
  publication-title: Polymers
  doi: 10.3390/polym15051065
– volume: 1
  start-page: 1769
  issue: 7
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0465
  article-title: Autonomous chitosan-based self-healing hydrogel formed through noncovalent interactions
  publication-title: ACS Applied Polymer Materials
  doi: 10.1021/acsapm.9b00317
– volume: 19
  start-page: 264
  issue: 5
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0825
  article-title: Preparation of alginate-based biomaterials and their applications in biomedicine
  publication-title: Mar. Drugs
  doi: 10.3390/md19050264
– volume: 456
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0255
  article-title: A self-repairing transparent film with reprocessable, ultra-high strength and outstanding elasticity based on interlocking hydrogen bonds and reversible topological networks
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.141137
– volume: 9
  start-page: 5730
  issue: 9
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0600
  article-title: Hierarchically reversible crosslinking polymeric hydrogels with highly efficient self-healing, robust mechanical properties, and double-driven shape memory behavior
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA10850B
– volume: 31
  start-page: 2009432
  issue: 19
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0060
  article-title: Recent advances in design of functional biocompatible hydrogels for bone tissue engineering
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202009432
– volume: 7
  start-page: 515
  issue: 4
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.138323_bb0430
  article-title: Cross-linked hydrogel for pharmaceutical applications: a review
  publication-title: Advanced Pharmaceutical Bulletin
  doi: 10.15171/apb.2017.064
– volume: 305
  start-page: 2000045
  issue: 4
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0790
  article-title: Amylopectin multiple aldehyde crosslinked hydrogel as an injectable and self-healing cell carrier for bone tissue engineering
  publication-title: Macromolecular Materials and Engineering
  doi: 10.1002/mame.202000045
– volume: 303
  start-page: 1800144
  issue: 7
  year: 2018
  ident: 10.1016/j.ijbiomac.2024.138323_bb0605
  article-title: An “off-the-shelf” shape memory hydrogel based on the dynamic borax-diol Ester bonds
  publication-title: Macromol. Mater. Eng.
  doi: 10.1002/mame.201800144
– volume: 14
  start-page: 21886
  issue: 19
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0840
  article-title: Degradation-kinetics-controllable and tissue-regeneration-Matchable Photocross-linked alginate hydrogels for bone repair
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.2c01739
– volume: 23
  start-page: 685
  year: 2018
  ident: 10.1016/j.ijbiomac.2024.138323_bb0555
  article-title: An inter-subunit disulfide bond of artemin acts as a redox switch for its chaperone-like activity
  publication-title: Cell Stress Chaperones
  doi: 10.1007/s12192-018-0880-7
– volume: 15
  start-page: 11202
  issue: 7
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0960
  article-title: De novo design of functional coassembling organic–inorganic hydrogels for hierarchical mineralization and neovascularization
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c09814
– volume: 28
  start-page: 1857
  issue: 9
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.138323_bb0710
  article-title: The design, mechanism and biomedical application of self-healing hydrogels
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2017.05.007
– volume: 31
  start-page: 2101303
  issue: 24
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0400
  article-title: Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202101303
– volume: 32
  start-page: 2159
  issue: 7
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0930
  article-title: A fast on-demand preparation of injectable self-healing nanocomposite hydrogels for efficient osteoinduction
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2020.12.001
– volume: 297
  start-page: 60
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0040
  article-title: Injectable thermosensitive hydrogel systems based on functional PEG/PCL block polymer for local drug delivery
  publication-title: J. Control. Release
  doi: 10.1016/j.jconrel.2019.01.026
– volume: 19
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0165
  article-title: An injectable and self-healing hydrogel with dual physical crosslinking for in-situ bone formation
  publication-title: Materials Today Bio
  doi: 10.1016/j.mtbio.2023.100558
– volume: 13
  start-page: 7371
  issue: 40
  year: 2017
  ident: 10.1016/j.ijbiomac.2024.138323_bb0515
  article-title: pH-switchable and self-healable hydrogels based on ketone type acylhydrazone dynamic covalent bonds
  publication-title: Soft Matter
  doi: 10.1039/C7SM00916J
– ident: 10.1016/j.ijbiomac.2024.138323_bb0690
  doi: 10.3390/gels9020102
– volume: 13
  start-page: 47
  issue: 2
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0835
  article-title: 3D printing of calcium phosphate/calcium sulfate with alginate/cellulose-based scaffolds for bone regeneration: multilayer fabrication and characterization
  publication-title: Journal of Functional Biomaterials
  doi: 10.3390/jfb13020047
– volume: 487
  year: 2024
  ident: 10.1016/j.ijbiomac.2024.138323_bb0200
  article-title: Decoupling stiffness and toughness of self-healing hydrogels for complex tissue regeneration via 3D bioprinting
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2024.150551
– volume: 8
  start-page: 5184
  issue: 24
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0925
  article-title: Hydrogels toughened by biominerals providing energy-dissipative sacrificial bonds
  publication-title: J. Mater. Chem. B
  doi: 10.1039/D0TB00833H
– volume: 9
  start-page: 4583
  issue: 8
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0795
  article-title: Bifunctional hydrogel-integrated 3D printed scaffold for repairing infected bone defects
  publication-title: ACS Biomater Sci. Eng.
  doi: 10.1021/acsbiomaterials.3c00564
– volume: 10
  start-page: rbad054
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0210
  article-title: Phosphoserine enhanced cu-doped bioactive glass dynamic dual-network hydrogel for craniofacial bone defect repair, regenerative
  publication-title: Biomaterials
– volume: 202
  start-page: 55
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0500
  article-title: Fabrication of oxidized sodium alginate-collagen heterogeneous bilayer barrier membrane with osteogenesis-promoting ability
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.12.155
– volume: 465
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0275
  article-title: Robust antifogging coatings with ultra-fast self-healing performances through host-guest strategy
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.142868
– volume: 604
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0680
  article-title: Potential use of the Diels-Alder reaction in biomedical and nanomedicine applications
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120727
– volume: 246
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0115
  article-title: Injectable hydrogels for cartilage and bone tissue regeneration: a review
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.125674
– volume: 197
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0055
  article-title: A versatile GelMA composite hydrogel: designing principles, delivery forms and biomedical applications
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2023.112370
– volume: 23
  start-page: 842
  issue: 2
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0870
  article-title: Irreversible and self-healing electrically conductive hydrogels made of bio-based polymers
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23020842
– volume: 18
  issue: 5
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0135
  article-title: Injectable, self-healing poly (amino acid)-hydrogel based on phenylboronate ester bond for osteochondral tissue engineering
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-605X/ace39b
– volume: 140
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0470
  article-title: Imine bonding self-repair hydrogels after periodate-triggered breakage of their cross-links
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2020.110038
– volume: 16
  start-page: 280
  issue: 3
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0830
  article-title: Alginate and alginate composites for biomedical applications
  publication-title: Asian Journal of Pharmaceutical Sciences
  doi: 10.1016/j.ajps.2020.10.001
– volume: 86
  start-page: 1524
  issue: 11
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0695
  article-title: Strong, self-healing gelatin hydrogels cross-linked by double dynamic covalent chemistry
  publication-title: ChemPlusChem
  doi: 10.1002/cplu.202100474
– volume: 227
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0145
  article-title: Engineering mussel-inspired multifunctional nanocomposite hydrogels to orchestrate osteoimmune microenvironment and promote bone healing
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2023.111705
– volume: 29
  start-page: 569
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0610
  article-title: Self-healing quadruple shape memory hydrogels based on coordination, borate bonds and temperature with tunable mechanical properties
  publication-title: Iran. Polym. J.
  doi: 10.1007/s13726-020-00821-9
– volume: 12
  start-page: 40786
  issue: 36
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0640
  article-title: Integration of macro-cross-linker and metal coordination: a super stretchable hydrogel with high toughness
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c11167
– volume: 10
  start-page: 318
  issue: 2
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0015
  article-title: Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: ongoing research and perspectives
  publication-title: Biomater. Sci.
  doi: 10.1039/D1BM01294K
– volume: 39
  start-page: 1800121
  issue: 20
  year: 2018
  ident: 10.1016/j.ijbiomac.2024.138323_bb0545
  article-title: Self-healing Polycaprolactone networks through thermo-induced reversible disulfide bond formation
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201800121
– volume: 20
  start-page: 314
  issue: 5
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0735
  article-title: Marine biopolymers as bioactive functional ingredients of electrospun nanofibrous scaffolds for biomedical applications
  publication-title: Mar. Drugs
  doi: 10.3390/md20050314
– volume: 31
  start-page: 5576
  issue: 15
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0285
  article-title: Self-healing hydrogel with a double dynamic network comprising imine and borate ester linkages
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b01301
– volume: 7
  start-page: 169
  issue: 4
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0565
  article-title: Instantaneous Degelling Thermoresponsive hydrogel
  publication-title: Gels
  doi: 10.3390/gels7040169
– volume: 30
  start-page: 73
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0140
  article-title: Hematoma-like dynamic hydrogelation through natural glycopeptide molecular recognition for infected bone fracture repair
  publication-title: Bioactive Materials
  doi: 10.1016/j.bioactmat.2023.07.018
– volume: 12
  start-page: 487
  issue: 2
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0530
  article-title: Doubly dynamic hydrogel formed by combining boronate ester and acylhydrazone bonds
  publication-title: Polymers
  doi: 10.3390/polym12020487
– volume: 2
  start-page: 2541
  issue: 7
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0455
  article-title: Adhesive, conductive, self-healing, and antibacterial hydrogel based on chitosan–polyoxometalate complexes for wearable strain sensor
  publication-title: ACS Applied Polymer Materials
  doi: 10.1021/acsapm.0c00150
– ident: 10.1016/j.ijbiomac.2024.138323_bb0235
  doi: 10.3389/fchem.2018.00449
– volume: 126535
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0320
  article-title: A review on the impacts of metal/metal nanoparticles on characteristics of hydrogels: special focus on carbohydrate polymers
  publication-title: Int. J. Biol. Macromol.
– volume: 51
  start-page: 8136
  issue: 20
  year: 2018
  ident: 10.1016/j.ijbiomac.2024.138323_bb0380
  article-title: A tough and stiff hydrogel with tunable water content and mechanical properties based on the synergistic effect of hydrogen bonding and hydrophobic interaction
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b01496
– volume: 254
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0570
  article-title: Hyaluronic acid thiol modified injectable hydrogel: synthesis, characterization, drug release, cellular drug uptake and anticancer activity
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.117286
– volume: 105
  start-page: 159
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0945
  article-title: Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2020.01.021
– volume: 246
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0225
  article-title: Dynamic protein hydrogel with supramolecularly enveloped kartogenin promotes cartilage regeneration through mitochondrial activation
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2022.110257
– volume: 157
  start-page: 1
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0330
  article-title: Self-healing epoxy nanocomposites via reversible hydrogen bonding
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2018.08.082
– volume: 67
  start-page: 627
  issue: 6
  year: 2018
  ident: 10.1016/j.ijbiomac.2024.138323_bb0525
  article-title: Dynamic covalent polymer hydrogels and organogels crosslinked through acylhydrazone bonds: synthesis, characterization and applications
  publication-title: Polym. Int.
  doi: 10.1002/pi.5554
– volume: 413
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0160
  article-title: A bioinspired mineral-organic composite hydrogel as a self-healable and mechanically robust bone graft for promoting bone regeneration
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.127512
– volume: 457
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0895
  article-title: Conductive self-healing biodegradable hydrogel based on hyaluronic acid-grafted-polyaniline as cell recruitment niches and cell delivery carrier for myogenic differentiation and skeletal muscle regeneration
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.141110
– volume: 10
  start-page: 6399
  issue: 22
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0485
  article-title: Dynamic covalent crosslinked hyaluronic acid hydrogels and nanomaterials for biomedical applications
  publication-title: Biomater. Sci.
  doi: 10.1039/D2BM01154A
– volume: 314
  year: 2025
  ident: 10.1016/j.ijbiomac.2024.138323_bb0975
  article-title: A MnO2 nanosheets doping double crosslinked hydrogel for cartilage defect repair through alleviating inflammation and guiding chondrogenic differentiation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2024.122875
– volume: 191
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0875
  article-title: Strong, self-healing, shape memory PAA-PANI/PVA/PDA/AOP conductive hydrogels with interpenetrating network and hydrogen bond interaction
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2023.112034
– volume: 32
  issue: 51
  year: 2022
  ident: 10.1016/j.ijbiomac.2024.138323_bb0020
  article-title: Bone repair biomaterials: a perspective from immunomodulation
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202208639
– volume: 181
  start-page: 189
  year: 2018
  ident: 10.1016/j.ijbiomac.2024.138323_bb0720
  article-title: Hydrolytically-degradable click-crosslinked alginate hydrogels
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.07.031
– volume: 36
  start-page: 287
  year: 2024
  ident: 10.1016/j.ijbiomac.2024.138323_bb0155
  article-title: Regulation of rheumatoid arthritis microenvironment via a self-healing injectable hydrogel for improved inflammation elimination and bone repair
  publication-title: Bioactive Materials
  doi: 10.1016/j.bioactmat.2024.03.002
– volume: 242
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0955
  article-title: Self-healing interpenetrating network hydrogel based on GelMA/alginate/nano-clay
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2023.124962
– volume: 99
  start-page: 905
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0075
  article-title: Bioactive glass ions induce efficient osteogenic differentiation of human adipose stem cells encapsulated in gellan gum and collagen type I hydrogels
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.02.035
– volume: 7
  start-page: 216
  issue: 4
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0095
  article-title: Self-healing mechanism and conductivity of the hydrogel flexible sensors: a review
  publication-title: Gels
  doi: 10.3390/gels7040216
– ident: 10.1016/j.ijbiomac.2024.138323_bb0655
  doi: 10.1002/marc.201800837
– volume: 19
  issue: 1
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0090
  article-title: Self-healing supramolecular hydrogels for tissue engineering applications
  publication-title: Macromol. Biosci.
  doi: 10.1002/mabi.201800313
– ident: 10.1016/j.ijbiomac.2024.138323_bb0425
  doi: 10.1021/acsbiomaterials.2c01547
– ident: 10.1016/j.ijbiomac.2024.138323_bb0670
  doi: 10.1021/acssuschemeng.7b01060
– volume: 16
  start-page: 39035
  issue: 30
  year: 2024
  ident: 10.1016/j.ijbiomac.2024.138323_bb0480
  article-title: Dynamic Cross-linking, self-healing, antibacterial hydrogel for regenerating irregular cranial bone defects
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.4c07057
– volume: 118
  start-page: 511
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0615
  article-title: A self-healing hydrogel derived flexible all-solid-state supercapacitors based on dynamic borate bonds
  publication-title: J. Ind. Eng. Chem.
  doi: 10.1016/j.jiec.2022.11.034
– volume: 250
  year: 2020
  ident: 10.1016/j.ijbiomac.2024.138323_bb0205
  article-title: Redox and pH dual-responsive injectable hyaluronan hydrogels with shape-recovery and self-healing properties for protein and cell delivery
  publication-title: Carbohydr. Polym.
  doi: 10.1016/j.carbpol.2020.116979
– volume: 17
  start-page: 48
  issue: 1
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0890
  article-title: An injectable, self-healing, electroconductive hydrogel loaded with neural stem cells and donepezil for enhancing local therapy effect of spinal cord injury
  publication-title: J. Biol. Eng.
  doi: 10.1186/s13036-023-00368-2
– volume: 13
  start-page: 237
  issue: 4
  year: 2024
  ident: 10.1016/j.ijbiomac.2024.138323_bb0025
  article-title: Bone tissue engineering and nanotechnology: a promising combination for bone regeneration
  publication-title: Biology
  doi: 10.3390/biology13040237
– volume: 5
  start-page: 1302
  issue: 2
  year: 2023
  ident: 10.1016/j.ijbiomac.2024.138323_bb0260
  article-title: Self-healing polyurethane elastomers with high mechanical properties based on synergistically thermo-reversible and quadruple hydrogen bonds
  publication-title: ACS Applied Polymer Materials
  doi: 10.1021/acsapm.2c01849
– volume: 561
  start-page: 325
  year: 2019
  ident: 10.1016/j.ijbiomac.2024.138323_bb0370
  article-title: Self-healing hydroxypropyl guar gum/poly (acrylamide-co-3-acrylamidophenyl boronic acid) composite hydrogels with yield phenomenon based on dynamic PBA ester bonds and H-bond
  publication-title: Colloids Surf. A Physicochem. Eng. Asp.
  doi: 10.1016/j.colsurfa.2018.10.071
– volume: 29
  start-page: 140
  issue: 2
  year: 2021
  ident: 10.1016/j.ijbiomac.2024.138323_bb0625
  article-title: Preparation of self-healable and spinnable hydrogel by dynamic boronate ester bond from hyperbranched polyglycerol and boronic acid-containing polymer
  publication-title: Macromol. Res.
  doi: 10.1007/s13233-021-9016-5
SSID ssj0006518
Score 2.4740782
SecondaryResourceType review_article
Snippet Bone defects, which arise from various factors such as trauma, tumor resection, and infection, present a significant clinical challenge. There is an urgent...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 138323
SubjectTerms Animals
biocompatibility
biocompatible materials
Biocompatible Materials - chemistry
Biocompatible Materials - pharmacology
Bone and Bones - drug effects
bone formation
Bone Regeneration - drug effects
Bone repair
bones
Humans
Hydrogel
hydrogels
Hydrogels - chemistry
Hydrogels - pharmacology
Hydrogels - therapeutic use
neoplasms
Osteogenesis - drug effects
resection
Self-healing
Tissue Engineering
tissue repair
Wound Healing - drug effects
Title A review of self-healing hydrogels for bone repair and regeneration: Materials, mechanisms, and applications
URI https://dx.doi.org/10.1016/j.ijbiomac.2024.138323
https://www.ncbi.nlm.nih.gov/pubmed/39645113
https://www.proquest.com/docview/3146569090
https://www.proquest.com/docview/3165873944
Volume 287
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYqGGBBvCmPykiMpE1iJ8FsVQUqIJhAYrP8hFSQVm0ZWPjt3OXBYwAGNsu6KKfvLnfn3MOEHGUGfDTD1L_nacCNV4FmxgUJatOJ9onJsDn5-iYd3vHL--S-RQZNLwyWVda2v7LppbWud3o1mr1JnvewLAncE8MhXZg-xo5yzjPU8u7bZ5lHmpT_-JA4QOovXcKjbj7CJneFowxj3o3gtBaznxzUTwFo6YjOV8lKHUHSfsXkGmm5Yp0sDZqL2zbIU59WDSl07OnMPfkAo0FwUfTx1U7HD_AyCqEq1ePCAeVE5VOqCgvLh3IGNYrqlF6reaWcx_TZYXtwPnuGNRJ-TXpvkrvzs9vBMKgvVQgM4yfzwMFHq2ykIsEjY1NvUxUKBYcmOGLzRDCmjRGKWR5DbJh6EKTQQsPBjDnrUu3ZFlkogL8drIqCjZRrr0LLnQ2FC2NltBeJYrHLwjbpNUjKSTU7QzZFZSPZYC8Re1lh3yaiAVx-0wIJBv7PZw8bCUkAHPMeqnDjl5lkEQ6FE6EIf6OBUCzDLuE22a7E-8Ez4IBT3NjuP7jbI8sx3hxc_rzZJwvz6Ys7gHBmrjulvnbIYv_ianjzDt3l9Tg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR3LTttAcETDgV4qSktJoWWReqyJ7V3bLLcoKgqP5AQSt9U-wRE4URIO_fvO-IHoAXrobbWalUcz43nsPBbgR2HRRnNK_QeRR8IGHRlufZSRNJ2YkNmCmpMn03x8Iy5us9sNGHW9MFRW2er-RqfX2rrdGbTUHCzKckBlSWieOA3povRx8Q42aTpV1oPN4fnlePqskPOsvuYj-IgOvGgUnh2XM-pz1zTNMBXHCQZsKX_NRr3mg9a26GwbPrROJBs2eH6EDV_twNaoe7vtEzwMWdOTwuaBrfxDiMghRCvF7n-75fwOP8bQW2VmXnmEXOhyyXTlcHlXj6Embp2yiV438vmTPXrqEC5Xj7gmwJd5789wc_brejSO2ncVIsvFyTry-N9ql-hEisS6PLhcx1Jj3IRRtsgk58ZaqbkTKbqHeUBeSiMNxmbcO5-bwHehVyF-e1QYhRu5MEHHTngXSx-n2pogM81TX8R9GHSUVItmfIbq6spmqqO9ItqrhvZ9kB3B1V-CoFDH__PsUcchhQSn1Ieu_PxppXhCc-FkLOO3YNAbK6hRuA9fGvY-44x0oEFu_Ot_YHcIW-PryZW6Op9e7sP7lB4Sru9yDqC3Xj75b-jdrM33Vnr_AENI9-k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+of+self-healing+hydrogels+for+bone+repair+and+regeneration%3A+Materials%2C+mechanisms%2C+and+applications&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Li%2C+Bo&rft.au=Li%2C+Chenchen&rft.au=Yan%2C+Ziyi&rft.au=Yang%2C+Xiaoling&rft.date=2025-01-01&rft.issn=0141-8130&rft.volume=287+p.138323-&rft_id=info:doi/10.1016%2Fj.ijbiomac.2024.138323&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon