Incorporating biotic relationships improves species distribution models: Modeling the temporal influence of competition in conspecific nesting birds
•Due to similar nesting ecology, Verdin are frequently subject to nest usurping by Cactus Wren.•We compared performance of SDMs with environmental factors only to those with a biotic component.•We used MaxEnt, Boosted Regression Tree, and Random Forest to predict Verdin presence.•SDM performance was...
Saved in:
Published in | Ecological modelling Vol. 408; p. 108743 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.09.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Due to similar nesting ecology, Verdin are frequently subject to nest usurping by Cactus Wren.•We compared performance of SDMs with environmental factors only to those with a biotic component.•We used MaxEnt, Boosted Regression Tree, and Random Forest to predict Verdin presence.•SDM performance was improved by the inclusion of Cactus wren distribution.
Complex, biotic interactions are notably excluded from species distribution models (SDMs) as they are often difficult to quantify and accommodate in a traditional modeling framework, especially those with a temporal component. The territorial nature of breeding Cactus wren is well-documented and typically involves nest usurping (i.e., destruction) of conspecifics. Due to their similar nesting ecology, breeding Verdin are frequently the target of such behavior and are often forced to move or abandon nests. Using the Verdin/Cactus wren system as a case study, our goal was to evaluate the performance of SDMs that include only environmental predictors with SDMs that also include biotic relationships as predictors.
East Foundation’s San Antonio Viejo Ranch in south Texas.
We built SDMs (MaxEnt, Boosted Regression Tree [BRT], and Random Forest [RF]) to project Verdin distribution during the early (April through mid-May), peak (mid-May through mid-June), and late (mid-June through mid-July) breeding periods using occurrence data collected during the 2015 and 2016 breeding seasons. We ran parallel analyses using relevant environmental features alone as predictors and then environmental features with observed Cactus wren density.
Random Forest (RF) produced the highest predictive performance SDMs for all three breeding periods (AUC = 0.81-0.99; TSS = 0.23-0.73). All models improved in predictive power (Δ AUC = 0.01-0.10) and model sensitivity (Δ TSS = 0.09-0.66) with the inclusion of Cactus wren density as a predictor of Verdin presence.
Our results indicate that SDM performance is improved by the inclusion of biotic relationships as predictors. Incorporating biotic interactions, as well as their temporal trends, is essential in efforts to monitor or conserve bird species with similar nesting ecologies. Further, modeling algorithms that can accommodate complex, non-linear relationships (e.g., Random Forest) should be preferred in SDM development and application. |
---|---|
AbstractList | •Due to similar nesting ecology, Verdin are frequently subject to nest usurping by Cactus Wren.•We compared performance of SDMs with environmental factors only to those with a biotic component.•We used MaxEnt, Boosted Regression Tree, and Random Forest to predict Verdin presence.•SDM performance was improved by the inclusion of Cactus wren distribution.
Complex, biotic interactions are notably excluded from species distribution models (SDMs) as they are often difficult to quantify and accommodate in a traditional modeling framework, especially those with a temporal component. The territorial nature of breeding Cactus wren is well-documented and typically involves nest usurping (i.e., destruction) of conspecifics. Due to their similar nesting ecology, breeding Verdin are frequently the target of such behavior and are often forced to move or abandon nests. Using the Verdin/Cactus wren system as a case study, our goal was to evaluate the performance of SDMs that include only environmental predictors with SDMs that also include biotic relationships as predictors.
East Foundation’s San Antonio Viejo Ranch in south Texas.
We built SDMs (MaxEnt, Boosted Regression Tree [BRT], and Random Forest [RF]) to project Verdin distribution during the early (April through mid-May), peak (mid-May through mid-June), and late (mid-June through mid-July) breeding periods using occurrence data collected during the 2015 and 2016 breeding seasons. We ran parallel analyses using relevant environmental features alone as predictors and then environmental features with observed Cactus wren density.
Random Forest (RF) produced the highest predictive performance SDMs for all three breeding periods (AUC = 0.81-0.99; TSS = 0.23-0.73). All models improved in predictive power (Δ AUC = 0.01-0.10) and model sensitivity (Δ TSS = 0.09-0.66) with the inclusion of Cactus wren density as a predictor of Verdin presence.
Our results indicate that SDM performance is improved by the inclusion of biotic relationships as predictors. Incorporating biotic interactions, as well as their temporal trends, is essential in efforts to monitor or conserve bird species with similar nesting ecologies. Further, modeling algorithms that can accommodate complex, non-linear relationships (e.g., Random Forest) should be preferred in SDM development and application. Complex, biotic interactions are notably excluded from species distribution models (SDMs) as they are often difficult to quantify and accommodate in a traditional modeling framework, especially those with a temporal component. The territorial nature of breeding Cactus wren is well-documented and typically involves nest usurping (i.e., destruction) of conspecifics. Due to their similar nesting ecology, breeding Verdin are frequently the target of such behavior and are often forced to move or abandon nests. Using the Verdin/Cactus wren system as a case study, our goal was to evaluate the performance of SDMs that include only environmental predictors with SDMs that also include biotic relationships as predictors.East Foundation’s San Antonio Viejo Ranch in south Texas.We built SDMs (MaxEnt, Boosted Regression Tree [BRT], and Random Forest [RF]) to project Verdin distribution during the early (April through mid-May), peak (mid-May through mid-June), and late (mid-June through mid-July) breeding periods using occurrence data collected during the 2015 and 2016 breeding seasons. We ran parallel analyses using relevant environmental features alone as predictors and then environmental features with observed Cactus wren density.Random Forest (RF) produced the highest predictive performance SDMs for all three breeding periods (AUC = 0.81-0.99; TSS = 0.23-0.73). All models improved in predictive power (Δ AUC = 0.01-0.10) and model sensitivity (Δ TSS = 0.09-0.66) with the inclusion of Cactus wren density as a predictor of Verdin presence.Our results indicate that SDM performance is improved by the inclusion of biotic relationships as predictors. Incorporating biotic interactions, as well as their temporal trends, is essential in efforts to monitor or conserve bird species with similar nesting ecologies. Further, modeling algorithms that can accommodate complex, non-linear relationships (e.g., Random Forest) should be preferred in SDM development and application. |
ArticleNumber | 108743 |
Author | Morrison, Michael L. Fern, Rachel R. Wang, Hsiao-Hsuan Grant, William E. Campbell, Tyler A. |
Author_xml | – sequence: 1 givenname: Rachel R. orcidid: 0000-0003-2465-5418 surname: Fern fullname: Fern, Rachel R. email: Rachel.Fern@tamu.edu organization: Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77845, USA – sequence: 2 givenname: Michael L. surname: Morrison fullname: Morrison, Michael L. organization: Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77845, USA – sequence: 3 givenname: Hsiao-Hsuan orcidid: 0000-0002-7850-0406 surname: Wang fullname: Wang, Hsiao-Hsuan organization: Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77845, USA – sequence: 4 givenname: William E. surname: Grant fullname: Grant, William E. organization: Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77845, USA – sequence: 5 givenname: Tyler A. surname: Campbell fullname: Campbell, Tyler A. organization: East Foundation, San Antonio, TX, 78216, USA |
BookMark | eNqNUU1r3DAQFSWBbjb9DdWxF2_1YVt2oYcQkjaQ0ktyFlp53MwiS66kDeR_5AdH3g099JKA0DDivTej987IiQ8eCPnM2YYz3n7dbcAGN4UB3EYw3pfXTtXyA1nxTolKMdGekBWTrK5kx9hHcpbSjjHGRSdW5PnG2xDnEE1G_4duMWS0NIIrffDpAedEcZpjeIRE0wwWSx0w5Yjb_QKhh8npG_211EUjPwDNMC2ajqIf3R68BRpGasM0Q8YDDX1p_UFxLBM9pNcF4pDOyeloXIJPr3VN7q-v7i5_Vre_f9xcXtxWVtZdrkDCCNyoVlhmu8GI3tSNKpdsO8tNzZXkDeO8r_vtduBqaE3f9q1t-qa1rDNyTb4cdcv__u7LBnrCZME54yHskxaSNYKrcgpUHaE2hpQijHqOOJn4pDnTSw56p__loJcc9DGHwvz-H9NiPribo0H3Dv7FkV9chkeEqFMJoTg6YASb9RDwTY0XroKwcA |
CitedBy_id | crossref_primary_10_1002_ece3_7974 crossref_primary_10_1016_j_ecolmodel_2021_109774 crossref_primary_10_1016_j_ecolmodel_2019_108827 crossref_primary_10_1111_jbi_14969 crossref_primary_10_1111_ecog_06852 crossref_primary_10_1002_ece3_70520 crossref_primary_10_3389_fevo_2023_1086062 crossref_primary_10_1007_s10980_021_01369_6 crossref_primary_10_3390_w14091365 crossref_primary_10_1016_j_ecolmodel_2024_110732 crossref_primary_10_3390_insects11100674 crossref_primary_10_1007_s10530_023_03203_3 crossref_primary_10_1016_j_ecolmodel_2022_110136 |
Cites_doi | 10.1016/j.rse.2008.01.008 10.1890/07-2153.1 10.2307/1368721 10.1016/j.ecolind.2018.06.029 10.1146/annurev.ecolsys.110308.120159 10.1111/j.1541-0420.2012.01824.x 10.1007/s10021-005-0054-1 10.1016/j.ecolmodel.2005.03.026 10.1111/j.1365-2656.2008.01390.x 10.1016/j.patrec.2005.08.011 10.1023/A:1010933404324 10.1007/BF00377288 10.1111/j.1365-2699.2010.02416.x 10.1111/j.1541-0420.2008.01116.x 10.2307/1931600 10.1007/s11434-014-0445-9 10.1111/jbi.12058 10.3390/rs1030519 10.2307/1311947 10.1016/0034-4257(95)00186-7 10.1111/j.1749-8198.2010.00351.x 10.1016/0006-3207(94)90172-4 |
ContentType | Journal Article |
Copyright | 2019 |
Copyright_xml | – notice: 2019 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.ecolmodel.2019.108743 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Ecology Environmental Sciences |
EISSN | 1872-7026 |
ExternalDocumentID | 10_1016_j_ecolmodel_2019_108743 S0304380019302510 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AAXUO ABFNM ABFYP ABGRD ABLST ABMAC ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEZE ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLECG BLXMC CBWCG CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KCYFY KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SAB SCC SDF SDG SDP SES SPCBC SSA SSJ SSZ T5K WH7 Y6R ~02 ~G- 29G 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABJNI ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HLV HMC HVGLF HZ~ R2- RIG SEN SEW SSH VH1 WUQ ZY4 7S9 L.6 |
ID | FETCH-LOGICAL-c348t-e3efe1a762c0c8da29a4579a4368c1a417315011949bbd17d6a9696c5956c08a3 |
IEDL.DBID | .~1 |
ISSN | 0304-3800 |
IngestDate | Fri Jul 11 00:20:05 EDT 2025 Tue Jul 01 03:09:10 EDT 2025 Thu Apr 24 23:01:25 EDT 2025 Fri Feb 23 02:24:32 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Competition Nesting Species distribution model Verdin Cactus wren Birds Predation Biotic interactions |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-e3efe1a762c0c8da29a4579a4368c1a417315011949bbd17d6a9696c5956c08a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2465-5418 0000-0002-7850-0406 |
PQID | 2305217217 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2305217217 crossref_primary_10_1016_j_ecolmodel_2019_108743 crossref_citationtrail_10_1016_j_ecolmodel_2019_108743 elsevier_sciencedirect_doi_10_1016_j_ecolmodel_2019_108743 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-09-15 |
PublicationDateYYYYMMDD | 2019-09-15 |
PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Ecological modelling |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Liu, White, Newell, Pearson (bib0085) 2013; 40 Higgins, Oldemeyer, Jenkins, Clambey, Harlow (bib0080) 1996; 5 NASA Landsat Program (bib0130) 2015 Renner, Warton (bib0175) 2013; 69 Simons, Simons (bib0190) 1990; 92 Austin, Niel (bib0015) 2011; 38 Prasad, Iverson, Liaw (bib0160) 2006; 9 Snelgrove, Dube, Skow, Engeling (bib0195) 2013 van Beers, Kleijnen (bib0020) 2004; Vol. 1 Gislason, Benediktsson, Sveinsson (bib0075) 2006; 27 Franklin (bib0070) 2010 Phillips, Elith (bib0145) 2011 R Core Team (bib0170) 2013 Lockwood, Freeman (bib0090) 2004 Martin (bib0110) 1993; 43 Davis (bib0045) 2017 Miller (bib0125) 2010; 4 Mahmoudabadi, Briggs (bib0100) 2016 NASA Landsat Program (bib0135) 2016 Saatchi, Buermann, Ter Steege, Mori, Smith (bib0185) 2008; 112 Breiman (bib0030) 2001; 45 Mi, Huettmann, Guo (bib0120) 2014; 59 Coulloudon, Eshelman, Gianola, Habich, Hughes, Johnson, Pellant, Podborny, Rasmussen, Robles (bib0040) 1999 Elith, Leathwick (bib0050) 2009; 40 Newton (bib0140) 1994; 70 Evangelista, Stohlgren, Morisette, Kumar (bib0060) 2009; 1 Canfield (bib0035) 1941; 39 Rondeaux, Steven, Baret (bib0180) 1996; 55 Phillips, Anderson, Schapire (bib0150) 2006; 190 Anderson, Anderson (bib0005) 1973 Phillips, Dudik, Elith, Graham, Lehmann, Leathwick, Ferrier (bib0155) 2009; 19 Ward, Hastie, Barry, Elith, Leathwick (bib0200) 2009; 65 McGee (bib0115) 1985 Wise-Gervais (bib0210) 2005 Margules, Nicholls, Austin (bib0105) 1987; 71 PRISM Climate Group (bib0165) 2018 Elith, Leathwick, Hastie (bib0055) 2008; 77 Williamson (bib0205) 2000 Bonham (bib0025) 2013 Macarthur (bib0095) 1958; 39 Austin, Cunningham (bib0010) 1981; 11 Fern, Foxley, Bruno, Morrison (bib0065) 2018; 94 Phillips (10.1016/j.ecolmodel.2019.108743_bib0150) 2006; 190 R Core Team (10.1016/j.ecolmodel.2019.108743_bib0170) 2013 van Beers (10.1016/j.ecolmodel.2019.108743_bib0020) 2004; Vol. 1 Newton (10.1016/j.ecolmodel.2019.108743_bib0140) 1994; 70 Renner (10.1016/j.ecolmodel.2019.108743_bib0175) 2013; 69 Elith (10.1016/j.ecolmodel.2019.108743_bib0050) 2009; 40 Evangelista (10.1016/j.ecolmodel.2019.108743_bib0060) 2009; 1 Fern (10.1016/j.ecolmodel.2019.108743_bib0065) 2018; 94 McGee (10.1016/j.ecolmodel.2019.108743_bib0115) 1985 Simons (10.1016/j.ecolmodel.2019.108743_bib0190) 1990; 92 NASA Landsat Program (10.1016/j.ecolmodel.2019.108743_bib0130) 2015 Austin (10.1016/j.ecolmodel.2019.108743_bib0015) 2011; 38 Davis (10.1016/j.ecolmodel.2019.108743_bib0045) 2017 NASA Landsat Program (10.1016/j.ecolmodel.2019.108743_bib0135) 2016 Mahmoudabadi (10.1016/j.ecolmodel.2019.108743_bib0100) 2016 Anderson (10.1016/j.ecolmodel.2019.108743_bib0005) 1973 Snelgrove (10.1016/j.ecolmodel.2019.108743_bib0195) 2013 PRISM Climate Group (10.1016/j.ecolmodel.2019.108743_bib0165) 2018 Martin (10.1016/j.ecolmodel.2019.108743_bib0110) 1993; 43 Macarthur (10.1016/j.ecolmodel.2019.108743_bib0095) 1958; 39 Bonham (10.1016/j.ecolmodel.2019.108743_bib0025) 2013 Gislason (10.1016/j.ecolmodel.2019.108743_bib0075) 2006; 27 Phillips (10.1016/j.ecolmodel.2019.108743_bib0155) 2009; 19 Rondeaux (10.1016/j.ecolmodel.2019.108743_bib0180) 1996; 55 Miller (10.1016/j.ecolmodel.2019.108743_bib0125) 2010; 4 Margules (10.1016/j.ecolmodel.2019.108743_bib0105) 1987; 71 Mi (10.1016/j.ecolmodel.2019.108743_bib0120) 2014; 59 Lockwood (10.1016/j.ecolmodel.2019.108743_bib0090) 2004 Phillips (10.1016/j.ecolmodel.2019.108743_bib0145) 2011 Coulloudon (10.1016/j.ecolmodel.2019.108743_bib0040) 1999 Franklin (10.1016/j.ecolmodel.2019.108743_bib0070) 2010 Saatchi (10.1016/j.ecolmodel.2019.108743_bib0185) 2008; 112 Williamson (10.1016/j.ecolmodel.2019.108743_bib0205) 2000 Breiman (10.1016/j.ecolmodel.2019.108743_bib0030) 2001; 45 Wise-Gervais (10.1016/j.ecolmodel.2019.108743_bib0210) 2005 Austin (10.1016/j.ecolmodel.2019.108743_bib0010) 1981; 11 Prasad (10.1016/j.ecolmodel.2019.108743_bib0160) 2006; 9 Liu (10.1016/j.ecolmodel.2019.108743_bib0085) 2013; 40 Canfield (10.1016/j.ecolmodel.2019.108743_bib0035) 1941; 39 Higgins (10.1016/j.ecolmodel.2019.108743_bib0080) 1996; 5 Ward (10.1016/j.ecolmodel.2019.108743_bib0200) 2009; 65 Elith (10.1016/j.ecolmodel.2019.108743_bib0055) 2008; 77 |
References_xml | – volume: 11 start-page: 109 year: 1981 end-page: 119 ident: bib0010 article-title: Observational analysis of environmental gradients publication-title: Pro. Ecol. Society Aust. – volume: 38 start-page: 1 year: 2011 end-page: 8 ident: bib0015 article-title: Improving species distribution models for climate change studies: variable selection and scale publication-title: J. Biogeogr. – year: 2015 ident: bib0130 article-title: LANDSAT 8 OLI/TIRS Collection 1 – Path:27 Row: 41. Scene LC08_L1TP_027041_20150720_20170310_01_T1. USGS, Sioux Falls (07/20/2015) – volume: 39 start-page: 599 year: 1958 end-page: 619 ident: bib0095 article-title: Population Ecology of Some Warblers of Northeastern Coniferous Forests publication-title: Ecology – year: 2018 ident: bib0165 article-title: Oregon State University – year: 2000 ident: bib0205 article-title: Blue-throated hummingbird ( publication-title: The Birds of North America (No. 531) – volume: 9 start-page: 181 year: 2006 end-page: 199 ident: bib0160 article-title: Newer classification and regression tree techniques: bagging and random forests for ecological prediction publication-title: Ecosystems – year: 2013 ident: bib0195 article-title: East Wildlife Foundation Atlas – year: 2005 ident: bib0210 article-title: Verdin ( publication-title: Arizona Breeding Bird Atlas – volume: 39 start-page: 388 year: 1941 end-page: 394 ident: bib0035 article-title: Application of the line interception method in sampling range vegetation publication-title: J. For. – volume: 40 start-page: 677 year: 2009 end-page: 697 ident: bib0050 article-title: Species distribution models: ecological explanation and prediction across space and time publication-title: Annu. Rev. Ecol. Evol. Syst. – volume: 1 start-page: 519 year: 2009 end-page: 533 ident: bib0060 article-title: Mapping invasive tamarisk (Tamarix): a comparison of single-scene and time-series analyses of remotely sensed data publication-title: Remote Sens. – volume: 69 start-page: 274 year: 2013 end-page: 281 ident: bib0175 article-title: Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology publication-title: Biometrics – year: 1985 ident: bib0115 article-title: Interspecific Nest Influence: the Influence of Cactus wrens (Campylorhynchus Brunneicapillus) on Verdin ( – volume: 59 start-page: 4323 year: 2014 end-page: 4331 ident: bib0120 article-title: Obtaining the best possible predictions of habitat selection for wintering Great Bustards in Cangzhou, Hebei Province with rapid machine learning analysis publication-title: Chinese Sci. Bull. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib0030 article-title: Random forests publication-title: Mach. Learn. – volume: 5 start-page: 567 year: 1996 end-page: 591 ident: bib0080 article-title: Vegetation sampling and measurement publication-title: Research and management techniques for wildlife and habitats – volume: 40 start-page: 778 year: 2013 end-page: 789 ident: bib0085 article-title: Selecting thresholds for the prediction of species occurrence with presence‐only data publication-title: J. Biogeogr. – volume: 190 start-page: 231 year: 2006 end-page: 259 ident: bib0150 article-title: Maximum entropy modeling of species geographic distributions publication-title: Ecol. Modell. – year: 1999 ident: bib0040 article-title: Sampling Vegetation Attributes – start-page: 1384 year: 2011 end-page: 1389 ident: bib0145 article-title: Logistic Methods for Resource Selection Functions and Presence-Only Species Distribution Models – year: 2016 ident: bib0135 article-title: LANDSAT 8 OLI/TIRS Collection 1 – Path:27 Row: 41. Scene ID:LC08_L1TP_027041_20160706_20170222_01_T1. USGS, Sioux Falls (07/06/2016) – volume: 19 start-page: 181 year: 2009 end-page: 197 ident: bib0155 article-title: Sample selection Bias and presence-only distribution models: implications for background and pseudo-absence data publication-title: Ecol. Appl. – volume: 55 start-page: 95 year: 1996 end-page: 107 ident: bib0180 article-title: Optimization of soil-adjusted vegetation indices publication-title: Remote Sens. Environ. – year: 2004 ident: bib0090 article-title: The TOS Handbook of Texas Birds – year: 2016 ident: bib0100 article-title: Directional kriging implementation for gridded data interpolation and comparative study with common methods – year: 2010 ident: bib0070 article-title: Mapping Species Distributions: Spatial Inference and Prediction – volume: 94 start-page: 16 year: 2018 end-page: 21 ident: bib0065 article-title: Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland publication-title: Ecol. Indic. – year: 2017 ident: bib0045 article-title: Influence of Vegetative Characteristics on Predation and Predator Assemblage of Bird Nests – volume: 43 start-page: 523 year: 1993 end-page: 532 ident: bib0110 article-title: Nest Predation and Nest Sites: new perspectives on old patterns publication-title: BioScience – volume: 65 start-page: 554 year: 2009 end-page: 563 ident: bib0200 article-title: Presence‐only data and the EM algorithm publication-title: Biometrics – year: 2013 ident: bib0170 article-title: R: a Language and Environment for Statistical Computing – volume: 71 start-page: 229 year: 1987 end-page: 232 ident: bib0105 article-title: Diversity of Eucalyptus species predicted by a multi-variable environmental gradient publication-title: Oecologia – volume: 4 start-page: 490 year: 2010 end-page: 509 ident: bib0125 article-title: Species distribution modeling publication-title: Geogr. Compass – volume: 92 start-page: 855 year: 1990 end-page: 860 ident: bib0190 article-title: Experimental studies of nest-destroying behavior by Cactus wrens publication-title: Condor – volume: 70 start-page: 265 year: 1994 end-page: 276 ident: bib0140 article-title: The role of nest sites in limiting the number of hole nesting birds: a review publication-title: Biol. Conserv. – volume: Vol. 1 year: 2004 ident: bib0020 publication-title: Kriging Interpolation in Simulation: a Survey – volume: 77 start-page: 802 year: 2008 end-page: 813 ident: bib0055 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. – volume: 27 start-page: 294 year: 2006 end-page: 300 ident: bib0075 article-title: Random forests for land cover classification publication-title: Pattern Recognit. Lett. – year: 1973 ident: bib0005 article-title: The Cactus Wren – year: 2013 ident: bib0025 article-title: Measurements for Terrestrial Vegetation – volume: 112 start-page: 2000 year: 2008 end-page: 2017 ident: bib0185 article-title: Modeling distribution of Amazonian tree species and diversity using remote sensing measurements publication-title: Remote Sens. Environ. – volume: 112 start-page: 2000 year: 2008 ident: 10.1016/j.ecolmodel.2019.108743_bib0185 article-title: Modeling distribution of Amazonian tree species and diversity using remote sensing measurements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.01.008 – year: 2004 ident: 10.1016/j.ecolmodel.2019.108743_bib0090 – volume: 19 start-page: 181 year: 2009 ident: 10.1016/j.ecolmodel.2019.108743_bib0155 article-title: Sample selection Bias and presence-only distribution models: implications for background and pseudo-absence data publication-title: Ecol. Appl. doi: 10.1890/07-2153.1 – year: 1985 ident: 10.1016/j.ecolmodel.2019.108743_bib0115 – volume: 92 start-page: 855 year: 1990 ident: 10.1016/j.ecolmodel.2019.108743_bib0190 article-title: Experimental studies of nest-destroying behavior by Cactus wrens publication-title: Condor doi: 10.2307/1368721 – year: 2000 ident: 10.1016/j.ecolmodel.2019.108743_bib0205 article-title: Blue-throated hummingbird (lampornis clemenciae) – volume: 94 start-page: 16 year: 2018 ident: 10.1016/j.ecolmodel.2019.108743_bib0065 article-title: Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland publication-title: Ecol. Indic. doi: 10.1016/j.ecolind.2018.06.029 – volume: 40 start-page: 677 year: 2009 ident: 10.1016/j.ecolmodel.2019.108743_bib0050 article-title: Species distribution models: ecological explanation and prediction across space and time publication-title: Annu. Rev. Ecol. Evol. Syst. doi: 10.1146/annurev.ecolsys.110308.120159 – volume: 69 start-page: 274 year: 2013 ident: 10.1016/j.ecolmodel.2019.108743_bib0175 article-title: Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology publication-title: Biometrics doi: 10.1111/j.1541-0420.2012.01824.x – volume: 39 start-page: 388 year: 1941 ident: 10.1016/j.ecolmodel.2019.108743_bib0035 article-title: Application of the line interception method in sampling range vegetation publication-title: J. For. – volume: Vol. 1 year: 2004 ident: 10.1016/j.ecolmodel.2019.108743_bib0020 – volume: 9 start-page: 181 year: 2006 ident: 10.1016/j.ecolmodel.2019.108743_bib0160 article-title: Newer classification and regression tree techniques: bagging and random forests for ecological prediction publication-title: Ecosystems doi: 10.1007/s10021-005-0054-1 – volume: 190 start-page: 231 year: 2006 ident: 10.1016/j.ecolmodel.2019.108743_bib0150 article-title: Maximum entropy modeling of species geographic distributions publication-title: Ecol. Modell. doi: 10.1016/j.ecolmodel.2005.03.026 – year: 1973 ident: 10.1016/j.ecolmodel.2019.108743_bib0005 – volume: 77 start-page: 802 year: 2008 ident: 10.1016/j.ecolmodel.2019.108743_bib0055 article-title: A working guide to boosted regression trees publication-title: J. Anim. Ecol. doi: 10.1111/j.1365-2656.2008.01390.x – year: 2017 ident: 10.1016/j.ecolmodel.2019.108743_bib0045 – volume: 27 start-page: 294 year: 2006 ident: 10.1016/j.ecolmodel.2019.108743_bib0075 article-title: Random forests for land cover classification publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2005.08.011 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.ecolmodel.2019.108743_bib0030 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – year: 2005 ident: 10.1016/j.ecolmodel.2019.108743_bib0210 article-title: Verdin (Auriparus flaviceps) – volume: 71 start-page: 229 year: 1987 ident: 10.1016/j.ecolmodel.2019.108743_bib0105 article-title: Diversity of Eucalyptus species predicted by a multi-variable environmental gradient publication-title: Oecologia doi: 10.1007/BF00377288 – volume: 38 start-page: 1 year: 2011 ident: 10.1016/j.ecolmodel.2019.108743_bib0015 article-title: Improving species distribution models for climate change studies: variable selection and scale publication-title: J. Biogeogr. doi: 10.1111/j.1365-2699.2010.02416.x – year: 2010 ident: 10.1016/j.ecolmodel.2019.108743_bib0070 – year: 2015 ident: 10.1016/j.ecolmodel.2019.108743_bib0130 – volume: 5 start-page: 567 year: 1996 ident: 10.1016/j.ecolmodel.2019.108743_bib0080 article-title: Vegetation sampling and measurement publication-title: Research and management techniques for wildlife and habitats – volume: 65 start-page: 554 year: 2009 ident: 10.1016/j.ecolmodel.2019.108743_bib0200 article-title: Presence‐only data and the EM algorithm publication-title: Biometrics doi: 10.1111/j.1541-0420.2008.01116.x – volume: 39 start-page: 599 year: 1958 ident: 10.1016/j.ecolmodel.2019.108743_bib0095 article-title: Population Ecology of Some Warblers of Northeastern Coniferous Forests publication-title: Ecology doi: 10.2307/1931600 – year: 2013 ident: 10.1016/j.ecolmodel.2019.108743_bib0195 – volume: 59 start-page: 4323 year: 2014 ident: 10.1016/j.ecolmodel.2019.108743_bib0120 article-title: Obtaining the best possible predictions of habitat selection for wintering Great Bustards in Cangzhou, Hebei Province with rapid machine learning analysis publication-title: Chinese Sci. Bull. doi: 10.1007/s11434-014-0445-9 – volume: 40 start-page: 778 year: 2013 ident: 10.1016/j.ecolmodel.2019.108743_bib0085 article-title: Selecting thresholds for the prediction of species occurrence with presence‐only data publication-title: J. Biogeogr. doi: 10.1111/jbi.12058 – year: 2016 ident: 10.1016/j.ecolmodel.2019.108743_bib0100 – year: 2013 ident: 10.1016/j.ecolmodel.2019.108743_bib0170 – year: 2016 ident: 10.1016/j.ecolmodel.2019.108743_bib0135 – year: 2013 ident: 10.1016/j.ecolmodel.2019.108743_bib0025 – start-page: 1384 year: 2011 ident: 10.1016/j.ecolmodel.2019.108743_bib0145 – volume: 1 start-page: 519 year: 2009 ident: 10.1016/j.ecolmodel.2019.108743_bib0060 article-title: Mapping invasive tamarisk (Tamarix): a comparison of single-scene and time-series analyses of remotely sensed data publication-title: Remote Sens. doi: 10.3390/rs1030519 – volume: 43 start-page: 523 year: 1993 ident: 10.1016/j.ecolmodel.2019.108743_bib0110 article-title: Nest Predation and Nest Sites: new perspectives on old patterns publication-title: BioScience doi: 10.2307/1311947 – year: 2018 ident: 10.1016/j.ecolmodel.2019.108743_bib0165 – volume: 11 start-page: 109 year: 1981 ident: 10.1016/j.ecolmodel.2019.108743_bib0010 article-title: Observational analysis of environmental gradients publication-title: Pro. Ecol. Society Aust. – volume: 55 start-page: 95 year: 1996 ident: 10.1016/j.ecolmodel.2019.108743_bib0180 article-title: Optimization of soil-adjusted vegetation indices publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(95)00186-7 – year: 1999 ident: 10.1016/j.ecolmodel.2019.108743_bib0040 – volume: 4 start-page: 490 year: 2010 ident: 10.1016/j.ecolmodel.2019.108743_bib0125 article-title: Species distribution modeling publication-title: Geogr. Compass doi: 10.1111/j.1749-8198.2010.00351.x – volume: 70 start-page: 265 year: 1994 ident: 10.1016/j.ecolmodel.2019.108743_bib0140 article-title: The role of nest sites in limiting the number of hole nesting birds: a review publication-title: Biol. Conserv. doi: 10.1016/0006-3207(94)90172-4 |
SSID | ssj0001282 |
Score | 2.3674202 |
Snippet | •Due to similar nesting ecology, Verdin are frequently subject to nest usurping by Cactus Wren.•We compared performance of SDMs with environmental factors only... Complex, biotic interactions are notably excluded from species distribution models (SDMs) as they are often difficult to quantify and accommodate in a... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 108743 |
SubjectTerms | algorithms biocenosis Biotic interactions Birds breeding breeding season cacti and succulents Cactus wren case studies Competition data collection forests geographical distribution Nesting nests Predation regression analysis Species distribution model Verdin |
Title | Incorporating biotic relationships improves species distribution models: Modeling the temporal influence of competition in conspecific nesting birds |
URI | https://dx.doi.org/10.1016/j.ecolmodel.2019.108743 https://www.proquest.com/docview/2305217217 |
Volume | 408 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA2iCG7EJ76J4LZOM0mb1p0MI6OiGxXchTRJsTJ0hunMwo1f4Qd7byZ1UBAXbgptkybkcXNuc3IuIWcukWUhSxPl2vJIpIZFumuSqGtkXMgsL6z_33F3nw6exM1z8rxEeu1ZGKRVBts_t-neWocnndCanXFVdR5wU49niFE4AmX024WQOMrP3xc0D7C_YSdBRJj6G8cLPLyhjziDHK8c-XZS8N9WqB-22i9AVxtkPSBHejmv3CZZcvUWWe171em3LbLbXxxZg2Rhzjbb5OMapSq9XDEsU7SoRvABOmlJcC_VuKGV_7XgGooHL8F3phb1dEMoLOrr3lxQjJuGp9cpgEYaNK2GtGrDnNBRSY2H4Z4GBi_gtvZfLKHEGvU8fAUmttkhT1f9x94gCrEYIsNFNo0cd6VjGkyniU1mdTfXIpFw4WlmmBZMcoCWjOUiLwrLpE016u6YBPwvE2ea75LlelS7PUIzIzmATMAtOgU4oaHNU2u7ohSJFXEh9knatr8yQagc42UMVctIe1VfHaew49S84_ZJ_JVxPNfq-DvLRdvB6tuwU7Ci_J35tB0SCiYl7rTo2o1mjQK_LsHIX0we_KeAQ7KGd0hPYckRWZ5OZu4YMNC0OPGD_ISsXF7fDu4_AcUpC08 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7ChtJeSps2NH2q0KtZayVZdm4hbNhtkr00gdyELMnUZfEu682h_6M_uDNaeUsKJYdeDLasBxpp9I00-gbgS1C6qXXjssp6kcnC8cxOnMomTue1Lqvax_2O60Uxu5Vf79TdAZwPd2HIrTLp_p1Oj9o6fRmn3hyv23b8jQ71REkYRRBQRrv9kNip1AgOz-aXs8VeIaMKTocJMqMMD9y80MhbxqAz5OZVkcudluJfi9Rf6jquQRcv4HkCj-xs176XcBC6I3gyjcTTP4_gePrn1hr-lqZt_wp-zYmtMjIW40rF6naFBbDN4Af3vV33rI27C6FndPcSzWfmiVI3RcNise39KaPQaXSBnSFuZInWasnaIdIJWzXMRSQePcEwAV-7WGKDNXZE6REbsPH9a7i9mN6cz7IUjiFzQpbbLIjQBG5Re7rcld5OKiuVxocoSset5FoguuS8klVde659YYl6xyk0wVxeWnEMo27VhTfASqcF4kyELrZARGGxzwvvJ7KRysu8lidQDP1vXOIqp5AZSzM4pf0we8EZEpzZCe4E8n3G9Y6u4_Esp4OAzYORZ3BReTzz52FIGJyXdNhiu7C67w2adoqCf3H99n8q-ARPZzfXV-Zqvrh8B88ohbxVuHoPo-3mPnxASLStP6Yh_xvX3w4A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporating+biotic+relationships+improves+species+distribution+models%3A+Modeling+the+temporal+influence+of+competition+in+conspecific+nesting+birds&rft.jtitle=Ecological+modelling&rft.au=Fern%2C+Rachel+R.&rft.au=Morrison%2C+Michael+L.&rft.au=Wang%2C+Hsiao-Hsuan&rft.au=Grant%2C+William+E.&rft.date=2019-09-15&rft.issn=0304-3800&rft.volume=408&rft.spage=108743&rft_id=info:doi/10.1016%2Fj.ecolmodel.2019.108743&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecolmodel_2019_108743 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3800&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3800&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3800&client=summon |