Incorporating biotic relationships improves species distribution models: Modeling the temporal influence of competition in conspecific nesting birds

•Due to similar nesting ecology, Verdin are frequently subject to nest usurping by Cactus Wren.•We compared performance of SDMs with environmental factors only to those with a biotic component.•We used MaxEnt, Boosted Regression Tree, and Random Forest to predict Verdin presence.•SDM performance was...

Full description

Saved in:
Bibliographic Details
Published inEcological modelling Vol. 408; p. 108743
Main Authors Fern, Rachel R., Morrison, Michael L., Wang, Hsiao-Hsuan, Grant, William E., Campbell, Tyler A.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.09.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Due to similar nesting ecology, Verdin are frequently subject to nest usurping by Cactus Wren.•We compared performance of SDMs with environmental factors only to those with a biotic component.•We used MaxEnt, Boosted Regression Tree, and Random Forest to predict Verdin presence.•SDM performance was improved by the inclusion of Cactus wren distribution. Complex, biotic interactions are notably excluded from species distribution models (SDMs) as they are often difficult to quantify and accommodate in a traditional modeling framework, especially those with a temporal component. The territorial nature of breeding Cactus wren is well-documented and typically involves nest usurping (i.e., destruction) of conspecifics. Due to their similar nesting ecology, breeding Verdin are frequently the target of such behavior and are often forced to move or abandon nests. Using the Verdin/Cactus wren system as a case study, our goal was to evaluate the performance of SDMs that include only environmental predictors with SDMs that also include biotic relationships as predictors. East Foundation’s San Antonio Viejo Ranch in south Texas. We built SDMs (MaxEnt, Boosted Regression Tree [BRT], and Random Forest [RF]) to project Verdin distribution during the early (April through mid-May), peak (mid-May through mid-June), and late (mid-June through mid-July) breeding periods using occurrence data collected during the 2015 and 2016 breeding seasons. We ran parallel analyses using relevant environmental features alone as predictors and then environmental features with observed Cactus wren density. Random Forest (RF) produced the highest predictive performance SDMs for all three breeding periods (AUC = 0.81-0.99; TSS = 0.23-0.73). All models improved in predictive power (Δ AUC = 0.01-0.10) and model sensitivity (Δ TSS = 0.09-0.66) with the inclusion of Cactus wren density as a predictor of Verdin presence. Our results indicate that SDM performance is improved by the inclusion of biotic relationships as predictors. Incorporating biotic interactions, as well as their temporal trends, is essential in efforts to monitor or conserve bird species with similar nesting ecologies. Further, modeling algorithms that can accommodate complex, non-linear relationships (e.g., Random Forest) should be preferred in SDM development and application.
AbstractList •Due to similar nesting ecology, Verdin are frequently subject to nest usurping by Cactus Wren.•We compared performance of SDMs with environmental factors only to those with a biotic component.•We used MaxEnt, Boosted Regression Tree, and Random Forest to predict Verdin presence.•SDM performance was improved by the inclusion of Cactus wren distribution. Complex, biotic interactions are notably excluded from species distribution models (SDMs) as they are often difficult to quantify and accommodate in a traditional modeling framework, especially those with a temporal component. The territorial nature of breeding Cactus wren is well-documented and typically involves nest usurping (i.e., destruction) of conspecifics. Due to their similar nesting ecology, breeding Verdin are frequently the target of such behavior and are often forced to move or abandon nests. Using the Verdin/Cactus wren system as a case study, our goal was to evaluate the performance of SDMs that include only environmental predictors with SDMs that also include biotic relationships as predictors. East Foundation’s San Antonio Viejo Ranch in south Texas. We built SDMs (MaxEnt, Boosted Regression Tree [BRT], and Random Forest [RF]) to project Verdin distribution during the early (April through mid-May), peak (mid-May through mid-June), and late (mid-June through mid-July) breeding periods using occurrence data collected during the 2015 and 2016 breeding seasons. We ran parallel analyses using relevant environmental features alone as predictors and then environmental features with observed Cactus wren density. Random Forest (RF) produced the highest predictive performance SDMs for all three breeding periods (AUC = 0.81-0.99; TSS = 0.23-0.73). All models improved in predictive power (Δ AUC = 0.01-0.10) and model sensitivity (Δ TSS = 0.09-0.66) with the inclusion of Cactus wren density as a predictor of Verdin presence. Our results indicate that SDM performance is improved by the inclusion of biotic relationships as predictors. Incorporating biotic interactions, as well as their temporal trends, is essential in efforts to monitor or conserve bird species with similar nesting ecologies. Further, modeling algorithms that can accommodate complex, non-linear relationships (e.g., Random Forest) should be preferred in SDM development and application.
Complex, biotic interactions are notably excluded from species distribution models (SDMs) as they are often difficult to quantify and accommodate in a traditional modeling framework, especially those with a temporal component. The territorial nature of breeding Cactus wren is well-documented and typically involves nest usurping (i.e., destruction) of conspecifics. Due to their similar nesting ecology, breeding Verdin are frequently the target of such behavior and are often forced to move or abandon nests. Using the Verdin/Cactus wren system as a case study, our goal was to evaluate the performance of SDMs that include only environmental predictors with SDMs that also include biotic relationships as predictors.East Foundation’s San Antonio Viejo Ranch in south Texas.We built SDMs (MaxEnt, Boosted Regression Tree [BRT], and Random Forest [RF]) to project Verdin distribution during the early (April through mid-May), peak (mid-May through mid-June), and late (mid-June through mid-July) breeding periods using occurrence data collected during the 2015 and 2016 breeding seasons. We ran parallel analyses using relevant environmental features alone as predictors and then environmental features with observed Cactus wren density.Random Forest (RF) produced the highest predictive performance SDMs for all three breeding periods (AUC = 0.81-0.99; TSS = 0.23-0.73). All models improved in predictive power (Δ AUC = 0.01-0.10) and model sensitivity (Δ TSS = 0.09-0.66) with the inclusion of Cactus wren density as a predictor of Verdin presence.Our results indicate that SDM performance is improved by the inclusion of biotic relationships as predictors. Incorporating biotic interactions, as well as their temporal trends, is essential in efforts to monitor or conserve bird species with similar nesting ecologies. Further, modeling algorithms that can accommodate complex, non-linear relationships (e.g., Random Forest) should be preferred in SDM development and application.
ArticleNumber 108743
Author Morrison, Michael L.
Fern, Rachel R.
Wang, Hsiao-Hsuan
Grant, William E.
Campbell, Tyler A.
Author_xml – sequence: 1
  givenname: Rachel R.
  orcidid: 0000-0003-2465-5418
  surname: Fern
  fullname: Fern, Rachel R.
  email: Rachel.Fern@tamu.edu
  organization: Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77845, USA
– sequence: 2
  givenname: Michael L.
  surname: Morrison
  fullname: Morrison, Michael L.
  organization: Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77845, USA
– sequence: 3
  givenname: Hsiao-Hsuan
  orcidid: 0000-0002-7850-0406
  surname: Wang
  fullname: Wang, Hsiao-Hsuan
  organization: Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77845, USA
– sequence: 4
  givenname: William E.
  surname: Grant
  fullname: Grant, William E.
  organization: Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77845, USA
– sequence: 5
  givenname: Tyler A.
  surname: Campbell
  fullname: Campbell, Tyler A.
  organization: East Foundation, San Antonio, TX, 78216, USA
BookMark eNqNUU1r3DAQFSWBbjb9DdWxF2_1YVt2oYcQkjaQ0ktyFlp53MwiS66kDeR_5AdH3g099JKA0DDivTej987IiQ8eCPnM2YYz3n7dbcAGN4UB3EYw3pfXTtXyA1nxTolKMdGekBWTrK5kx9hHcpbSjjHGRSdW5PnG2xDnEE1G_4duMWS0NIIrffDpAedEcZpjeIRE0wwWSx0w5Yjb_QKhh8npG_211EUjPwDNMC2ajqIf3R68BRpGasM0Q8YDDX1p_UFxLBM9pNcF4pDOyeloXIJPr3VN7q-v7i5_Vre_f9xcXtxWVtZdrkDCCNyoVlhmu8GI3tSNKpdsO8tNzZXkDeO8r_vtduBqaE3f9q1t-qa1rDNyTb4cdcv__u7LBnrCZME54yHskxaSNYKrcgpUHaE2hpQijHqOOJn4pDnTSw56p__loJcc9DGHwvz-H9NiPribo0H3Dv7FkV9chkeEqFMJoTg6YASb9RDwTY0XroKwcA
CitedBy_id crossref_primary_10_1002_ece3_7974
crossref_primary_10_1016_j_ecolmodel_2021_109774
crossref_primary_10_1016_j_ecolmodel_2019_108827
crossref_primary_10_1111_jbi_14969
crossref_primary_10_1111_ecog_06852
crossref_primary_10_1002_ece3_70520
crossref_primary_10_3389_fevo_2023_1086062
crossref_primary_10_1007_s10980_021_01369_6
crossref_primary_10_3390_w14091365
crossref_primary_10_1016_j_ecolmodel_2024_110732
crossref_primary_10_3390_insects11100674
crossref_primary_10_1007_s10530_023_03203_3
crossref_primary_10_1016_j_ecolmodel_2022_110136
Cites_doi 10.1016/j.rse.2008.01.008
10.1890/07-2153.1
10.2307/1368721
10.1016/j.ecolind.2018.06.029
10.1146/annurev.ecolsys.110308.120159
10.1111/j.1541-0420.2012.01824.x
10.1007/s10021-005-0054-1
10.1016/j.ecolmodel.2005.03.026
10.1111/j.1365-2656.2008.01390.x
10.1016/j.patrec.2005.08.011
10.1023/A:1010933404324
10.1007/BF00377288
10.1111/j.1365-2699.2010.02416.x
10.1111/j.1541-0420.2008.01116.x
10.2307/1931600
10.1007/s11434-014-0445-9
10.1111/jbi.12058
10.3390/rs1030519
10.2307/1311947
10.1016/0034-4257(95)00186-7
10.1111/j.1749-8198.2010.00351.x
10.1016/0006-3207(94)90172-4
ContentType Journal Article
Copyright 2019
Copyright_xml – notice: 2019
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.ecolmodel.2019.108743
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
Environmental Sciences
EISSN 1872-7026
ExternalDocumentID 10_1016_j_ecolmodel_2019_108743
S0304380019302510
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KCYFY
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SCC
SDF
SDG
SDP
SES
SPCBC
SSA
SSJ
SSZ
T5K
WH7
Y6R
~02
~G-
29G
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABJNI
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
VH1
WUQ
ZY4
7S9
L.6
ID FETCH-LOGICAL-c348t-e3efe1a762c0c8da29a4579a4368c1a417315011949bbd17d6a9696c5956c08a3
IEDL.DBID .~1
ISSN 0304-3800
IngestDate Fri Jul 11 00:20:05 EDT 2025
Tue Jul 01 03:09:10 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Fri Feb 23 02:24:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Competition
Nesting
Species distribution model
Verdin
Cactus wren
Birds
Predation
Biotic interactions
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-e3efe1a762c0c8da29a4579a4368c1a417315011949bbd17d6a9696c5956c08a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2465-5418
0000-0002-7850-0406
PQID 2305217217
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2305217217
crossref_primary_10_1016_j_ecolmodel_2019_108743
crossref_citationtrail_10_1016_j_ecolmodel_2019_108743
elsevier_sciencedirect_doi_10_1016_j_ecolmodel_2019_108743
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-15
PublicationDateYYYYMMDD 2019-09-15
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-15
  day: 15
PublicationDecade 2010
PublicationTitle Ecological modelling
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Liu, White, Newell, Pearson (bib0085) 2013; 40
Higgins, Oldemeyer, Jenkins, Clambey, Harlow (bib0080) 1996; 5
NASA Landsat Program (bib0130) 2015
Renner, Warton (bib0175) 2013; 69
Simons, Simons (bib0190) 1990; 92
Austin, Niel (bib0015) 2011; 38
Prasad, Iverson, Liaw (bib0160) 2006; 9
Snelgrove, Dube, Skow, Engeling (bib0195) 2013
van Beers, Kleijnen (bib0020) 2004; Vol. 1
Gislason, Benediktsson, Sveinsson (bib0075) 2006; 27
Franklin (bib0070) 2010
Phillips, Elith (bib0145) 2011
R Core Team (bib0170) 2013
Lockwood, Freeman (bib0090) 2004
Martin (bib0110) 1993; 43
Davis (bib0045) 2017
Miller (bib0125) 2010; 4
Mahmoudabadi, Briggs (bib0100) 2016
NASA Landsat Program (bib0135) 2016
Saatchi, Buermann, Ter Steege, Mori, Smith (bib0185) 2008; 112
Breiman (bib0030) 2001; 45
Mi, Huettmann, Guo (bib0120) 2014; 59
Coulloudon, Eshelman, Gianola, Habich, Hughes, Johnson, Pellant, Podborny, Rasmussen, Robles (bib0040) 1999
Elith, Leathwick (bib0050) 2009; 40
Newton (bib0140) 1994; 70
Evangelista, Stohlgren, Morisette, Kumar (bib0060) 2009; 1
Canfield (bib0035) 1941; 39
Rondeaux, Steven, Baret (bib0180) 1996; 55
Phillips, Anderson, Schapire (bib0150) 2006; 190
Anderson, Anderson (bib0005) 1973
Phillips, Dudik, Elith, Graham, Lehmann, Leathwick, Ferrier (bib0155) 2009; 19
Ward, Hastie, Barry, Elith, Leathwick (bib0200) 2009; 65
McGee (bib0115) 1985
Wise-Gervais (bib0210) 2005
Margules, Nicholls, Austin (bib0105) 1987; 71
PRISM Climate Group (bib0165) 2018
Elith, Leathwick, Hastie (bib0055) 2008; 77
Williamson (bib0205) 2000
Bonham (bib0025) 2013
Macarthur (bib0095) 1958; 39
Austin, Cunningham (bib0010) 1981; 11
Fern, Foxley, Bruno, Morrison (bib0065) 2018; 94
Phillips (10.1016/j.ecolmodel.2019.108743_bib0150) 2006; 190
R Core Team (10.1016/j.ecolmodel.2019.108743_bib0170) 2013
van Beers (10.1016/j.ecolmodel.2019.108743_bib0020) 2004; Vol. 1
Newton (10.1016/j.ecolmodel.2019.108743_bib0140) 1994; 70
Renner (10.1016/j.ecolmodel.2019.108743_bib0175) 2013; 69
Elith (10.1016/j.ecolmodel.2019.108743_bib0050) 2009; 40
Evangelista (10.1016/j.ecolmodel.2019.108743_bib0060) 2009; 1
Fern (10.1016/j.ecolmodel.2019.108743_bib0065) 2018; 94
McGee (10.1016/j.ecolmodel.2019.108743_bib0115) 1985
Simons (10.1016/j.ecolmodel.2019.108743_bib0190) 1990; 92
NASA Landsat Program (10.1016/j.ecolmodel.2019.108743_bib0130) 2015
Austin (10.1016/j.ecolmodel.2019.108743_bib0015) 2011; 38
Davis (10.1016/j.ecolmodel.2019.108743_bib0045) 2017
NASA Landsat Program (10.1016/j.ecolmodel.2019.108743_bib0135) 2016
Mahmoudabadi (10.1016/j.ecolmodel.2019.108743_bib0100) 2016
Anderson (10.1016/j.ecolmodel.2019.108743_bib0005) 1973
Snelgrove (10.1016/j.ecolmodel.2019.108743_bib0195) 2013
PRISM Climate Group (10.1016/j.ecolmodel.2019.108743_bib0165) 2018
Martin (10.1016/j.ecolmodel.2019.108743_bib0110) 1993; 43
Macarthur (10.1016/j.ecolmodel.2019.108743_bib0095) 1958; 39
Bonham (10.1016/j.ecolmodel.2019.108743_bib0025) 2013
Gislason (10.1016/j.ecolmodel.2019.108743_bib0075) 2006; 27
Phillips (10.1016/j.ecolmodel.2019.108743_bib0155) 2009; 19
Rondeaux (10.1016/j.ecolmodel.2019.108743_bib0180) 1996; 55
Miller (10.1016/j.ecolmodel.2019.108743_bib0125) 2010; 4
Margules (10.1016/j.ecolmodel.2019.108743_bib0105) 1987; 71
Mi (10.1016/j.ecolmodel.2019.108743_bib0120) 2014; 59
Lockwood (10.1016/j.ecolmodel.2019.108743_bib0090) 2004
Phillips (10.1016/j.ecolmodel.2019.108743_bib0145) 2011
Coulloudon (10.1016/j.ecolmodel.2019.108743_bib0040) 1999
Franklin (10.1016/j.ecolmodel.2019.108743_bib0070) 2010
Saatchi (10.1016/j.ecolmodel.2019.108743_bib0185) 2008; 112
Williamson (10.1016/j.ecolmodel.2019.108743_bib0205) 2000
Breiman (10.1016/j.ecolmodel.2019.108743_bib0030) 2001; 45
Wise-Gervais (10.1016/j.ecolmodel.2019.108743_bib0210) 2005
Austin (10.1016/j.ecolmodel.2019.108743_bib0010) 1981; 11
Prasad (10.1016/j.ecolmodel.2019.108743_bib0160) 2006; 9
Liu (10.1016/j.ecolmodel.2019.108743_bib0085) 2013; 40
Canfield (10.1016/j.ecolmodel.2019.108743_bib0035) 1941; 39
Higgins (10.1016/j.ecolmodel.2019.108743_bib0080) 1996; 5
Ward (10.1016/j.ecolmodel.2019.108743_bib0200) 2009; 65
Elith (10.1016/j.ecolmodel.2019.108743_bib0055) 2008; 77
References_xml – volume: 11
  start-page: 109
  year: 1981
  end-page: 119
  ident: bib0010
  article-title: Observational analysis of environmental gradients
  publication-title: Pro. Ecol. Society Aust.
– volume: 38
  start-page: 1
  year: 2011
  end-page: 8
  ident: bib0015
  article-title: Improving species distribution models for climate change studies: variable selection and scale
  publication-title: J. Biogeogr.
– year: 2015
  ident: bib0130
  article-title: LANDSAT 8 OLI/TIRS Collection 1 – Path:27 Row: 41. Scene LC08_L1TP_027041_20150720_20170310_01_T1. USGS, Sioux Falls (07/20/2015)
– volume: 39
  start-page: 599
  year: 1958
  end-page: 619
  ident: bib0095
  article-title: Population Ecology of Some Warblers of Northeastern Coniferous Forests
  publication-title: Ecology
– year: 2018
  ident: bib0165
  article-title: Oregon State University
– year: 2000
  ident: bib0205
  article-title: Blue-throated hummingbird (
  publication-title: The Birds of North America (No. 531)
– volume: 9
  start-page: 181
  year: 2006
  end-page: 199
  ident: bib0160
  article-title: Newer classification and regression tree techniques: bagging and random forests for ecological prediction
  publication-title: Ecosystems
– year: 2013
  ident: bib0195
  article-title: East Wildlife Foundation Atlas
– year: 2005
  ident: bib0210
  article-title: Verdin (
  publication-title: Arizona Breeding Bird Atlas
– volume: 39
  start-page: 388
  year: 1941
  end-page: 394
  ident: bib0035
  article-title: Application of the line interception method in sampling range vegetation
  publication-title: J. For.
– volume: 40
  start-page: 677
  year: 2009
  end-page: 697
  ident: bib0050
  article-title: Species distribution models: ecological explanation and prediction across space and time
  publication-title: Annu. Rev. Ecol. Evol. Syst.
– volume: 1
  start-page: 519
  year: 2009
  end-page: 533
  ident: bib0060
  article-title: Mapping invasive tamarisk (Tamarix): a comparison of single-scene and time-series analyses of remotely sensed data
  publication-title: Remote Sens.
– volume: 69
  start-page: 274
  year: 2013
  end-page: 281
  ident: bib0175
  article-title: Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology
  publication-title: Biometrics
– year: 1985
  ident: bib0115
  article-title: Interspecific Nest Influence: the Influence of Cactus wrens (Campylorhynchus Brunneicapillus) on Verdin (
– volume: 59
  start-page: 4323
  year: 2014
  end-page: 4331
  ident: bib0120
  article-title: Obtaining the best possible predictions of habitat selection for wintering Great Bustards in Cangzhou, Hebei Province with rapid machine learning analysis
  publication-title: Chinese Sci. Bull.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0030
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 5
  start-page: 567
  year: 1996
  end-page: 591
  ident: bib0080
  article-title: Vegetation sampling and measurement
  publication-title: Research and management techniques for wildlife and habitats
– volume: 40
  start-page: 778
  year: 2013
  end-page: 789
  ident: bib0085
  article-title: Selecting thresholds for the prediction of species occurrence with presence‐only data
  publication-title: J. Biogeogr.
– volume: 190
  start-page: 231
  year: 2006
  end-page: 259
  ident: bib0150
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecol. Modell.
– year: 1999
  ident: bib0040
  article-title: Sampling Vegetation Attributes
– start-page: 1384
  year: 2011
  end-page: 1389
  ident: bib0145
  article-title: Logistic Methods for Resource Selection Functions and Presence-Only Species Distribution Models
– year: 2016
  ident: bib0135
  article-title: LANDSAT 8 OLI/TIRS Collection 1 – Path:27 Row: 41. Scene ID:LC08_L1TP_027041_20160706_20170222_01_T1. USGS, Sioux Falls (07/06/2016)
– volume: 19
  start-page: 181
  year: 2009
  end-page: 197
  ident: bib0155
  article-title: Sample selection Bias and presence-only distribution models: implications for background and pseudo-absence data
  publication-title: Ecol. Appl.
– volume: 55
  start-page: 95
  year: 1996
  end-page: 107
  ident: bib0180
  article-title: Optimization of soil-adjusted vegetation indices
  publication-title: Remote Sens. Environ.
– year: 2004
  ident: bib0090
  article-title: The TOS Handbook of Texas Birds
– year: 2016
  ident: bib0100
  article-title: Directional kriging implementation for gridded data interpolation and comparative study with common methods
– year: 2010
  ident: bib0070
  article-title: Mapping Species Distributions: Spatial Inference and Prediction
– volume: 94
  start-page: 16
  year: 2018
  end-page: 21
  ident: bib0065
  article-title: Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland
  publication-title: Ecol. Indic.
– year: 2017
  ident: bib0045
  article-title: Influence of Vegetative Characteristics on Predation and Predator Assemblage of Bird Nests
– volume: 43
  start-page: 523
  year: 1993
  end-page: 532
  ident: bib0110
  article-title: Nest Predation and Nest Sites: new perspectives on old patterns
  publication-title: BioScience
– volume: 65
  start-page: 554
  year: 2009
  end-page: 563
  ident: bib0200
  article-title: Presence‐only data and the EM algorithm
  publication-title: Biometrics
– year: 2013
  ident: bib0170
  article-title: R: a Language and Environment for Statistical Computing
– volume: 71
  start-page: 229
  year: 1987
  end-page: 232
  ident: bib0105
  article-title: Diversity of Eucalyptus species predicted by a multi-variable environmental gradient
  publication-title: Oecologia
– volume: 4
  start-page: 490
  year: 2010
  end-page: 509
  ident: bib0125
  article-title: Species distribution modeling
  publication-title: Geogr. Compass
– volume: 92
  start-page: 855
  year: 1990
  end-page: 860
  ident: bib0190
  article-title: Experimental studies of nest-destroying behavior by Cactus wrens
  publication-title: Condor
– volume: 70
  start-page: 265
  year: 1994
  end-page: 276
  ident: bib0140
  article-title: The role of nest sites in limiting the number of hole nesting birds: a review
  publication-title: Biol. Conserv.
– volume: Vol. 1
  year: 2004
  ident: bib0020
  publication-title: Kriging Interpolation in Simulation: a Survey
– volume: 77
  start-page: 802
  year: 2008
  end-page: 813
  ident: bib0055
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
– volume: 27
  start-page: 294
  year: 2006
  end-page: 300
  ident: bib0075
  article-title: Random forests for land cover classification
  publication-title: Pattern Recognit. Lett.
– year: 1973
  ident: bib0005
  article-title: The Cactus Wren
– year: 2013
  ident: bib0025
  article-title: Measurements for Terrestrial Vegetation
– volume: 112
  start-page: 2000
  year: 2008
  end-page: 2017
  ident: bib0185
  article-title: Modeling distribution of Amazonian tree species and diversity using remote sensing measurements
  publication-title: Remote Sens. Environ.
– volume: 112
  start-page: 2000
  year: 2008
  ident: 10.1016/j.ecolmodel.2019.108743_bib0185
  article-title: Modeling distribution of Amazonian tree species and diversity using remote sensing measurements
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.01.008
– year: 2004
  ident: 10.1016/j.ecolmodel.2019.108743_bib0090
– volume: 19
  start-page: 181
  year: 2009
  ident: 10.1016/j.ecolmodel.2019.108743_bib0155
  article-title: Sample selection Bias and presence-only distribution models: implications for background and pseudo-absence data
  publication-title: Ecol. Appl.
  doi: 10.1890/07-2153.1
– year: 1985
  ident: 10.1016/j.ecolmodel.2019.108743_bib0115
– volume: 92
  start-page: 855
  year: 1990
  ident: 10.1016/j.ecolmodel.2019.108743_bib0190
  article-title: Experimental studies of nest-destroying behavior by Cactus wrens
  publication-title: Condor
  doi: 10.2307/1368721
– year: 2000
  ident: 10.1016/j.ecolmodel.2019.108743_bib0205
  article-title: Blue-throated hummingbird (lampornis clemenciae)
– volume: 94
  start-page: 16
  year: 2018
  ident: 10.1016/j.ecolmodel.2019.108743_bib0065
  article-title: Suitability of NDVI and OSAVI as estimators of green biomass and coverage in a semi-arid rangeland
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2018.06.029
– volume: 40
  start-page: 677
  year: 2009
  ident: 10.1016/j.ecolmodel.2019.108743_bib0050
  article-title: Species distribution models: ecological explanation and prediction across space and time
  publication-title: Annu. Rev. Ecol. Evol. Syst.
  doi: 10.1146/annurev.ecolsys.110308.120159
– volume: 69
  start-page: 274
  year: 2013
  ident: 10.1016/j.ecolmodel.2019.108743_bib0175
  article-title: Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2012.01824.x
– volume: 39
  start-page: 388
  year: 1941
  ident: 10.1016/j.ecolmodel.2019.108743_bib0035
  article-title: Application of the line interception method in sampling range vegetation
  publication-title: J. For.
– volume: Vol. 1
  year: 2004
  ident: 10.1016/j.ecolmodel.2019.108743_bib0020
– volume: 9
  start-page: 181
  year: 2006
  ident: 10.1016/j.ecolmodel.2019.108743_bib0160
  article-title: Newer classification and regression tree techniques: bagging and random forests for ecological prediction
  publication-title: Ecosystems
  doi: 10.1007/s10021-005-0054-1
– volume: 190
  start-page: 231
  year: 2006
  ident: 10.1016/j.ecolmodel.2019.108743_bib0150
  article-title: Maximum entropy modeling of species geographic distributions
  publication-title: Ecol. Modell.
  doi: 10.1016/j.ecolmodel.2005.03.026
– year: 1973
  ident: 10.1016/j.ecolmodel.2019.108743_bib0005
– volume: 77
  start-page: 802
  year: 2008
  ident: 10.1016/j.ecolmodel.2019.108743_bib0055
  article-title: A working guide to boosted regression trees
  publication-title: J. Anim. Ecol.
  doi: 10.1111/j.1365-2656.2008.01390.x
– year: 2017
  ident: 10.1016/j.ecolmodel.2019.108743_bib0045
– volume: 27
  start-page: 294
  year: 2006
  ident: 10.1016/j.ecolmodel.2019.108743_bib0075
  article-title: Random forests for land cover classification
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2005.08.011
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.ecolmodel.2019.108743_bib0030
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– year: 2005
  ident: 10.1016/j.ecolmodel.2019.108743_bib0210
  article-title: Verdin (Auriparus flaviceps)
– volume: 71
  start-page: 229
  year: 1987
  ident: 10.1016/j.ecolmodel.2019.108743_bib0105
  article-title: Diversity of Eucalyptus species predicted by a multi-variable environmental gradient
  publication-title: Oecologia
  doi: 10.1007/BF00377288
– volume: 38
  start-page: 1
  year: 2011
  ident: 10.1016/j.ecolmodel.2019.108743_bib0015
  article-title: Improving species distribution models for climate change studies: variable selection and scale
  publication-title: J. Biogeogr.
  doi: 10.1111/j.1365-2699.2010.02416.x
– year: 2010
  ident: 10.1016/j.ecolmodel.2019.108743_bib0070
– year: 2015
  ident: 10.1016/j.ecolmodel.2019.108743_bib0130
– volume: 5
  start-page: 567
  year: 1996
  ident: 10.1016/j.ecolmodel.2019.108743_bib0080
  article-title: Vegetation sampling and measurement
  publication-title: Research and management techniques for wildlife and habitats
– volume: 65
  start-page: 554
  year: 2009
  ident: 10.1016/j.ecolmodel.2019.108743_bib0200
  article-title: Presence‐only data and the EM algorithm
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2008.01116.x
– volume: 39
  start-page: 599
  year: 1958
  ident: 10.1016/j.ecolmodel.2019.108743_bib0095
  article-title: Population Ecology of Some Warblers of Northeastern Coniferous Forests
  publication-title: Ecology
  doi: 10.2307/1931600
– year: 2013
  ident: 10.1016/j.ecolmodel.2019.108743_bib0195
– volume: 59
  start-page: 4323
  year: 2014
  ident: 10.1016/j.ecolmodel.2019.108743_bib0120
  article-title: Obtaining the best possible predictions of habitat selection for wintering Great Bustards in Cangzhou, Hebei Province with rapid machine learning analysis
  publication-title: Chinese Sci. Bull.
  doi: 10.1007/s11434-014-0445-9
– volume: 40
  start-page: 778
  year: 2013
  ident: 10.1016/j.ecolmodel.2019.108743_bib0085
  article-title: Selecting thresholds for the prediction of species occurrence with presence‐only data
  publication-title: J. Biogeogr.
  doi: 10.1111/jbi.12058
– year: 2016
  ident: 10.1016/j.ecolmodel.2019.108743_bib0100
– year: 2013
  ident: 10.1016/j.ecolmodel.2019.108743_bib0170
– year: 2016
  ident: 10.1016/j.ecolmodel.2019.108743_bib0135
– year: 2013
  ident: 10.1016/j.ecolmodel.2019.108743_bib0025
– start-page: 1384
  year: 2011
  ident: 10.1016/j.ecolmodel.2019.108743_bib0145
– volume: 1
  start-page: 519
  year: 2009
  ident: 10.1016/j.ecolmodel.2019.108743_bib0060
  article-title: Mapping invasive tamarisk (Tamarix): a comparison of single-scene and time-series analyses of remotely sensed data
  publication-title: Remote Sens.
  doi: 10.3390/rs1030519
– volume: 43
  start-page: 523
  year: 1993
  ident: 10.1016/j.ecolmodel.2019.108743_bib0110
  article-title: Nest Predation and Nest Sites: new perspectives on old patterns
  publication-title: BioScience
  doi: 10.2307/1311947
– year: 2018
  ident: 10.1016/j.ecolmodel.2019.108743_bib0165
– volume: 11
  start-page: 109
  year: 1981
  ident: 10.1016/j.ecolmodel.2019.108743_bib0010
  article-title: Observational analysis of environmental gradients
  publication-title: Pro. Ecol. Society Aust.
– volume: 55
  start-page: 95
  year: 1996
  ident: 10.1016/j.ecolmodel.2019.108743_bib0180
  article-title: Optimization of soil-adjusted vegetation indices
  publication-title: Remote Sens. Environ.
  doi: 10.1016/0034-4257(95)00186-7
– year: 1999
  ident: 10.1016/j.ecolmodel.2019.108743_bib0040
– volume: 4
  start-page: 490
  year: 2010
  ident: 10.1016/j.ecolmodel.2019.108743_bib0125
  article-title: Species distribution modeling
  publication-title: Geogr. Compass
  doi: 10.1111/j.1749-8198.2010.00351.x
– volume: 70
  start-page: 265
  year: 1994
  ident: 10.1016/j.ecolmodel.2019.108743_bib0140
  article-title: The role of nest sites in limiting the number of hole nesting birds: a review
  publication-title: Biol. Conserv.
  doi: 10.1016/0006-3207(94)90172-4
SSID ssj0001282
Score 2.3674202
Snippet •Due to similar nesting ecology, Verdin are frequently subject to nest usurping by Cactus Wren.•We compared performance of SDMs with environmental factors only...
Complex, biotic interactions are notably excluded from species distribution models (SDMs) as they are often difficult to quantify and accommodate in a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108743
SubjectTerms algorithms
biocenosis
Biotic interactions
Birds
breeding
breeding season
cacti and succulents
Cactus wren
case studies
Competition
data collection
forests
geographical distribution
Nesting
nests
Predation
regression analysis
Species distribution model
Verdin
Title Incorporating biotic relationships improves species distribution models: Modeling the temporal influence of competition in conspecific nesting birds
URI https://dx.doi.org/10.1016/j.ecolmodel.2019.108743
https://www.proquest.com/docview/2305217217
Volume 408
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA2iCG7EJ76J4LZOM0mb1p0MI6OiGxXchTRJsTJ0hunMwo1f4Qd7byZ1UBAXbgptkybkcXNuc3IuIWcukWUhSxPl2vJIpIZFumuSqGtkXMgsL6z_33F3nw6exM1z8rxEeu1ZGKRVBts_t-neWocnndCanXFVdR5wU49niFE4AmX024WQOMrP3xc0D7C_YSdBRJj6G8cLPLyhjziDHK8c-XZS8N9WqB-22i9AVxtkPSBHejmv3CZZcvUWWe171em3LbLbXxxZg2Rhzjbb5OMapSq9XDEsU7SoRvABOmlJcC_VuKGV_7XgGooHL8F3phb1dEMoLOrr3lxQjJuGp9cpgEYaNK2GtGrDnNBRSY2H4Z4GBi_gtvZfLKHEGvU8fAUmttkhT1f9x94gCrEYIsNFNo0cd6VjGkyniU1mdTfXIpFw4WlmmBZMcoCWjOUiLwrLpE016u6YBPwvE2ea75LlelS7PUIzIzmATMAtOgU4oaHNU2u7ohSJFXEh9knatr8yQagc42UMVctIe1VfHaew49S84_ZJ_JVxPNfq-DvLRdvB6tuwU7Ci_J35tB0SCiYl7rTo2o1mjQK_LsHIX0we_KeAQ7KGd0hPYckRWZ5OZu4YMNC0OPGD_ISsXF7fDu4_AcUpC08
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEB7ChtJeSps2NH2q0KtZayVZdm4hbNhtkr00gdyELMnUZfEu682h_6M_uDNaeUsKJYdeDLasBxpp9I00-gbgS1C6qXXjssp6kcnC8cxOnMomTue1Lqvax_2O60Uxu5Vf79TdAZwPd2HIrTLp_p1Oj9o6fRmn3hyv23b8jQ71REkYRRBQRrv9kNip1AgOz-aXs8VeIaMKTocJMqMMD9y80MhbxqAz5OZVkcudluJfi9Rf6jquQRcv4HkCj-xs176XcBC6I3gyjcTTP4_gePrn1hr-lqZt_wp-zYmtMjIW40rF6naFBbDN4Af3vV33rI27C6FndPcSzWfmiVI3RcNise39KaPQaXSBnSFuZInWasnaIdIJWzXMRSQePcEwAV-7WGKDNXZE6REbsPH9a7i9mN6cz7IUjiFzQpbbLIjQBG5Re7rcld5OKiuVxocoSset5FoguuS8klVde659YYl6xyk0wVxeWnEMo27VhTfASqcF4kyELrZARGGxzwvvJ7KRysu8lidQDP1vXOIqp5AZSzM4pf0we8EZEpzZCe4E8n3G9Y6u4_Esp4OAzYORZ3BReTzz52FIGJyXdNhiu7C67w2adoqCf3H99n8q-ARPZzfXV-Zqvrh8B88ohbxVuHoPo-3mPnxASLStP6Yh_xvX3w4A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporating+biotic+relationships+improves+species+distribution+models%3A+Modeling+the+temporal+influence+of+competition+in+conspecific+nesting+birds&rft.jtitle=Ecological+modelling&rft.au=Fern%2C+Rachel+R.&rft.au=Morrison%2C+Michael+L.&rft.au=Wang%2C+Hsiao-Hsuan&rft.au=Grant%2C+William+E.&rft.date=2019-09-15&rft.issn=0304-3800&rft.volume=408&rft.spage=108743&rft_id=info:doi/10.1016%2Fj.ecolmodel.2019.108743&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecolmodel_2019_108743
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3800&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3800&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3800&client=summon