Laser cutting of lithium iron phosphate battery electrodes: Characterization of process efficiency and quality
Lithium iron phosphate battery electrodes are subject to continuous-wave and pulsed laser irradiation with laser specifications systematically varied over twelve discrete parameter groups. Analysis of the resulting cuts and incisions with an optical profiler and scanning electron microscope gives in...
Saved in:
Published in | Optics and laser technology Vol. 65; pp. 164 - 174 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0030-3992 1879-2545 |
DOI | 10.1016/j.optlastec.2014.07.023 |
Cover
Loading…
Abstract | Lithium iron phosphate battery electrodes are subject to continuous-wave and pulsed laser irradiation with laser specifications systematically varied over twelve discrete parameter groups. Analysis of the resulting cuts and incisions with an optical profiler and scanning electron microscope gives insight into the dominant physical phenomena influencing laser cutting efficiency and quality. Measured incision depths are found to be piece-wise functions of average laser power, with the metallic conductor layers dominating the process due to their high thermal conductivity and low optical absorptance relative to the active coating layers. Cutting efficiency improves with shorter laser pulses and use of 532nm radiation in place of 1064nm. Complete electrode penetration takes place at lowest average power with pulse fluence in the ranges 35–40J/cm2 and 100–110J/cm2 for the cathode and anode, respectively, with 1064nm beam wavelength. Per-pulse ablation depths are derived for the active coating layers under all tested conditions, giving new insight into the ablation behavior of each individual material. Defect size and coating layer delamination width are both found to be linked to cutting efficiency, with highest quality achieved for a given wavelength when overall cutting efficiency is optimized. Ideal parameters are found to be those maximizing the ablation efficiency of the metallic layers, as residual heat deposition in the films is minimized.
•Lithium iron phosphate battery electrodes are exposed to CW and pulsed laser radiation.•Incision depths are obtained for 12 laser parameter groups at 100mm/s, 500mm/s and 1m/s.•Cutting efficiency increases with shorter pulses, higher velocity and shorter wavelength.•Per-pulse ablation rates derived for LiFePO4 highlight the negative impact of pulse overlap.•Defect size and layer delamination decrease with increasing cutting efficiency. |
---|---|
AbstractList | Lithium iron phosphate battery electrodes are subject to continuous-wave and pulsed laser irradiation with laser specifications systematically varied over twelve discrete parameter groups. Analysis of the resulting cuts and incisions with an optical profiler and scanning electron microscope gives insight into the dominant physical phenomena influencing laser cutting efficiency and quality. Measured incision depths are found to be piece-wise functions of average laser power, with the metallic conductor layers dominating the process due to their high thermal conductivity and low optical absorptance relative to the active coating layers. Cutting efficiency improves with shorter laser pulses and use of 532nm radiation in place of 1064nm. Complete electrode penetration takes place at lowest average power with pulse fluence in the ranges 35–40J/cm2 and 100–110J/cm2 for the cathode and anode, respectively, with 1064nm beam wavelength. Per-pulse ablation depths are derived for the active coating layers under all tested conditions, giving new insight into the ablation behavior of each individual material. Defect size and coating layer delamination width are both found to be linked to cutting efficiency, with highest quality achieved for a given wavelength when overall cutting efficiency is optimized. Ideal parameters are found to be those maximizing the ablation efficiency of the metallic layers, as residual heat deposition in the films is minimized.
•Lithium iron phosphate battery electrodes are exposed to CW and pulsed laser radiation.•Incision depths are obtained for 12 laser parameter groups at 100mm/s, 500mm/s and 1m/s.•Cutting efficiency increases with shorter pulses, higher velocity and shorter wavelength.•Per-pulse ablation rates derived for LiFePO4 highlight the negative impact of pulse overlap.•Defect size and layer delamination decrease with increasing cutting efficiency. Lithium iron phosphate battery electrodes are subject to continuous-wave and pulsed laser irradiation with laser specifications systematically varied over twelve discrete parameter groups. Analysis of the resulting cuts and incisions with an optical profiler and scanning electron microscope gives insight into the dominant physical phenomena influencing laser cutting efficiency and quality. Measured incision depths are found to be piece-wise functions of average laser power, with the metallic conductor layers dominating the process due to their high thermal conductivity and low optical absorptance relative to the active coating layers. Cutting efficiency improves with shorter laser pulses and use of 532nm radiation in place of 1064nm. Complete electrode penetration takes place at lowest average power with pulse fluence in the ranges 35-40J/cm2 and 100-110J/cm2 for the cathode and anode, respectively, with 1064nm beam wavelength. Per-pulse ablation depths are derived for the active coating layers under all tested conditions, giving new insight into the ablation behavior of each individual material. Defect size and coating layer delamination width are both found to be linked to cutting efficiency, with highest quality achieved for a given wavelength when overall cutting efficiency is optimized. Ideal parameters are found to be those maximizing the ablation efficiency of the metallic layers, as residual heat deposition in the films is minimized. |
Author | Ascari, Alessandro Lutey, Adrian H.A. Carmignato, Simone Leone, Claudio Fortunato, Alessandro |
Author_xml | – sequence: 1 givenname: Adrian H.A. surname: Lutey fullname: Lutey, Adrian H.A. email: adrian.lutey2@unibo.it organization: Università di Bologna, viale Risorgimento, 2, Bologna, Italy – sequence: 2 givenname: Alessandro surname: Fortunato fullname: Fortunato, Alessandro organization: Università di Bologna, viale Risorgimento, 2, Bologna, Italy – sequence: 3 givenname: Alessandro orcidid: 0000-0002-0246-2386 surname: Ascari fullname: Ascari, Alessandro organization: Università di Bologna, viale Risorgimento, 2, Bologna, Italy – sequence: 4 givenname: Simone surname: Carmignato fullname: Carmignato, Simone organization: Università degli Studi di Padova, Stradella San Nicola, 3, Vicenza, Italy – sequence: 5 givenname: Claudio surname: Leone fullname: Leone, Claudio organization: Università degli Studi di Napoli Federico II, Piazzale Tecchio, Napoli, Italy |
BookMark | eNqNkMtKxDAUhoMoOF6ewSzdtObSNFPBhQzeYMCNrkOanDoZOk1NUmF8eqMjLtzo6sDh_37O-Y7Q_uAHQOiMkpISWl-sSz-mXscEpmSEViWRJWF8D83oXDYFE5XYRzNCOCl407BDdBTjmhBS1YLP0LDUEQI2U0pueMG-w71LKzdtsAt-wOPKx3GlE-BWpwRhi6EHk4K3EC_xYqWDNnnt3nVyOZ7xMXgDMWLoOmccDGaL9WDx66Rz8fYEHXS6j3D6PY_R8-3N0-K-WD7ePSyul4Xh1TwVtm1bYS3vSG0oZ7KzrTRmLuctbRphubAgW9EJyWrbCJbDjBlTM2DANWeMH6PzXW8-53WCmNTGRQN9rwfwU1S0FrSiWZPM0atd1AQfY4BOGZe-3klBu15Roj49q7X68aw-PSsiVS7IvPzFj8FtdNj-g7zekZBNvDkIKn4ZA-tClqysd392fAALEqMV |
CitedBy_id | crossref_primary_10_1016_j_procir_2016_06_109 crossref_primary_10_1007_s00170_021_06857_2 crossref_primary_10_1016_j_procir_2016_01_029 crossref_primary_10_3390_app8020266 crossref_primary_10_1016_j_procir_2016_01_006 crossref_primary_10_1364_OME_425816 crossref_primary_10_1016_j_optlastec_2016_04_007 crossref_primary_10_3390_en13102630 crossref_primary_10_1016_j_apsusc_2014_10_069 crossref_primary_10_2351_1_4942044 crossref_primary_10_1016_j_optlastec_2017_03_022 crossref_primary_10_1007_s00339_015_9083_6 crossref_primary_10_2351_7_0001213 crossref_primary_10_1088_2631_7990_abca84 crossref_primary_10_1016_j_procir_2016_02_227 crossref_primary_10_1007_s00170_016_8667_4 crossref_primary_10_1007_s00170_017_0773_4 crossref_primary_10_1007_s10854_019_01755_6 crossref_primary_10_1186_s40580_021_00271_w crossref_primary_10_3390_ma14123300 crossref_primary_10_1016_j_est_2024_113859 crossref_primary_10_1016_j_jmatprotec_2023_118266 crossref_primary_10_2351_7_0000335 crossref_primary_10_3390_mi12050582 crossref_primary_10_7736_JKSPE_020_095 crossref_primary_10_1002_admt_202400417 crossref_primary_10_1002_pen_24577 crossref_primary_10_1016_j_jmapro_2023_09_072 crossref_primary_10_3390_app9010205 crossref_primary_10_2351_1_5096127 crossref_primary_10_1515_nanoph_2017_0044 crossref_primary_10_3390_app7090914 crossref_primary_10_1016_j_procir_2015_06_054 crossref_primary_10_1016_j_procir_2015_06_055 crossref_primary_10_1002_pc_23442 crossref_primary_10_2351_7_0001091 crossref_primary_10_1007_s00170_023_12812_0 crossref_primary_10_1016_j_optlaseng_2019_01_013 |
Cites_doi | 10.1007/s00339-004-2763-2 10.1115/1.4025494 10.1016/j.jpowsour.2009.11.048 10.1149/1.1391704 10.1016/S0007-8506(07)61699-0 10.1179/174329409X397804 10.1016/j.electacta.2012.03.172 10.1016/j.jpowsour.2012.10.096 10.1016/S0167-2738(02)00064-4 10.1063/1.114912 10.1002/ppap.200500036 10.1149/1.1837571 10.1109/TIE.2010.2047828 10.1038/nmat732 10.1016/j.jpowsour.2009.01.074 10.1016/j.jpowsour.2013.11.022 10.1016/j.jmsy.2011.07.009 10.1016/j.materresbull.2007.08.031 10.1103/PhysRevE.82.016404 10.1016/j.optlaseng.2004.11.001 10.1016/S0143-8166(98)80003-1 10.1016/j.jpowsour.2010.08.070 10.1016/j.phpro.2011.03.135 10.1007/s10098-013-0588-4 10.1016/j.phpro.2012.10.032 10.1021/es102464y 10.1016/j.optlaseng.2012.07.012 10.1016/S0169-4332(98)00411-5 10.1016/j.jpowsour.2012.03.030 10.1007/s10008-011-1387-7 10.1063/1.2168513 10.1007/s10853-006-4487-5 10.1016/S0169-4332(01)00465-2 10.1063/1.2393158 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION 7SP 7TB 7U5 8FD F28 FR3 H8D L7M |
DOI | 10.1016/j.optlastec.2014.07.023 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-2545 |
EndPage | 174 |
ExternalDocumentID | 10_1016_j_optlastec_2014_07_023 S0030399214002035 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABJNI ABMAC ABNEU ABXDB ABXRA ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSM SSQ SST SSZ T5K TN5 UHS WH7 WUQ XFK ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SP 7TB 7U5 8FD EFKBS F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c348t-dbbb5dd3f06c1327fdb7cc878b1995d35de7b5f5726d952bb522cc62e2e3a3223 |
IEDL.DBID | .~1 |
ISSN | 0030-3992 |
IngestDate | Tue Aug 05 11:00:28 EDT 2025 Tue Jul 01 01:38:24 EDT 2025 Thu Apr 24 22:55:16 EDT 2025 Fri Feb 23 02:29:35 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Battery electrodes Laser cutting LiFePO4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-dbbb5dd3f06c1327fdb7cc878b1995d35de7b5f5726d952bb522cc62e2e3a3223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0246-2386 |
PQID | 1651410237 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1651410237 crossref_citationtrail_10_1016_j_optlastec_2014_07_023 crossref_primary_10_1016_j_optlastec_2014_07_023 elsevier_sciencedirect_doi_10_1016_j_optlastec_2014_07_023 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2015 2015-01-00 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
PublicationDecade | 2010 |
PublicationTitle | Optics and laser technology |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Semerok, Chaléard, Detalle, Lacour, Mauchien, Meynadier (bib29) 1999; 138–139 Reshak, Auluck, Kityk, Majchrowski, Kasprowicz, Drozdowski (bib34) 2006; 41 Peterson, Whitacre, Apt (bib1) 2011; 45 Lee, Patwa, Herfurth, Mazumder (bib16) 2012; 210 Nanda, Martha, Porter, Wang, Dudney, Radin (bib41) 2014; 251 Herfurth H, Patwa R, Pantsar H. Laser cutting of electrodes for advanced batteries. In: Proceedings of LPM2010 – the 11th International Symposium on Laser Precision Microfabrication; 2010. (bib39) 1998; vol. I Li, Wang, Hu, Lin, Abell (bib13) 2011; 30 Padhi, Nanjundaswamy, Goodenough (bib3) 1997; 144 Chung, Bloking, Chiang (bib4) 2002; 1 Jugović, Uskoković (bib11) 2009; 190 Porneala, Willis (bib27) 2006; 89 Miotello, Kelly (bib24) 1995; 67 Liao, Yu, Gao (bib9) 2012; 16 Lee, Patwa, Herfurth, Mazumder (bib17) 2013; 240 Meijer, Du, Gillner, Hoffmann, Kovalenko, Masuzawa (bib20) 2002; 51 Kronthaler, Schloegl, Kurfer, Wiedenmann, Zaeh, Reinhart (bib14) 2012; 39 Kannatey-Asibu (bib19) 2009 Zhang, Wang, Tang (bib8) 2011; 196 Horn, Guillong, Günther (bib28) 2001; 182 Koc, Yilbas, Koc, Said, Gbadebo, Sami (bib32) 1998; 30 Saber, Venayagamoorthy (bib2) 2011; 58 Ionin, Kudryashov, Seleznev (bib30) 2010; 82 Ramoni, Zhang (bib12) 2013; 15 Yang, Zhao, Zhu (bib33) 2006; 88 Xu, Yan (bib26) 2010 Herman, Richter, Sitter (bib25) 2004 Tunna, O׳Neill, Khan, Sutcliffe (bib37) 2005; 43 Colina, Molpeceres, Morales, Allens-Perkins, Guadaño, Ocaña (bib36) 2011; 27 Scrosati, Garche (bib6) 2010; 195 Maleki, Hallaj, Selman, Dinwiddie, Wang (bib40) 1999; 146 Lutey A, Fiorini M, Fortunato A, Ascari A. Chemical and microstructural transformations in lithium iron phosphate battery electrodes following pulsed laser exposure, Appl Surf Sci, submitted for publication. Sharma, Yadava (bib21) 2013; 51 Balcon, Carmignato, Savio (bib35) 2012; 13 Bulgakova, Bulgakov, Babich (bib22) 2004; 79 Lippert (bib38) 2005; 2 Takahashi, Tobishima, Takei, Sakurai (bib5) 2002; 148 Lutey (bib31) 2013; 135 Pollet, Staffell, Shang (bib7) 2012; 84 von Allmen (bib23) 1987 Patil, Patil, Shin, Choi, Paik, Yoon (bib10) 2008; 43 Luetke, Franke, Techel, Himmer, Klotzbach, Wetzig (bib15) 2011; 12B Jugović (10.1016/j.optlastec.2014.07.023_bib11) 2009; 190 Chung (10.1016/j.optlastec.2014.07.023_bib4) 2002; 1 Herman (10.1016/j.optlastec.2014.07.023_bib25) 2004 Liao (10.1016/j.optlastec.2014.07.023_bib9) 2012; 16 Balcon (10.1016/j.optlastec.2014.07.023_bib35) 2012; 13 (10.1016/j.optlastec.2014.07.023_bib39) 1998; vol. I Pollet (10.1016/j.optlastec.2014.07.023_bib7) 2012; 84 Reshak (10.1016/j.optlastec.2014.07.023_bib34) 2006; 41 Lippert (10.1016/j.optlastec.2014.07.023_bib38) 2005; 2 Maleki (10.1016/j.optlastec.2014.07.023_bib40) 1999; 146 Koc (10.1016/j.optlastec.2014.07.023_bib32) 1998; 30 Lee (10.1016/j.optlastec.2014.07.023_bib16) 2012; 210 Scrosati (10.1016/j.optlastec.2014.07.023_bib6) 2010; 195 10.1016/j.optlastec.2014.07.023_bib18 Takahashi (10.1016/j.optlastec.2014.07.023_bib5) 2002; 148 Lee (10.1016/j.optlastec.2014.07.023_bib17) 2013; 240 Kannatey-Asibu (10.1016/j.optlastec.2014.07.023_bib19) 2009 Tunna (10.1016/j.optlastec.2014.07.023_bib37) 2005; 43 Kronthaler (10.1016/j.optlastec.2014.07.023_bib14) 2012; 39 10.1016/j.optlastec.2014.07.023_bib42 Sharma (10.1016/j.optlastec.2014.07.023_bib21) 2013; 51 Zhang (10.1016/j.optlastec.2014.07.023_bib8) 2011; 196 Ionin (10.1016/j.optlastec.2014.07.023_bib30) 2010; 82 Li (10.1016/j.optlastec.2014.07.023_bib13) 2011; 30 Colina (10.1016/j.optlastec.2014.07.023_bib36) 2011; 27 Ramoni (10.1016/j.optlastec.2014.07.023_bib12) 2013; 15 Peterson (10.1016/j.optlastec.2014.07.023_bib1) 2011; 45 Semerok (10.1016/j.optlastec.2014.07.023_bib29) 1999; 138–139 von Allmen (10.1016/j.optlastec.2014.07.023_bib23) 1987 Miotello (10.1016/j.optlastec.2014.07.023_bib24) 1995; 67 Nanda (10.1016/j.optlastec.2014.07.023_bib41) 2014; 251 Horn (10.1016/j.optlastec.2014.07.023_bib28) 2001; 182 Bulgakova (10.1016/j.optlastec.2014.07.023_bib22) 2004; 79 Saber (10.1016/j.optlastec.2014.07.023_bib2) 2011; 58 Padhi (10.1016/j.optlastec.2014.07.023_bib3) 1997; 144 Luetke (10.1016/j.optlastec.2014.07.023_bib15) 2011; 12B Meijer (10.1016/j.optlastec.2014.07.023_bib20) 2002; 51 Lutey (10.1016/j.optlastec.2014.07.023_bib31) 2013; 135 Yang (10.1016/j.optlastec.2014.07.023_bib33) 2006; 88 Patil (10.1016/j.optlastec.2014.07.023_bib10) 2008; 43 Xu (10.1016/j.optlastec.2014.07.023_bib26) 2010 Porneala (10.1016/j.optlastec.2014.07.023_bib27) 2006; 89 |
References_xml | – volume: 45 start-page: 1792 year: 2011 end-page: 1797 ident: bib1 article-title: Net air emissions from electric vehicles publication-title: Environ Sci Technol – volume: 190 start-page: 538 year: 2009 end-page: 544 ident: bib11 article-title: A review of recent developments in the synthesis procedures of lithium iron phosphate powders publication-title: J Power Sour – volume: 135 start-page: 061003 year: 2013 ident: bib31 article-title: Modeling of thin-film single and multi-layer nanosecond pulsed laser processing publication-title: J Manuf Sci Eng – volume: 148 start-page: 283 year: 2002 end-page: 289 ident: bib5 article-title: Reaction behavior of LiFePO publication-title: Solid State Ion – volume: 51 start-page: 531 year: 2002 end-page: 550 ident: bib20 article-title: Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons publication-title: CIRP Ann – Manuf Technol – volume: 30 start-page: 327 year: 1998 end-page: 350 ident: bib32 article-title: Material response to laser pulse heating publication-title: Opt Lasers Eng – volume: 30 start-page: 188 year: 2011 end-page: 195 ident: bib13 article-title: Automatic generation of assembly system configuration with equipment selection for automotive battery manufacturing publication-title: J Manuf Syst – volume: 67 start-page: 3535 year: 1995 end-page: 3537 ident: bib24 article-title: Critical assessment of thermal models for laser sputtering at high fluences publication-title: Appl Phys Lett – volume: 182 start-page: 91 year: 2001 end-page: 102 ident: bib28 article-title: Wavelength dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles – implications for LA–ICP–MS publication-title: Appl Surf Sci – volume: 196 start-page: 1513 year: 2011 end-page: 1520 ident: bib8 article-title: Cycling degradation of an automotive LiFePO publication-title: J Power Sour – volume: 15 start-page: 881 year: 2013 end-page: 891 ident: bib12 article-title: End-of-life (EOL) issues and options for electric vehicle batteries publication-title: Clean Technol Environ Policy – volume: 58 start-page: 1229 year: 2011 end-page: 1238 ident: bib2 article-title: Plug-in vehicles and renewable energy sources for cost and emission reductions publication-title: IEEE Trans Ind Electron – volume: 88 start-page: 094101 year: 2006 ident: bib33 article-title: Transition between nonthermal and thermal ablation of metallic targets under the strike of high-fluence ultrashort laser pulses publication-title: Appl Phys Lett – volume: 43 start-page: 937 year: 2005 end-page: 950 ident: bib37 article-title: Analysis of laser micro drilled holes through aluminium for micro-manufacturing applications publication-title: Opt Lasers Eng – volume: 16 start-page: 423 year: 2012 end-page: 428 ident: bib9 article-title: Electrochemical study on lithium iron phosphate/hard carbon lithium-ion batteries publication-title: J Solid State Electrochem – volume: 79 start-page: 1323 year: 2004 end-page: 1326 ident: bib22 article-title: Energy balance of pulsed laser ablation publication-title: Appl Phys A – volume: 43 start-page: 1913 year: 2008 end-page: 1942 ident: bib10 article-title: Issue and challenges facing rechargeable thin film lithium batteries publication-title: Mater Res Bull – year: 1987 ident: bib23 article-title: Laser-beam interactions with materials – year: 2004 ident: bib25 article-title: Epitaxy: physical principles and technical implementation – volume: 41 start-page: 1927 year: 2006 end-page: 1932 ident: bib34 article-title: Photoinduced non-linear optical effects in lanthanum calcium borate single crystals publication-title: J Mater Sci – volume: 13 start-page: 63 year: 2012 end-page: 66 ident: bib35 article-title: Performance verification of a confocal microscope for 3D metrology tasks publication-title: Qual – Access Success – volume: 251 start-page: 8 year: 2014 end-page: 13 ident: bib41 article-title: Thermophysical properties of LiFePO publication-title: J Power Sour – reference: Lutey A, Fiorini M, Fortunato A, Ascari A. Chemical and microstructural transformations in lithium iron phosphate battery electrodes following pulsed laser exposure, Appl Surf Sci, submitted for publication. – volume: 144 start-page: 1188 year: 1997 end-page: 1194 ident: bib3 article-title: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries publication-title: J Electrochem Soc – volume: 146 start-page: 947 year: 1999 end-page: 954 ident: bib40 article-title: Thermal properties of lithium-ion battery and components publication-title: J Electrochem Soc – volume: 1 start-page: 123 year: 2002 end-page: 128 ident: bib4 article-title: Electronically conductive phospho-olivines as lithium storage electrodes publication-title: Nat Mater – volume: 210 start-page: 327 year: 2012 end-page: 338 ident: bib16 article-title: Computational and experimental studies of laser cutting of the current collectors for lithium-ion batteries publication-title: J Power Sour – volume: 51 start-page: 77 year: 2013 end-page: 88 ident: bib21 article-title: Modelling and optimization of cut quality during pulsed Nd publication-title: Opt Lasers Eng – volume: vol. I year: 1998 ident: bib39 publication-title: Handbook of optical constants of solids – volume: 240 start-page: 368 year: 2013 end-page: 380 ident: bib17 article-title: High speed remote laser cutting of electrodes for lithium-ion batteries publication-title: J Power Sour – volume: 2 start-page: 525 year: 2005 end-page: 546 ident: bib38 article-title: Interaction of photons with polymers publication-title: Plasma Process Polym – volume: 39 start-page: 213 year: 2012 end-page: 224 ident: bib14 article-title: Laser cutting in the production of lithium ion cells publication-title: Phys Proced – year: 2010 ident: bib26 article-title: Chemical vapour deposition – volume: 82 start-page: 016404 year: 2010 ident: bib30 article-title: Near-critical phase explosion promoting breakdown plasma ignition during laser ablation of graphite publication-title: Phys Rev E – volume: 12B start-page: 286 year: 2011 end-page: 291 ident: bib15 article-title: A comparative study on cutting electrodes for batteries with lasers publication-title: Phys Proced – volume: 89 start-page: 211121 year: 2006 ident: bib27 article-title: Observation of nanosecond laser-induced phase explosion in aluminum publication-title: Appl Phys Lett – reference: Herfurth H, Patwa R, Pantsar H. Laser cutting of electrodes for advanced batteries. In: Proceedings of LPM2010 – the 11th International Symposium on Laser Precision Microfabrication; 2010. – volume: 138–139 start-page: 311 year: 1999 end-page: 314 ident: bib29 article-title: Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses publication-title: Appl Surf Sci – volume: 84 start-page: 235 year: 2012 end-page: 249 ident: bib7 article-title: Current status of hybrid, battery and fuel cell electric vehicles publication-title: Electrochim Acta – volume: 195 start-page: 2419 year: 2010 end-page: 2430 ident: bib6 article-title: Lithium batteries publication-title: J Power Sour – volume: 27 start-page: 414 year: 2011 end-page: 423 ident: bib36 article-title: Laser ablation modelling of aluminium, silver and crystalline silicon for applications in photovoltaic technologies publication-title: Surf Eng – year: 2009 ident: bib19 article-title: Principles of laser materials processing – volume: 79 start-page: 1323 issue: 4–6 year: 2004 ident: 10.1016/j.optlastec.2014.07.023_bib22 article-title: Energy balance of pulsed laser ablation publication-title: Appl Phys A doi: 10.1007/s00339-004-2763-2 – volume: 135 start-page: 061003 issue: 6 year: 2013 ident: 10.1016/j.optlastec.2014.07.023_bib31 article-title: Modeling of thin-film single and multi-layer nanosecond pulsed laser processing publication-title: J Manuf Sci Eng doi: 10.1115/1.4025494 – volume: 195 start-page: 2419 issue: 9 year: 2010 ident: 10.1016/j.optlastec.2014.07.023_bib6 article-title: Lithium batteries publication-title: J Power Sour doi: 10.1016/j.jpowsour.2009.11.048 – volume: 13 start-page: 63 issue: S5 year: 2012 ident: 10.1016/j.optlastec.2014.07.023_bib35 article-title: Performance verification of a confocal microscope for 3D metrology tasks publication-title: Qual – Access Success – volume: 146 start-page: 947 issue: 3 year: 1999 ident: 10.1016/j.optlastec.2014.07.023_bib40 article-title: Thermal properties of lithium-ion battery and components publication-title: J Electrochem Soc doi: 10.1149/1.1391704 – volume: 51 start-page: 531 issue: 2 year: 2002 ident: 10.1016/j.optlastec.2014.07.023_bib20 article-title: Laser machining by short and ultrashort pulses, state of the art and new opportunities in the age of the photons publication-title: CIRP Ann – Manuf Technol doi: 10.1016/S0007-8506(07)61699-0 – volume: 27 start-page: 414 issue: 6 year: 2011 ident: 10.1016/j.optlastec.2014.07.023_bib36 article-title: Laser ablation modelling of aluminium, silver and crystalline silicon for applications in photovoltaic technologies publication-title: Surf Eng doi: 10.1179/174329409X397804 – volume: 84 start-page: 235 year: 2012 ident: 10.1016/j.optlastec.2014.07.023_bib7 article-title: Current status of hybrid, battery and fuel cell electric vehicles publication-title: Electrochim Acta doi: 10.1016/j.electacta.2012.03.172 – volume: 240 start-page: 368 year: 2013 ident: 10.1016/j.optlastec.2014.07.023_bib17 article-title: High speed remote laser cutting of electrodes for lithium-ion batteries publication-title: J Power Sour doi: 10.1016/j.jpowsour.2012.10.096 – volume: 148 start-page: 283 issue: 3–4 year: 2002 ident: 10.1016/j.optlastec.2014.07.023_bib5 article-title: Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries publication-title: Solid State Ion doi: 10.1016/S0167-2738(02)00064-4 – volume: 67 start-page: 3535 issue: 24 year: 1995 ident: 10.1016/j.optlastec.2014.07.023_bib24 article-title: Critical assessment of thermal models for laser sputtering at high fluences publication-title: Appl Phys Lett doi: 10.1063/1.114912 – volume: 2 start-page: 525 issue: 7 year: 2005 ident: 10.1016/j.optlastec.2014.07.023_bib38 article-title: Interaction of photons with polymers publication-title: Plasma Process Polym doi: 10.1002/ppap.200500036 – volume: 144 start-page: 1188 issue: 4 year: 1997 ident: 10.1016/j.optlastec.2014.07.023_bib3 article-title: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries publication-title: J Electrochem Soc doi: 10.1149/1.1837571 – volume: 58 start-page: 1229 issue: 4 year: 2011 ident: 10.1016/j.optlastec.2014.07.023_bib2 article-title: Plug-in vehicles and renewable energy sources for cost and emission reductions publication-title: IEEE Trans Ind Electron doi: 10.1109/TIE.2010.2047828 – volume: 1 start-page: 123 year: 2002 ident: 10.1016/j.optlastec.2014.07.023_bib4 article-title: Electronically conductive phospho-olivines as lithium storage electrodes publication-title: Nat Mater doi: 10.1038/nmat732 – volume: 190 start-page: 538 issue: 2 year: 2009 ident: 10.1016/j.optlastec.2014.07.023_bib11 article-title: A review of recent developments in the synthesis procedures of lithium iron phosphate powders publication-title: J Power Sour doi: 10.1016/j.jpowsour.2009.01.074 – ident: 10.1016/j.optlastec.2014.07.023_bib42 – year: 2004 ident: 10.1016/j.optlastec.2014.07.023_bib25 – volume: 251 start-page: 8 year: 2014 ident: 10.1016/j.optlastec.2014.07.023_bib41 article-title: Thermophysical properties of LiFePO4 cathodes with carbonized pitch coatings and organic binders publication-title: J Power Sour doi: 10.1016/j.jpowsour.2013.11.022 – volume: 30 start-page: 188 issue: 4 year: 2011 ident: 10.1016/j.optlastec.2014.07.023_bib13 article-title: Automatic generation of assembly system configuration with equipment selection for automotive battery manufacturing publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2011.07.009 – volume: 43 start-page: 1913 issue: 8–9 year: 2008 ident: 10.1016/j.optlastec.2014.07.023_bib10 article-title: Issue and challenges facing rechargeable thin film lithium batteries publication-title: Mater Res Bull doi: 10.1016/j.materresbull.2007.08.031 – year: 2010 ident: 10.1016/j.optlastec.2014.07.023_bib26 – volume: 82 start-page: 016404 year: 2010 ident: 10.1016/j.optlastec.2014.07.023_bib30 article-title: Near-critical phase explosion promoting breakdown plasma ignition during laser ablation of graphite publication-title: Phys Rev E doi: 10.1103/PhysRevE.82.016404 – volume: 43 start-page: 937 issue: 9 year: 2005 ident: 10.1016/j.optlastec.2014.07.023_bib37 article-title: Analysis of laser micro drilled holes through aluminium for micro-manufacturing applications publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2004.11.001 – year: 2009 ident: 10.1016/j.optlastec.2014.07.023_bib19 – volume: 30 start-page: 327 issue: 3–4 year: 1998 ident: 10.1016/j.optlastec.2014.07.023_bib32 article-title: Material response to laser pulse heating publication-title: Opt Lasers Eng doi: 10.1016/S0143-8166(98)80003-1 – volume: 196 start-page: 1513 issue: 3 year: 2011 ident: 10.1016/j.optlastec.2014.07.023_bib8 article-title: Cycling degradation of an automotive LiFePO4 lithium-ion battery publication-title: J Power Sour doi: 10.1016/j.jpowsour.2010.08.070 – volume: 12B start-page: 286 year: 2011 ident: 10.1016/j.optlastec.2014.07.023_bib15 article-title: A comparative study on cutting electrodes for batteries with lasers publication-title: Phys Proced doi: 10.1016/j.phpro.2011.03.135 – volume: 15 start-page: 881 issue: 6 year: 2013 ident: 10.1016/j.optlastec.2014.07.023_bib12 article-title: End-of-life (EOL) issues and options for electric vehicle batteries publication-title: Clean Technol Environ Policy doi: 10.1007/s10098-013-0588-4 – volume: 39 start-page: 213 year: 2012 ident: 10.1016/j.optlastec.2014.07.023_bib14 article-title: Laser cutting in the production of lithium ion cells publication-title: Phys Proced doi: 10.1016/j.phpro.2012.10.032 – volume: vol. I year: 1998 ident: 10.1016/j.optlastec.2014.07.023_bib39 – volume: 45 start-page: 1792 issue: 5 year: 2011 ident: 10.1016/j.optlastec.2014.07.023_bib1 article-title: Net air emissions from electric vehicles publication-title: Environ Sci Technol doi: 10.1021/es102464y – volume: 51 start-page: 77 issue: 1 year: 2013 ident: 10.1016/j.optlastec.2014.07.023_bib21 article-title: Modelling and optimization of cut quality during pulsed Nd publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2012.07.012 – volume: 138–139 start-page: 311 year: 1999 ident: 10.1016/j.optlastec.2014.07.023_bib29 article-title: Experimental investigations of laser ablation efficiency of pure metals with femto, pico and nanosecond pulses publication-title: Appl Surf Sci doi: 10.1016/S0169-4332(98)00411-5 – ident: 10.1016/j.optlastec.2014.07.023_bib18 – volume: 210 start-page: 327 year: 2012 ident: 10.1016/j.optlastec.2014.07.023_bib16 article-title: Computational and experimental studies of laser cutting of the current collectors for lithium-ion batteries publication-title: J Power Sour doi: 10.1016/j.jpowsour.2012.03.030 – volume: 16 start-page: 423 issue: 2 year: 2012 ident: 10.1016/j.optlastec.2014.07.023_bib9 article-title: Electrochemical study on lithium iron phosphate/hard carbon lithium-ion batteries publication-title: J Solid State Electrochem doi: 10.1007/s10008-011-1387-7 – volume: 88 start-page: 094101 issue: 9 year: 2006 ident: 10.1016/j.optlastec.2014.07.023_bib33 article-title: Transition between nonthermal and thermal ablation of metallic targets under the strike of high-fluence ultrashort laser pulses publication-title: Appl Phys Lett doi: 10.1063/1.2168513 – volume: 41 start-page: 1927 issue: 7 year: 2006 ident: 10.1016/j.optlastec.2014.07.023_bib34 article-title: Photoinduced non-linear optical effects in lanthanum calcium borate single crystals publication-title: J Mater Sci doi: 10.1007/s10853-006-4487-5 – volume: 182 start-page: 91 issue: 1–2 year: 2001 ident: 10.1016/j.optlastec.2014.07.023_bib28 article-title: Wavelength dependant ablation rates for metals and silicate glasses using homogenized laser beam profiles – implications for LA–ICP–MS publication-title: Appl Surf Sci doi: 10.1016/S0169-4332(01)00465-2 – year: 1987 ident: 10.1016/j.optlastec.2014.07.023_bib23 – volume: 89 start-page: 211121 issue: 21 year: 2006 ident: 10.1016/j.optlastec.2014.07.023_bib27 article-title: Observation of nanosecond laser-induced phase explosion in aluminum publication-title: Appl Phys Lett doi: 10.1063/1.2393158 |
SSID | ssj0004653 |
Score | 2.2482047 |
Snippet | Lithium iron phosphate battery electrodes are subject to continuous-wave and pulsed laser irradiation with laser specifications systematically varied over... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 164 |
SubjectTerms | Ablation Battery electrodes Coating Electrodes Iron Laser cutting Lasers LiFePO4 Lithium Phosphates Wavelengths |
Title | Laser cutting of lithium iron phosphate battery electrodes: Characterization of process efficiency and quality |
URI | https://dx.doi.org/10.1016/j.optlastec.2014.07.023 https://www.proquest.com/docview/1651410237 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EEfQgPvFZVvAa2-5udlNvpVjqqycFb0v2EVrRJNj04MXf7kwexQriwWPCDgk7m29mM_N9S8iFAgCMBesGxnEbCIiYgWFREvQ4BAQIz0JZ3Cg-jOXoSdw-h88rZNBwYbCtssb-CtNLtK7vtOvZbOfTKXJ8AX57PQZbBCynIdFcCIWr_PKz-40bWStRcsAbGL3U45XlBeSohUctw64oVTwZ_y1C_cDqMgANt8lWnTnSfvVyO2TFp7tk85ue4C5ZL_s57WyPpPcQnd6pnZdtzTRLKKTbk-n8jSKtjeaTbJZPIM2kptTX_KD1cTjOz67oYCHiXHE00TyvCAXUl5ITyNekcepoxcn82CdPw-vHwSioj1YILBdREThjTOgcTzrSwn5UJc4oayMVGaRsOx46r0yYhIpJ1wsZDGbMWsk88zwGDOAHZDXNUn9IqLRYqzPMJ5LB9ANEJCKWUYyyn9ZJfkRkM53a1rrjePzFq24azF70wg8a_aA7SoMfjkhnYZhX0ht_m1w1_tJLq0hDgPjb-LzxsIZvDAsnceqz-Ux3ZYjtsIyr4_884IRswFVY_cA5JavF-9yfQUpTmFa5ZltkrX9zNxp_AR7I-Kg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LTuswEB1BEeLeBeIpuLyMxDaitWM7ZYcqUIHSFUjsrPgRtQiSiKYL_v6OE6cCJMSCbZJRooxzzjiecwxwJhEA05j2Im2ZiWJkzEjTJIv6DAkB6TmWxk8U78di-BjfPvGnJRi0WhjfVhmwv8H0Gq3DkfPwNs_L6dRrfBF--32KUwS_nMaXYcW7U_EOrFze3A3HH-SRwYySIeRgwKc2r6KssEytnLcz7MW1kSdl35HUF7iuOeh6A9ZD8Ugum-fbhCWXb8HfD5aCW7Bat3Sa2TbkIySoN2LmdWczKTKCFfdkOn8lXtlGykkxKydYaRJdW2y-k7AjjnWzCzJY-Dg3Mk0fXjaaAuJq1wkv2SRpbkkjy3zfgcfrq4fBMAq7K0SGxUkVWa01t5ZlXWFwSiozq6UxiUy0V21bxq2TmmdcUmH7nOLFlBojqKOOpQgDbBc6eZG7PSDC-OU6TV0maCwFokQWpyJJvfOnsYLtg2hfpzLBetzvgPGi2h6zZ7XIg_J5UF2pMA_70F0Elo37xs8hF22-1KeBpJAjfg4-bTOs8DPzaydp7or5TPUE9x2xlMl_v7nBCawNH-5HanQzvjuAP3iGN_9zDqFTvc3dEVY4lT4OI_g_mPT7WQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Laser+cutting+of+lithium+iron+phosphate+battery+electrodes%3A+Characterization+of+process+efficiency+and+quality&rft.jtitle=Optics+and+laser+technology&rft.au=Lutey%2C+Adrian+HA&rft.au=tunato%2C+Alessandro&rft.au=Ascari%2C+Alessandro&rft.au=Carmignato%2C+Simone&rft.date=2015-01-01&rft.issn=0030-3992&rft.volume=65&rft.spage=164&rft.epage=174&rft_id=info:doi/10.1016%2Fj.optlastec.2014.07.023&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon |