Quantifying the Evolution of SNPs That Affect RNA Secondary Structure in Arabidopsis thaliana Genes

Single-stranded RNA molecules can form intramolecular bonds between nucleotides to create secondary structures. These structures can have phenotypic effects, meaning mutations that alter secondary structure may be subject to natural selection. Here, we examined the population genetics of these mutat...

Full description

Saved in:
Bibliographic Details
Published inMolecular biology and evolution Vol. 42; no. 6
Main Authors Martin, Galen T, Fiscus, Christopher J, Gaut, Brandon S
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 10.06.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single-stranded RNA molecules can form intramolecular bonds between nucleotides to create secondary structures. These structures can have phenotypic effects, meaning mutations that alter secondary structure may be subject to natural selection. Here, we examined the population genetics of these mutations within Arabidopsis thaliana genes. We began by identifying derived SNPs with the potential to alter secondary structures within coding regions, using a combination of computational prediction and empirical data analysis. We identified 8,469 such polymorphisms, representing a small portion (∼0.024%) of sites within transcribed genes. We examined nucleotide diversity and allele frequencies of these “pair-changing mutations” (pcM) in 1,001 A. thaliana genomes. The pcM SNPs at synonymous sites had a 13.4% reduction in nucleotide diversity relative to non-pcM SNPs at synonymous sites and were found at lower allele frequencies. We used demographic modeling to estimate selection coefficients, finding selection against pcMs in 5′ and 3′ untranslated regions. Previous work has shown that some pcMs affect gene expression in a temperature-dependent matter. We explored associations on a genome-wide scale, finding that pcMs existed at higher population frequencies in colder environments, but so did non-PCM alleles. Derived pcM mutations had a small but significant relationship with gene expression; transcript abundance for pcM-containing alleles had an average reduction in expression of ∼4% relative to alleles with conserved ancestral secondary structure. Overall, we document selection against derived pcMs in untranslated regions but find limited evidence for selection against derived pcMs at synonymous sites.
AbstractList Single-stranded RNA molecules can form intramolecular bonds between nucleotides to create secondary structures. These structures can have phenotypic effects, meaning mutations that alter secondary structure may be subject to natural selection. Here, we examined the population genetics of these mutations within Arabidopsis thaliana genes. We began by identifying derived SNPs with the potential to alter secondary structures within coding regions, using a combination of computational prediction and empirical data analysis. We identified 8,469 such polymorphisms, representing a small portion (∼0.024%) of sites within transcribed genes. We examined nucleotide diversity and allele frequencies of these “pair-changing mutations” (pcM) in 1,001 A. thaliana genomes. The pcM SNPs at synonymous sites had a 13.4% reduction in nucleotide diversity relative to non-pcM SNPs at synonymous sites and were found at lower allele frequencies. We used demographic modeling to estimate selection coefficients, finding selection against pcMs in 5′ and 3′ untranslated regions. Previous work has shown that some pcMs affect gene expression in a temperature-dependent matter. We explored associations on a genome-wide scale, finding that pcMs existed at higher population frequencies in colder environments, but so did non-PCM alleles. Derived pcM mutations had a small but significant relationship with gene expression; transcript abundance for pcM-containing alleles had an average reduction in expression of ∼4% relative to alleles with conserved ancestral secondary structure. Overall, we document selection against derived pcMs in untranslated regions but find limited evidence for selection against derived pcMs at synonymous sites.
Single-stranded RNA molecules can form intramolecular bonds between nucleotides to create secondary structures. These structures can have phenotypic effects, meaning mutations that alter secondary structure may be subject to natural selection. Here, we examined the population genetics of these mutations within Arabidopsis thaliana genes. We began by identifying derived SNPs with the potential to alter secondary structures within coding regions, using a combination of computational prediction and empirical data analysis. We identified 8,469 such polymorphisms, representing a small portion (∼0.024%) of sites within transcribed genes. We examined nucleotide diversity and allele frequencies of these “pair-changing mutations” (pcM) in 1,001 A. thaliana genomes. The pcM SNPs at synonymous sites had a 13.4% reduction in nucleotide diversity relative to non-pcM SNPs at synonymous sites and were found at lower allele frequencies. We used demographic modeling to estimate selection coefficients, finding selection against pcMs in 5′ and 3′ untranslated regions. Previous work has shown that some pcMs affect gene expression in a temperature-dependent matter. We explored associations on a genome-wide scale, finding that pcMs existed at higher population frequencies in colder environments, but so did non-PCM alleles. Derived pcM mutations had a small but significant relationship with gene expression; transcript abundance for pcM-containing alleles had an average reduction in expression of ∼4% relative to alleles with conserved ancestral secondary structure. Overall, we document selection against derived pcMs in untranslated regions but find limited evidence for selection against derived pcMs at synonymous sites.
Single-stranded RNA molecules can form intramolecular bonds between nucleotides to create secondary structures. These structures can have phenotypic effects, meaning mutations that alter secondary structure may be subject to natural selection. Here we examined the population genetics of these mutations within Arabidopsis thaliana genes. We began by identifying derived SNPs with the potential to alter secondary structures within coding regions, using a combination of computational prediction and empirical data analysis. We identified 8,469 such polymorphisms, representing a small portion (∼0.024%) of sites within transcribed genes. We examined nucleotide diversity and allele frequencies of these "pair-changing mutations" (pcM) in 1,001 A. thaliana genomes. The pcM SNPs at synonymous sites had a 13.4% reduction in nucleotide diversity relative to non-pcM SNPs at synonymous sites and were found at lower allele frequencies. We used demographic modeling to estimate selection coefficients, finding selection against pcMs in 5' and 3' untranslated regions. Previous work has shown that some pcMs affect gene expression in a temperature-dependent matter. We explored associations on a genome-wide scale, finding that pcMs existed at higher population frequencies in colder environments, but so did non-PCM alleles. Derived pcM mutations had a small but significant relationship with gene expression; transcript abundance for pcM-containing alleles had an average reduction in expression of ∼4% relative to alleles with conserved ancestral secondary structure. Overall, we document selection against derived pcMs in UTRs but with limited evidence for selection against derived pcMs at synonymous sites.Single-stranded RNA molecules can form intramolecular bonds between nucleotides to create secondary structures. These structures can have phenotypic effects, meaning mutations that alter secondary structure may be subject to natural selection. Here we examined the population genetics of these mutations within Arabidopsis thaliana genes. We began by identifying derived SNPs with the potential to alter secondary structures within coding regions, using a combination of computational prediction and empirical data analysis. We identified 8,469 such polymorphisms, representing a small portion (∼0.024%) of sites within transcribed genes. We examined nucleotide diversity and allele frequencies of these "pair-changing mutations" (pcM) in 1,001 A. thaliana genomes. The pcM SNPs at synonymous sites had a 13.4% reduction in nucleotide diversity relative to non-pcM SNPs at synonymous sites and were found at lower allele frequencies. We used demographic modeling to estimate selection coefficients, finding selection against pcMs in 5' and 3' untranslated regions. Previous work has shown that some pcMs affect gene expression in a temperature-dependent matter. We explored associations on a genome-wide scale, finding that pcMs existed at higher population frequencies in colder environments, but so did non-PCM alleles. Derived pcM mutations had a small but significant relationship with gene expression; transcript abundance for pcM-containing alleles had an average reduction in expression of ∼4% relative to alleles with conserved ancestral secondary structure. Overall, we document selection against derived pcMs in UTRs but with limited evidence for selection against derived pcMs at synonymous sites.
Author Martin, Galen T
Fiscus, Christopher J
Gaut, Brandon S
Author_xml – sequence: 1
  givenname: Galen T
  orcidid: 0000-0003-0913-2184
  surname: Martin
  fullname: Martin, Galen T
– sequence: 2
  givenname: Christopher J
  orcidid: 0000-0001-9569-1809
  surname: Fiscus
  fullname: Fiscus, Christopher J
– sequence: 3
  givenname: Brandon S
  orcidid: 0000-0002-1334-5556
  surname: Gaut
  fullname: Gaut, Brandon S
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40492874$$D View this record in MEDLINE/PubMed
BookMark eNpVkUtLAzEUhYMoWh9bl5Klm2oySSczKylSHyC-quuQZG5sZCapSabgv3ekVXR1L9zDdy7n7KNtHzwgdEzJGSU1O-9Cq2F13iVlaVFuoRGdMDGmgtbbaETEsHPCqj20n9I7IZTzstxFe5zwuqgEHyHz1Cufnf10_g3nBeDZKrR9dsHjYPH8_jHhl4XKeGotmIyf76d4Dib4RsVPPM-xN7mPgJ3H06i0a8IyuTSAVOuUV_gaPKRDtGNVm-BoMw_Q69Xs5fJmfPdwfXs5vRsbxqs8bkRDQPNJUXMNlWUVCEpLUgM1oMqCskIYaoYr6IaWSgg9aWyjDNcFs4RodoAu1txlrztoDPgcVSuX0XXDtzIoJ_9fvFvIt7CStKB1LchkIJxuCDF89JCy7Fwy0LbKQ-iTZMWQbFXVFRukJ3_Nfl1-oh0EZ2uBiSGlCPZXQon87k6uu5Ob7tgXlFiQmg
Cites_doi 10.1534/genetics.116.197145
10.1146/annurev-ecolsys-012120-091002
10.1093/nar/27.7.1578
10.1073/pnas.1218066110
10.1146/annurev.ecolsys.39.110707.173414
10.1016/0022-2836(81)90003-6
10.1146/annurev-arplant-043015-111754
10.1002/joc.5086
10.1093/molbev/msp255
10.1016/j.sbi.2014.02.001
10.1016/j.cell.2016.06.044
10.1093/gbe/evab141
10.1038/217624a0
10.1186/1748-7188-6-26
10.1261/rna.2309906
10.1093/oxfordjournals.molbev.a040273
10.1093/genetics/159.1.389
10.1093/gigascience/giab023
10.1371/journal.pgen.1000075
10.1093/bioinformatics/btaa460
10.4161/rna.20231
10.1007/s12551-021-00902-w
10.1093/bioinformatics/btt730
10.1093/molbev/msm167
10.1073/pnas.2023575118
10.1017/S135583820100108X
10.1016/0092-8674(84)90281-2
10.1093/bioinformatics/btq033
10.1038/s41559-018-0754-5
10.7554/eLife.45952
10.1266/ggs.90.133
10.1128/mcb.8.7.2737-2744.1988
10.18637/jss.v067.i01
10.1371/journal.pgen.1000695
10.1371/journal.pgen.1001074
10.1371/journal.pgen.1001141
10.1017/S0016672300011459
10.4161/fly.19695
10.1073/pnas.2113075119
10.1038/s41467-018-05281-7
10.1093/nar/gkt507
10.1038/nature12756
10.1093/molbev/msad042
10.1105/tpc.112.104232
10.1101/gr.107524.110
10.1093/molbev/mss109
10.1038/351652a0
10.1093/evolut/qpae168
10.1109/MCSE.2007.55
10.1038/nature12946
10.1186/s13059-024-03186-x
10.1038/nsmb.1813
10.1093/nargab/lqz010
10.1016/j.molp.2018.01.008
10.1093/nargab/lqaa057
10.1093/molbev/msaa042
10.1093/genetics/iyab061
10.1038/ng.807
10.1073/pnas.1807988115
10.1093/nar/23.4.654
10.1093/embo-reports/kvd001
10.1093/molbev/msy246
10.1111/1755-0998.12549
10.1016/S0968-0004(03)00169-5
10.1093/bioinformatics/btr330
10.1371/journal.pcbi.1003118
10.1186/s13059-020-02236-4
10.1093/hmg/ddg055
10.1186/gb-2005-6-9-r75
10.1038/ncomms3971
10.1016/j.cell.2016.05.063
10.1128/MCB.24.24.10505-10514.2004
10.1177/1176934319871919
10.1101/gr.277459.122
10.1093/nar/gkr1090
10.1371/journal.pgen.1003527
10.1002/dvg.22877
10.1038/ng.2310
10.1534/genetics.114.172809
10.1073/pnas.1616736114
10.1093/genetics/iyab166
10.1186/s13059-022-02656-4
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.
The Author(s) 2025. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 2025
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.
– notice: The Author(s) 2025. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution. 2025
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/molbev/msaf126
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1537-1719
ExternalDocumentID PMC12199705
40492874
10_1093_molbev_msaf126
Genre Journal Article
GrantInformation_xml – fundername: NSF
  grantid: IOS-2414478
– fundername: ;
  grantid: IOS-2414478; IOS-2414478
GroupedDBID ---
-E4
-~X
.2P
.I3
.ZR
0R~
18M
1TH
29M
2WC
4.4
48X
5VS
5WA
70D
7X7
88E
8AO
8FI
8FJ
8G5
AAFWJ
AAIJN
AAIMJ
AAJKP
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABKDP
ABLJU
ABNKS
ABPTD
ABQLI
ABUWG
ABXVV
ABZBJ
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPRK
ACUTO
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGZP
ADHKW
ADHZD
ADOCK
ADRTK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEUYN
AEWNT
AFIYH
AFKRA
AFOFC
AFPKN
AFRAH
AGINJ
AGKEF
AGSYK
AHMBA
AHXPO
AIAGR
AIJHB
AJEUX
AKHUL
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZQEC
AZVOD
BAWUL
BAYMD
BBNVY
BENPR
BHONS
BHPHI
BQDIO
BQUQU
BSWAC
BTQHN
BTRTY
BVRKM
CCPQU
CDBKE
CITATION
CS3
CZ4
DAKXR
DIK
DILTD
DU5
DWQXO
D~K
E3Z
EBS
EE~
EMOBN
F5P
F9B
FHSFR
FLIZI
FOTVD
FYUFA
GAUVT
GJXCC
GNUQQ
GROUPED_DOAJ
GUQSH
GX1
H13
H5~
HAR
HCIFZ
HH5
HMCUK
HW0
HZ~
IAO
IOX
J21
KOP
KQ8
KSI
M-Z
M1P
M2O
M7P
ML0
N9A
NGC
NLBLG
NMDNZ
NOYVH
O9-
OAWHX
ODMLO
OJQWA
OK1
P2P
PAFKI
PEELM
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PSQYO
Q1.
Q5Y
RD5
ROL
ROZ
RPM
RUSNO
RW1
RXO
TJP
TJX
TLC
TN5
TOX
TR2
UKHRP
WOQ
X7H
XSW
YAYTL
YKOAZ
YXANX
ZCA
ZKX
~02
~91
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c348t-d7d0eb45294be8f38e711609e1cea621327c1c294ebd16a77b5dfdac4b23f00b3
ISSN 0737-4038
1537-1719
IngestDate Thu Aug 21 18:34:16 EDT 2025
Fri Jul 11 17:07:19 EDT 2025
Sun Jun 29 01:31:21 EDT 2025
Tue Jul 29 01:59:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords secondary structure
purifying selection
RNA biology
bioclimate
gene expression
Language English
License https://creativecommons.org/licenses/by-nc/4.0
The Author(s) 2025. Published by Oxford University Press on behalf of Society for Molecular Biology and Evolution.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact reprints@oup.com for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact journals.permissions@oup.com.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-d7d0eb45294be8f38e711609e1cea621327c1c294ebd16a77b5dfdac4b23f00b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conflict of Interest: The authors declare no conflict of interest.
ORCID 0000-0002-1334-5556
0000-0001-9569-1809
0000-0003-0913-2184
OpenAccessLink http://dx.doi.org/10.1093/molbev/msaf126
PMID 40492874
PQID 3217188983
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12199705
proquest_miscellaneous_3217188983
pubmed_primary_40492874
crossref_primary_10_1093_molbev_msaf126
PublicationCentury 2000
PublicationDate 20250610
PublicationDateYYYYMMDD 2025-06-10
PublicationDate_xml – month: 6
  year: 2025
  text: 20250610
  day: 10
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: UK
PublicationTitle Molecular biology and evolution
PublicationTitleAlternate Mol Biol Evol
PublicationYear 2025
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Halvorsen (2025062611241766800_msaf126-B33) 2010; 6
Kwok (2025062611241766800_msaf126-B48) 2013; 4
Lebeuf-Taylor (2025062611241766800_msaf126-B52) 2019; 8
Ding (2025062611241766800_msaf126-B19) 2014; 505
Kim (2025062611241766800_msaf126-B42) 2017; 206
Therneau (2025062611241766800_msaf126-B73) 2024
Zhou (2025062611241766800_msaf126-B87) 2012; 44
McKenna (2025062611241766800_msaf126-B60) 2010; 20
Excoffier (2025062611241766800_msaf126-B22) 2009; 40
Zhang (2025062611241766800_msaf126-B83) 2014; 26
1001 Genomes Consortium (2025062611241766800_msaf126-B1) 2016; 166
Vergani-Junior (2025062611241766800_msaf126-B78) 2021; 13
Song (2025062611241766800_msaf126-B69) 2022; 119
Berardini (2025062611241766800_msaf126-B8) 2015; 53
Bailey (2025062611241766800_msaf126-B5) 2021; 13
Ingvarsson (2025062611241766800_msaf126-B39) 2010; 27
Lin (2025062611241766800_msaf126-B54) 2020; 2
Matoulkova (2025062611241766800_msaf126-B58) 2012; 9
2025062611241766800_msaf126-B34
Arunkumar (2025062611241766800_msaf126-B3) 2015; 199
Chursov (2025062611241766800_msaf126-B14) 2013; 41
Zhang (2025062611241766800_msaf126-B82) 2020; 36
Zhao (2025062611241766800_msaf126-B85) 2014; 30
Bates (2025062611241766800_msaf126-B7) 2015; 67
Duan (2025062611241766800_msaf126-B20) 2003; 12
Gaither (2025062611241766800_msaf126-B29) 2021; 10
Buratti (2025062611241766800_msaf126-B12) 2004; 24
Cingolani (2025062611241766800_msaf126-B15) 2012; 6
Kimura (2025062611241766800_msaf126-B44) 1968; 217
Gilbert (2025062611241766800_msaf126-B30) 2022; 220
R Core Team (2025062611241766800_msaf126-B67) 2023
Zheng (2025062611241766800_msaf126-B86) 2010; 6
Lawrence (2025062611241766800_msaf126-B50) 2013; 9
Martin (2025062611241766800_msaf126-B57) 2023; 33
Blischak (2025062611241766800_msaf126-B9) 2020; 37
François (2025062611241766800_msaf126-B28) 2008; 4
Gutenkunst (2025062611241766800_msaf126-B32) 2009; 5
Quinlan (2025062611241766800_msaf126-B65) 2010; 26
Nowick (2025062611241766800_msaf126-B62) 2019; 15
Hu (2025062611241766800_msaf126-B35) 2011; 43
Kawakatsu (2025062611241766800_msaf126-B41) 2016; 166
McDonald (2025062611241766800_msaf126-B59) 1991; 351
Osada (2025062611241766800_msaf126-B63) 2015; 90
Gu (2025062611241766800_msaf126-B31) 2012; 29
Knaus (2025062611241766800_msaf126-B45) 2017; 17
Deng (2025062611241766800_msaf126-B18) 2018; 11
Ferrero-Serrano (2025062611241766800_msaf126-B23) 2019; 3
Ikemura (2025062611241766800_msaf126-B38) 1981; 151
Muyle (2025062611241766800_msaf126-B61) 2021; 218
Danecek (2025062611241766800_msaf126-B17) 2011; 27
Kuhn (2025062611241766800_msaf126-B47) 2020
Zhang (2025062611241766800_msaf126-B84) 2024; 25
Wan (2025062611241766800_msaf126-B79) 2014; 505
Hunter (2025062611241766800_msaf126-B37) 2007; 9
Li (2025062611241766800_msaf126-B53) 2012; 24
Kimura (2025062611241766800_msaf126-B43) 1968; 11
Chamary (2025062611241766800_msaf126-B13) 2005; 6
Ferrero-Serrano (2025062611241766800_msaf126-B24) 2022; 23
Seffens (2025062611241766800_msaf126-B68) 1999; 27
Angert (2025062611241766800_msaf126-B2) 2020; 51
Forsdyke (2025062611241766800_msaf126-B26) 1995; 12
Barrett (2025062611241766800_msaf126-B6) 2024
Bricout (2025062611241766800_msaf126-B10) 2023; 40
Durvasula (2025062611241766800_msaf126-B21) 2017; 114
Bullock (2025062611241766800_msaf126-B11) 2010; 17
Wegler (2025062611241766800_msaf126-B80) 2020; 2
Innan (2025062611241766800_msaf126-B40) 2001; 159
Daigle (2025062611241766800_msaf126-B16) 2024; 79
Svitkin (2025062611241766800_msaf126-B72) 2001; 7
Vandivier (2025062611241766800_msaf126-B76) 2016; 67
Travis (2025062611241766800_msaf126-B75) 2007; 24
Huber (2025062611241766800_msaf126-B36) 2018; 9
Kozak (2025062611241766800_msaf126-B46) 1988; 8
Lamesch (2025062611241766800_msaf126-B49) 2012; 40
Park (2025062611241766800_msaf126-B64) 2013; 110
Rahman (2025062611241766800_msaf126-B66) 2021; 118
Varani (2025062611241766800_msaf126-B77) 2000; 1
Babendure (2025062611241766800_msaf126-B4) 2006; 12
Su (2025062611241766800_msaf126-B71) 2018; 115
Lawrie (2025062611241766800_msaf126-B51) 2013; 9
Tomizawa (2025062611241766800_msaf126-B74) 1984; 38
Williams (2025062611241766800_msaf126-B81) 1995; 23
Fick (2025062611241766800_msaf126-B25) 2017; 37
Liu (2025062611241766800_msaf126-B55) 2021; 22
Fraïsse (2025062611241766800_msaf126-B27) 2019; 36
Steitz (2025062611241766800_msaf126-B70) 2003; 28
Lorenz (2025062611241766800_msaf126-B56) 2011; 6
References_xml – volume: 206
  start-page: 345
  issue: 1
  year: 2017
  ident: 2025062611241766800_msaf126-B42
  article-title: Inference of the distribution of selection coefficients for new nonsynonymous mutations using large samples
  publication-title: Genetics
  doi: 10.1534/genetics.116.197145
– volume: 51
  start-page: 341
  issue: 1
  year: 2020
  ident: 2025062611241766800_msaf126-B2
  article-title: What do we really know about adaptation at range edges?
  publication-title: Annu Rev Ecol Evol Syst
  doi: 10.1146/annurev-ecolsys-012120-091002
– volume: 27
  start-page: 1578
  issue: 7
  year: 1999
  ident: 2025062611241766800_msaf126-B68
  article-title: mRNAs have greater negative folding free energies than shuffled or codon choice randomized sequences
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/27.7.1578
– volume: 110
  start-page: E678
  issue: 8
  year: 2013
  ident: 2025062611241766800_msaf126-B64
  article-title: Differential requirements for mRNA folding partially explain why highly expressed proteins evolve slowly
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.1218066110
– volume: 40
  start-page: 481
  issue: 1
  year: 2009
  ident: 2025062611241766800_msaf126-B22
  article-title: Genetic consequences of range expansions
  publication-title: Annu Rev Ecol Evol Syst
  doi: 10.1146/annurev.ecolsys.39.110707.173414
– volume: 151
  start-page: 389
  issue: 3
  year: 1981
  ident: 2025062611241766800_msaf126-B38
  article-title: Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system
  publication-title: J Mol Biol
  doi: 10.1016/0022-2836(81)90003-6
– volume: 67
  start-page: 463
  issue: 1
  year: 2016
  ident: 2025062611241766800_msaf126-B76
  article-title: The conservation and function of RNA secondary structure in plants
  publication-title: Annu Rev Plant Biol
  doi: 10.1146/annurev-arplant-043015-111754
– volume: 37
  start-page: 4302
  issue: 12
  year: 2017
  ident: 2025062611241766800_msaf126-B25
  article-title: WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas: new climate surfaces for global land areas
  publication-title: Int J Climatol
  doi: 10.1002/joc.5086
– volume: 27
  start-page: 650
  issue: 3
  year: 2010
  ident: 2025062611241766800_msaf126-B39
  article-title: Natural selection on synonymous and nonsynonymous mutations shapes patterns of polymorphism in Populus tremula
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msp255
– volume: 26
  start-page: 9
  year: 2014
  ident: 2025062611241766800_msaf126-B83
  article-title: New molecular engineering approaches for crystallographic studies of large RNAs
  publication-title: Curr Opin Struct Biol
  doi: 10.1016/j.sbi.2014.02.001
– volume: 166
  start-page: 492
  issue: 2
  year: 2016
  ident: 2025062611241766800_msaf126-B41
  article-title: Epigenomic diversity in a global collection of Arabidopsis thaliana accessions
  publication-title: Cell
  doi: 10.1016/j.cell.2016.06.044
– volume: 13
  issue: 9
  year: 2021
  ident: 2025062611241766800_msaf126-B5
  article-title: Effects of synonymous mutations beyond Codon bias: the evidence for adaptive synonymous substitutions from microbial evolution experiments
  publication-title: Genome Biol Evol
  doi: 10.1093/gbe/evab141
– volume: 217
  start-page: 624
  issue: 5129
  year: 1968
  ident: 2025062611241766800_msaf126-B44
  article-title: Evolutionary rate at the molecular level
  publication-title: Nature
  doi: 10.1038/217624a0
– volume: 6
  start-page: 26
  issue: 1
  year: 2011
  ident: 2025062611241766800_msaf126-B56
  article-title: ViennaRNA package 2.0
  publication-title: Algorithms Mol Biol
  doi: 10.1186/1748-7188-6-26
– volume: 12
  start-page: 851
  issue: 5
  year: 2006
  ident: 2025062611241766800_msaf126-B4
  article-title: Control of mammalian translation by mRNA structure near caps
  publication-title: RNA
  doi: 10.1261/rna.2309906
– volume: 12
  start-page: 949
  issue: 5
  year: 1995
  ident: 2025062611241766800_msaf126-B26
  article-title: A stem-loop “kissing” model for the initiation of recombination and the origin of introns
  publication-title: Mol Biol Evol
  doi: 10.1093/oxfordjournals.molbev.a040273
– volume: 159
  start-page: 389
  issue: 1
  year: 2001
  ident: 2025062611241766800_msaf126-B40
  article-title: Selection intensity against deleterious mutations in RNA secondary structures and rate of compensatory nucleotide substitutions
  publication-title: Genetics
  doi: 10.1093/genetics/159.1.389
– volume: 10
  start-page: giab023
  issue: 4
  year: 2021
  ident: 2025062611241766800_msaf126-B29
  article-title: Synonymous variants that disrupt messenger RNA structure are significantly constrained in the human population
  publication-title: Gigascience
  doi: 10.1093/gigascience/giab023
– volume: 4
  start-page: e1000075
  issue: 5
  year: 2008
  ident: 2025062611241766800_msaf126-B28
  article-title: Demographic history of European populations of Arabidopsis thaliana
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000075
– volume: 36
  start-page: i258
  issue: Supplement_1
  year: 2020
  ident: 2025062611241766800_msaf126-B82
  article-title: LinearPartition: linear-time approximation of RNA folding partition function and base-pairing probabilities
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa460
– volume: 9
  start-page: 563
  issue: 5
  year: 2012
  ident: 2025062611241766800_msaf126-B58
  article-title: The role of the 3′ untranslated region in post-transcriptional regulation of protein expression in mammalian cells
  publication-title: RNA Biol
  doi: 10.4161/rna.20231
– volume: 13
  start-page: 1081
  issue: 6
  year: 2021
  ident: 2025062611241766800_msaf126-B78
  article-title: DICER: structure, function, and regulation
  publication-title: Biophys Rev
  doi: 10.1007/s12551-021-00902-w
– volume: 30
  start-page: 1006
  issue: 7
  year: 2014
  ident: 2025062611241766800_msaf126-B85
  article-title: CrossMap: a versatile tool for coordinate conversion between genome assemblies
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt730
– volume: 24
  start-page: 2334
  issue: 10
  year: 2007
  ident: 2025062611241766800_msaf126-B75
  article-title: Deleterious mutations can surf to high densities on the wave front of an expanding population
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msm167
– year: 2020
  ident: 2025062611241766800_msaf126-B47
– volume: 118
  start-page: e2023575118
  issue: 20
  year: 2021
  ident: 2025062611241766800_msaf126-B66
  article-title: Weak selection on synonymous codons substantially inflates dN/dS estimates in bacteria
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.2023575118
– volume: 7
  start-page: 382
  issue: 3
  year: 2001
  ident: 2025062611241766800_msaf126-B72
  article-title: The requirement for eukaryotic initiation factor 4A (elF4A) in translation is in direct proportion to the degree of mRNA 5′ secondary structure
  publication-title: RNA
  doi: 10.1017/S135583820100108X
– volume: 38
  start-page: 861
  issue: 3
  year: 1984
  ident: 2025062611241766800_msaf126-B74
  article-title: Control of ColE 1 plasmid replication: the process of binding of RNA I to the primer transcript
  publication-title: Cell
  doi: 10.1016/0092-8674(84)90281-2
– volume: 26
  start-page: 841
  issue: 6
  year: 2010
  ident: 2025062611241766800_msaf126-B65
  article-title: BEDTools: a flexible suite of utilities for comparing genomic features
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq033
– volume: 3
  start-page: 274
  issue: 2
  year: 2019
  ident: 2025062611241766800_msaf126-B23
  article-title: Phenotypic and genome-wide association with the local environment of Arabidopsis
  publication-title: Nat Ecol Evol
  doi: 10.1038/s41559-018-0754-5
– volume: 8
  start-page: e45952
  year: 2019
  ident: 2025062611241766800_msaf126-B52
  article-title: The distribution of fitness effects among synonymous mutations in a gene under directional selection
  publication-title: Elife
  doi: 10.7554/eLife.45952
– volume: 90
  start-page: 133
  issue: 3
  year: 2015
  ident: 2025062611241766800_msaf126-B63
  article-title: Genetic diversity in humans and non-human primates and its evolutionary consequences
  publication-title: Genes Genet Syst
  doi: 10.1266/ggs.90.133
– volume: 8
  start-page: 2737
  issue: 7
  year: 1988
  ident: 2025062611241766800_msaf126-B46
  article-title: Leader length and secondary structure modulate mRNA function under conditions of stress
  publication-title: Mol Cell Biol
  doi: 10.1128/mcb.8.7.2737-2744.1988
– volume-title: R: a language and environment for statistical computing
  year: 2023
  ident: 2025062611241766800_msaf126-B67
– volume: 67
  start-page: 1
  issue: 1
  year: 2015
  ident: 2025062611241766800_msaf126-B7
  article-title: Fitting linear mixed-effects models usinglme4
  publication-title: J Stat Softw
  doi: 10.18637/jss.v067.i01
– volume: 5
  start-page: e1000695
  issue: 10
  year: 2009
  ident: 2025062611241766800_msaf126-B32
  article-title: Inferring the joint demographic history of multiple populations from multidimensional SNP frequency data
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000695
– volume: 6
  start-page: e1001074
  issue: 8
  year: 2010
  ident: 2025062611241766800_msaf126-B33
  article-title: Disease-associated mutations that alter the RNA structural ensemble
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1001074
– volume: 6
  start-page: e1001141
  issue: 9
  year: 2010
  ident: 2025062611241766800_msaf126-B86
  article-title: Genome-wide double-stranded RNA sequencing reveals the functional significance of base-paired RNAs in Arabidopsis
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1001141
– volume: 11
  start-page: 247
  issue: 3
  year: 1968
  ident: 2025062611241766800_msaf126-B43
  article-title: Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles*
  publication-title: Genet Res
  doi: 10.1017/S0016672300011459
– volume: 6
  start-page: 80
  issue: 2
  year: 2012
  ident: 2025062611241766800_msaf126-B15
  article-title: A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3
  publication-title: Fly (Austin).
  doi: 10.4161/fly.19695
– ident: 2025062611241766800_msaf126-B34
– volume: 119
  start-page: e2113075119
  issue: 1
  year: 2022
  ident: 2025062611241766800_msaf126-B69
  article-title: AnchorWave: sensitive alignment of genomes with high sequence diversity, extensive structural polymorphism, and whole-genome duplication
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2113075119
– volume: 9
  issue: 1
  year: 2018
  ident: 2025062611241766800_msaf126-B36
  article-title: Gene expression drives the evolution of dominance
  publication-title: Nature Communications
  doi: 10.1038/s41467-018-05281-7
– volume: 41
  start-page: 7854
  issue: 16
  year: 2013
  ident: 2025062611241766800_msaf126-B14
  article-title: Conservation of mRNA secondary structures may filter out mutations in Escherichia coli evolution
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkt507
– volume: 505
  start-page: 696
  issue: 7485
  year: 2014
  ident: 2025062611241766800_msaf126-B19
  article-title: In vivo genome-wide profiling of RNA secondary structure reveals novel regulatory features
  publication-title: Nature
  doi: 10.1038/nature12756
– volume: 40
  issue: 3
  year: 2023
  ident: 2025062611241766800_msaf126-B10
  article-title: Evolution is not uniform along coding sequences
  publication-title: Mol Biol Evol.
  doi: 10.1093/molbev/msad042
– volume: 24
  start-page: 4346
  issue: 11
  year: 2012
  ident: 2025062611241766800_msaf126-B53
  article-title: Regulatory impact of RNA secondary structure across the Arabidopsis transcriptome
  publication-title: Plant Cell
  doi: 10.1105/tpc.112.104232
– volume: 20
  start-page: 1297
  issue: 9
  year: 2010
  ident: 2025062611241766800_msaf126-B60
  article-title: The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data
  publication-title: Genome Res
  doi: 10.1101/gr.107524.110
– volume: 29
  start-page: 3037
  issue: 10
  year: 2012
  ident: 2025062611241766800_msaf126-B31
  article-title: Selection on synonymous sites for increased accessibility around miRNA binding sites in plants
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/mss109
– volume: 351
  start-page: 652
  issue: 6328
  year: 1991
  ident: 2025062611241766800_msaf126-B59
  article-title: Adaptive protein evolution at the Adh locus in Drosophila
  publication-title: Nature
  doi: 10.1038/351652a0
– volume: 79
  start-page: 342
  issue: 3
  year: 2024
  ident: 2025062611241766800_msaf126-B16
  article-title: Hill–Robertson interference may bias the inference of fitness effects of new mutations in highly selfing species
  publication-title: Evolution
  doi: 10.1093/evolut/qpae168
– year: 2024
  ident: 2025062611241766800_msaf126-B73
– volume: 9
  start-page: 90
  issue: 3
  year: 2007
  ident: 2025062611241766800_msaf126-B37
  article-title: Matplotlib: a 2D graphics environment
  publication-title: Comput Sci Eng
  doi: 10.1109/MCSE.2007.55
– volume: 505
  start-page: 706
  issue: 7485
  year: 2014
  ident: 2025062611241766800_msaf126-B79
  article-title: Landscape and variation of RNA secondary structure across the human transcriptome
  publication-title: Nature
  doi: 10.1038/nature12946
– volume: 25
  start-page: 54
  issue: 1
  year: 2024
  ident: 2025062611241766800_msaf126-B84
  article-title: Structured 3′ UTRs destabilize mRNAs in plants
  publication-title: Genome Biol
  doi: 10.1186/s13059-024-03186-x
– volume: 17
  start-page: 703
  issue: 6
  year: 2010
  ident: 2025062611241766800_msaf126-B11
  article-title: A′-form RNA helices are required for cytoplasmic mRNA transport in Drosophila
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1813
– volume: 2
  start-page: lqz010
  issue: 1
  year: 2020
  ident: 2025062611241766800_msaf126-B80
  article-title: Global variability analysis of mRNA and protein concentrations across and within human tissues
  publication-title: NAR Genom Bioinform
  doi: 10.1093/nargab/lqz010
– volume: 11
  start-page: 607
  issue: 4
  year: 2018
  ident: 2025062611241766800_msaf126-B18
  article-title: Rice in vivo RNA structurome reveals RNA secondary structure conservation and divergence in plants
  publication-title: Mol Plant
  doi: 10.1016/j.molp.2018.01.008
– volume: 2
  start-page: lqaa057
  issue: 3
  year: 2020
  ident: 2025062611241766800_msaf126-B54
  article-title: Identification and analysis of RNA structural disruptions induced by single nucleotide variants using Riprap and RiboSNitchDB
  publication-title: NAR Genom Bioinform
  doi: 10.1093/nargab/lqaa057
– volume: 37
  start-page: 2124
  issue: 7
  year: 2020
  ident: 2025062611241766800_msaf126-B9
  article-title: Inferring the demographic history of inbred species from genome-wide SNP frequency data
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msaa042
– volume: 218
  start-page: iyab061
  issue: 2
  year: 2021
  ident: 2025062611241766800_msaf126-B61
  article-title: Gene body methylation is under selection in Arabidopsis thaliana
  publication-title: Genetics
  doi: 10.1093/genetics/iyab061
– volume: 43
  start-page: 476
  issue: 5
  year: 2011
  ident: 2025062611241766800_msaf126-B35
  article-title: The Arabidopsis lyrata genome sequence and the basis of rapid genome size change
  publication-title: Nat Genet
  doi: 10.1038/ng.807
– volume: 115
  start-page: 12170
  issue: 48
  year: 2018
  ident: 2025062611241766800_msaf126-B71
  article-title: Genome-wide RNA structurome reprogramming by acute heat shock globally regulates mRNA abundance
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.1807988115
– volume: 23
  start-page: 654
  issue: 4
  year: 1995
  ident: 2025062611241766800_msaf126-B81
  article-title: The sequence of the stem and flanking sequences at the 3′ end of histone mRNA are critical determinants for the binding of the stem-loop binding protein
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/23.4.654
– volume: 1
  start-page: 18
  issue: 1
  year: 2000
  ident: 2025062611241766800_msaf126-B77
  article-title: The G × U wobble base pair. A fundamental building block of RNA structure crucial to RNA function in diverse biological systems
  publication-title: EMBO Rep
  doi: 10.1093/embo-reports/kvd001
– volume: 36
  start-page: 500
  issue: 3
  year: 2019
  ident: 2025062611241766800_msaf126-B27
  article-title: Pleiotropy modulates the efficacy of selection in Drosophila melanogaster
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msy246
– volume: 17
  start-page: 44
  issue: 1
  year: 2017
  ident: 2025062611241766800_msaf126-B45
  article-title: Vcfr: a package to manipulate and visualize variant call format data in R
  publication-title: Mol Ecol Resour
  doi: 10.1111/1755-0998.12549
– volume: 28
  start-page: 411
  issue: 8
  year: 2003
  ident: 2025062611241766800_msaf126-B70
  article-title: RNA, the first macromolecular catalyst: the ribosome is a ribozyme
  publication-title: Trends Biochem Sci
  doi: 10.1016/S0968-0004(03)00169-5
– year: 2024
  ident: 2025062611241766800_msaf126-B6
– volume: 27
  start-page: 2156
  issue: 15
  year: 2011
  ident: 2025062611241766800_msaf126-B17
  article-title: The variant call format and VCFtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr330
– volume: 9
  start-page: e1003118
  issue: 8
  year: 2013
  ident: 2025062611241766800_msaf126-B50
  article-title: Software for computing and annotating genomic ranges
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1003118
– volume: 22
  start-page: 11
  issue: 1
  year: 2021
  ident: 2025062611241766800_msaf126-B55
  article-title: In vivo nuclear RNA structurome reveals RNA-structure regulation of mRNA processing in plants
  publication-title: Genome Biol
  doi: 10.1186/s13059-020-02236-4
– volume: 12
  start-page: 205
  issue: 3
  year: 2003
  ident: 2025062611241766800_msaf126-B20
  article-title: Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddg055
– volume: 6
  start-page: R75
  issue: 9
  year: 2005
  ident: 2025062611241766800_msaf126-B13
  article-title: Evidence for selection on synonymous mutations affecting stability of mRNA secondary structure in mammals
  publication-title: Genome Biol
  doi: 10.1186/gb-2005-6-9-r75
– volume: 4
  start-page: 2971
  issue: 1
  year: 2013
  ident: 2025062611241766800_msaf126-B48
  article-title: Determination of in vivo RNA structure in low-abundance transcripts
  publication-title: Nat Commun
  doi: 10.1038/ncomms3971
– volume: 166
  start-page: 481
  issue: 2
  year: 2016
  ident: 2025062611241766800_msaf126-B1
  article-title: 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana
  publication-title: Cell
  doi: 10.1016/j.cell.2016.05.063
– volume: 24
  start-page: 10505
  issue: 24
  year: 2004
  ident: 2025062611241766800_msaf126-B12
  article-title: Influence of RNA secondary structure on the pre-mRNA splicing process
  publication-title: Mol Cell Biol
  doi: 10.1128/MCB.24.24.10505-10514.2004
– volume: 15
  start-page: 1176934319871919
  year: 2019
  ident: 2025062611241766800_msaf126-B62
  article-title: Selection pressures on RNA sequences and structures
  publication-title: Evol Bioinform
  doi: 10.1177/1176934319871919
– volume: 33
  start-page: 1932
  issue: 11
  year: 2023
  ident: 2025062611241766800_msaf126-B57
  article-title: miRNA-like secondary structures in maize (Zea mays) genes and transposable elements correlate with small RNAs, methylation, and expression
  publication-title: Genome Res
  doi: 10.1101/gr.277459.122
– volume: 40
  start-page: D1202
  issue: D1
  year: 2012
  ident: 2025062611241766800_msaf126-B49
  article-title: The Arabidopsis information resource (TAIR): improved gene annotation and new tools
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkr1090
– volume: 9
  start-page: e1003527
  issue: 5
  year: 2013
  ident: 2025062611241766800_msaf126-B51
  article-title: Strong purifying selection at synonymous sites in D. melanogaster
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003527
– volume: 53
  start-page: 474
  issue: 8
  year: 2015
  ident: 2025062611241766800_msaf126-B8
  article-title: The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome
  publication-title: Genesis
  doi: 10.1002/dvg.22877
– volume: 44
  start-page: 821
  issue: 7
  year: 2012
  ident: 2025062611241766800_msaf126-B87
  article-title: Genome-wide efficient mixed-model analysis for association studies
  publication-title: Nat Genet
  doi: 10.1038/ng.2310
– volume: 199
  start-page: 817
  issue: 3
  year: 2015
  ident: 2025062611241766800_msaf126-B3
  article-title: The evolution of selfing is accompanied by reduced efficacy of selection and purging of deleterious mutations
  publication-title: Genetics
  doi: 10.1534/genetics.114.172809
– volume: 114
  start-page: 5213
  issue: 20
  year: 2017
  ident: 2025062611241766800_msaf126-B21
  article-title: African genomes illuminate the early history and transition to selfing in Arabidopsis thaliana
  publication-title: Proc Natl Acad Sci U S A.
  doi: 10.1073/pnas.1616736114
– volume: 220
  start-page: iyab166
  issue: 1
  year: 2022
  ident: 2025062611241766800_msaf126-B30
  article-title: The distribution of mutational effects on fitness in Caenorhabditis elegans inferred from standing genetic variation
  publication-title: Genetics
  doi: 10.1093/genetics/iyab166
– volume: 23
  start-page: 101
  issue: 1
  year: 2022
  ident: 2025062611241766800_msaf126-B24
  article-title: Experimental demonstration and pan-structurome prediction of climate-associated riboSNitches in Arabidopsis
  publication-title: Genome Biol
  doi: 10.1186/s13059-022-02656-4
SSID ssj0014466
Score 2.4744744
Snippet Single-stranded RNA molecules can form intramolecular bonds between nucleotides to create secondary structures. These structures can have phenotypic effects,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Arabidopsis - genetics
Discoveries
Evolution, Molecular
Gene Frequency
Genes, Plant
Nucleic Acid Conformation
Polymorphism, Single Nucleotide
RNA, Plant - chemistry
RNA, Plant - genetics
Selection, Genetic
Title Quantifying the Evolution of SNPs That Affect RNA Secondary Structure in Arabidopsis thaliana Genes
URI https://www.ncbi.nlm.nih.gov/pubmed/40492874
https://www.proquest.com/docview/3217188983
https://pubmed.ncbi.nlm.nih.gov/PMC12199705
Volume 42
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdby2AvY9_LPoIGgz0Er5Y_YvmxG0nL6LyuJJA3I8kyC2x2mZ1B99fvzpLlpOlDtxdjZEcHd7_IutPd7wh5BzsKGcVpBH_xoPSiUHCPc8W8IkgjpUr4IHVFYV-y6eky-ryKV0Pjv666pJUf1J8b60r-x6owBnbFKtl_sKybFAbgHuwLV7AwXG9l428bgbk-V33Jk_5txXWlKNl5A6OinQjDUHyRHU8a9H8LzJQzxLF4fIARj19Crov6EtlJ4CcY-hDYXNkmGPYdn_pWupNt6iYndAhu98wEJ_D1qYY07Pm6UZvrlAbDudSJ2LQGbgJbjNigrI1IBDFmTtnc1H4RReJJuxTq_bG9ZdtQWv2sf0hQNNw0omTBDQzZ2dd8vjw7yxez1eIuOQzANcCuFcnKOdnMnk87eY6oMzwy8x_Z2Xc3InvexfUk2a1dx-IheWDdBXpsbP-I3NHVY3LPNBC9ekLUFgIoIIA6Y9C6pIgAigigBgEUEEAdAqhDAF1XdAsBtEcA7RDwlCzns8WnU8-2zfBUGPHWK5LC1xIP1COpeRlynTA29VPNlBbTgIVBopiCp1oWbCqSRMZFWQgVySAsfV-Gz8hBVVf6BaEq1VhI7ZcauyIwKWDKtJSagQytAjUi73sd5peGHSU3WQ1hbrSdW22PyNtexTksYHgqJSpdb5o8BKeYcZ7ycESeG5W7uSLwX7Ehw4jwHWO4F5AcffdJtf7ekaSzAFOo_PjlLQS_IvcHHL8mB6B-_Qb2mq0cd-Aak8OPs-z8YtxFbP4CWvmK6Q
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+evolution+of+SNPs+that+affect+RNA+secondary+structure+in+Arabidopsis+thaliana+genes&rft.jtitle=Molecular+biology+and+evolution&rft.au=Martin%2C+Galen+T&rft.au=Fiscus%2C+Christopher+J&rft.au=Gaut%2C+Brandon+S&rft.date=2025-06-10&rft.issn=1537-1719&rft.eissn=1537-1719&rft_id=info:doi/10.1093%2Fmolbev%2Fmsaf126&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0737-4038&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0737-4038&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0737-4038&client=summon