Electrochemical determination of ethylvanillin based on LaV@GAC nanocomposite

Ethyl vanillin (EVA) is widely used as a flavor additive in foods, and sensitive monitoring of EVA is of great significance for food safety. In this paper, the biomass of gum arabic derived carbon (GAC) coated with lanthanum vanadate (LaV) was constructed for the EVA sensor based on the synergistic...

Full description

Saved in:
Bibliographic Details
Published inAnalytical sciences Vol. 39; no. 12; pp. 2049 - 2058
Main Authors Du, Haijun, Duan, Yu, Ai, Jixing, Kong, Dabin, Wang, Dexiang, Hu, Huali, Wang, Hong, Yang, Yang
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ethyl vanillin (EVA) is widely used as a flavor additive in foods, and sensitive monitoring of EVA is of great significance for food safety. In this paper, the biomass of gum arabic derived carbon (GAC) coated with lanthanum vanadate (LaV) was constructed for the EVA sensor based on the synergistic effects of the electrochemical catalytic ability of LaV, the enhanced electrical conductivity with the GAC coating and the oxygen-containing functional groups in LaV@GAC. The as-developed LaV@GAC sensor showed a remarkable linear range from 0.06 μM to 100 μM and a low detection limit (LOD) of 6.28 nM. The electrochemical oxidation of EVA is limited by a diffusion-controlled process involving 2 electrons and 2 protons. Moreover, the LaV@GAC sensor has good recoveries (94.5–103.05%) for the detection of EVA in real milk powder samples. The proposed LaV@GAC sensor has good repeatability, high stability, and great potential for sensitive detection of flavor additives in food. Graphical abstract
AbstractList Ethyl vanillin (EVA) is widely used as a flavor additive in foods, and sensitive monitoring of EVA is of great significance for food safety. In this paper, the biomass of gum arabic derived carbon (GAC) coated with lanthanum vanadate (LaV) was constructed for the EVA sensor based on the synergistic effects of the electrochemical catalytic ability of LaV, the enhanced electrical conductivity with the GAC coating and the oxygen-containing functional groups in LaV@GAC. The as-developed LaV@GAC sensor showed a remarkable linear range from 0.06 μM to 100 μM and a low detection limit (LOD) of 6.28 nM. The electrochemical oxidation of EVA is limited by a diffusion-controlled process involving 2 electrons and 2 protons. Moreover, the LaV@GAC sensor has good recoveries (94.5-103.05%) for the detection of EVA in real milk powder samples. The proposed LaV@GAC sensor has good repeatability, high stability, and great potential for sensitive detection of flavor additives in food.Ethyl vanillin (EVA) is widely used as a flavor additive in foods, and sensitive monitoring of EVA is of great significance for food safety. In this paper, the biomass of gum arabic derived carbon (GAC) coated with lanthanum vanadate (LaV) was constructed for the EVA sensor based on the synergistic effects of the electrochemical catalytic ability of LaV, the enhanced electrical conductivity with the GAC coating and the oxygen-containing functional groups in LaV@GAC. The as-developed LaV@GAC sensor showed a remarkable linear range from 0.06 μM to 100 μM and a low detection limit (LOD) of 6.28 nM. The electrochemical oxidation of EVA is limited by a diffusion-controlled process involving 2 electrons and 2 protons. Moreover, the LaV@GAC sensor has good recoveries (94.5-103.05%) for the detection of EVA in real milk powder samples. The proposed LaV@GAC sensor has good repeatability, high stability, and great potential for sensitive detection of flavor additives in food.
Ethyl vanillin (EVA) is widely used as a flavor additive in foods, and sensitive monitoring of EVA is of great significance for food safety. In this paper, the biomass of gum arabic derived carbon (GAC) coated with lanthanum vanadate (LaV) was constructed for the EVA sensor based on the synergistic effects of the electrochemical catalytic ability of LaV, the enhanced electrical conductivity with the GAC coating and the oxygen-containing functional groups in LaV@GAC. The as-developed LaV@GAC sensor showed a remarkable linear range from 0.06 μM to 100 μM and a low detection limit (LOD) of 6.28 nM. The electrochemical oxidation of EVA is limited by a diffusion-controlled process involving 2 electrons and 2 protons. Moreover, the LaV@GAC sensor has good recoveries (94.5–103.05%) for the detection of EVA in real milk powder samples. The proposed LaV@GAC sensor has good repeatability, high stability, and great potential for sensitive detection of flavor additives in food. Graphical abstract
Author Du, Haijun
Hu, Huali
Wang, Hong
Kong, Dabin
Ai, Jixing
Yang, Yang
Duan, Yu
Wang, Dexiang
Author_xml – sequence: 1
  givenname: Haijun
  surname: Du
  fullname: Du, Haijun
  organization: School of Chemical Engineering, Guizhou Minzu University, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University
– sequence: 2
  givenname: Yu
  surname: Duan
  fullname: Duan, Yu
  organization: School of Chemical Engineering, Guizhou Minzu University
– sequence: 3
  givenname: Jixing
  surname: Ai
  fullname: Ai, Jixing
  organization: School of Chemical Engineering, Guizhou Minzu University
– sequence: 4
  givenname: Dabin
  surname: Kong
  fullname: Kong, Dabin
  organization: School of Chemical Engineering, Guizhou Minzu University
– sequence: 5
  givenname: Dexiang
  surname: Wang
  fullname: Wang, Dexiang
  organization: School of Chemical Engineering, Guizhou Minzu University
– sequence: 6
  givenname: Huali
  surname: Hu
  fullname: Hu, Huali
  organization: School of Chemical Engineering, Guizhou Minzu University
– sequence: 7
  givenname: Hong
  surname: Wang
  fullname: Wang, Hong
  organization: Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University
– sequence: 8
  givenname: Yang
  orcidid: 0000-0003-1945-9439
  surname: Yang
  fullname: Yang, Yang
  email: yangyang823@cdu.edu.cn
  organization: School of Mechanical Engineering, Chengdu University
BookMark eNp9kLtOAzEQRS0EEuHxA1Rb0iyMH-tsOqIoBKQgGqC1vM6YGHntYDtI_D1LQkWRaoq5587onJHjEAMSckXhhgKMb7MQjNIaGK8BBGN1c0RGlIu2ZkzIYzKCCYVacgGn5CznDwDKWsZG5Gnu0ZQUzRp7Z7SvVlgw9S7o4mKooq2wrL_9lw7OexeqTmdcVcNmqd_uFtNZFXSIJvabmF3BC3Jitc94-TfPyev9_GX2UC-fF4-z6bI2w0ulXjVWIII13IIABlIKyy12rdayE6ab2KYzjejkxIhWM9qOmZSaG7ayVFpp-Dm53vduUvzcYi6qd9mg9zpg3GbFWkk5iHY8GaJsHzUp5pzQqk1yvU7fioL6daf27tTgTu3cqWaA2n-QcWVnpCTt_GGU79E83AnvmNRH3KYw2DhE_QCVSoY1
CitedBy_id crossref_primary_10_1016_j_jfca_2024_107161
crossref_primary_10_1016_j_microc_2024_111019
crossref_primary_10_1016_j_jfca_2024_106475
Cites_doi 10.1016/s0378-4347(99)00031-6
10.1016/j.microc.2020.104885
10.1039/d0ra06783k
10.1021/acsami.9b16123
10.1016/j.jelechem.2021.115772
10.3390/ma12213637
10.1016/j.cej.2018.09.098
10.1016/j.foodchem.2015.02.035
10.7503/cjcu20150241
10.1016/j.foodcont.2016.02.048
10.1002/sscp.202100001
10.1016/j.mtchem.2021.100554
10.1016/j.jelechem.2011.12.022
10.1016/j.fct.2022.113391
10.1039/c3ay41517a
10.1007/s00706-018-2266-z
10.1021/acssuschemeng.0c08340
10.1016/j.ceramint.2022.02.028
10.1016/j.matchemphys.2019.122462
10.1016/j.diamond.2020.107816
10.3390/bios12090760
10.1016/0009-8981(76)90036-x
10.1007/s00216-020-02992-z
10.1002/elan.201900328
10.1002/jssc.201600466
10.1021/acsami.9b06934
10.1002/elan.201900037
10.1007/s10854-021-07405-0
10.1016/j.ijhydene.2015.03.090
10.1016/j.surfcoat.2013.11.028
10.1016/j.talanta.2005.11.030
10.1021/acs.inorgchem.9b00868
10.1016/j.jfca.2021.103811
10.1016/j.electacta.2015.07.091
10.1007/s12161-019-01518-3
10.1039/c7ra13639k
10.1007/s00604-017-2161-z
10.1080/09687630701539350
10.1021/acssuschemeng.9b05755
10.1016/j.molcata.2011.01.015
10.1016/j.talanta.2021.122991
10.1016/j.jlumin.2021.117934
ContentType Journal Article
Copyright The Author(s), under exclusive licence to The Japan Society for Analytical Chemistry 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2023. The Author(s), under exclusive licence to The Japan Society for Analytical Chemistry.
Copyright_xml – notice: The Author(s), under exclusive licence to The Japan Society for Analytical Chemistry 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2023. The Author(s), under exclusive licence to The Japan Society for Analytical Chemistry.
DBID AAYXX
CITATION
7X8
DOI 10.1007/s44211-023-00422-5
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1348-2246
EndPage 2058
ExternalDocumentID 10_1007_s44211_023_00422_5
GrantInformation_xml – fundername: Guizhou Provincial Science and Technology Projects
  grantid: ZK[2021]242
– fundername: The Innovation Team Project of Guizhou Higher Education
  grantid: [2022]013
– fundername: National Natural Science Foundation of China
  grantid: 81860701; 82060714
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: The open project of Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry
  grantid: KSUZDSYS202104
GroupedDBID ---
0R~
23M
2WC
3O-
406
53G
5GY
6J9
7.U
AACDK
AAJBT
AASML
AATNV
ABAKF
ABJNI
ABTKH
ACAOD
ACDTI
ACGFO
ACIWK
ACPIV
ACPRK
ACZOJ
ADBBV
AEFQL
AEMSY
AENEX
AESKC
AFBBN
AFRAH
AGMZJ
AGQEE
AI.
AIAKS
AIGIU
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
BAWUL
CS3
DIK
DPUIP
E3Z
EBLON
EBS
EJD
F5P
FIGPU
GX1
HH5
IWAJR
JSF
JSH
JZLTJ
KQ8
LLZTM
M~E
NPVJJ
OK1
P2P
RDB
RJT
RNS
ROL
RSV
RZJ
RZV
SJYHP
SOJ
TKC
TN5
TR2
UPT
VH1
XSB
~02
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
OVT
7X8
ID FETCH-LOGICAL-c348t-d5f4ee0fc3f04020664f3feb8aa6b4cb9f5bc54b69c48a2187266a3c2df16f6c3
ISSN 0910-6340
1348-2246
IngestDate Fri Jul 11 10:46:10 EDT 2025
Tue Jul 01 01:11:45 EDT 2025
Thu Apr 24 23:11:49 EDT 2025
Fri Feb 21 02:44:28 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Electrochemical sensor
Lanthanum Vanadate
Ethyl vanillin
Gum Arabic
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-d5f4ee0fc3f04020664f3feb8aa6b4cb9f5bc54b69c48a2187266a3c2df16f6c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1945-9439
PQID 2861304879
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2861304879
crossref_primary_10_1007_s44211_023_00422_5
crossref_citationtrail_10_1007_s44211_023_00422_5
springer_journals_10_1007_s44211_023_00422_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20231200
2023-12-00
20231201
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 20231200
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Analytical sciences
PublicationTitleAbbrev ANAL. SCI
PublicationYear 2023
Publisher Springer Nature Singapore
Publisher_xml – name: Springer Nature Singapore
References DuHZhangYWangXHuHAiJZhouHYanXYangYLuZBiosensors20221297601:CAS:528:DC%2BB38XisFenu7rF10.3390/bios12090760361401459496571
TajikSLohrasbi-NejadAJahaniPMBagher AskariMBeitollahiHJ. Mater. Sci. Mater. Electr.202233420201:CAS:528:DC%2BB38XntlWmsg%3D%3D10.1007/s10854-021-07405-0
BabyJNSriramBWangSFGeorgeMACS Sustain. Chem. Eng.20208314791:CAS:528:DC%2BB3cXjt1Gmsw%3D%3D10.1021/acssuschemeng.9b05755
SinhaAKSharmaUKSharmaNInt J Food Sci Nutr.20085942991:CAS:528:DC%2BD1cXltFCmuro%3D10.1080/0968763070153935017886091
XieYYinJZhengJWangLWuJDresselhausMZhangXACS Appl. Materials Interfaces20191135322441:CAS:528:DC%2BC1MXhsFeku7bI10.1021/acsami.9b06934
LiuRWangYLiBLiuBMaHLiDDongLLiFChenXYinXMaterials2019122136371:CAS:528:DC%2BB3cXotFGqtbY%3D10.3390/ma12213637316942006862283
FuLXieKWuDWangAZhangHJiZMater. Chem. Phy.20202421224621:CAS:528:DC%2BC1MXit1eksLrK10.1016/j.matchemphys.2019.122462
MirandaMPdel RioRdel ValleMAFaundezMArmijoFJ. Electroanal. Chem.201266811:CAS:528:DC%2BC38XjtFKrtrY%3D10.1016/j.jelechem.2011.12.022
KokulnathanTAlmutairiGChenSMChenTWAhmedFArshiNAlOtaibiBACS Sustainable Chem. Eng.20219727841:CAS:528:DC%2BB3MXjsVKhu7w%3D10.1021/acssuschemeng.0c08340
FanYLiuPZhuBChenSYaoKHanRInt. J. Hydrogen Energy2015401861881:CAS:528:DC%2BC2MXlvFCitr0%3D10.1016/j.ijhydene.2015.03.090
XuYLiuJXieMJingLXuHSheXLiHXieJChem. Eng. J.20193574871:CAS:528:DC%2BC1cXhvVamsrjM10.1016/j.cej.2018.09.098
LiJFengHLiJJiangJFengYHeLQianDElectrochim. Acta20151768271:CAS:528:DC%2BC2MXhsVajtb%2FM10.1016/j.electacta.2015.07.091
YamunaAChenTWChenSMWuWLJ Electroanal. Chem.20219011157721:CAS:528:DC%2BB3MXit1Kns77K10.1016/j.jelechem.2021.115772
ChenLChaisiwamongkholKChenYComptonRGElectroanalysis20193110671:CAS:528:DC%2BC1MXktlers7s%3D10.1002/elan.201900037
HuangJChengWLiYTalanta20222381229911:CAS:528:DC%2BB3MXitlWktLzE10.1016/j.talanta.2021.12299134857324
YinHZhouDCongLXieHMQiuYQChem. J. Chin. Universities.2015361019901:CAS:528:DC%2BC2MXhslGnurnK10.7503/cjcu20150241
FarthingDSicaDAbernathyCFakhryIRobertsJDAbrahamDJSwerdlowPJ. Chromatogr. B Biomed. Sci. Appl.199972613031:CAS:528:DyaK1MXjtVSltrg%3D10.1016/s0378-4347(99)00031-610348200
KalaiyarasiJMeenakshiSPandianKGopinathSCBMicrochim Acta.201718421311:CAS:528:DC%2BC2sXlsleitb8%3D10.1007/s00604-017-2161-z
AbdelazizMAMansourFRDanielsonNDAnal. Bioanal. Chem.20214132051:CAS:528:DC%2BB3cXitFGlsr7K10.1007/s00216-020-02992-z33095289
CalamTTUzunDElectroanalysis2019311223471:CAS:528:DC%2BC1MXhsVelur3F10.1002/elan.201900328
ZhaoYDuYLuDWangLMaDJuTWuMAnal. Methods20146617531:CAS:528:DC%2BC2cXjsFClu70%3D10.1039/c3ay41517a
MkhalidIAMohamedRMAlhaddadMBasalehAAl-HajjiLAIsmailAACeram. Int.20224810148991:CAS:528:DC%2BB38XjsVKjsL8%3D10.1016/j.ceramint.2022.02.028
VenkadeshAMathiyarasuJRadhakrishnanSMater. Today Chem.2021221005541:CAS:528:DC%2BB38Xislyhsb4%3D10.1016/j.mtchem.2021.100554
FaragASSýSMHájekTVytřasKMonatshefte für Chemie Chem. Monthly.20181491119451:CAS:528:DC%2BC1cXhs1Orsr3N10.1007/s00706-018-2266-z
MutharaniBKeerthiMChenSMRanganathanPChenTWLeeSYChangWHACS Appl. Mater. Interfaces202012449801:CAS:528:DC%2BB3cXhtFeg10.1021/acsami.9b1612331885249
HeYWangYZhaoLWuXWuYJ. Mol. Catal. A: Chem.20113371611:CAS:528:DC%2BC3MXisFGltbw%3D10.1016/j.molcata.2011.01.015
WadmanSKKettingDVoûtePAClin. Chim. Acta1976721491:CAS:528:DyaE28XlvVymt7o%3D10.1016/0009-8981(76)90036-x184988
TaoLHuangYYangXZhengYLiuCDiMZhengZRSC Adv.201881371021:CAS:528:DC%2BC1cXislSmurs%3D10.1039/c7ra13639k355403479078397
MoradiOFood Chem Toxicol.20221681133911:CAS:528:DC%2BB38Xitleru7bP10.1016/j.fct.2022.11339136041662
DengPXuZZengRDingCFood Chem.20151801561:CAS:528:DC%2BC2MXisleqsbk%3D10.1016/j.foodchem.2015.02.03525766813
PengJWeiLLiuYZhugeWHuangQHuangWXiangGZhangCRSC Adv.20201060368281:CAS:528:DC%2BB3cXhvF2hsLrN10.1039/d0ra06783k355179309057021
MichalskaMJasińskiJBPavlovskyJŻurek-SiworskaPSikoraAGołębiewskiPSzysiakAMatejkaVSeidlerovaJJ. Luminescence.20212331179341:CAS:528:DC%2BB3MXjsVGqtbg%3D10.1016/j.jlumin.2021.117934
TaouriLBourouinaMBourouina-BachaSHauchardDJ. Food Comp Anal20211001038111:CAS:528:DC%2BB3MXmtlGltL4%3D10.1016/j.jfca.2021.103811
Pérez-EsteveÉLerma-GarcíaMJFuentesAPalomaresCBaratJMFood Control2016671711:CAS:528:DC%2BC28XktVart7s%3D10.1016/j.foodcont.2016.02.048
UzunDArslanHGündüzalpABHasdemirESurf. Coat. Technol.20142391081:CAS:528:DC%2BC2cXotlensg%3D%3D10.1016/j.surfcoat.2013.11.028
TianYDengPWuYLiuJLiJLiGHeQMicrochem. J.20201571048851:CAS:528:DC%2BB3cXpvFagsrg%3D10.1016/j.microc.2020.104885
YeRCaiJPanYQiaoXSunWDiamond Related Materials.20201051078161:CAS:528:DC%2BB3cXntFGjtL8%3D10.1016/j.diamond.2020.107816
Longares-PatronACanizares-MaciasMPTalanta20066948821:CAS:528:DC%2BD28XltVWiurg%3D10.1016/j.talanta.2005.11.03018970652
PengJWeiMHuYYangYGuoYZhangFFood Anal. Meth.2019128172510.1007/s12161-019-01518-3
ElbashirAAElgack ElgorasheREAlnajjarAOAboul-EneinHYSeparation Sci. Plus202110.1002/sscp.202100001
LiDQZhangZQYangXLZhouCHQiJLJ Sep Sci.2016391733181:CAS:528:DC%2BC28Xhtlalur7M10.1002/jssc.20160046627384745
AnantharajSKarthickKKunduSInorg Chem.2019581385701:CAS:528:DC%2BC1MXhtFWisb%2FI10.1021/acs.inorgchem.9b0086831185540
MP Miranda (422_CR38) 2012; 668
H Du (422_CR33) 2022; 12
S Tajik (422_CR17) 2022; 33
IA Mkhalid (422_CR31) 2022; 48
AS Farag (422_CR42) 2018; 149
Y Tian (422_CR16) 2020; 157
Y Fan (422_CR29) 2015; 40
AA Elbashir (422_CR11) 2021
M Michalska (422_CR20) 2021; 233
P Deng (422_CR4) 2015; 180
Y Xu (422_CR30) 2019; 357
R Ye (422_CR22) 2020; 105
L Tao (422_CR23) 2018; 8
H Yin (422_CR26) 2015; 36
TT Calam (422_CR40) 2019; 31
B Mutharani (422_CR25) 2020; 12
T Kokulnathan (422_CR21) 2021; 9
A Venkadesh (422_CR12) 2021; 22
R Liu (422_CR35) 2019; 12
J Peng (422_CR14) 2020; 10
Y He (422_CR28) 2011; 337
A Longares-Patron (422_CR10) 2006; 69
AK Sinha (422_CR3) 2008; 59
Y Xie (422_CR32) 2019; 11
D Uzun (422_CR36) 2014; 239
J Peng (422_CR9) 2019; 12
MA Abdelaziz (422_CR34) 2021; 413
É Pérez-Esteve (422_CR2) 2016; 67
J Huang (422_CR24) 2022; 238
O Moradi (422_CR1) 2022; 168
JN Baby (422_CR18) 2020; 8
S Anantharaj (422_CR19) 2019; 58
J Li (422_CR5) 2015; 176
SK Wadman (422_CR8) 1976; 72
L Chen (422_CR39) 2019; 31
D Farthing (422_CR6) 1999; 726
J Kalaiyarasi (422_CR41) 2017; 184
L Fu (422_CR13) 2020; 242
L Taouri (422_CR15) 2021; 100
DQ Li (422_CR7) 2016; 39
A Yamuna (422_CR27) 2021; 901
Y Zhao (422_CR37) 2014; 6
References_xml – reference: HeYWangYZhaoLWuXWuYJ. Mol. Catal. A: Chem.20113371611:CAS:528:DC%2BC3MXisFGltbw%3D10.1016/j.molcata.2011.01.015
– reference: MutharaniBKeerthiMChenSMRanganathanPChenTWLeeSYChangWHACS Appl. Mater. Interfaces202012449801:CAS:528:DC%2BB3cXhtFeg10.1021/acsami.9b1612331885249
– reference: ZhaoYDuYLuDWangLMaDJuTWuMAnal. Methods20146617531:CAS:528:DC%2BC2cXjsFClu70%3D10.1039/c3ay41517a
– reference: CalamTTUzunDElectroanalysis2019311223471:CAS:528:DC%2BC1MXhsVelur3F10.1002/elan.201900328
– reference: BabyJNSriramBWangSFGeorgeMACS Sustain. Chem. Eng.20208314791:CAS:528:DC%2BB3cXjt1Gmsw%3D%3D10.1021/acssuschemeng.9b05755
– reference: HuangJChengWLiYTalanta20222381229911:CAS:528:DC%2BB3MXitlWktLzE10.1016/j.talanta.2021.12299134857324
– reference: LiDQZhangZQYangXLZhouCHQiJLJ Sep Sci.2016391733181:CAS:528:DC%2BC28Xhtlalur7M10.1002/jssc.20160046627384745
– reference: TianYDengPWuYLiuJLiJLiGHeQMicrochem. J.20201571048851:CAS:528:DC%2BB3cXpvFagsrg%3D10.1016/j.microc.2020.104885
– reference: SinhaAKSharmaUKSharmaNInt J Food Sci Nutr.20085942991:CAS:528:DC%2BD1cXltFCmuro%3D10.1080/0968763070153935017886091
– reference: PengJWeiMHuYYangYGuoYZhangFFood Anal. Meth.2019128172510.1007/s12161-019-01518-3
– reference: VenkadeshAMathiyarasuJRadhakrishnanSMater. Today Chem.2021221005541:CAS:528:DC%2BB38Xislyhsb4%3D10.1016/j.mtchem.2021.100554
– reference: DengPXuZZengRDingCFood Chem.20151801561:CAS:528:DC%2BC2MXisleqsbk%3D10.1016/j.foodchem.2015.02.03525766813
– reference: LiuRWangYLiBLiuBMaHLiDDongLLiFChenXYinXMaterials2019122136371:CAS:528:DC%2BB3cXotFGqtbY%3D10.3390/ma12213637316942006862283
– reference: MkhalidIAMohamedRMAlhaddadMBasalehAAl-HajjiLAIsmailAACeram. Int.20224810148991:CAS:528:DC%2BB38XjsVKjsL8%3D10.1016/j.ceramint.2022.02.028
– reference: ElbashirAAElgack ElgorasheREAlnajjarAOAboul-EneinHYSeparation Sci. Plus202110.1002/sscp.202100001
– reference: UzunDArslanHGündüzalpABHasdemirESurf. Coat. Technol.20142391081:CAS:528:DC%2BC2cXotlensg%3D%3D10.1016/j.surfcoat.2013.11.028
– reference: ChenLChaisiwamongkholKChenYComptonRGElectroanalysis20193110671:CAS:528:DC%2BC1MXktlers7s%3D10.1002/elan.201900037
– reference: Longares-PatronACanizares-MaciasMPTalanta20066948821:CAS:528:DC%2BD28XltVWiurg%3D10.1016/j.talanta.2005.11.03018970652
– reference: AnantharajSKarthickKKunduSInorg Chem.2019581385701:CAS:528:DC%2BC1MXhtFWisb%2FI10.1021/acs.inorgchem.9b0086831185540
– reference: FaragASSýSMHájekTVytřasKMonatshefte für Chemie Chem. Monthly.20181491119451:CAS:528:DC%2BC1cXhs1Orsr3N10.1007/s00706-018-2266-z
– reference: YamunaAChenTWChenSMWuWLJ Electroanal. Chem.20219011157721:CAS:528:DC%2BB3MXit1Kns77K10.1016/j.jelechem.2021.115772
– reference: Pérez-EsteveÉLerma-GarcíaMJFuentesAPalomaresCBaratJMFood Control2016671711:CAS:528:DC%2BC28XktVart7s%3D10.1016/j.foodcont.2016.02.048
– reference: TaoLHuangYYangXZhengYLiuCDiMZhengZRSC Adv.201881371021:CAS:528:DC%2BC1cXislSmurs%3D10.1039/c7ra13639k355403479078397
– reference: TaouriLBourouinaMBourouina-BachaSHauchardDJ. Food Comp Anal20211001038111:CAS:528:DC%2BB3MXmtlGltL4%3D10.1016/j.jfca.2021.103811
– reference: YinHZhouDCongLXieHMQiuYQChem. J. Chin. Universities.2015361019901:CAS:528:DC%2BC2MXhslGnurnK10.7503/cjcu20150241
– reference: PengJWeiLLiuYZhugeWHuangQHuangWXiangGZhangCRSC Adv.20201060368281:CAS:528:DC%2BB3cXhvF2hsLrN10.1039/d0ra06783k355179309057021
– reference: WadmanSKKettingDVoûtePAClin. Chim. Acta1976721491:CAS:528:DyaE28XlvVymt7o%3D10.1016/0009-8981(76)90036-x184988
– reference: XuYLiuJXieMJingLXuHSheXLiHXieJChem. Eng. J.20193574871:CAS:528:DC%2BC1cXhvVamsrjM10.1016/j.cej.2018.09.098
– reference: DuHZhangYWangXHuHAiJZhouHYanXYangYLuZBiosensors20221297601:CAS:528:DC%2BB38XisFenu7rF10.3390/bios12090760361401459496571
– reference: TajikSLohrasbi-NejadAJahaniPMBagher AskariMBeitollahiHJ. Mater. Sci. Mater. Electr.202233420201:CAS:528:DC%2BB38XntlWmsg%3D%3D10.1007/s10854-021-07405-0
– reference: MirandaMPdel RioRdel ValleMAFaundezMArmijoFJ. Electroanal. Chem.201266811:CAS:528:DC%2BC38XjtFKrtrY%3D10.1016/j.jelechem.2011.12.022
– reference: KalaiyarasiJMeenakshiSPandianKGopinathSCBMicrochim Acta.201718421311:CAS:528:DC%2BC2sXlsleitb8%3D10.1007/s00604-017-2161-z
– reference: XieYYinJZhengJWangLWuJDresselhausMZhangXACS Appl. Materials Interfaces20191135322441:CAS:528:DC%2BC1MXhsFeku7bI10.1021/acsami.9b06934
– reference: FanYLiuPZhuBChenSYaoKHanRInt. J. Hydrogen Energy2015401861881:CAS:528:DC%2BC2MXlvFCitr0%3D10.1016/j.ijhydene.2015.03.090
– reference: KokulnathanTAlmutairiGChenSMChenTWAhmedFArshiNAlOtaibiBACS Sustainable Chem. Eng.20219727841:CAS:528:DC%2BB3MXjsVKhu7w%3D10.1021/acssuschemeng.0c08340
– reference: LiJFengHLiJJiangJFengYHeLQianDElectrochim. Acta20151768271:CAS:528:DC%2BC2MXhsVajtb%2FM10.1016/j.electacta.2015.07.091
– reference: YeRCaiJPanYQiaoXSunWDiamond Related Materials.20201051078161:CAS:528:DC%2BB3cXntFGjtL8%3D10.1016/j.diamond.2020.107816
– reference: AbdelazizMAMansourFRDanielsonNDAnal. Bioanal. Chem.20214132051:CAS:528:DC%2BB3cXitFGlsr7K10.1007/s00216-020-02992-z33095289
– reference: FarthingDSicaDAbernathyCFakhryIRobertsJDAbrahamDJSwerdlowPJ. Chromatogr. B Biomed. Sci. Appl.199972613031:CAS:528:DyaK1MXjtVSltrg%3D10.1016/s0378-4347(99)00031-610348200
– reference: MoradiOFood Chem Toxicol.20221681133911:CAS:528:DC%2BB38Xitleru7bP10.1016/j.fct.2022.11339136041662
– reference: FuLXieKWuDWangAZhangHJiZMater. Chem. Phy.20202421224621:CAS:528:DC%2BC1MXit1eksLrK10.1016/j.matchemphys.2019.122462
– reference: MichalskaMJasińskiJBPavlovskyJŻurek-SiworskaPSikoraAGołębiewskiPSzysiakAMatejkaVSeidlerovaJJ. Luminescence.20212331179341:CAS:528:DC%2BB3MXjsVGqtbg%3D10.1016/j.jlumin.2021.117934
– volume: 726
  start-page: 303
  issue: 1
  year: 1999
  ident: 422_CR6
  publication-title: J. Chromatogr. B Biomed. Sci. Appl.
  doi: 10.1016/s0378-4347(99)00031-6
– volume: 157
  start-page: 104885
  year: 2020
  ident: 422_CR16
  publication-title: Microchem. J.
  doi: 10.1016/j.microc.2020.104885
– volume: 10
  start-page: 36828
  issue: 60
  year: 2020
  ident: 422_CR14
  publication-title: RSC Adv.
  doi: 10.1039/d0ra06783k
– volume: 12
  start-page: 4980
  issue: 4
  year: 2020
  ident: 422_CR25
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b16123
– volume: 901
  start-page: 115772
  year: 2021
  ident: 422_CR27
  publication-title: J Electroanal. Chem.
  doi: 10.1016/j.jelechem.2021.115772
– volume: 12
  start-page: 3637
  issue: 21
  year: 2019
  ident: 422_CR35
  publication-title: Materials
  doi: 10.3390/ma12213637
– volume: 357
  start-page: 487
  year: 2019
  ident: 422_CR30
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.09.098
– volume: 180
  start-page: 156
  year: 2015
  ident: 422_CR4
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2015.02.035
– volume: 36
  start-page: 1990
  issue: 10
  year: 2015
  ident: 422_CR26
  publication-title: Chem. J. Chin. Universities.
  doi: 10.7503/cjcu20150241
– volume: 67
  start-page: 171
  year: 2016
  ident: 422_CR2
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2016.02.048
– year: 2021
  ident: 422_CR11
  publication-title: Separation Sci. Plus
  doi: 10.1002/sscp.202100001
– volume: 22
  start-page: 100554
  year: 2021
  ident: 422_CR12
  publication-title: Mater. Today Chem.
  doi: 10.1016/j.mtchem.2021.100554
– volume: 668
  start-page: 1
  year: 2012
  ident: 422_CR38
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2011.12.022
– volume: 168
  start-page: 113391
  year: 2022
  ident: 422_CR1
  publication-title: Food Chem Toxicol.
  doi: 10.1016/j.fct.2022.113391
– volume: 6
  start-page: 1753
  issue: 6
  year: 2014
  ident: 422_CR37
  publication-title: Anal. Methods
  doi: 10.1039/c3ay41517a
– volume: 149
  start-page: 1945
  issue: 11
  year: 2018
  ident: 422_CR42
  publication-title: Monatshefte für Chemie Chem. Monthly.
  doi: 10.1007/s00706-018-2266-z
– volume: 9
  start-page: 2784
  issue: 7
  year: 2021
  ident: 422_CR21
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.0c08340
– volume: 48
  start-page: 14899
  issue: 10
  year: 2022
  ident: 422_CR31
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2022.02.028
– volume: 242
  start-page: 122462
  year: 2020
  ident: 422_CR13
  publication-title: Mater. Chem. Phy.
  doi: 10.1016/j.matchemphys.2019.122462
– volume: 105
  start-page: 107816
  year: 2020
  ident: 422_CR22
  publication-title: Diamond Related Materials.
  doi: 10.1016/j.diamond.2020.107816
– volume: 12
  start-page: 760
  issue: 9
  year: 2022
  ident: 422_CR33
  publication-title: Biosensors
  doi: 10.3390/bios12090760
– volume: 72
  start-page: 49
  issue: 1
  year: 1976
  ident: 422_CR8
  publication-title: Clin. Chim. Acta
  doi: 10.1016/0009-8981(76)90036-x
– volume: 413
  start-page: 205
  year: 2021
  ident: 422_CR34
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-020-02992-z
– volume: 31
  start-page: 2347
  issue: 12
  year: 2019
  ident: 422_CR40
  publication-title: Electroanalysis
  doi: 10.1002/elan.201900328
– volume: 39
  start-page: 3318
  issue: 17
  year: 2016
  ident: 422_CR7
  publication-title: J Sep Sci.
  doi: 10.1002/jssc.201600466
– volume: 11
  start-page: 32244
  issue: 35
  year: 2019
  ident: 422_CR32
  publication-title: ACS Appl. Materials Interfaces
  doi: 10.1021/acsami.9b06934
– volume: 31
  start-page: 1067
  year: 2019
  ident: 422_CR39
  publication-title: Electroanalysis
  doi: 10.1002/elan.201900037
– volume: 33
  start-page: 2020
  issue: 4
  year: 2022
  ident: 422_CR17
  publication-title: J. Mater. Sci. Mater. Electr.
  doi: 10.1007/s10854-021-07405-0
– volume: 40
  start-page: 6188
  issue: 18
  year: 2015
  ident: 422_CR29
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.03.090
– volume: 239
  start-page: 108
  year: 2014
  ident: 422_CR36
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/j.surfcoat.2013.11.028
– volume: 69
  start-page: 882
  issue: 4
  year: 2006
  ident: 422_CR10
  publication-title: Talanta
  doi: 10.1016/j.talanta.2005.11.030
– volume: 58
  start-page: 8570
  issue: 13
  year: 2019
  ident: 422_CR19
  publication-title: Inorg Chem.
  doi: 10.1021/acs.inorgchem.9b00868
– volume: 100
  start-page: 103811
  year: 2021
  ident: 422_CR15
  publication-title: J. Food Comp Anal
  doi: 10.1016/j.jfca.2021.103811
– volume: 176
  start-page: 827
  year: 2015
  ident: 422_CR5
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2015.07.091
– volume: 12
  start-page: 1725
  issue: 8
  year: 2019
  ident: 422_CR9
  publication-title: Food Anal. Meth.
  doi: 10.1007/s12161-019-01518-3
– volume: 8
  start-page: 7102
  issue: 13
  year: 2018
  ident: 422_CR23
  publication-title: RSC Adv.
  doi: 10.1039/c7ra13639k
– volume: 184
  start-page: 2131
  year: 2017
  ident: 422_CR41
  publication-title: Microchim Acta.
  doi: 10.1007/s00604-017-2161-z
– volume: 59
  start-page: 299
  issue: 4
  year: 2008
  ident: 422_CR3
  publication-title: Int J Food Sci Nutr.
  doi: 10.1080/09687630701539350
– volume: 8
  start-page: 1479
  issue: 3
  year: 2020
  ident: 422_CR18
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b05755
– volume: 337
  start-page: 61
  issue: 1
  year: 2011
  ident: 422_CR28
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/j.molcata.2011.01.015
– volume: 238
  start-page: 122991
  year: 2022
  ident: 422_CR24
  publication-title: Talanta
  doi: 10.1016/j.talanta.2021.122991
– volume: 233
  start-page: 117934
  year: 2021
  ident: 422_CR20
  publication-title: J. Luminescence.
  doi: 10.1016/j.jlumin.2021.117934
SSID ssj0012822
Score 2.3780477
Snippet Ethyl vanillin (EVA) is widely used as a flavor additive in foods, and sensitive monitoring of EVA is of great significance for food safety. In this paper, the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2049
SubjectTerms Analytical Chemistry
Chemistry
Chemistry and Materials Science
Original Paper
Title Electrochemical determination of ethylvanillin based on LaV@GAC nanocomposite
URI https://link.springer.com/article/10.1007/s44211-023-00422-5
https://www.proquest.com/docview/2861304879
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9RAFJ8gHPRCFDQuiCmJnNaSbueD6U2yoATExAQMnpqZ6UyCIV3Dtonxr_fNV7tdlAiXZjO7O5nO7837fm8QeldgVWFBaTqpDE-JkgepNEqmmGtsRMUp17Ya-fwLO7kkp1f0qnfmuOqSRu6r33-tK3kMqjAGuNoq2Qcg200KA_AZ8IUnIAzP_8L42N9ho2LRfxVzW6IaqAGGG9CVrVOlHluJVdnowGfxbY9knw6n41rUM5tVblO3BklBrllJ09dMqoUb6Fsnr8T1j7bux7wj9XvbUZBLEzi9_hVlo6uv8ZzlSMjQ8Dv4G3K8kLsRHIfAuRn2TZb2tWebmAAyeXAmBr7qmxRF-skXuWTm25QGiZtnvnv7HW7uEzjmhOTWjwtLcR3LUtrLrhivXxJpXaJh15TZzVHCHKWbo6RP0FoOloVljWdf-8CTzap17RnDS4Y6K1dteWcdQ12mN1CWYupOVbl4jtaDjZEceoJ5gVZ0vYGeTuPVfpvofIlwkgHhJDOTDAgncYSTwDdAOB-AbJIB2bxElx-PL6YnabhXI1WAU5NW1BCtM6Owyaz7gDFisNGSC8EkHNfCUKkokaxQhAvQAQ9AixNY5ZWZMMMUfoVW61mtX6OEgIGhZQF2MVNEciMnjIJBz7EBQ95UYoQmcYdKFZrO27tPbsp_IzNC4-4_P33LlXt_vRs3voRdtOEuUetZOy9zbm1jMMiLEXofESnD8Z3fM-XWgxawjZ71x-QNWm1uW70Dimoj3zrS-gMdI4uR
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+determination+of+ethylvanillin+based+on+LaV%40GAC+nanocomposite&rft.jtitle=Analytical+sciences&rft.au=Du%2C+Haijun&rft.au=Duan%2C+Yu&rft.au=Ai%2C+Jixing&rft.au=Kong%2C+Dabin&rft.date=2023-12-01&rft.issn=0910-6340&rft.eissn=1348-2246&rft.volume=39&rft.issue=12&rft.spage=2049&rft.epage=2058&rft_id=info:doi/10.1007%2Fs44211-023-00422-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s44211_023_00422_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0910-6340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0910-6340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0910-6340&client=summon