Electrochemical determination of ethylvanillin based on LaV@GAC nanocomposite
Ethyl vanillin (EVA) is widely used as a flavor additive in foods, and sensitive monitoring of EVA is of great significance for food safety. In this paper, the biomass of gum arabic derived carbon (GAC) coated with lanthanum vanadate (LaV) was constructed for the EVA sensor based on the synergistic...
Saved in:
Published in | Analytical sciences Vol. 39; no. 12; pp. 2049 - 2058 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Nature Singapore
01.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ethyl vanillin (EVA) is widely used as a flavor additive in foods, and sensitive monitoring of EVA is of great significance for food safety. In this paper, the biomass of gum arabic derived carbon (GAC) coated with lanthanum vanadate (LaV) was constructed for the EVA sensor based on the synergistic effects of the electrochemical catalytic ability of LaV, the enhanced electrical conductivity with the GAC coating and the oxygen-containing functional groups in LaV@GAC. The as-developed LaV@GAC sensor showed a remarkable linear range from 0.06 μM to 100 μM and a low detection limit (LOD) of 6.28 nM. The electrochemical oxidation of EVA is limited by a diffusion-controlled process involving 2 electrons and 2 protons. Moreover, the LaV@GAC sensor has good recoveries (94.5–103.05%) for the detection of EVA in real milk powder samples. The proposed LaV@GAC sensor has good repeatability, high stability, and great potential for sensitive detection of flavor additives in food.
Graphical abstract |
---|---|
AbstractList | Ethyl vanillin (EVA) is widely used as a flavor additive in foods, and sensitive monitoring of EVA is of great significance for food safety. In this paper, the biomass of gum arabic derived carbon (GAC) coated with lanthanum vanadate (LaV) was constructed for the EVA sensor based on the synergistic effects of the electrochemical catalytic ability of LaV, the enhanced electrical conductivity with the GAC coating and the oxygen-containing functional groups in LaV@GAC. The as-developed LaV@GAC sensor showed a remarkable linear range from 0.06 μM to 100 μM and a low detection limit (LOD) of 6.28 nM. The electrochemical oxidation of EVA is limited by a diffusion-controlled process involving 2 electrons and 2 protons. Moreover, the LaV@GAC sensor has good recoveries (94.5-103.05%) for the detection of EVA in real milk powder samples. The proposed LaV@GAC sensor has good repeatability, high stability, and great potential for sensitive detection of flavor additives in food.Ethyl vanillin (EVA) is widely used as a flavor additive in foods, and sensitive monitoring of EVA is of great significance for food safety. In this paper, the biomass of gum arabic derived carbon (GAC) coated with lanthanum vanadate (LaV) was constructed for the EVA sensor based on the synergistic effects of the electrochemical catalytic ability of LaV, the enhanced electrical conductivity with the GAC coating and the oxygen-containing functional groups in LaV@GAC. The as-developed LaV@GAC sensor showed a remarkable linear range from 0.06 μM to 100 μM and a low detection limit (LOD) of 6.28 nM. The electrochemical oxidation of EVA is limited by a diffusion-controlled process involving 2 electrons and 2 protons. Moreover, the LaV@GAC sensor has good recoveries (94.5-103.05%) for the detection of EVA in real milk powder samples. The proposed LaV@GAC sensor has good repeatability, high stability, and great potential for sensitive detection of flavor additives in food. Ethyl vanillin (EVA) is widely used as a flavor additive in foods, and sensitive monitoring of EVA is of great significance for food safety. In this paper, the biomass of gum arabic derived carbon (GAC) coated with lanthanum vanadate (LaV) was constructed for the EVA sensor based on the synergistic effects of the electrochemical catalytic ability of LaV, the enhanced electrical conductivity with the GAC coating and the oxygen-containing functional groups in LaV@GAC. The as-developed LaV@GAC sensor showed a remarkable linear range from 0.06 μM to 100 μM and a low detection limit (LOD) of 6.28 nM. The electrochemical oxidation of EVA is limited by a diffusion-controlled process involving 2 electrons and 2 protons. Moreover, the LaV@GAC sensor has good recoveries (94.5–103.05%) for the detection of EVA in real milk powder samples. The proposed LaV@GAC sensor has good repeatability, high stability, and great potential for sensitive detection of flavor additives in food. Graphical abstract |
Author | Du, Haijun Hu, Huali Wang, Hong Kong, Dabin Ai, Jixing Yang, Yang Duan, Yu Wang, Dexiang |
Author_xml | – sequence: 1 givenname: Haijun surname: Du fullname: Du, Haijun organization: School of Chemical Engineering, Guizhou Minzu University, Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University – sequence: 2 givenname: Yu surname: Duan fullname: Duan, Yu organization: School of Chemical Engineering, Guizhou Minzu University – sequence: 3 givenname: Jixing surname: Ai fullname: Ai, Jixing organization: School of Chemical Engineering, Guizhou Minzu University – sequence: 4 givenname: Dabin surname: Kong fullname: Kong, Dabin organization: School of Chemical Engineering, Guizhou Minzu University – sequence: 5 givenname: Dexiang surname: Wang fullname: Wang, Dexiang organization: School of Chemical Engineering, Guizhou Minzu University – sequence: 6 givenname: Huali surname: Hu fullname: Hu, Huali organization: School of Chemical Engineering, Guizhou Minzu University – sequence: 7 givenname: Hong surname: Wang fullname: Wang, Hong organization: Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry, Kashi University – sequence: 8 givenname: Yang orcidid: 0000-0003-1945-9439 surname: Yang fullname: Yang, Yang email: yangyang823@cdu.edu.cn organization: School of Mechanical Engineering, Chengdu University |
BookMark | eNp9kLtOAzEQRS0EEuHxA1Rb0iyMH-tsOqIoBKQgGqC1vM6YGHntYDtI_D1LQkWRaoq5587onJHjEAMSckXhhgKMb7MQjNIaGK8BBGN1c0RGlIu2ZkzIYzKCCYVacgGn5CznDwDKWsZG5Gnu0ZQUzRp7Z7SvVlgw9S7o4mKooq2wrL_9lw7OexeqTmdcVcNmqd_uFtNZFXSIJvabmF3BC3Jitc94-TfPyev9_GX2UC-fF4-z6bI2w0ulXjVWIII13IIABlIKyy12rdayE6ab2KYzjejkxIhWM9qOmZSaG7ayVFpp-Dm53vduUvzcYi6qd9mg9zpg3GbFWkk5iHY8GaJsHzUp5pzQqk1yvU7fioL6daf27tTgTu3cqWaA2n-QcWVnpCTt_GGU79E83AnvmNRH3KYw2DhE_QCVSoY1 |
CitedBy_id | crossref_primary_10_1016_j_jfca_2024_107161 crossref_primary_10_1016_j_microc_2024_111019 crossref_primary_10_1016_j_jfca_2024_106475 |
Cites_doi | 10.1016/s0378-4347(99)00031-6 10.1016/j.microc.2020.104885 10.1039/d0ra06783k 10.1021/acsami.9b16123 10.1016/j.jelechem.2021.115772 10.3390/ma12213637 10.1016/j.cej.2018.09.098 10.1016/j.foodchem.2015.02.035 10.7503/cjcu20150241 10.1016/j.foodcont.2016.02.048 10.1002/sscp.202100001 10.1016/j.mtchem.2021.100554 10.1016/j.jelechem.2011.12.022 10.1016/j.fct.2022.113391 10.1039/c3ay41517a 10.1007/s00706-018-2266-z 10.1021/acssuschemeng.0c08340 10.1016/j.ceramint.2022.02.028 10.1016/j.matchemphys.2019.122462 10.1016/j.diamond.2020.107816 10.3390/bios12090760 10.1016/0009-8981(76)90036-x 10.1007/s00216-020-02992-z 10.1002/elan.201900328 10.1002/jssc.201600466 10.1021/acsami.9b06934 10.1002/elan.201900037 10.1007/s10854-021-07405-0 10.1016/j.ijhydene.2015.03.090 10.1016/j.surfcoat.2013.11.028 10.1016/j.talanta.2005.11.030 10.1021/acs.inorgchem.9b00868 10.1016/j.jfca.2021.103811 10.1016/j.electacta.2015.07.091 10.1007/s12161-019-01518-3 10.1039/c7ra13639k 10.1007/s00604-017-2161-z 10.1080/09687630701539350 10.1021/acssuschemeng.9b05755 10.1016/j.molcata.2011.01.015 10.1016/j.talanta.2021.122991 10.1016/j.jlumin.2021.117934 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to The Japan Society for Analytical Chemistry 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2023. The Author(s), under exclusive licence to The Japan Society for Analytical Chemistry. |
Copyright_xml | – notice: The Author(s), under exclusive licence to The Japan Society for Analytical Chemistry 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2023. The Author(s), under exclusive licence to The Japan Society for Analytical Chemistry. |
DBID | AAYXX CITATION 7X8 |
DOI | 10.1007/s44211-023-00422-5 |
DatabaseName | CrossRef MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1348-2246 |
EndPage | 2058 |
ExternalDocumentID | 10_1007_s44211_023_00422_5 |
GrantInformation_xml | – fundername: Guizhou Provincial Science and Technology Projects grantid: ZK[2021]242 – fundername: The Innovation Team Project of Guizhou Higher Education grantid: [2022]013 – fundername: National Natural Science Foundation of China grantid: 81860701; 82060714 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: The open project of Laboratory of Xinjiang Native Medicinal and Edible Plant Resources Chemistry grantid: KSUZDSYS202104 |
GroupedDBID | --- 0R~ 23M 2WC 3O- 406 53G 5GY 6J9 7.U AACDK AAJBT AASML AATNV ABAKF ABJNI ABTKH ACAOD ACDTI ACGFO ACIWK ACPIV ACPRK ACZOJ ADBBV AEFQL AEMSY AENEX AESKC AFBBN AFRAH AGMZJ AGQEE AI. AIAKS AIGIU ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF BAWUL CS3 DIK DPUIP E3Z EBLON EBS EJD F5P FIGPU GX1 HH5 IWAJR JSF JSH JZLTJ KQ8 LLZTM M~E NPVJJ OK1 P2P RDB RJT RNS ROL RSV RZJ RZV SJYHP SOJ TKC TN5 TR2 UPT VH1 XSB ~02 AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION OVT 7X8 |
ID | FETCH-LOGICAL-c348t-d5f4ee0fc3f04020664f3feb8aa6b4cb9f5bc54b69c48a2187266a3c2df16f6c3 |
ISSN | 0910-6340 1348-2246 |
IngestDate | Fri Jul 11 10:46:10 EDT 2025 Tue Jul 01 01:11:45 EDT 2025 Thu Apr 24 23:11:49 EDT 2025 Fri Feb 21 02:44:28 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Electrochemical sensor Lanthanum Vanadate Ethyl vanillin Gum Arabic |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c348t-d5f4ee0fc3f04020664f3feb8aa6b4cb9f5bc54b69c48a2187266a3c2df16f6c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-1945-9439 |
PQID | 2861304879 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2861304879 crossref_primary_10_1007_s44211_023_00422_5 crossref_citationtrail_10_1007_s44211_023_00422_5 springer_journals_10_1007_s44211_023_00422_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231200 2023-12-00 20231201 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 20231200 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | Analytical sciences |
PublicationTitleAbbrev | ANAL. SCI |
PublicationYear | 2023 |
Publisher | Springer Nature Singapore |
Publisher_xml | – name: Springer Nature Singapore |
References | DuHZhangYWangXHuHAiJZhouHYanXYangYLuZBiosensors20221297601:CAS:528:DC%2BB38XisFenu7rF10.3390/bios12090760361401459496571 TajikSLohrasbi-NejadAJahaniPMBagher AskariMBeitollahiHJ. Mater. Sci. Mater. Electr.202233420201:CAS:528:DC%2BB38XntlWmsg%3D%3D10.1007/s10854-021-07405-0 BabyJNSriramBWangSFGeorgeMACS Sustain. Chem. Eng.20208314791:CAS:528:DC%2BB3cXjt1Gmsw%3D%3D10.1021/acssuschemeng.9b05755 SinhaAKSharmaUKSharmaNInt J Food Sci Nutr.20085942991:CAS:528:DC%2BD1cXltFCmuro%3D10.1080/0968763070153935017886091 XieYYinJZhengJWangLWuJDresselhausMZhangXACS Appl. Materials Interfaces20191135322441:CAS:528:DC%2BC1MXhsFeku7bI10.1021/acsami.9b06934 LiuRWangYLiBLiuBMaHLiDDongLLiFChenXYinXMaterials2019122136371:CAS:528:DC%2BB3cXotFGqtbY%3D10.3390/ma12213637316942006862283 FuLXieKWuDWangAZhangHJiZMater. Chem. Phy.20202421224621:CAS:528:DC%2BC1MXit1eksLrK10.1016/j.matchemphys.2019.122462 MirandaMPdel RioRdel ValleMAFaundezMArmijoFJ. Electroanal. Chem.201266811:CAS:528:DC%2BC38XjtFKrtrY%3D10.1016/j.jelechem.2011.12.022 KokulnathanTAlmutairiGChenSMChenTWAhmedFArshiNAlOtaibiBACS Sustainable Chem. Eng.20219727841:CAS:528:DC%2BB3MXjsVKhu7w%3D10.1021/acssuschemeng.0c08340 FanYLiuPZhuBChenSYaoKHanRInt. J. Hydrogen Energy2015401861881:CAS:528:DC%2BC2MXlvFCitr0%3D10.1016/j.ijhydene.2015.03.090 XuYLiuJXieMJingLXuHSheXLiHXieJChem. Eng. J.20193574871:CAS:528:DC%2BC1cXhvVamsrjM10.1016/j.cej.2018.09.098 LiJFengHLiJJiangJFengYHeLQianDElectrochim. Acta20151768271:CAS:528:DC%2BC2MXhsVajtb%2FM10.1016/j.electacta.2015.07.091 YamunaAChenTWChenSMWuWLJ Electroanal. Chem.20219011157721:CAS:528:DC%2BB3MXit1Kns77K10.1016/j.jelechem.2021.115772 ChenLChaisiwamongkholKChenYComptonRGElectroanalysis20193110671:CAS:528:DC%2BC1MXktlers7s%3D10.1002/elan.201900037 HuangJChengWLiYTalanta20222381229911:CAS:528:DC%2BB3MXitlWktLzE10.1016/j.talanta.2021.12299134857324 YinHZhouDCongLXieHMQiuYQChem. J. Chin. Universities.2015361019901:CAS:528:DC%2BC2MXhslGnurnK10.7503/cjcu20150241 FarthingDSicaDAbernathyCFakhryIRobertsJDAbrahamDJSwerdlowPJ. Chromatogr. B Biomed. Sci. Appl.199972613031:CAS:528:DyaK1MXjtVSltrg%3D10.1016/s0378-4347(99)00031-610348200 KalaiyarasiJMeenakshiSPandianKGopinathSCBMicrochim Acta.201718421311:CAS:528:DC%2BC2sXlsleitb8%3D10.1007/s00604-017-2161-z AbdelazizMAMansourFRDanielsonNDAnal. Bioanal. Chem.20214132051:CAS:528:DC%2BB3cXitFGlsr7K10.1007/s00216-020-02992-z33095289 CalamTTUzunDElectroanalysis2019311223471:CAS:528:DC%2BC1MXhsVelur3F10.1002/elan.201900328 ZhaoYDuYLuDWangLMaDJuTWuMAnal. Methods20146617531:CAS:528:DC%2BC2cXjsFClu70%3D10.1039/c3ay41517a MkhalidIAMohamedRMAlhaddadMBasalehAAl-HajjiLAIsmailAACeram. Int.20224810148991:CAS:528:DC%2BB38XjsVKjsL8%3D10.1016/j.ceramint.2022.02.028 VenkadeshAMathiyarasuJRadhakrishnanSMater. Today Chem.2021221005541:CAS:528:DC%2BB38Xislyhsb4%3D10.1016/j.mtchem.2021.100554 FaragASSýSMHájekTVytřasKMonatshefte für Chemie Chem. Monthly.20181491119451:CAS:528:DC%2BC1cXhs1Orsr3N10.1007/s00706-018-2266-z MutharaniBKeerthiMChenSMRanganathanPChenTWLeeSYChangWHACS Appl. Mater. Interfaces202012449801:CAS:528:DC%2BB3cXhtFeg10.1021/acsami.9b1612331885249 HeYWangYZhaoLWuXWuYJ. Mol. Catal. A: Chem.20113371611:CAS:528:DC%2BC3MXisFGltbw%3D10.1016/j.molcata.2011.01.015 WadmanSKKettingDVoûtePAClin. Chim. Acta1976721491:CAS:528:DyaE28XlvVymt7o%3D10.1016/0009-8981(76)90036-x184988 TaoLHuangYYangXZhengYLiuCDiMZhengZRSC Adv.201881371021:CAS:528:DC%2BC1cXislSmurs%3D10.1039/c7ra13639k355403479078397 MoradiOFood Chem Toxicol.20221681133911:CAS:528:DC%2BB38Xitleru7bP10.1016/j.fct.2022.11339136041662 DengPXuZZengRDingCFood Chem.20151801561:CAS:528:DC%2BC2MXisleqsbk%3D10.1016/j.foodchem.2015.02.03525766813 PengJWeiLLiuYZhugeWHuangQHuangWXiangGZhangCRSC Adv.20201060368281:CAS:528:DC%2BB3cXhvF2hsLrN10.1039/d0ra06783k355179309057021 MichalskaMJasińskiJBPavlovskyJŻurek-SiworskaPSikoraAGołębiewskiPSzysiakAMatejkaVSeidlerovaJJ. Luminescence.20212331179341:CAS:528:DC%2BB3MXjsVGqtbg%3D10.1016/j.jlumin.2021.117934 TaouriLBourouinaMBourouina-BachaSHauchardDJ. Food Comp Anal20211001038111:CAS:528:DC%2BB3MXmtlGltL4%3D10.1016/j.jfca.2021.103811 Pérez-EsteveÉLerma-GarcíaMJFuentesAPalomaresCBaratJMFood Control2016671711:CAS:528:DC%2BC28XktVart7s%3D10.1016/j.foodcont.2016.02.048 UzunDArslanHGündüzalpABHasdemirESurf. Coat. Technol.20142391081:CAS:528:DC%2BC2cXotlensg%3D%3D10.1016/j.surfcoat.2013.11.028 TianYDengPWuYLiuJLiJLiGHeQMicrochem. J.20201571048851:CAS:528:DC%2BB3cXpvFagsrg%3D10.1016/j.microc.2020.104885 YeRCaiJPanYQiaoXSunWDiamond Related Materials.20201051078161:CAS:528:DC%2BB3cXntFGjtL8%3D10.1016/j.diamond.2020.107816 Longares-PatronACanizares-MaciasMPTalanta20066948821:CAS:528:DC%2BD28XltVWiurg%3D10.1016/j.talanta.2005.11.03018970652 PengJWeiMHuYYangYGuoYZhangFFood Anal. Meth.2019128172510.1007/s12161-019-01518-3 ElbashirAAElgack ElgorasheREAlnajjarAOAboul-EneinHYSeparation Sci. Plus202110.1002/sscp.202100001 LiDQZhangZQYangXLZhouCHQiJLJ Sep Sci.2016391733181:CAS:528:DC%2BC28Xhtlalur7M10.1002/jssc.20160046627384745 AnantharajSKarthickKKunduSInorg Chem.2019581385701:CAS:528:DC%2BC1MXhtFWisb%2FI10.1021/acs.inorgchem.9b0086831185540 MP Miranda (422_CR38) 2012; 668 H Du (422_CR33) 2022; 12 S Tajik (422_CR17) 2022; 33 IA Mkhalid (422_CR31) 2022; 48 AS Farag (422_CR42) 2018; 149 Y Tian (422_CR16) 2020; 157 Y Fan (422_CR29) 2015; 40 AA Elbashir (422_CR11) 2021 M Michalska (422_CR20) 2021; 233 P Deng (422_CR4) 2015; 180 Y Xu (422_CR30) 2019; 357 R Ye (422_CR22) 2020; 105 L Tao (422_CR23) 2018; 8 H Yin (422_CR26) 2015; 36 TT Calam (422_CR40) 2019; 31 B Mutharani (422_CR25) 2020; 12 T Kokulnathan (422_CR21) 2021; 9 A Venkadesh (422_CR12) 2021; 22 R Liu (422_CR35) 2019; 12 J Peng (422_CR14) 2020; 10 Y He (422_CR28) 2011; 337 A Longares-Patron (422_CR10) 2006; 69 AK Sinha (422_CR3) 2008; 59 Y Xie (422_CR32) 2019; 11 D Uzun (422_CR36) 2014; 239 J Peng (422_CR9) 2019; 12 MA Abdelaziz (422_CR34) 2021; 413 É Pérez-Esteve (422_CR2) 2016; 67 J Huang (422_CR24) 2022; 238 O Moradi (422_CR1) 2022; 168 JN Baby (422_CR18) 2020; 8 S Anantharaj (422_CR19) 2019; 58 J Li (422_CR5) 2015; 176 SK Wadman (422_CR8) 1976; 72 L Chen (422_CR39) 2019; 31 D Farthing (422_CR6) 1999; 726 J Kalaiyarasi (422_CR41) 2017; 184 L Fu (422_CR13) 2020; 242 L Taouri (422_CR15) 2021; 100 DQ Li (422_CR7) 2016; 39 A Yamuna (422_CR27) 2021; 901 Y Zhao (422_CR37) 2014; 6 |
References_xml | – reference: HeYWangYZhaoLWuXWuYJ. Mol. Catal. A: Chem.20113371611:CAS:528:DC%2BC3MXisFGltbw%3D10.1016/j.molcata.2011.01.015 – reference: MutharaniBKeerthiMChenSMRanganathanPChenTWLeeSYChangWHACS Appl. Mater. Interfaces202012449801:CAS:528:DC%2BB3cXhtFeg10.1021/acsami.9b1612331885249 – reference: ZhaoYDuYLuDWangLMaDJuTWuMAnal. Methods20146617531:CAS:528:DC%2BC2cXjsFClu70%3D10.1039/c3ay41517a – reference: CalamTTUzunDElectroanalysis2019311223471:CAS:528:DC%2BC1MXhsVelur3F10.1002/elan.201900328 – reference: BabyJNSriramBWangSFGeorgeMACS Sustain. Chem. Eng.20208314791:CAS:528:DC%2BB3cXjt1Gmsw%3D%3D10.1021/acssuschemeng.9b05755 – reference: HuangJChengWLiYTalanta20222381229911:CAS:528:DC%2BB3MXitlWktLzE10.1016/j.talanta.2021.12299134857324 – reference: LiDQZhangZQYangXLZhouCHQiJLJ Sep Sci.2016391733181:CAS:528:DC%2BC28Xhtlalur7M10.1002/jssc.20160046627384745 – reference: TianYDengPWuYLiuJLiJLiGHeQMicrochem. J.20201571048851:CAS:528:DC%2BB3cXpvFagsrg%3D10.1016/j.microc.2020.104885 – reference: SinhaAKSharmaUKSharmaNInt J Food Sci Nutr.20085942991:CAS:528:DC%2BD1cXltFCmuro%3D10.1080/0968763070153935017886091 – reference: PengJWeiMHuYYangYGuoYZhangFFood Anal. Meth.2019128172510.1007/s12161-019-01518-3 – reference: VenkadeshAMathiyarasuJRadhakrishnanSMater. Today Chem.2021221005541:CAS:528:DC%2BB38Xislyhsb4%3D10.1016/j.mtchem.2021.100554 – reference: DengPXuZZengRDingCFood Chem.20151801561:CAS:528:DC%2BC2MXisleqsbk%3D10.1016/j.foodchem.2015.02.03525766813 – reference: LiuRWangYLiBLiuBMaHLiDDongLLiFChenXYinXMaterials2019122136371:CAS:528:DC%2BB3cXotFGqtbY%3D10.3390/ma12213637316942006862283 – reference: MkhalidIAMohamedRMAlhaddadMBasalehAAl-HajjiLAIsmailAACeram. Int.20224810148991:CAS:528:DC%2BB38XjsVKjsL8%3D10.1016/j.ceramint.2022.02.028 – reference: ElbashirAAElgack ElgorasheREAlnajjarAOAboul-EneinHYSeparation Sci. Plus202110.1002/sscp.202100001 – reference: UzunDArslanHGündüzalpABHasdemirESurf. Coat. Technol.20142391081:CAS:528:DC%2BC2cXotlensg%3D%3D10.1016/j.surfcoat.2013.11.028 – reference: ChenLChaisiwamongkholKChenYComptonRGElectroanalysis20193110671:CAS:528:DC%2BC1MXktlers7s%3D10.1002/elan.201900037 – reference: Longares-PatronACanizares-MaciasMPTalanta20066948821:CAS:528:DC%2BD28XltVWiurg%3D10.1016/j.talanta.2005.11.03018970652 – reference: AnantharajSKarthickKKunduSInorg Chem.2019581385701:CAS:528:DC%2BC1MXhtFWisb%2FI10.1021/acs.inorgchem.9b0086831185540 – reference: FaragASSýSMHájekTVytřasKMonatshefte für Chemie Chem. Monthly.20181491119451:CAS:528:DC%2BC1cXhs1Orsr3N10.1007/s00706-018-2266-z – reference: YamunaAChenTWChenSMWuWLJ Electroanal. Chem.20219011157721:CAS:528:DC%2BB3MXit1Kns77K10.1016/j.jelechem.2021.115772 – reference: Pérez-EsteveÉLerma-GarcíaMJFuentesAPalomaresCBaratJMFood Control2016671711:CAS:528:DC%2BC28XktVart7s%3D10.1016/j.foodcont.2016.02.048 – reference: TaoLHuangYYangXZhengYLiuCDiMZhengZRSC Adv.201881371021:CAS:528:DC%2BC1cXislSmurs%3D10.1039/c7ra13639k355403479078397 – reference: TaouriLBourouinaMBourouina-BachaSHauchardDJ. Food Comp Anal20211001038111:CAS:528:DC%2BB3MXmtlGltL4%3D10.1016/j.jfca.2021.103811 – reference: YinHZhouDCongLXieHMQiuYQChem. J. Chin. Universities.2015361019901:CAS:528:DC%2BC2MXhslGnurnK10.7503/cjcu20150241 – reference: PengJWeiLLiuYZhugeWHuangQHuangWXiangGZhangCRSC Adv.20201060368281:CAS:528:DC%2BB3cXhvF2hsLrN10.1039/d0ra06783k355179309057021 – reference: WadmanSKKettingDVoûtePAClin. Chim. Acta1976721491:CAS:528:DyaE28XlvVymt7o%3D10.1016/0009-8981(76)90036-x184988 – reference: XuYLiuJXieMJingLXuHSheXLiHXieJChem. Eng. J.20193574871:CAS:528:DC%2BC1cXhvVamsrjM10.1016/j.cej.2018.09.098 – reference: DuHZhangYWangXHuHAiJZhouHYanXYangYLuZBiosensors20221297601:CAS:528:DC%2BB38XisFenu7rF10.3390/bios12090760361401459496571 – reference: TajikSLohrasbi-NejadAJahaniPMBagher AskariMBeitollahiHJ. Mater. Sci. Mater. Electr.202233420201:CAS:528:DC%2BB38XntlWmsg%3D%3D10.1007/s10854-021-07405-0 – reference: MirandaMPdel RioRdel ValleMAFaundezMArmijoFJ. Electroanal. Chem.201266811:CAS:528:DC%2BC38XjtFKrtrY%3D10.1016/j.jelechem.2011.12.022 – reference: KalaiyarasiJMeenakshiSPandianKGopinathSCBMicrochim Acta.201718421311:CAS:528:DC%2BC2sXlsleitb8%3D10.1007/s00604-017-2161-z – reference: XieYYinJZhengJWangLWuJDresselhausMZhangXACS Appl. Materials Interfaces20191135322441:CAS:528:DC%2BC1MXhsFeku7bI10.1021/acsami.9b06934 – reference: FanYLiuPZhuBChenSYaoKHanRInt. J. Hydrogen Energy2015401861881:CAS:528:DC%2BC2MXlvFCitr0%3D10.1016/j.ijhydene.2015.03.090 – reference: KokulnathanTAlmutairiGChenSMChenTWAhmedFArshiNAlOtaibiBACS Sustainable Chem. Eng.20219727841:CAS:528:DC%2BB3MXjsVKhu7w%3D10.1021/acssuschemeng.0c08340 – reference: LiJFengHLiJJiangJFengYHeLQianDElectrochim. Acta20151768271:CAS:528:DC%2BC2MXhsVajtb%2FM10.1016/j.electacta.2015.07.091 – reference: YeRCaiJPanYQiaoXSunWDiamond Related Materials.20201051078161:CAS:528:DC%2BB3cXntFGjtL8%3D10.1016/j.diamond.2020.107816 – reference: AbdelazizMAMansourFRDanielsonNDAnal. Bioanal. Chem.20214132051:CAS:528:DC%2BB3cXitFGlsr7K10.1007/s00216-020-02992-z33095289 – reference: FarthingDSicaDAbernathyCFakhryIRobertsJDAbrahamDJSwerdlowPJ. Chromatogr. B Biomed. Sci. Appl.199972613031:CAS:528:DyaK1MXjtVSltrg%3D10.1016/s0378-4347(99)00031-610348200 – reference: MoradiOFood Chem Toxicol.20221681133911:CAS:528:DC%2BB38Xitleru7bP10.1016/j.fct.2022.11339136041662 – reference: FuLXieKWuDWangAZhangHJiZMater. Chem. Phy.20202421224621:CAS:528:DC%2BC1MXit1eksLrK10.1016/j.matchemphys.2019.122462 – reference: MichalskaMJasińskiJBPavlovskyJŻurek-SiworskaPSikoraAGołębiewskiPSzysiakAMatejkaVSeidlerovaJJ. Luminescence.20212331179341:CAS:528:DC%2BB3MXjsVGqtbg%3D10.1016/j.jlumin.2021.117934 – volume: 726 start-page: 303 issue: 1 year: 1999 ident: 422_CR6 publication-title: J. Chromatogr. B Biomed. Sci. Appl. doi: 10.1016/s0378-4347(99)00031-6 – volume: 157 start-page: 104885 year: 2020 ident: 422_CR16 publication-title: Microchem. J. doi: 10.1016/j.microc.2020.104885 – volume: 10 start-page: 36828 issue: 60 year: 2020 ident: 422_CR14 publication-title: RSC Adv. doi: 10.1039/d0ra06783k – volume: 12 start-page: 4980 issue: 4 year: 2020 ident: 422_CR25 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b16123 – volume: 901 start-page: 115772 year: 2021 ident: 422_CR27 publication-title: J Electroanal. Chem. doi: 10.1016/j.jelechem.2021.115772 – volume: 12 start-page: 3637 issue: 21 year: 2019 ident: 422_CR35 publication-title: Materials doi: 10.3390/ma12213637 – volume: 357 start-page: 487 year: 2019 ident: 422_CR30 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.09.098 – volume: 180 start-page: 156 year: 2015 ident: 422_CR4 publication-title: Food Chem. doi: 10.1016/j.foodchem.2015.02.035 – volume: 36 start-page: 1990 issue: 10 year: 2015 ident: 422_CR26 publication-title: Chem. J. Chin. Universities. doi: 10.7503/cjcu20150241 – volume: 67 start-page: 171 year: 2016 ident: 422_CR2 publication-title: Food Control doi: 10.1016/j.foodcont.2016.02.048 – year: 2021 ident: 422_CR11 publication-title: Separation Sci. Plus doi: 10.1002/sscp.202100001 – volume: 22 start-page: 100554 year: 2021 ident: 422_CR12 publication-title: Mater. Today Chem. doi: 10.1016/j.mtchem.2021.100554 – volume: 668 start-page: 1 year: 2012 ident: 422_CR38 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2011.12.022 – volume: 168 start-page: 113391 year: 2022 ident: 422_CR1 publication-title: Food Chem Toxicol. doi: 10.1016/j.fct.2022.113391 – volume: 6 start-page: 1753 issue: 6 year: 2014 ident: 422_CR37 publication-title: Anal. Methods doi: 10.1039/c3ay41517a – volume: 149 start-page: 1945 issue: 11 year: 2018 ident: 422_CR42 publication-title: Monatshefte für Chemie Chem. Monthly. doi: 10.1007/s00706-018-2266-z – volume: 9 start-page: 2784 issue: 7 year: 2021 ident: 422_CR21 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.0c08340 – volume: 48 start-page: 14899 issue: 10 year: 2022 ident: 422_CR31 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2022.02.028 – volume: 242 start-page: 122462 year: 2020 ident: 422_CR13 publication-title: Mater. Chem. Phy. doi: 10.1016/j.matchemphys.2019.122462 – volume: 105 start-page: 107816 year: 2020 ident: 422_CR22 publication-title: Diamond Related Materials. doi: 10.1016/j.diamond.2020.107816 – volume: 12 start-page: 760 issue: 9 year: 2022 ident: 422_CR33 publication-title: Biosensors doi: 10.3390/bios12090760 – volume: 72 start-page: 49 issue: 1 year: 1976 ident: 422_CR8 publication-title: Clin. Chim. Acta doi: 10.1016/0009-8981(76)90036-x – volume: 413 start-page: 205 year: 2021 ident: 422_CR34 publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-020-02992-z – volume: 31 start-page: 2347 issue: 12 year: 2019 ident: 422_CR40 publication-title: Electroanalysis doi: 10.1002/elan.201900328 – volume: 39 start-page: 3318 issue: 17 year: 2016 ident: 422_CR7 publication-title: J Sep Sci. doi: 10.1002/jssc.201600466 – volume: 11 start-page: 32244 issue: 35 year: 2019 ident: 422_CR32 publication-title: ACS Appl. Materials Interfaces doi: 10.1021/acsami.9b06934 – volume: 31 start-page: 1067 year: 2019 ident: 422_CR39 publication-title: Electroanalysis doi: 10.1002/elan.201900037 – volume: 33 start-page: 2020 issue: 4 year: 2022 ident: 422_CR17 publication-title: J. Mater. Sci. Mater. Electr. doi: 10.1007/s10854-021-07405-0 – volume: 40 start-page: 6188 issue: 18 year: 2015 ident: 422_CR29 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.03.090 – volume: 239 start-page: 108 year: 2014 ident: 422_CR36 publication-title: Surf. Coat. Technol. doi: 10.1016/j.surfcoat.2013.11.028 – volume: 69 start-page: 882 issue: 4 year: 2006 ident: 422_CR10 publication-title: Talanta doi: 10.1016/j.talanta.2005.11.030 – volume: 58 start-page: 8570 issue: 13 year: 2019 ident: 422_CR19 publication-title: Inorg Chem. doi: 10.1021/acs.inorgchem.9b00868 – volume: 100 start-page: 103811 year: 2021 ident: 422_CR15 publication-title: J. Food Comp Anal doi: 10.1016/j.jfca.2021.103811 – volume: 176 start-page: 827 year: 2015 ident: 422_CR5 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2015.07.091 – volume: 12 start-page: 1725 issue: 8 year: 2019 ident: 422_CR9 publication-title: Food Anal. Meth. doi: 10.1007/s12161-019-01518-3 – volume: 8 start-page: 7102 issue: 13 year: 2018 ident: 422_CR23 publication-title: RSC Adv. doi: 10.1039/c7ra13639k – volume: 184 start-page: 2131 year: 2017 ident: 422_CR41 publication-title: Microchim Acta. doi: 10.1007/s00604-017-2161-z – volume: 59 start-page: 299 issue: 4 year: 2008 ident: 422_CR3 publication-title: Int J Food Sci Nutr. doi: 10.1080/09687630701539350 – volume: 8 start-page: 1479 issue: 3 year: 2020 ident: 422_CR18 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b05755 – volume: 337 start-page: 61 issue: 1 year: 2011 ident: 422_CR28 publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/j.molcata.2011.01.015 – volume: 238 start-page: 122991 year: 2022 ident: 422_CR24 publication-title: Talanta doi: 10.1016/j.talanta.2021.122991 – volume: 233 start-page: 117934 year: 2021 ident: 422_CR20 publication-title: J. Luminescence. doi: 10.1016/j.jlumin.2021.117934 |
SSID | ssj0012822 |
Score | 2.3780477 |
Snippet | Ethyl vanillin (EVA) is widely used as a flavor additive in foods, and sensitive monitoring of EVA is of great significance for food safety. In this paper, the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2049 |
SubjectTerms | Analytical Chemistry Chemistry Chemistry and Materials Science Original Paper |
Title | Electrochemical determination of ethylvanillin based on LaV@GAC nanocomposite |
URI | https://link.springer.com/article/10.1007/s44211-023-00422-5 https://www.proquest.com/docview/2861304879 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT9RAFJ8gHPRCFDQuiCmJnNaSbueD6U2yoATExAQMnpqZ6UyCIV3Dtonxr_fNV7tdlAiXZjO7O5nO7837fm8QeldgVWFBaTqpDE-JkgepNEqmmGtsRMUp17Ya-fwLO7kkp1f0qnfmuOqSRu6r33-tK3kMqjAGuNoq2Qcg200KA_AZ8IUnIAzP_8L42N9ho2LRfxVzW6IaqAGGG9CVrVOlHluJVdnowGfxbY9knw6n41rUM5tVblO3BklBrllJ09dMqoUb6Fsnr8T1j7bux7wj9XvbUZBLEzi9_hVlo6uv8ZzlSMjQ8Dv4G3K8kLsRHIfAuRn2TZb2tWebmAAyeXAmBr7qmxRF-skXuWTm25QGiZtnvnv7HW7uEzjmhOTWjwtLcR3LUtrLrhivXxJpXaJh15TZzVHCHKWbo6RP0FoOloVljWdf-8CTzap17RnDS4Y6K1dteWcdQ12mN1CWYupOVbl4jtaDjZEceoJ5gVZ0vYGeTuPVfpvofIlwkgHhJDOTDAgncYSTwDdAOB-AbJIB2bxElx-PL6YnabhXI1WAU5NW1BCtM6Owyaz7gDFisNGSC8EkHNfCUKkokaxQhAvQAQ9AixNY5ZWZMMMUfoVW61mtX6OEgIGhZQF2MVNEciMnjIJBz7EBQ95UYoQmcYdKFZrO27tPbsp_IzNC4-4_P33LlXt_vRs3voRdtOEuUetZOy9zbm1jMMiLEXofESnD8Z3fM-XWgxawjZ71x-QNWm1uW70Dimoj3zrS-gMdI4uR |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrochemical+determination+of+ethylvanillin+based+on+LaV%40GAC+nanocomposite&rft.jtitle=Analytical+sciences&rft.au=Du%2C+Haijun&rft.au=Duan%2C+Yu&rft.au=Ai%2C+Jixing&rft.au=Kong%2C+Dabin&rft.date=2023-12-01&rft.issn=0910-6340&rft.eissn=1348-2246&rft.volume=39&rft.issue=12&rft.spage=2049&rft.epage=2058&rft_id=info:doi/10.1007%2Fs44211-023-00422-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s44211_023_00422_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0910-6340&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0910-6340&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0910-6340&client=summon |