Loss Rate Control Mechanism for Fan-in-burst Traffic in Data Center Network

Congestion scenarios in Data Center Network (DCN) arise due to burst traffic and cause packet drop to take place thus reducing the overall throughput. Flow scheduling techniques in DCN do not address well the network congestions. Congestion control techniques uses congestion notifications from netwo...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 32; pp. 125 - 132
Main Authors Goswami, Antriksh, Pattanaik, K.K., Bharadwaj, Amit, Bharti, Sourabh
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Congestion scenarios in Data Center Network (DCN) arise due to burst traffic and cause packet drop to take place thus reducing the overall throughput. Flow scheduling techniques in DCN do not address well the network congestions. Congestion control techniques uses congestion notifications from network core to deal with congestion scenario. Software defined networking techniques use link load information in access switches to react to congestion scenarios. Both the mechanisms operate on post-congestion scenario to deal with sustained burst traffic. In fat tree topology based DCN architectures proactive measures for handling burst traffic at lower layers will be more beneficial. In this paper, we implement traffic shaping mechanism in the edge switch at source that act proactively and prevent the propagation of ill effects due to sustained burst. Further, we evaluate its impact on the overall packet loss and delay. The entire DCN is simulated using Colored Petri Nets (CPN). The packet loss rates observed at the receiver edge switch for various flow patterns reveals cent percent packet transfer which signifies the effectiveness of the proactive congestion control mechanism.
AbstractList Congestion scenarios in Data Center Network (DCN) arise due to burst traffic and cause packet drop to take place thus reducing the overall throughput. Flow scheduling techniques in DCN do not address well the network congestions. Congestion control techniques uses congestion notifications from network core to deal with congestion scenario. Software defined networking techniques use link load information in access switches to react to congestion scenarios. Both the mechanisms operate on post-congestion scenario to deal with sustained burst traffic. In fat tree topology based DCN architectures proactive measures for handling burst traffic at lower layers will be more beneficial. In this paper, we implement traffic shaping mechanism in the edge switch at source that act proactively and prevent the propagation of ill effects due to sustained burst. Further, we evaluate its impact on the overall packet loss and delay. The entire DCN is simulated using Colored Petri Nets (CPN). The packet loss rates observed at the receiver edge switch for various flow patterns reveals cent percent packet transfer which signifies the effectiveness of the proactive congestion control mechanism.
Author Bharadwaj, Amit
Pattanaik, K.K.
Goswami, Antriksh
Bharti, Sourabh
Author_xml – sequence: 1
  givenname: Antriksh
  surname: Goswami
  fullname: Goswami, Antriksh
  email: goswamiantriksh@gmail.com
  organization: Atal Bihari Vajpayee-Indian Institute of Information Technology and Management, Gwalior, India
– sequence: 2
  givenname: K.K.
  surname: Pattanaik
  fullname: Pattanaik, K.K.
  email: kkpatnaik@iiitm.ac.in
  organization: Atal Bihari Vajpayee-Indian Institute of Information Technology and Management, Gwalior, India
– sequence: 3
  givenname: Amit
  surname: Bharadwaj
  fullname: Bharadwaj, Amit
  email: amit5082930@gmail.com
  organization: Atal Bihari Vajpayee-Indian Institute of Information Technology and Management, Gwalior, India
– sequence: 4
  givenname: Sourabh
  surname: Bharti
  fullname: Bharti, Sourabh
  email: bharti.sourabh90@gmail.com
  organization: Tata Consultancy Services,Noida, India
BookMark eNp9kLFOwzAURS1UJErpF7D4BxLsOHacgQEFCogCEupuOc6zcGntyjYg_p6UMjBxl3eX83R1TtHEBw8InVNSUkLFxbrcxWBSWRFal4SXNRFHaEpl0xSEk3byp5-geUprMoZJ2dJmih6WISX8ojPgLvgcwwY_gnnV3qUttiHihfaF80X_HlPGq6itdQY7j6911rgDnyHiJ8ifIb6doWOrNwnmv3eGVoubVXdXLJ9v77urZWFYLXMxcF4PlPeigr5pBBt61la2r6iEAbgmrWg4E4JLImwtaqOrnreaU6ulJFawGWKHtyaO2yNYtYtuq-OXokTtjai1-jGi9kYU4Wo0MlKXBwrGZR8OokrGgTcwuAgmqyG4f_lv8xBrpA
CitedBy_id crossref_primary_10_4018_IJITN_2019010102
crossref_primary_10_1109_TPDS_2023_3301852
crossref_primary_10_1016_j_jnca_2015_03_010
crossref_primary_10_1002_dac_4472
Cites_doi 10.1016/j.procs.2013.06.021
10.1007/11499169_15
10.3233/JHS-140483
10.1145/1897852.1897877
10.1145/1592681.1592692
10.1145/2342356.2342390
10.1016/j.comcom.2004.10.005
10.1145/2342356.2342389
10.1145/316188.316225
10.1145/2342356.2342388
ContentType Journal Article
Copyright 2014
Copyright_xml – notice: 2014
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2014.05.406
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 132
ExternalDocumentID 10_1016_j_procs_2014_05_406
S1877050914006061
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYXX
ADVLN
AKRWK
CITATION
ID FETCH-LOGICAL-c348t-d554d15b62eb7763db392fb218ede5a096753665806f464ca2b59a51fa880f63
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Fri Aug 23 09:38:17 EDT 2024
Wed May 17 02:10:29 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Data center network traffic
Loss rate
Congestion
Dual-leaky bucket
Delay
Language English
License http://creativecommons.org/licenses/by-nc-nd/3.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-d554d15b62eb7763db392fb218ede5a096753665806f464ca2b59a51fa880f63
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050914006061
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_procs_2014_05_406
elsevier_sciencedirect_doi_10_1016_j_procs_2014_05_406
PublicationCentury 2000
PublicationDate 2014
2014-00-00
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationTitle Procedia computer science
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rui Zhang-Shen and Nick McKeown, “Designing a predictable internet backbone with valiant load-balancing,” in Thirteenth International Workshop on Quality of Service (IWQoS), Passau, Germany, 2005.
Sourabh Bharti, K.K. Pattanaik, “Dynamic Distributed Flow Scheduling with Load Balancing for Data Center Networks,” The 4th International Conference on Ambient Systems, Networks and Technologies, 2013.
Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, Amin Vahdat, “Hedera:dynamic flow scheduling for data center networks,” in 7th USENIX Symposium on Networked Systems Design and Implementation, 2010.
Shuo Fangl, Yang Yu2, Chuan Heng Foh Khin Mi Mi Aung .et al, “A Loss-free Multipathing Solution for Data Center Network: using Software- defined Networking Approach,” IEEE Trans. Dependable Secur. Comput., vol. 2, no. 2 2012.
David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, Randy Katz, “DeTail: Reducing the Flow Completion Time Tail in Datacenter Networks,” in Proceedings of ACM SIGCOMM, 2012.
Balajee Vamanan, Jahangir Hasan, T.N. Vijaykumar, “Deadline-Aware Datacenter TCP (D2TCP),” in Proceedings of ACM SIGCOMM, 2012.
Shuo Fangl, Yang Yu2, Chuan Heng Foh Khin Mi Mi Aung .et al, “Router buffer traffic load calculation based on a TCP congestion control algorithm,” IEEE Trans. Dependable Secur. Comput., vol. 2, no. 2 2012.
Anees Shaikh, Jennifer Rexford, and Kang G. Shin, “Load sensitive routing of long-lived ip flows,” in Proceedings of ACM SIGCOMM, 1999.
Chi-Yao Hong, Matthew Caesar, P. Brighten Godfrey, “Finishing Flows Quickly with Preemptive Scheduling,” in Proceedings of ACM SIGCOMM, 2012.
“Congestion Management and Buffering in Data Center Networks.” Extreme Networks. 2013. 11 Dec.2013 <http://learn.extremenetworks.com/rs/extreme/images/Congestion-Management-and-Buffering-wp.pdf>.
Markus Fidlera, Volker Sanderb, Wojciech Klimalab,“Traffic shaping in aggregate-based networks: implementation and analysis,” Computer Communications 28, 2005.
Theophilus Benson, Ashok Anand, Aditya Akella and Ming Zhang, “Understanding Data Center Traffic Characteristics,” Microsoft Re- search, 2009.
Sourabh Bharti, K.K. Pattanaik, “Dynamic Distributed Flow Scheduling in Data Center Network,” (forthcoming March 2014). Title of paper. Journal of High Speed Networks IOS Press. Vol. 20 (Issue 1).
Albert Greenberg, James R. Hamilton, Navendu Jain,“VL2: A Scalable and Flexible Data Center Network,” Communication of the acm, 2011.
10.1016/j.procs.2014.05.406_bib0035
10.1016/j.procs.2014.05.406_bib0045
10.1016/j.procs.2014.05.406_bib0055
10.1016/j.procs.2014.05.406_bib0010
10.1016/j.procs.2014.05.406_bib0065
10.1016/j.procs.2014.05.406_bib0005
10.1016/j.procs.2014.05.406_bib0015
10.1016/j.procs.2014.05.406_bib0025
10.1016/j.procs.2014.05.406_bib0060
10.1016/j.procs.2014.05.406_bib0070
10.1016/j.procs.2014.05.406_bib0020
10.1016/j.procs.2014.05.406_bib0030
10.1016/j.procs.2014.05.406_bib0040
10.1016/j.procs.2014.05.406_bib0050
References_xml – ident: 10.1016/j.procs.2014.05.406_bib0015
– ident: 10.1016/j.procs.2014.05.406_bib0035
  doi: 10.1016/j.procs.2013.06.021
– ident: 10.1016/j.procs.2014.05.406_bib0010
  doi: 10.1007/11499169_15
– ident: 10.1016/j.procs.2014.05.406_bib0040
  doi: 10.3233/JHS-140483
– ident: 10.1016/j.procs.2014.05.406_bib0030
  doi: 10.1145/1897852.1897877
– ident: 10.1016/j.procs.2014.05.406_bib0020
  doi: 10.1145/1592681.1592692
– ident: 10.1016/j.procs.2014.05.406_bib0055
– ident: 10.1016/j.procs.2014.05.406_bib0070
  doi: 10.1145/2342356.2342390
– ident: 10.1016/j.procs.2014.05.406_bib0045
  doi: 10.1016/j.comcom.2004.10.005
– ident: 10.1016/j.procs.2014.05.406_bib0065
  doi: 10.1145/2342356.2342389
– ident: 10.1016/j.procs.2014.05.406_bib0050
  doi: 10.1145/316188.316225
– ident: 10.1016/j.procs.2014.05.406_bib0005
– ident: 10.1016/j.procs.2014.05.406_bib0060
  doi: 10.1145/2342356.2342388
– ident: 10.1016/j.procs.2014.05.406_bib0025
SSID ssj0000388917
Score 2.0291848
Snippet Congestion scenarios in Data Center Network (DCN) arise due to burst traffic and cause packet drop to take place thus reducing the overall throughput. Flow...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 125
SubjectTerms Congestion
Data center network traffic
Delay
Dual-leaky bucket
Loss rate
Title Loss Rate Control Mechanism for Fan-in-burst Traffic in Data Center Network
URI https://dx.doi.org/10.1016/j.procs.2014.05.406
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcuHCjihL5QNHrCaNl-RYClVFoYdSRG-WYztSkAgVDf_PTBYEEuLAMVFsRS_xvDfW-A0hl7EQyjprmY-kZVwZx2JnFctUFsU2iICyKrfPuZw-8buVWHXIuD0Lg2WVTeyvY3oVrZs7gwbNwTrPB49hrBS6l0CKEIAMxxQoAnbGQ3yr6699FnQ7SarGu_g8wwGt-VBV5oU8gbbdIUcHT46dj34jqG-kM9kjO41apKP6hfZJxxcHZLftxECbhXlIZvcwFV2AbqTjuvacPng805tvXinIUjoxBcsLBghuSgr8hMYRNC_ojSkNxR1emG1eV4QfkeXkdjmesqZNArMRj0vmQBG4UKRy6FMF4cKloHmyFLjbOy8M5CiQkkhQGoHMuOTWDFORGBFmBtZuJqNj0i3eCn9CaMAt9i1KuPQcMiFnnLBR7JKh8aH1Ku6RqxYava7NMHRbJfaiKyQ1IqkDoQHJHpEtfPrHN9UQrv8aePrfgWdkG6_qLZJz0i3fP_wFiIYy7ZOt0WzxPOtXf8cns27ABg
link.rule.ids 315,783,787,3515,4033,27937,27938,27939,45888
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcoALO6KsPnDEatJ4SY9QqFq6HKBIvVmO7UhBIlQ0_D8zWRBIiAPXRGNFL_bMG2vmDSFXsRDKOmuZj6RlXBnHYmcVS1UaxTaIIGSVap9zOXrmD0uxbJFB0wuDZZW17698eumt6yfdGs3uKsu6T2GsFKqXQIoQAA2HFGgD2y6xrmu8vP26aEG5k345eRcNGFo06kNlnRcGCtTtDjlKeHIcffRbhPoWdYa7ZLumi_Sm-qI90vL5PtlpRjHQ-mQekMkUlqKPQBzpoCo-pzOPTb3Z-pUCL6VDk7MsZwDhuqAQoFA5gmY5vTOFoXjFC6vNq5LwQ7IY3i8GI1bPSWA24nHBHFACF4pE9nyiwF-4BEhPmkDw9s4LA0kK5CQSqEYgUy65Nb1E9I0IUwOHN5XREWnnb7k_JjTgFgcX9bn0HFIhZ5ywUez6PeND61XcIdcNNHpVqWHopkzsRZdIakRSB0IDkh0iG_j0j5-qwV__ZXjyX8NLsjlazKZ6Op5PTskWvqnuS85Iu3j_8OfAIIrkotwhn34dwZE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loss+Rate+Control+Mechanism+for+Fan-in-burst+Traffic+in+Data+Center+Network&rft.jtitle=Procedia+computer+science&rft.au=Goswami%2C+Antriksh&rft.au=Pattanaik%2C+K.K.&rft.au=Bharadwaj%2C+Amit&rft.au=Bharti%2C+Sourabh&rft.date=2014&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=32&rft.spage=125&rft.epage=132&rft_id=info:doi/10.1016%2Fj.procs.2014.05.406&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2014_05_406
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon