Loss Rate Control Mechanism for Fan-in-burst Traffic in Data Center Network
Congestion scenarios in Data Center Network (DCN) arise due to burst traffic and cause packet drop to take place thus reducing the overall throughput. Flow scheduling techniques in DCN do not address well the network congestions. Congestion control techniques uses congestion notifications from netwo...
Saved in:
Published in | Procedia computer science Vol. 32; pp. 125 - 132 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Congestion scenarios in Data Center Network (DCN) arise due to burst traffic and cause packet drop to take place thus reducing the overall throughput. Flow scheduling techniques in DCN do not address well the network congestions. Congestion control techniques uses congestion notifications from network core to deal with congestion scenario. Software defined networking techniques use link load information in access switches to react to congestion scenarios. Both the mechanisms operate on post-congestion scenario to deal with sustained burst traffic. In fat tree topology based DCN architectures proactive measures for handling burst traffic at lower layers will be more beneficial. In this paper, we implement traffic shaping mechanism in the edge switch at source that act proactively and prevent the propagation of ill effects due to sustained burst. Further, we evaluate its impact on the overall packet loss and delay. The entire DCN is simulated using Colored Petri Nets (CPN). The packet loss rates observed at the receiver edge switch for various flow patterns reveals cent percent packet transfer which signifies the effectiveness of the proactive congestion control mechanism. |
---|---|
AbstractList | Congestion scenarios in Data Center Network (DCN) arise due to burst traffic and cause packet drop to take place thus reducing the overall throughput. Flow scheduling techniques in DCN do not address well the network congestions. Congestion control techniques uses congestion notifications from network core to deal with congestion scenario. Software defined networking techniques use link load information in access switches to react to congestion scenarios. Both the mechanisms operate on post-congestion scenario to deal with sustained burst traffic. In fat tree topology based DCN architectures proactive measures for handling burst traffic at lower layers will be more beneficial. In this paper, we implement traffic shaping mechanism in the edge switch at source that act proactively and prevent the propagation of ill effects due to sustained burst. Further, we evaluate its impact on the overall packet loss and delay. The entire DCN is simulated using Colored Petri Nets (CPN). The packet loss rates observed at the receiver edge switch for various flow patterns reveals cent percent packet transfer which signifies the effectiveness of the proactive congestion control mechanism. |
Author | Bharadwaj, Amit Pattanaik, K.K. Goswami, Antriksh Bharti, Sourabh |
Author_xml | – sequence: 1 givenname: Antriksh surname: Goswami fullname: Goswami, Antriksh email: goswamiantriksh@gmail.com organization: Atal Bihari Vajpayee-Indian Institute of Information Technology and Management, Gwalior, India – sequence: 2 givenname: K.K. surname: Pattanaik fullname: Pattanaik, K.K. email: kkpatnaik@iiitm.ac.in organization: Atal Bihari Vajpayee-Indian Institute of Information Technology and Management, Gwalior, India – sequence: 3 givenname: Amit surname: Bharadwaj fullname: Bharadwaj, Amit email: amit5082930@gmail.com organization: Atal Bihari Vajpayee-Indian Institute of Information Technology and Management, Gwalior, India – sequence: 4 givenname: Sourabh surname: Bharti fullname: Bharti, Sourabh email: bharti.sourabh90@gmail.com organization: Tata Consultancy Services,Noida, India |
BookMark | eNp9kLFOwzAURS1UJErpF7D4BxLsOHacgQEFCogCEupuOc6zcGntyjYg_p6UMjBxl3eX83R1TtHEBw8InVNSUkLFxbrcxWBSWRFal4SXNRFHaEpl0xSEk3byp5-geUprMoZJ2dJmih6WISX8ojPgLvgcwwY_gnnV3qUttiHihfaF80X_HlPGq6itdQY7j6911rgDnyHiJ8ifIb6doWOrNwnmv3eGVoubVXdXLJ9v77urZWFYLXMxcF4PlPeigr5pBBt61la2r6iEAbgmrWg4E4JLImwtaqOrnreaU6ulJFawGWKHtyaO2yNYtYtuq-OXokTtjai1-jGi9kYU4Wo0MlKXBwrGZR8OokrGgTcwuAgmqyG4f_lv8xBrpA |
CitedBy_id | crossref_primary_10_4018_IJITN_2019010102 crossref_primary_10_1109_TPDS_2023_3301852 crossref_primary_10_1016_j_jnca_2015_03_010 crossref_primary_10_1002_dac_4472 |
Cites_doi | 10.1016/j.procs.2013.06.021 10.1007/11499169_15 10.3233/JHS-140483 10.1145/1897852.1897877 10.1145/1592681.1592692 10.1145/2342356.2342390 10.1016/j.comcom.2004.10.005 10.1145/2342356.2342389 10.1145/316188.316225 10.1145/2342356.2342388 |
ContentType | Journal Article |
Copyright | 2014 |
Copyright_xml | – notice: 2014 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2014.05.406 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 132 |
ExternalDocumentID | 10_1016_j_procs_2014_05_406 S1877050914006061 |
GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYXX ADVLN AKRWK CITATION |
ID | FETCH-LOGICAL-c348t-d554d15b62eb7763db392fb218ede5a096753665806f464ca2b59a51fa880f63 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Fri Aug 23 09:38:17 EDT 2024 Wed May 17 02:10:29 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Data center network traffic Loss rate Congestion Dual-leaky bucket Delay |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/3.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-d554d15b62eb7763db392fb218ede5a096753665806f464ca2b59a51fa880f63 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050914006061 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2014_05_406 elsevier_sciencedirect_doi_10_1016_j_procs_2014_05_406 |
PublicationCentury | 2000 |
PublicationDate | 2014 2014-00-00 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – year: 2014 text: 2014 |
PublicationDecade | 2010 |
PublicationTitle | Procedia computer science |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Rui Zhang-Shen and Nick McKeown, “Designing a predictable internet backbone with valiant load-balancing,” in Thirteenth International Workshop on Quality of Service (IWQoS), Passau, Germany, 2005. Sourabh Bharti, K.K. Pattanaik, “Dynamic Distributed Flow Scheduling with Load Balancing for Data Center Networks,” The 4th International Conference on Ambient Systems, Networks and Technologies, 2013. Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson Huang, Amin Vahdat, “Hedera:dynamic flow scheduling for data center networks,” in 7th USENIX Symposium on Networked Systems Design and Implementation, 2010. Shuo Fangl, Yang Yu2, Chuan Heng Foh Khin Mi Mi Aung .et al, “A Loss-free Multipathing Solution for Data Center Network: using Software- defined Networking Approach,” IEEE Trans. Dependable Secur. Comput., vol. 2, no. 2 2012. David Zats, Tathagata Das, Prashanth Mohan, Dhruba Borthakur, Randy Katz, “DeTail: Reducing the Flow Completion Time Tail in Datacenter Networks,” in Proceedings of ACM SIGCOMM, 2012. Balajee Vamanan, Jahangir Hasan, T.N. Vijaykumar, “Deadline-Aware Datacenter TCP (D2TCP),” in Proceedings of ACM SIGCOMM, 2012. Shuo Fangl, Yang Yu2, Chuan Heng Foh Khin Mi Mi Aung .et al, “Router buffer traffic load calculation based on a TCP congestion control algorithm,” IEEE Trans. Dependable Secur. Comput., vol. 2, no. 2 2012. Anees Shaikh, Jennifer Rexford, and Kang G. Shin, “Load sensitive routing of long-lived ip flows,” in Proceedings of ACM SIGCOMM, 1999. Chi-Yao Hong, Matthew Caesar, P. Brighten Godfrey, “Finishing Flows Quickly with Preemptive Scheduling,” in Proceedings of ACM SIGCOMM, 2012. “Congestion Management and Buffering in Data Center Networks.” Extreme Networks. 2013. 11 Dec.2013 <http://learn.extremenetworks.com/rs/extreme/images/Congestion-Management-and-Buffering-wp.pdf>. Markus Fidlera, Volker Sanderb, Wojciech Klimalab,“Traffic shaping in aggregate-based networks: implementation and analysis,” Computer Communications 28, 2005. Theophilus Benson, Ashok Anand, Aditya Akella and Ming Zhang, “Understanding Data Center Traffic Characteristics,” Microsoft Re- search, 2009. Sourabh Bharti, K.K. Pattanaik, “Dynamic Distributed Flow Scheduling in Data Center Network,” (forthcoming March 2014). Title of paper. Journal of High Speed Networks IOS Press. Vol. 20 (Issue 1). Albert Greenberg, James R. Hamilton, Navendu Jain,“VL2: A Scalable and Flexible Data Center Network,” Communication of the acm, 2011. 10.1016/j.procs.2014.05.406_bib0035 10.1016/j.procs.2014.05.406_bib0045 10.1016/j.procs.2014.05.406_bib0055 10.1016/j.procs.2014.05.406_bib0010 10.1016/j.procs.2014.05.406_bib0065 10.1016/j.procs.2014.05.406_bib0005 10.1016/j.procs.2014.05.406_bib0015 10.1016/j.procs.2014.05.406_bib0025 10.1016/j.procs.2014.05.406_bib0060 10.1016/j.procs.2014.05.406_bib0070 10.1016/j.procs.2014.05.406_bib0020 10.1016/j.procs.2014.05.406_bib0030 10.1016/j.procs.2014.05.406_bib0040 10.1016/j.procs.2014.05.406_bib0050 |
References_xml | – ident: 10.1016/j.procs.2014.05.406_bib0015 – ident: 10.1016/j.procs.2014.05.406_bib0035 doi: 10.1016/j.procs.2013.06.021 – ident: 10.1016/j.procs.2014.05.406_bib0010 doi: 10.1007/11499169_15 – ident: 10.1016/j.procs.2014.05.406_bib0040 doi: 10.3233/JHS-140483 – ident: 10.1016/j.procs.2014.05.406_bib0030 doi: 10.1145/1897852.1897877 – ident: 10.1016/j.procs.2014.05.406_bib0020 doi: 10.1145/1592681.1592692 – ident: 10.1016/j.procs.2014.05.406_bib0055 – ident: 10.1016/j.procs.2014.05.406_bib0070 doi: 10.1145/2342356.2342390 – ident: 10.1016/j.procs.2014.05.406_bib0045 doi: 10.1016/j.comcom.2004.10.005 – ident: 10.1016/j.procs.2014.05.406_bib0065 doi: 10.1145/2342356.2342389 – ident: 10.1016/j.procs.2014.05.406_bib0050 doi: 10.1145/316188.316225 – ident: 10.1016/j.procs.2014.05.406_bib0005 – ident: 10.1016/j.procs.2014.05.406_bib0060 doi: 10.1145/2342356.2342388 – ident: 10.1016/j.procs.2014.05.406_bib0025 |
SSID | ssj0000388917 |
Score | 2.0291848 |
Snippet | Congestion scenarios in Data Center Network (DCN) arise due to burst traffic and cause packet drop to take place thus reducing the overall throughput. Flow... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 125 |
SubjectTerms | Congestion Data center network traffic Delay Dual-leaky bucket Loss rate |
Title | Loss Rate Control Mechanism for Fan-in-burst Traffic in Data Center Network |
URI | https://dx.doi.org/10.1016/j.procs.2014.05.406 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcuHCjihL5QNHrCaNl-RYClVFoYdSRG-WYztSkAgVDf_PTBYEEuLAMVFsRS_xvDfW-A0hl7EQyjprmY-kZVwZx2JnFctUFsU2iICyKrfPuZw-8buVWHXIuD0Lg2WVTeyvY3oVrZs7gwbNwTrPB49hrBS6l0CKEIAMxxQoAnbGQ3yr6699FnQ7SarGu_g8wwGt-VBV5oU8gbbdIUcHT46dj34jqG-kM9kjO41apKP6hfZJxxcHZLftxECbhXlIZvcwFV2AbqTjuvacPng805tvXinIUjoxBcsLBghuSgr8hMYRNC_ojSkNxR1emG1eV4QfkeXkdjmesqZNArMRj0vmQBG4UKRy6FMF4cKloHmyFLjbOy8M5CiQkkhQGoHMuOTWDFORGBFmBtZuJqNj0i3eCn9CaMAt9i1KuPQcMiFnnLBR7JKh8aH1Ku6RqxYava7NMHRbJfaiKyQ1IqkDoQHJHpEtfPrHN9UQrv8aePrfgWdkG6_qLZJz0i3fP_wFiIYy7ZOt0WzxPOtXf8cns27ABg |
link.rule.ids | 315,783,787,3515,4033,27937,27938,27939,45888 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWqcoALO6KsPnDEatJ4SY9QqFq6HKBIvVmO7UhBIlQ0_D8zWRBIiAPXRGNFL_bMG2vmDSFXsRDKOmuZj6RlXBnHYmcVS1UaxTaIIGSVap9zOXrmD0uxbJFB0wuDZZW17698eumt6yfdGs3uKsu6T2GsFKqXQIoQAA2HFGgD2y6xrmu8vP26aEG5k345eRcNGFo06kNlnRcGCtTtDjlKeHIcffRbhPoWdYa7ZLumi_Sm-qI90vL5PtlpRjHQ-mQekMkUlqKPQBzpoCo-pzOPTb3Z-pUCL6VDk7MsZwDhuqAQoFA5gmY5vTOFoXjFC6vNq5LwQ7IY3i8GI1bPSWA24nHBHFACF4pE9nyiwF-4BEhPmkDw9s4LA0kK5CQSqEYgUy65Nb1E9I0IUwOHN5XREWnnb7k_JjTgFgcX9bn0HFIhZ5ywUez6PeND61XcIdcNNHpVqWHopkzsRZdIakRSB0IDkh0iG_j0j5-qwV__ZXjyX8NLsjlazKZ6Op5PTskWvqnuS85Iu3j_8OfAIIrkotwhn34dwZE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Loss+Rate+Control+Mechanism+for+Fan-in-burst+Traffic+in+Data+Center+Network&rft.jtitle=Procedia+computer+science&rft.au=Goswami%2C+Antriksh&rft.au=Pattanaik%2C+K.K.&rft.au=Bharadwaj%2C+Amit&rft.au=Bharti%2C+Sourabh&rft.date=2014&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=32&rft.spage=125&rft.epage=132&rft_id=info:doi/10.1016%2Fj.procs.2014.05.406&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2014_05_406 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |