DKDFN: Domain Knowledge-Guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification

Land use and land cover maps provide fundamental information that has been used in different types of studies, ranging from public health to carbon cycling. However, the existing remote sensing image classification methods thus far suffer from the insufficient usage of multiple modalities, undercons...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 186; pp. 170 - 189
Main Authors Li, Yansheng, Zhou, Yuhan, Zhang, Yongjun, Zhong, Liheng, Wang, Jian, Chen, Jingdong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2022
Subjects
Online AccessGet full text
ISSN0924-2716
DOI10.1016/j.isprsjprs.2022.02.013

Cover

Loading…
Abstract Land use and land cover maps provide fundamental information that has been used in different types of studies, ranging from public health to carbon cycling. However, the existing remote sensing image classification methods thus far suffer from the insufficient usage of multiple modalities, underconsideration of prior domain knowledge, and poor performance on minority classes. To alleviate these problems, we propose a novel domain knowledge-guided deep collaborative fusion network (DKDFN) with performance boosting for minority categories for land cover classification. More specifically, the DKDFN adopts a multihead encoder and a multibranch decoder structure. The architecture of the encoder probablizes sufficient mining of complementary information from multiple modalities, which are Sentinel-2, Sentinel-1, and SRTM Digital Elevation Data (SRTM) in our case. The multibranch decoder enables land cover classification in a multitask learning setup, performing semantic segmentation and reconstructing multimodal remote sensing indices, which are selected as representatives of domain knowledge. This design incorporates domain knowledge in an effective end-to-end manner. The training stage of our DKDFN is supervised by our proposed asymmetry loss function (ALF), which boosts performance on nearly all categories, especially the categories with a low frequency of occurrence. Ablation studies of the network suggest that our design logic is worth testing in any network with an encoder-decoder structure. The study is conducted in Hunan, China and is verified using a self-labeled multimodal unitemporal remote sensing image dataset. The comparative experiments between DKDFN and 6 state-of-the-art models (U-Net, SegNet, PSPNet, DeepLab, HRNet, MP-ResNet) testify to the superiority of our method and suggest its potential to be applied more widely to map land cover in other geographical areas given the availability of Sentinel-2, Sentinel-1, and SRTM data. The dataset can be downloaded by https://github.com/LauraChow/HunanMultimodalDataset.
AbstractList Land use and land cover maps provide fundamental information that has been used in different types of studies, ranging from public health to carbon cycling. However, the existing remote sensing image classification methods thus far suffer from the insufficient usage of multiple modalities, underconsideration of prior domain knowledge, and poor performance on minority classes. To alleviate these problems, we propose a novel domain knowledge-guided deep collaborative fusion network (DKDFN) with performance boosting for minority categories for land cover classification. More specifically, the DKDFN adopts a multihead encoder and a multibranch decoder structure. The architecture of the encoder probablizes sufficient mining of complementary information from multiple modalities, which are Sentinel-2, Sentinel-1, and SRTM Digital Elevation Data (SRTM) in our case. The multibranch decoder enables land cover classification in a multitask learning setup, performing semantic segmentation and reconstructing multimodal remote sensing indices, which are selected as representatives of domain knowledge. This design incorporates domain knowledge in an effective end-to-end manner. The training stage of our DKDFN is supervised by our proposed asymmetry loss function (ALF), which boosts performance on nearly all categories, especially the categories with a low frequency of occurrence. Ablation studies of the network suggest that our design logic is worth testing in any network with an encoder-decoder structure. The study is conducted in Hunan, China and is verified using a self-labeled multimodal unitemporal remote sensing image dataset. The comparative experiments between DKDFN and 6 state-of-the-art models (U-Net, SegNet, PSPNet, DeepLab, HRNet, MP-ResNet) testify to the superiority of our method and suggest its potential to be applied more widely to map land cover in other geographical areas given the availability of Sentinel-2, Sentinel-1, and SRTM data. The dataset can be downloaded by https://github.com/LauraChow/HunanMultimodalDataset.
Author Zhong, Liheng
Wang, Jian
Li, Yansheng
Zhang, Yongjun
Zhou, Yuhan
Chen, Jingdong
Author_xml – sequence: 1
  givenname: Yansheng
  surname: Li
  fullname: Li, Yansheng
  organization: School of Remote Sensing and Information Engineering, Wuhan University, China
– sequence: 2
  givenname: Yuhan
  surname: Zhou
  fullname: Zhou, Yuhan
  organization: School of Remote Sensing and Information Engineering, Wuhan University, China
– sequence: 3
  givenname: Yongjun
  surname: Zhang
  fullname: Zhang, Yongjun
  organization: School of Remote Sensing and Information Engineering, Wuhan University, China
– sequence: 4
  givenname: Liheng
  surname: Zhong
  fullname: Zhong, Liheng
  organization: Ant Group, China
– sequence: 5
  givenname: Jian
  surname: Wang
  fullname: Wang, Jian
  organization: Ant Group, China
– sequence: 6
  givenname: Jingdong
  surname: Chen
  fullname: Chen, Jingdong
  organization: Ant Group, China
BookMark eNqNkD9vFDEUxF0EiSTwGXBJs4ft_edFoohyJKBE0EBt-ezn6B1ee7G9F6Xng-NwKEUakObpNTMjze-MnIQYgJA3nG0448O7_QbzkvK-3kYwITasircn5JRNomvEyIeX5CznPWOM94M8Jb-2N9urL-_pNs4aA70J8d6DvYPmekULllqAhZrovd7FpAsegLo1Yww0QLmP6Qd1MdF59QXnaLWna8AC81LNniaYYwGaIWQMd9TrYGvXARI1XueMDk2tjOEVeeG0z_D67z8n368-frv81Nx-vf58eXHbmLaTpTFuMq5vO7GTwminOy6d410ngbue7UYBg2SyHwUD00oBE-uA2WEnpn4aHYj2nLw99i4p_lwhFzVjNlDHBYhrVmIY-37oZTdW63i0mhRzTuDUknDW6UFxph5Zq716Yq0eWStWxdua_PAsabD8mVmSRv8f-YtjHiqJA0JS2SAEAxYTmKJsxH92_AbHgqjh
CitedBy_id crossref_primary_10_1109_TITS_2024_3520487
crossref_primary_10_3390_rs16152825
crossref_primary_10_1109_TGRS_2024_3373033
crossref_primary_10_1016_j_infrared_2024_105514
crossref_primary_10_3390_su141912321
crossref_primary_10_1016_j_knosys_2023_110415
crossref_primary_10_1109_TGRS_2023_3297850
crossref_primary_10_1016_j_engappai_2024_108350
crossref_primary_10_1109_LGRS_2022_3198065
crossref_primary_10_1016_j_isprsjprs_2022_03_013
crossref_primary_10_1186_s13634_023_01008_z
crossref_primary_10_1144_geochem2024_002
crossref_primary_10_3390_rs14163864
crossref_primary_10_1016_j_asoc_2022_109695
crossref_primary_10_1016_j_rse_2024_114112
crossref_primary_10_1109_TGRS_2023_3311093
crossref_primary_10_1109_LGRS_2023_3234306
crossref_primary_10_3390_rs16020431
crossref_primary_10_3390_s24227266
crossref_primary_10_1080_15481603_2025_2478689
crossref_primary_10_1109_JSTARS_2024_3522197
crossref_primary_10_1038_s41598_024_63363_7
crossref_primary_10_3390_rs16122222
crossref_primary_10_1021_acs_est_3c07908
crossref_primary_10_3390_rs15020445
crossref_primary_10_3390_rs16203852
crossref_primary_10_1109_TGRS_2025_3534199
crossref_primary_10_1109_LGRS_2023_3244532
crossref_primary_10_1109_JSTARS_2024_3509712
crossref_primary_10_1109_LGRS_2023_3242430
crossref_primary_10_1016_j_dss_2025_114401
crossref_primary_10_1109_TGRS_2023_3306042
crossref_primary_10_1109_TGRS_2022_3217893
crossref_primary_10_1109_LGRS_2023_3261402
crossref_primary_10_3390_rs16091478
crossref_primary_10_3934_math_2024009
crossref_primary_10_1186_s40359_024_01654_4
crossref_primary_10_1016_j_isprsjprs_2022_08_010
crossref_primary_10_1016_j_jag_2024_103696
crossref_primary_10_1080_01431161_2023_2240032
crossref_primary_10_3390_land12091748
crossref_primary_10_1109_LGRS_2024_3476269
crossref_primary_10_1016_j_rse_2024_114242
crossref_primary_10_1109_TGRS_2023_3313883
crossref_primary_10_1016_j_isprsjprs_2023_03_023
crossref_primary_10_1109_LGRS_2022_3185729
crossref_primary_10_1109_TCBB_2023_3272893
crossref_primary_10_3390_rs15153907
crossref_primary_10_3389_fpls_2022_1048479
crossref_primary_10_1016_j_rsase_2024_101221
crossref_primary_10_1109_JSTARS_2024_3424831
crossref_primary_10_1016_j_jag_2023_103345
crossref_primary_10_1016_j_jag_2024_103826
crossref_primary_10_3390_rs15245706
crossref_primary_10_1016_j_engappai_2024_109535
crossref_primary_10_1016_j_dsp_2025_105157
crossref_primary_10_3390_rs16234381
crossref_primary_10_3788_LOP240511
crossref_primary_10_1007_s11432_022_3599_y
crossref_primary_10_1109_TGRS_2023_3284671
crossref_primary_10_1117_1_JRS_18_014514
crossref_primary_10_1016_j_inffus_2024_102689
crossref_primary_10_3390_rs15194865
crossref_primary_10_3390_rs16214029
crossref_primary_10_1109_JSTARS_2023_3270498
crossref_primary_10_1080_13682199_2023_2206761
crossref_primary_10_1109_TGRS_2023_3265752
crossref_primary_10_1007_s00521_024_10165_7
crossref_primary_10_1109_TGRS_2023_3297648
crossref_primary_10_3390_rs17061019
crossref_primary_10_1016_j_jag_2025_104426
crossref_primary_10_1109_LGRS_2025_3548757
crossref_primary_10_1016_j_cageo_2023_105340
crossref_primary_10_1016_j_envsoft_2024_106022
crossref_primary_10_1109_TGRS_2024_3404953
crossref_primary_10_1016_j_rse_2024_114190
crossref_primary_10_1080_13658816_2024_2442096
crossref_primary_10_3390_rs15235610
crossref_primary_10_1016_j_knosys_2024_112032
crossref_primary_10_1109_JSEN_2023_3348238
crossref_primary_10_1109_JSEN_2023_3318371
crossref_primary_10_1016_j_infrared_2023_104848
crossref_primary_10_1016_j_dsp_2025_105174
crossref_primary_10_1016_j_isprsjprs_2023_01_012
crossref_primary_10_1109_TGRS_2024_3434451
crossref_primary_10_1016_j_ijleo_2023_170892
crossref_primary_10_1109_TGRS_2025_3532349
crossref_primary_10_3390_rs14184458
crossref_primary_10_3390_rs16173300
crossref_primary_10_1109_TGRS_2024_3516817
Cites_doi 10.1038/514434c
10.1016/j.neunet.2018.07.011
10.1016/j.isprsjprs.2020.03.020
10.3390/rs9090967
10.1007/s10115-014-0794-3
10.1007/s11119-012-9274-5
10.1016/j.ecolmodel.2011.03.042
10.1016/j.rse.2012.06.020
10.1109/IGARSS.2018.8517673
10.1016/j.rse.2021.112364
10.3390/rs11121397
10.1186/s40537-019-0192-5
10.3390/rs12142291
10.1016/j.isprsjprs.2020.07.013
10.1016/S0034-4257(03)00037-3
10.14358/PERS.70.11.1285
10.1016/j.patrec.2017.08.002
10.1016/j.isprsjprs.2015.09.013
10.1109/LGRS.2019.2892432
10.1016/j.isprsjprs.2020.04.021
10.1109/3DV.2016.79
10.1109/TGRS.2013.2288271
10.1016/j.rse.2019.111277
10.1016/j.rse.2014.12.014
10.1016/j.rse.2021.112598
10.1016/j.rse.2008.03.018
10.3390/rs13071312
10.3390/rs10040499
10.1080/01431161.2012.748992
10.1109/LGRS.2016.2628406
10.1109/TCYB.2020.2989241
10.3390/rs70505611
10.1016/j.rse.2019.111354
10.1109/TPAMI.2016.2644615
10.1145/2939672.2939785
10.1016/j.rse.2018.04.043
10.1371/journal.pone.0013575
10.1016/j.isprsjprs.2020.11.007
10.1016/j.isprsjprs.2011.08.002
10.1029/2010JD014041
10.1016/j.rse.2007.08.025
10.1016/j.rse.2020.111757
10.1016/j.rse.2019.111322
10.1016/0885-064X(90)90006-Y
10.1007/978-3-319-54181-5_14
10.1109/JPROC.2009.2036869
10.1016/j.rse.2014.04.010
10.1016/j.isprsjprs.2021.02.009
10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
10.1016/j.rse.2021.112468
10.3390/rs8110945
10.1023/A:1010933404324
10.1016/j.isprsjprs.2019.09.016
10.1109/TPAMI.2018.2798607
10.1016/j.isprsjprs.2020.05.022
10.5194/bg-8-2027-2011
10.1016/j.rse.2018.06.028
10.1016/j.rse.2009.04.009
10.1016/j.rse.2018.12.016
10.1016/j.rse.2020.111967
10.1002/joc.2150
10.3390/rs9121315
10.1007/BF00994018
10.1016/j.rse.2020.112045
10.3390/rs11060690
10.1126/science.1159607
10.1038/nature14539
10.1016/j.rse.2020.112148
10.1016/j.isprsjprs.2021.08.001
10.1016/j.isprsjprs.2009.01.004
10.1016/j.rse.2015.10.001
10.5194/isprs-annals-IV-2-W7-145-2019
10.1016/j.rse.2019.111563
10.1109/JSTSP.2020.2987728
ContentType Journal Article
Copyright 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2022.02.013
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
Public Health
EndPage 189
ExternalDocumentID 10_1016_j_isprsjprs_2022_02_013
S0924271622000557
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHBH
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABDPE
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACRPL
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPCBC
SSE
SSH
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
SPC
7S9
L.6
ID FETCH-LOGICAL-c348t-cf9cf5342b82cafa418ff1448e1f50b72e68085720ec382e904e0d6b29597fe23
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Fri Jul 11 12:43:54 EDT 2025
Thu Apr 24 22:59:48 EDT 2025
Tue Jul 01 03:46:47 EDT 2025
Sun Apr 06 06:54:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Multimodal unitemporal remote sensing
Domain knowledge incorporation
Deep collaborative network
Land cover classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-cf9cf5342b82cafa418ff1448e1f50b72e68085720ec382e904e0d6b29597fe23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2675565847
PQPubID 24069
PageCount 20
ParticipantIDs proquest_miscellaneous_2675565847
crossref_primary_10_1016_j_isprsjprs_2022_02_013
crossref_citationtrail_10_1016_j_isprsjprs_2022_02_013
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2022_02_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ronneberger, Fischer, Brox (b0340) 2015
Robson, Nuth, Dahl, Hölbling, Strozzi, Nielsen (b0335) 2015; 170
Ienco, Interdonato, Gaetano, Ho Tong Minh (b0155) 2019; 158
Waldner, Canto, Defourny (b0405) 2015; 110
Rennó, Nobre, Cuartas, Soares, Hodnett, Tomasella, Waterloo (b0330) 2008; 112
Zhang, Yang, He, Deng (b0430) 2020; 14
Ioffe, Szegedy (b0165) 2015
Liu, Qi, Li, Yeh (b0250) 2019; 11
Matikainen, Karila, Litkey, Ahokas, Hyyppä (b0260) 2020; 164
Wan, Xiang, You (b0410) 2019; 16
Zhang, Z., Sabuncu, M.R., 2018. Generalized cross entropy loss for training deep neural networks with noisy labels. Advances in Neural Information Processing Systems 2018-Decem, 8778–8788.
Buchner, Yin, Frantz, Kuemmerle, Askerov, Bakuradze, Bleyhl, Elizbarashvili, Komarova, Lewińska, Rizayeva, Sayadyan, Tan, Tepanosyan, Zazanashvili, Radeloff (b0045) 2020; 248
Li, Kong, Zhang, Tan, Chen (b0220) 2021; 179
Zhao, Shi, Qi, Wang, Jia (b0440) 2017
Frey, Paul, Strozzi (b0105) 2012; 124
Ardila, Tolpekin, Bijker, Stein (b0015) 2011; 66
von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., ... & Schuecker, J., 2019. Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems. arXiv preprint arXiv:1903.12394.
Glorot, Bordes, Bengio (b0120) 2011; 15
Hazirbas, C., Ma, L., Domokos, C., on, D.C.-A. conference, 2016, undefined, 2017. Fusenet: Incorporating depth into semantic segmentation via fusion-based cnn architecture. Springer 10111 LNCS, 213–228.
Liang, Xu, Chen, Liu, Cao, Fang, Feng, Goodchild, Gong, Li (b0225) 2010; 5
Denize, J., Hubert-Moy, L., Corgne, S., Betbeder, J., & Pottier, E., 2018, July. Identification of winter land use in temperate agricultural landscapes based on Sentinel-1 and 2 Times-Series. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 8271-8274). IEEE.
Running (b0345) 2008; 321
Hurskainen, Adhikari, Siljander, Pellikka, Hemp (b0150) 2019; 233
Belenguer-Plomer, Tanase, Chuvieco, Bovolo (b0030) 2021; 260
van der Maaten, Hinton (b0395) 2008; 9
Ozdarici-Ok, Ok, Schindler (b0290) 2015; 7
Xu, Gong, Biging, Liang, Seto, Spear (b0415) 2004; 70
Chollet (b0075) 2017
Zhang, Kovacs (b0425) 2012; 13
Milletari, F., Navab, N., Ahmadi, S.A., 2016. V-Net: Fully convolutional neural networks for volumetric medical image segmentation. Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016 565–571.
Poulter, Frank, Hodson, Zimmermann (b0310) 2011; 8
Hird, DeLancey, McDermid, Kariyeva (b0145) 2017; 9
Liu, Gong, Wang, Wang, Ning, Xu (b0240) 2021; 258
Amarsaikhan, Blotevogel, van Genderen, Ganzorig, Gantuya, Nergui (b0010) 2010; 1
Chen, T., Guestrin, C., 2016. XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 13-17-Augu, 785–794.
Prati, Batista, Silva (b0315) 2015; 45
LeCun, Bengio, Hinton (b0190) 2015; 521
Bigdeli, Pahlavani (b0035) 2016; 52
Ganzeveld, Bouwman, Stehfest, van Vuuren, Eickhout, Lelieveld (b0110) 2010; 115
Phiri, Simwanda, Salekin, Nyirenda, Murayama, Ranagalage (b0305) 2020; 12
Baltrusaitis, Ahuja, Morency (b0025) 2019; 41
Tong, Xia, Lu, Shen, Li, You, Zhang (b0385) 2020; 237
Mao, Wang, Du, Li, Tian, Jia, Zeng, Song, Jiang, Wang (b0255) 2020; 164
Rees, Williams, Vitebsky (b0325) 2003; 85
Symeonakis, Higginbottom, Petroulaki, Rabe (b0380) 2018; 10
Sesnie, Gessler, Finegan, Thessler (b0355) 2008; 112
Zadeh, Chen, Poria, Cambria, Morency (b0420) 2017
Jiang, J., Zheng, L., Luo, F., & Zhang, Z., 2018. Rednet: Residual encoder-decoder network for indoor rgb-d semantic segmentation. arXiv preprint arXiv:1806.01054.
Zhou, Kuester, Bochow, Bohn, Brell, Kaufmann (b0445) 2021; 264
van Beijma, Comber, Lamb (b0390) 2014; 149
Ding, Zheng, Lin, Chen, Liu, Li, Bruzzone (b0095) 2022; 19
Grohmann (b0130) 2018; 212
Ortigosa-Hernández, Inza, Lozano (b0285) 2017; 98
Shao, Fu, Fu, Yin (b0360) 2016; 8
Hibbard, Janetos, Van Vuuren, Pongratz, Rose, Betts, Herold, Feddema (b0140) 2010; 30
Cortes, Vapnik (b0080) 1995; 20
Li, Chen, Zhang, Tao, Xiao, Tan (b0205) 2020; 250
Lin, Zhang, Lin, Gamba, Liu (b0235) 2020; 242
Phiri, Morgenroth (b0300) 2017; 9
Imaoka, Kachi, Fujii, Murakami, Hori, Ono, Igarashi, Nakagawa, Oki, Honda, Shimoda (b0160) 2010; 98
Kellenberger, Marcos, Tuia (b0185) 2018; 216
Li, Dong, Fu, Wang, Yu, Gong (b0200) 2020; 237
Nghiem, Balk, Rodriguez, Neumann, Sorichetta, Small, Elvidge (b0270) 2009; 64
Nguyen, Joshi, Clay, Henebry (b0275) 2020; 238
Buda, Maki, Mazurowski (b0050) 2018; 106
Calderón-Loor, Hadjikakou, Bryan (b0055) 2021; 252
Li, Chen, Chen, Shi (b0195) 2022; 60
Johnson, Khoshgoftaar (b0175) 2019; 6
Sica, Pulella, Nannini, Pinheiro, Rizzoli (b0365) 2019; 232
Breiman (b0040) 2001; 45
Chamorro Martinez, Cué La Rosa, Feitosa, Sanches, Happ (b0060) 2021; 171
Schmitt, Hughes, Qiu, Zhu (b0350) 2019; 4
Li, Shi, Zhang, Chen, Wang, Li (b0210) 2021; 175
Olson, Dinerstein, Wikramanayake, Burgess, Powell, Underwood, D'amico, Itoua, Strand, Morrison, Loucks, Allnutt, Ricketts, Kura, Lamoreux, Wettengel, Hedao, Kassem (b0280) 2001; 51
Quin, Pinel-Puyssegur, Nicolas, Loreaux (b0320) 2014; 52
Zhu, Wang, Woodcock (b9000) 2015; 159
Lin, Du, Samat, Li, Wang, Xia (b0230) 2019; 11
El Hajj, Bégué, Guillaume, Martiné (b0100) 2009; 113
Sukawattanavijit, Chen, Zhang (b0370) 2017; 14
Sun, Xiao, Liu, Wang (b0375) 2019
Chen, Zhu, Papandreou, Schroff, Adam (b0065) 2018
Liu, Vogelmann, Zhu, Key, Sleeter, Price, Chen, Cochrane, Eidenshink, Howard, Bliss, Jiang (b0245) 2011; 222
Abu-Mostafa (b0005) 1990; 6
Jun, Ban, Li (b0180) 2014; 514
Ghorbanian, Kakooei, Amani, Mahdavi, Mohammadzadeh, Hasanlou (b0115) 2020; 167
Gong, Wang, Yu, Zhao, Zhao, Liang, Niu, Huang, Fu, Liu, Li, Li, Fu, Liu, Xu, Wang, Cheng, Hu, Yao, Zhang, Zhu, Zhao, Zhang, Zheng, Ji, Zhang, Chen, Yan, Guo, Yu, Wang, Liu, Shi, Zhu, Chen, Yang, Tang, Xu, Giri, Clinton, Zhu, Chen, Chen (b0125) 2013; 34
Li, Zhang, Zhu (b0215) 2021; 51
Pan, Guan, Chen, Yu, Nunes Gonçalves, Marcato Junior, Li (b0295) 2020; 166
Badrinarayanan, Kendall, Cipolla (b0020) 2017; 39
Cui, He, Yao, Wang, Hao, Li, Wu, Zhao, Xia, Li, Cui (b0085) 2021; 13
Wan (10.1016/j.isprsjprs.2022.02.013_b0410) 2019; 16
Phiri (10.1016/j.isprsjprs.2022.02.013_b0300) 2017; 9
Chollet (10.1016/j.isprsjprs.2022.02.013_b0075) 2017
Xu (10.1016/j.isprsjprs.2022.02.013_b0415) 2004; 70
Running (10.1016/j.isprsjprs.2022.02.013_b0345) 2008; 321
van Beijma (10.1016/j.isprsjprs.2022.02.013_b0390) 2014; 149
Buchner (10.1016/j.isprsjprs.2022.02.013_b0045) 2020; 248
Badrinarayanan (10.1016/j.isprsjprs.2022.02.013_b0020) 2017; 39
Baltrusaitis (10.1016/j.isprsjprs.2022.02.013_b0025) 2019; 41
10.1016/j.isprsjprs.2022.02.013_b0135
Liu (10.1016/j.isprsjprs.2022.02.013_b0240) 2021; 258
Ienco (10.1016/j.isprsjprs.2022.02.013_b0155) 2019; 158
Mao (10.1016/j.isprsjprs.2022.02.013_b0255) 2020; 164
Calderón-Loor (10.1016/j.isprsjprs.2022.02.013_b0055) 2021; 252
10.1016/j.isprsjprs.2022.02.013_b0090
Sun (10.1016/j.isprsjprs.2022.02.013_b0375) 2019
Zhou (10.1016/j.isprsjprs.2022.02.013_b0445) 2021; 264
10.1016/j.isprsjprs.2022.02.013_b0170
Sica (10.1016/j.isprsjprs.2022.02.013_b0365) 2019; 232
Liu (10.1016/j.isprsjprs.2022.02.013_b0245) 2011; 222
Ozdarici-Ok (10.1016/j.isprsjprs.2022.02.013_b0290) 2015; 7
Chamorro Martinez (10.1016/j.isprsjprs.2022.02.013_b0060) 2021; 171
Schmitt (10.1016/j.isprsjprs.2022.02.013_b0350) 2019; 4
Abu-Mostafa (10.1016/j.isprsjprs.2022.02.013_b0005) 1990; 6
Ioffe (10.1016/j.isprsjprs.2022.02.013_b0165) 2015
Sukawattanavijit (10.1016/j.isprsjprs.2022.02.013_b0370) 2017; 14
Hird (10.1016/j.isprsjprs.2022.02.013_b0145) 2017; 9
Tong (10.1016/j.isprsjprs.2022.02.013_b0385) 2020; 237
Zadeh (10.1016/j.isprsjprs.2022.02.013_b0420) 2017
Zhang (10.1016/j.isprsjprs.2022.02.013_b0425) 2012; 13
Glorot (10.1016/j.isprsjprs.2022.02.013_b0120) 2011; 15
Jun (10.1016/j.isprsjprs.2022.02.013_b0180) 2014; 514
Ding (10.1016/j.isprsjprs.2022.02.013_b0095) 2022; 19
10.1016/j.isprsjprs.2022.02.013_b0265
Chen (10.1016/j.isprsjprs.2022.02.013_b0065) 2018
Gong (10.1016/j.isprsjprs.2022.02.013_b0125) 2013; 34
El Hajj (10.1016/j.isprsjprs.2022.02.013_b0100) 2009; 113
Zhang (10.1016/j.isprsjprs.2022.02.013_b0430) 2020; 14
Zhao (10.1016/j.isprsjprs.2022.02.013_b0440) 2017
Imaoka (10.1016/j.isprsjprs.2022.02.013_b0160) 2010; 98
Nguyen (10.1016/j.isprsjprs.2022.02.013_b0275) 2020; 238
Hibbard (10.1016/j.isprsjprs.2022.02.013_b0140) 2010; 30
Belenguer-Plomer (10.1016/j.isprsjprs.2022.02.013_b0030) 2021; 260
Prati (10.1016/j.isprsjprs.2022.02.013_b0315) 2015; 45
Rees (10.1016/j.isprsjprs.2022.02.013_b0325) 2003; 85
Robson (10.1016/j.isprsjprs.2022.02.013_b0335) 2015; 170
Hurskainen (10.1016/j.isprsjprs.2022.02.013_b0150) 2019; 233
Li (10.1016/j.isprsjprs.2022.02.013_b0195) 2022; 60
Kellenberger (10.1016/j.isprsjprs.2022.02.013_b0185) 2018; 216
Matikainen (10.1016/j.isprsjprs.2022.02.013_b0260) 2020; 164
Grohmann (10.1016/j.isprsjprs.2022.02.013_b0130) 2018; 212
Frey (10.1016/j.isprsjprs.2022.02.013_b0105) 2012; 124
Rennó (10.1016/j.isprsjprs.2022.02.013_b0330) 2008; 112
Nghiem (10.1016/j.isprsjprs.2022.02.013_b0270) 2009; 64
Cui (10.1016/j.isprsjprs.2022.02.013_b0085) 2021; 13
Li (10.1016/j.isprsjprs.2022.02.013_b0205) 2020; 250
Lin (10.1016/j.isprsjprs.2022.02.013_b0235) 2020; 242
10.1016/j.isprsjprs.2022.02.013_b0435
Cortes (10.1016/j.isprsjprs.2022.02.013_b0080) 1995; 20
Ganzeveld (10.1016/j.isprsjprs.2022.02.013_b0110) 2010; 115
Li (10.1016/j.isprsjprs.2022.02.013_b0215) 2021; 51
10.1016/j.isprsjprs.2022.02.013_b0070
Li (10.1016/j.isprsjprs.2022.02.013_b0200) 2020; 237
van der Maaten (10.1016/j.isprsjprs.2022.02.013_b0395) 2008; 9
Liu (10.1016/j.isprsjprs.2022.02.013_b0250) 2019; 11
Pan (10.1016/j.isprsjprs.2022.02.013_b0295) 2020; 166
Amarsaikhan (10.1016/j.isprsjprs.2022.02.013_b0010) 2010; 1
Sesnie (10.1016/j.isprsjprs.2022.02.013_b0355) 2008; 112
Bigdeli (10.1016/j.isprsjprs.2022.02.013_b0035) 2016; 52
Li (10.1016/j.isprsjprs.2022.02.013_b0220) 2021; 179
Liang (10.1016/j.isprsjprs.2022.02.013_b0225) 2010; 5
Ronneberger (10.1016/j.isprsjprs.2022.02.013_b0340) 2015
LeCun (10.1016/j.isprsjprs.2022.02.013_b0190) 2015; 521
Li (10.1016/j.isprsjprs.2022.02.013_b0210) 2021; 175
Phiri (10.1016/j.isprsjprs.2022.02.013_b0305) 2020; 12
Quin (10.1016/j.isprsjprs.2022.02.013_b0320) 2014; 52
Breiman (10.1016/j.isprsjprs.2022.02.013_b0040) 2001; 45
Poulter (10.1016/j.isprsjprs.2022.02.013_b0310) 2011; 8
Waldner (10.1016/j.isprsjprs.2022.02.013_b0405) 2015; 110
10.1016/j.isprsjprs.2022.02.013_b0400
Johnson (10.1016/j.isprsjprs.2022.02.013_b0175) 2019; 6
Symeonakis (10.1016/j.isprsjprs.2022.02.013_b0380) 2018; 10
Shao (10.1016/j.isprsjprs.2022.02.013_b0360) 2016; 8
Ardila (10.1016/j.isprsjprs.2022.02.013_b0015) 2011; 66
Ortigosa-Hernández (10.1016/j.isprsjprs.2022.02.013_b0285) 2017; 98
Buda (10.1016/j.isprsjprs.2022.02.013_b0050) 2018; 106
Ghorbanian (10.1016/j.isprsjprs.2022.02.013_b0115) 2020; 167
Lin (10.1016/j.isprsjprs.2022.02.013_b0230) 2019; 11
Olson (10.1016/j.isprsjprs.2022.02.013_b0280) 2001; 51
Zhu (10.1016/j.isprsjprs.2022.02.013_b9000) 2015; 159
References_xml – volume: 113
  start-page: 2052
  year: 2009
  end-page: 2061
  ident: b0100
  article-title: Integrating SPOT-5 time series, crop growth modeling and expert knowledge for monitoring agricultural practices — The case of sugarcane harvest on Reunion Island
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 499
  year: 2018
  ident: b0380
  article-title: Optimisation of savannah land cover characterisation with optical and SAR data
  publication-title: Remote Sensing
– volume: 237
  start-page: 111322
  year: 2020
  ident: b0385
  article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models
  publication-title: Remote Sens. Environ.
– volume: 242
  start-page: 111757
  year: 2020
  ident: b0235
  article-title: Incorporating synthetic aperture radar and optical images to investigate the annual dynamics of anthropogenic impervious surface at large scale
  publication-title: Remote Sens. Environ.
– volume: 514
  year: 2014
  ident: b0180
  article-title: Open access to Earth land-cover map
  publication-title: Nature
– volume: 112
  start-page: 2145
  year: 2008
  end-page: 2159
  ident: b0355
  article-title: Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments
  publication-title: Remote Sens. Environ.
– volume: 19
  start-page: 1
  year: 2022
  end-page: 5
  ident: b0095
  article-title: MP-ResNet: Multipath Residual Network for the Semantic Segmentation of High-Resolution PolSAR Images
  publication-title: IEEE Geosci. Remote Sensing Lett.
– volume: 12
  start-page: 2291
  year: 2020
  ident: b0305
  article-title: Sentinel-2 data for land cover/use mapping: A review
  publication-title: Remote Sens.
– volume: 4
  start-page: 145
  year: 2019
  end-page: 152
  ident: b0350
  article-title: AGGREGATING CLOUD-FREE SENTINEL-2 IMAGES with GOOGLE EARTH ENGINE
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.
– year: 2015
  ident: b0165
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: 32nd International Conference on Machine Learning, ICML
– volume: 212
  start-page: 121
  year: 2018
  end-page: 133
  ident: b0130
  article-title: Evaluation of TanDEM-X DEMs on selected Brazilian sites: Comparison with SRTM, ASTER GDEM and ALOS AW3D30
  publication-title: Remote Sens. Environ.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b0190
  article-title: Deep learning
  publication-title: Nature
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0040
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 175
  start-page: 20
  year: 2021
  end-page: 33
  ident: b0210
  article-title: Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 233
  start-page: 111354
  year: 2019
  ident: b0150
  article-title: Auxiliary datasets improve accuracy of object-based land use/land cover classification in heterogeneous savanna landscapes
  publication-title: Remote Sens. Environ.
– volume: 16
  start-page: 1026
  year: 2019
  end-page: 1030
  ident: b0410
  article-title: A Post-Classification Comparison Method for SAR and Optical Images Change Detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 85
  start-page: 441
  year: 2003
  end-page: 452
  ident: b0325
  article-title: Mapping land cover change in a reindeer herding area of the Russian Arctic using Landsat TM and ETM+ imagery and indigenous knowledge
  publication-title: Remote Sens. Environ.
– reference: Denize, J., Hubert-Moy, L., Corgne, S., Betbeder, J., & Pottier, E., 2018, July. Identification of winter land use in temperate agricultural landscapes based on Sentinel-1 and 2 Times-Series. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 8271-8274). IEEE.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2625
  ident: b0395
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 106
  start-page: 249
  year: 2018
  end-page: 259
  ident: b0050
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural Networks
– reference: Chen, T., Guestrin, C., 2016. XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 13-17-Augu, 785–794.
– volume: 167
  start-page: 276
  year: 2020
  end-page: 288
  ident: b0115
  article-title: Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 1
  start-page: 83
  year: 2010
  end-page: 97
  ident: b0010
  article-title: Fusing high-resolution SAR and optical imagery for improved urban land cover study and classification
  publication-title: Fusing high-resolution SAR and optical imagery for improved urban land cover study and classification.
– year: 2017
  ident: b0440
  article-title: Pyramid scene parsing network
  publication-title: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 2017-Janua
– volume: 260
  start-page: 112468
  year: 2021
  ident: b0030
  article-title: CNN-based burned area mapping using radar and optical data
  publication-title: Remote Sens. Environ.
– start-page: 234
  year: 2015
  end-page: 241
  ident: b0340
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
– volume: 11
  start-page: 1397
  year: 2019
  ident: b0230
  article-title: Automatic Updating of Land Cover Maps in Rapidly Urbanizing Regions by Relational Knowledge Transferring from GlobeLand30
  publication-title: Remote Sensing
– volume: 124
  start-page: 832
  year: 2012
  end-page: 843
  ident: b0105
  article-title: Compilation of a glacier inventory for the western Himalayas from satellite data: Methods, challenges, and results
  publication-title: Remote Sens. Environ.
– volume: 159
  start-page: 269
  year: 2015
  end-page: 277
  ident: b9000
  article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and sentinel 2 images
  publication-title: Remote Sens. Environ.
– volume: 158
  start-page: 11
  year: 2019
  end-page: 22
  ident: b0155
  article-title: Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 149
  start-page: 118
  year: 2014
  end-page: 129
  ident: b0390
  article-title: Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data
  publication-title: Remote Sens. Environ.
– volume: 70
  start-page: 1285
  year: 2004
  end-page: 1294
  ident: b0415
  article-title: Snail density prediction for schistosomiasis control using IKONOS and ASTER images
  publication-title: Photogramm. Eng. Remote Sens.
– year: 2017
  ident: b0420
  article-title: Tensor Fusion Network for Multimodal Sentiment Analysis
  publication-title: EMNLP 2017 - Conference on Empirical Methods in Natural Language Processing, Proceedings 1103–1114
– reference: Milletari, F., Navab, N., Ahmadi, S.A., 2016. V-Net: Fully convolutional neural networks for volumetric medical image segmentation. Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016 565–571.
– volume: 41
  start-page: 423
  year: 2019
  end-page: 443
  ident: b0025
  article-title: Multimodal Machine Learning: A Survey and Taxonomy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Hazirbas, C., Ma, L., Domokos, C., on, D.C.-A. conference, 2016, undefined, 2017. Fusenet: Incorporating depth into semantic segmentation via fusion-based cnn architecture. Springer 10111 LNCS, 213–228.
– volume: 34
  start-page: 2607
  year: 2013
  end-page: 2654
  ident: b0125
  article-title: Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data
  publication-title: Int. J. Remote Sens.
– volume: 64
  start-page: 367
  year: 2009
  end-page: 380
  ident: b0270
  article-title: Observations of urban and suburban environments with global satellite scatterometer data
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 8
  start-page: 2027
  year: 2011
  end-page: 2036
  ident: b0310
  article-title: Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO 2 airborne fraction
  publication-title: Biogeosciences
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: b0020
  article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 8
  start-page: 945
  year: 2016
  ident: b0360
  article-title: Mapping Urban Impervious Surface by Fusing Optical and SAR Data at the Decision Level
  publication-title: Remote Sensing
– volume: 52
  start-page: 5349
  year: 2014
  end-page: 5363
  ident: b0320
  article-title: MIMOSA: An automatic change detection method for sar time series
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 9
  start-page: 967
  year: 2017
  ident: b0300
  article-title: Developments in Landsat Land Cover Classification Methods: A Review
  publication-title: Remote Sens.
– volume: 264
  start-page: 112598
  year: 2021
  ident: b0445
  article-title: A knowledge-based, validated classifier for the identification of aliphatic and aromatic plastics by WorldView-3 satellite data
  publication-title: Remote Sens. Environ.
– volume: 30
  start-page: 2118
  year: 2010
  end-page: 2128
  ident: b0140
  article-title: Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling
  publication-title: Int. J. Climatol.
– volume: 170
  start-page: 372
  year: 2015
  end-page: 387
  ident: b0335
  article-title: Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment
  publication-title: Remote Sens. Environ.
– year: 2017
  ident: b0075
  article-title: Xception: Deep learning with depthwise separable convolutions
  publication-title: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 2017-Janua, 1800-1807
– reference: von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., ... & Schuecker, J., 2019. Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems. arXiv preprint arXiv:1903.12394.
– volume: 248
  start-page: 111967
  year: 2020
  ident: b0045
  article-title: Land-cover change in the Caucasus Mountains since 1987 based on the topographic correction of multi-temporal Landsat composites
  publication-title: Remote Sens. Environ.
– year: 2019
  ident: b0375
  article-title: Deep high-resolution representation learning for human pose estimation
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2019-June, 5686–5696
– start-page: 801
  year: 2018
  end-page: 818
  ident: b0065
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV)
– volume: 6
  start-page: 192
  year: 1990
  end-page: 198
  ident: b0005
  article-title: Learning from hints in neural networks
  publication-title: J. Complexity
– volume: 60
  start-page: 1
  year: 2022
  end-page: 16
  ident: b0195
  article-title: Geographical Knowledge-Driven Representation Learning for Remote Sensing Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 237
  start-page: 111563
  year: 2020
  ident: b0200
  article-title: Integrating Google Earth imagery with Landsat data to improve 30-m resolution land cover mapping
  publication-title: Remote Sens. Environ.
– volume: 98
  start-page: 717
  year: 2010
  end-page: 734
  ident: b0160
  article-title: Global change observation mission (GCOM) for monitoring carbon, water cycles, and climate change
  publication-title: Proc. IEEE
– volume: 164
  start-page: 200
  year: 2020
  end-page: 216
  ident: b0260
  article-title: Combining single photon and multispectral airborne laser scanning for land cover classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 5
  start-page: e13575
  year: 2010
  ident: b0225
  article-title: Combining spatial-temporal and phylogenetic analysis approaches for improved understanding on global H5N1 transmission
  publication-title: PLoS ONE
– volume: 13
  start-page: 1312
  year: 2021
  ident: b0085
  article-title: Knowledge and spatial pyramid distance-based gated graph attention network for remote sensing semantic segmentation
  publication-title: Remote Sensing
– volume: 252
  start-page: 112148
  year: 2021
  ident: b0055
  article-title: High-resolution wall-to-wall land-cover mapping and land change assessment for Australia from 1985 to 2015
  publication-title: Remote Sens. Environ.
– volume: 179
  start-page: 145
  year: 2021
  end-page: 158
  ident: b0220
  article-title: Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 166
  start-page: 241
  year: 2020
  end-page: 254
  ident: b0295
  article-title: Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 52
  start-page: 126
  year: 2016
  end-page: 136
  ident: b0035
  article-title: High resolution multisensor fusion of SAR, optical and LiDAR data based on crisp vs. fuzzy and feature vs. decision ensemble systems
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 115
  year: 2010
  ident: b0110
  article-title: Impact of future land use and land cover changes on atmospheric chemistry-climate interactions
  publication-title: J. Geophys. Res. Atmos.
– volume: 9
  start-page: 1315
  year: 2017
  ident: b0145
  article-title: Google earth engine, open-access satellite data, and machine learning in support of large-area probabilisticwetland mapping
  publication-title: Remote Sensing
– volume: 164
  start-page: 11
  year: 2020
  end-page: 25
  ident: b0255
  article-title: National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 321
  start-page: 652
  year: 2008
  end-page: 653
  ident: b0345
  article-title: Climate change: Ecosystem disturbance, carbon, and climate
  publication-title: Science
– volume: 51
  start-page: 933
  year: 2001
  end-page: 938
  ident: b0280
  article-title: Terrestrial ecoregions of the world: A new map of life on Earth
  publication-title: Bioscience
– volume: 232
  start-page: 111277
  year: 2019
  ident: b0365
  article-title: Repeat-pass SAR interferometry for land cover classification: A methodology using Sentinel-1 Short-Time-Series
  publication-title: Remote Sens. Environ.
– volume: 6
  start-page: 1
  year: 2019
  end-page: 54
  ident: b0175
  article-title: Survey on deep learning with class imbalance
  publication-title: J. Big Data
– volume: 112
  start-page: 3469
  year: 2008
  end-page: 3481
  ident: b0330
  article-title: HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia
  publication-title: Remote Sens. Environ.
– volume: 14
  start-page: 478
  year: 2020
  end-page: 493
  ident: b0430
  article-title: Multimodal Intelligence: Representation Learning, Information Fusion, and Applications
  publication-title: IEEE J. Sel. Top. Sign. Proces.
– volume: 222
  start-page: 2333
  year: 2011
  end-page: 2341
  ident: b0245
  article-title: Estimating California ecosystem carbon change using process model and land cover disturbance data: 1951–2000
  publication-title: Ecol. Model.
– volume: 110
  start-page: 1
  year: 2015
  end-page: 13
  ident: b0405
  article-title: Automated annual cropland mapping using knowledge-based temporal features
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 216
  start-page: 139
  year: 2018
  end-page: 153
  ident: b0185
  article-title: Detecting mammals in UAV images: Best practices to address a substantially imbalanced dataset with deep learning
  publication-title: Remote Sens. Environ.
– volume: 45
  start-page: 247
  year: 2015
  end-page: 270
  ident: b0315
  article-title: Class imbalance revisited: a new experimental setup to assess the performance of treatment methods
  publication-title: Knowl. Inf. Syst.
– volume: 7
  start-page: 5611
  year: 2015
  end-page: 5638
  ident: b0290
  article-title: Mapping of agricultural crops from single high-resolution multispectral images-data-driven smoothing vs. parcel-based smoothing
  publication-title: Remote Sens.
– reference: Zhang, Z., Sabuncu, M.R., 2018. Generalized cross entropy loss for training deep neural networks with noisy labels. Advances in Neural Information Processing Systems 2018-Decem, 8778–8788.
– volume: 15
  start-page: 315
  year: 2011
  end-page: 323
  ident: b0120
  article-title: Deep sparse rectifier neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 258
  start-page: 112364
  year: 2021
  ident: b0240
  article-title: Production of global daily seamless data cubes and quantification of global land cover change from 1985 to 2020 - iMap World 1.0
  publication-title: Remote Sens. Environ.
– volume: 11
  start-page: 690
  year: 2019
  ident: b0250
  article-title: Integration of convolutional neural networks and object-based post-classification refinement for land use and land cover mapping with optical and SAR data
  publication-title: Remote Sensing
– volume: 51
  start-page: 1756
  year: 2021
  end-page: 1768
  ident: b0215
  article-title: Error-Tolerant Deep Learning for Remote Sensing Image Scene Classification
  publication-title: IEEE Trans. Cybern.
– volume: 238
  start-page: 111017
  year: 2020
  ident: b0275
  article-title: Characterizing land cover/land use from multiple years of Landsat and MODIS time series: A novel approach using land surface phenology modeling and random forest classifier
  publication-title: Remote Sens. Environ.
– volume: 98
  start-page: 32
  year: 2017
  end-page: 38
  ident: b0285
  article-title: Measuring the class-imbalance extent of multi-class problems
  publication-title: Pattern Recogn. Lett.
– volume: 13
  start-page: 693
  year: 2012
  end-page: 712
  ident: b0425
  article-title: The application of small unmanned aerial systems for precision agriculture: A review
  publication-title: Precis. Agric.
– volume: 171
  start-page: 188
  year: 2021
  end-page: 201
  ident: b0060
  article-title: Fully convolutional recurrent networks for multidate crop recognition from multitemporal image sequences
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 66
  start-page: 762
  year: 2011
  end-page: 775
  ident: b0015
  article-title: Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b0080
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– volume: 14
  start-page: 284
  year: 2017
  end-page: 288
  ident: b0370
  article-title: GA-SVM Algorithm for Improving Land-Cover Classification Using SAR and Optical Remote Sensing Data
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: Jiang, J., Zheng, L., Luo, F., & Zhang, Z., 2018. Rednet: Residual encoder-decoder network for indoor rgb-d semantic segmentation. arXiv preprint arXiv:1806.01054.
– volume: 250
  start-page: 112045
  year: 2020
  ident: b0205
  article-title: Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning
  publication-title: Remote Sens. Environ.
– ident: 10.1016/j.isprsjprs.2022.02.013_b0170
– volume: 1
  start-page: 83
  issue: 1
  year: 2010
  ident: 10.1016/j.isprsjprs.2022.02.013_b0010
  article-title: Fusing high-resolution SAR and optical imagery for improved urban land cover study and classification
  publication-title: Fusing high-resolution SAR and optical imagery for improved urban land cover study and classification.
– volume: 514
  issue: 7523
  year: 2014
  ident: 10.1016/j.isprsjprs.2022.02.013_b0180
  article-title: Open access to Earth land-cover map
  publication-title: Nature
  doi: 10.1038/514434c
– volume: 106
  start-page: 249
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.02.013_b0050
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2018.07.011
– volume: 164
  start-page: 11
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.013_b0255
  article-title: National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.03.020
– volume: 9
  start-page: 967
  issue: 9
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.02.013_b0300
  article-title: Developments in Landsat Land Cover Classification Methods: A Review
  publication-title: Remote Sens.
  doi: 10.3390/rs9090967
– volume: 45
  start-page: 247
  issue: 1
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.02.013_b0315
  article-title: Class imbalance revisited: a new experimental setup to assess the performance of treatment methods
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-014-0794-3
– volume: 13
  start-page: 693
  issue: 6
  year: 2012
  ident: 10.1016/j.isprsjprs.2022.02.013_b0425
  article-title: The application of small unmanned aerial systems for precision agriculture: A review
  publication-title: Precis. Agric.
  doi: 10.1007/s11119-012-9274-5
– volume: 222
  start-page: 2333
  issue: 14
  year: 2011
  ident: 10.1016/j.isprsjprs.2022.02.013_b0245
  article-title: Estimating California ecosystem carbon change using process model and land cover disturbance data: 1951–2000
  publication-title: Ecol. Model.
  doi: 10.1016/j.ecolmodel.2011.03.042
– volume: 124
  start-page: 832
  year: 2012
  ident: 10.1016/j.isprsjprs.2022.02.013_b0105
  article-title: Compilation of a glacier inventory for the western Himalayas from satellite data: Methods, challenges, and results
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.06.020
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.isprsjprs.2022.02.013_b0195
  article-title: Geographical Knowledge-Driven Representation Learning for Remote Sensing Images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2017
  ident: 10.1016/j.isprsjprs.2022.02.013_b0440
  article-title: Pyramid scene parsing network
– ident: 10.1016/j.isprsjprs.2022.02.013_b0090
  doi: 10.1109/IGARSS.2018.8517673
– volume: 258
  start-page: 112364
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.02.013_b0240
  article-title: Production of global daily seamless data cubes and quantification of global land cover change from 1985 to 2020 - iMap World 1.0
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112364
– volume: 11
  start-page: 1397
  issue: 12
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.02.013_b0230
  article-title: Automatic Updating of Land Cover Maps in Rapidly Urbanizing Regions by Relational Knowledge Transferring from GlobeLand30
  publication-title: Remote Sensing
  doi: 10.3390/rs11121397
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.02.013_b0175
  article-title: Survey on deep learning with class imbalance
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0192-5
– volume: 12
  start-page: 2291
  issue: 14
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.013_b0305
  article-title: Sentinel-2 data for land cover/use mapping: A review
  publication-title: Remote Sens.
  doi: 10.3390/rs12142291
– volume: 167
  start-page: 276
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.013_b0115
  article-title: Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.07.013
– volume: 85
  start-page: 441
  issue: 4
  year: 2003
  ident: 10.1016/j.isprsjprs.2022.02.013_b0325
  article-title: Mapping land cover change in a reindeer herding area of the Russian Arctic using Landsat TM and ETM+ imagery and indigenous knowledge
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(03)00037-3
– volume: 70
  start-page: 1285
  issue: 11
  year: 2004
  ident: 10.1016/j.isprsjprs.2022.02.013_b0415
  article-title: Snail density prediction for schistosomiasis control using IKONOS and ASTER images
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.70.11.1285
– volume: 15
  start-page: 315
  year: 2011
  ident: 10.1016/j.isprsjprs.2022.02.013_b0120
  article-title: Deep sparse rectifier neural networks
  publication-title: J. Mach. Learn. Res.
– volume: 98
  start-page: 32
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.02.013_b0285
  article-title: Measuring the class-imbalance extent of multi-class problems
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2017.08.002
– volume: 110
  start-page: 1
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.02.013_b0405
  article-title: Automated annual cropland mapping using knowledge-based temporal features
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2015.09.013
– volume: 16
  start-page: 1026
  issue: 7
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.02.013_b0410
  article-title: A Post-Classification Comparison Method for SAR and Optical Images Change Detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2892432
– year: 2017
  ident: 10.1016/j.isprsjprs.2022.02.013_b0075
  article-title: Xception: Deep learning with depthwise separable convolutions
– volume: 164
  start-page: 200
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.013_b0260
  article-title: Combining single photon and multispectral airborne laser scanning for land cover classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.04.021
– ident: 10.1016/j.isprsjprs.2022.02.013_b0265
  doi: 10.1109/3DV.2016.79
– volume: 52
  start-page: 126
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.02.013_b0035
  article-title: High resolution multisensor fusion of SAR, optical and LiDAR data based on crisp vs. fuzzy and feature vs. decision ensemble systems
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.isprsjprs.2022.02.013_b0395
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 52
  start-page: 5349
  issue: 9
  year: 2014
  ident: 10.1016/j.isprsjprs.2022.02.013_b0320
  article-title: MIMOSA: An automatic change detection method for sar time series
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2288271
– volume: 232
  start-page: 111277
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.02.013_b0365
  article-title: Repeat-pass SAR interferometry for land cover classification: A methodology using Sentinel-1 Short-Time-Series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111277
– start-page: 234
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.02.013_b0340
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 159
  start-page: 269
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.02.013_b9000
  article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and sentinel 2 images
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.12.014
– volume: 264
  start-page: 112598
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.02.013_b0445
  article-title: A knowledge-based, validated classifier for the identification of aliphatic and aromatic plastics by WorldView-3 satellite data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112598
– volume: 112
  start-page: 3469
  issue: 9
  year: 2008
  ident: 10.1016/j.isprsjprs.2022.02.013_b0330
  article-title: HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.03.018
– volume: 13
  start-page: 1312
  issue: 7
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.02.013_b0085
  article-title: Knowledge and spatial pyramid distance-based gated graph attention network for remote sensing semantic segmentation
  publication-title: Remote Sensing
  doi: 10.3390/rs13071312
– volume: 10
  start-page: 499
  issue: 4
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.02.013_b0380
  article-title: Optimisation of savannah land cover characterisation with optical and SAR data
  publication-title: Remote Sensing
  doi: 10.3390/rs10040499
– volume: 34
  start-page: 2607
  issue: 7
  year: 2013
  ident: 10.1016/j.isprsjprs.2022.02.013_b0125
  article-title: Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2012.748992
– volume: 14
  start-page: 284
  issue: 3
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.02.013_b0370
  article-title: GA-SVM Algorithm for Improving Land-Cover Classification Using SAR and Optical Remote Sensing Data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2628406
– volume: 51
  start-page: 1756
  issue: 4
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.02.013_b0215
  article-title: Error-Tolerant Deep Learning for Remote Sensing Image Scene Classification
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2989241
– volume: 7
  start-page: 5611
  issue: 5
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.02.013_b0290
  article-title: Mapping of agricultural crops from single high-resolution multispectral images-data-driven smoothing vs. parcel-based smoothing
  publication-title: Remote Sens.
  doi: 10.3390/rs70505611
– volume: 233
  start-page: 111354
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.02.013_b0150
  article-title: Auxiliary datasets improve accuracy of object-based land use/land cover classification in heterogeneous savanna landscapes
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111354
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.02.013_b0020
  article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– ident: 10.1016/j.isprsjprs.2022.02.013_b0070
  doi: 10.1145/2939672.2939785
– volume: 19
  start-page: 1
  year: 2022
  ident: 10.1016/j.isprsjprs.2022.02.013_b0095
  article-title: MP-ResNet: Multipath Residual Network for the Semantic Segmentation of High-Resolution PolSAR Images
  publication-title: IEEE Geosci. Remote Sensing Lett.
– volume: 212
  start-page: 121
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.02.013_b0130
  article-title: Evaluation of TanDEM-X DEMs on selected Brazilian sites: Comparison with SRTM, ASTER GDEM and ALOS AW3D30
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.04.043
– volume: 5
  start-page: e13575
  issue: 10
  year: 2010
  ident: 10.1016/j.isprsjprs.2022.02.013_b0225
  article-title: Combining spatial-temporal and phylogenetic analysis approaches for improved understanding on global H5N1 transmission
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0013575
– volume: 171
  start-page: 188
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.02.013_b0060
  article-title: Fully convolutional recurrent networks for multidate crop recognition from multitemporal image sequences
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.11.007
– volume: 66
  start-page: 762
  issue: 6
  year: 2011
  ident: 10.1016/j.isprsjprs.2022.02.013_b0015
  article-title: Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2011.08.002
– year: 2019
  ident: 10.1016/j.isprsjprs.2022.02.013_b0375
  article-title: Deep high-resolution representation learning for human pose estimation
– volume: 115
  issue: D23
  year: 2010
  ident: 10.1016/j.isprsjprs.2022.02.013_b0110
  article-title: Impact of future land use and land cover changes on atmospheric chemistry-climate interactions
  publication-title: J. Geophys. Res. Atmos.
  doi: 10.1029/2010JD014041
– start-page: 801
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.02.013_b0065
  article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation
– year: 2015
  ident: 10.1016/j.isprsjprs.2022.02.013_b0165
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– volume: 112
  start-page: 2145
  issue: 5
  year: 2008
  ident: 10.1016/j.isprsjprs.2022.02.013_b0355
  article-title: Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.08.025
– volume: 242
  start-page: 111757
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.013_b0235
  article-title: Incorporating synthetic aperture radar and optical images to investigate the annual dynamics of anthropogenic impervious surface at large scale
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111757
– volume: 237
  start-page: 111322
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.013_b0385
  article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111322
– volume: 6
  start-page: 192
  issue: 2
  year: 1990
  ident: 10.1016/j.isprsjprs.2022.02.013_b0005
  article-title: Learning from hints in neural networks
  publication-title: J. Complexity
  doi: 10.1016/0885-064X(90)90006-Y
– ident: 10.1016/j.isprsjprs.2022.02.013_b0135
  doi: 10.1007/978-3-319-54181-5_14
– volume: 98
  start-page: 717
  issue: 5
  year: 2010
  ident: 10.1016/j.isprsjprs.2022.02.013_b0160
  article-title: Global change observation mission (GCOM) for monitoring carbon, water cycles, and climate change
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2009.2036869
– volume: 149
  start-page: 118
  year: 2014
  ident: 10.1016/j.isprsjprs.2022.02.013_b0390
  article-title: Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.04.010
– volume: 175
  start-page: 20
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.02.013_b0210
  article-title: Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.02.009
– volume: 51
  start-page: 933
  issue: 11
  year: 2001
  ident: 10.1016/j.isprsjprs.2022.02.013_b0280
  article-title: Terrestrial ecoregions of the world: A new map of life on Earth
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2
– volume: 260
  start-page: 112468
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.02.013_b0030
  article-title: CNN-based burned area mapping using radar and optical data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112468
– volume: 8
  start-page: 945
  issue: 11
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.02.013_b0360
  article-title: Mapping Urban Impervious Surface by Fusing Optical and SAR Data at the Decision Level
  publication-title: Remote Sensing
  doi: 10.3390/rs8110945
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.isprsjprs.2022.02.013_b0040
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 158
  start-page: 11
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.02.013_b0155
  article-title: Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.09.016
– ident: 10.1016/j.isprsjprs.2022.02.013_b0435
– volume: 41
  start-page: 423
  issue: 2
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.02.013_b0025
  article-title: Multimodal Machine Learning: A Survey and Taxonomy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2798607
– volume: 166
  start-page: 241
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.013_b0295
  article-title: Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.05.022
– volume: 8
  start-page: 2027
  issue: 8
  year: 2011
  ident: 10.1016/j.isprsjprs.2022.02.013_b0310
  article-title: Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO 2 airborne fraction
  publication-title: Biogeosciences
  doi: 10.5194/bg-8-2027-2011
– ident: 10.1016/j.isprsjprs.2022.02.013_b0400
– volume: 216
  start-page: 139
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.02.013_b0185
  article-title: Detecting mammals in UAV images: Best practices to address a substantially imbalanced dataset with deep learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.06.028
– volume: 113
  start-page: 2052
  issue: 10
  year: 2009
  ident: 10.1016/j.isprsjprs.2022.02.013_b0100
  article-title: Integrating SPOT-5 time series, crop growth modeling and expert knowledge for monitoring agricultural practices — The case of sugarcane harvest on Reunion Island
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.04.009
– volume: 238
  start-page: 111017
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.013_b0275
  article-title: Characterizing land cover/land use from multiple years of Landsat and MODIS time series: A novel approach using land surface phenology modeling and random forest classifier
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.12.016
– volume: 248
  start-page: 111967
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.013_b0045
  article-title: Land-cover change in the Caucasus Mountains since 1987 based on the topographic correction of multi-temporal Landsat composites
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.111967
– volume: 30
  start-page: 2118
  year: 2010
  ident: 10.1016/j.isprsjprs.2022.02.013_b0140
  article-title: Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.2150
– volume: 9
  start-page: 1315
  issue: 12
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.02.013_b0145
  article-title: Google earth engine, open-access satellite data, and machine learning in support of large-area probabilisticwetland mapping
  publication-title: Remote Sensing
  doi: 10.3390/rs9121315
– year: 2017
  ident: 10.1016/j.isprsjprs.2022.02.013_b0420
  article-title: Tensor Fusion Network for Multimodal Sentiment Analysis
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.isprsjprs.2022.02.013_b0080
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 250
  start-page: 112045
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.013_b0205
  article-title: Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112045
– volume: 11
  start-page: 690
  issue: 6
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.02.013_b0250
  article-title: Integration of convolutional neural networks and object-based post-classification refinement for land use and land cover mapping with optical and SAR data
  publication-title: Remote Sensing
  doi: 10.3390/rs11060690
– volume: 321
  start-page: 652
  issue: 5889
  year: 2008
  ident: 10.1016/j.isprsjprs.2022.02.013_b0345
  article-title: Climate change: Ecosystem disturbance, carbon, and climate
  publication-title: Science
  doi: 10.1126/science.1159607
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.02.013_b0190
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 252
  start-page: 112148
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.02.013_b0055
  article-title: High-resolution wall-to-wall land-cover mapping and land change assessment for Australia from 1985 to 2015
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112148
– volume: 179
  start-page: 145
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.02.013_b0220
  article-title: Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.08.001
– volume: 64
  start-page: 367
  issue: 4
  year: 2009
  ident: 10.1016/j.isprsjprs.2022.02.013_b0270
  article-title: Observations of urban and suburban environments with global satellite scatterometer data
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.01.004
– volume: 170
  start-page: 372
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.02.013_b0335
  article-title: Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.10.001
– volume: 4
  start-page: 145
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.02.013_b0350
  article-title: AGGREGATING CLOUD-FREE SENTINEL-2 IMAGES with GOOGLE EARTH ENGINE
  publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci.
  doi: 10.5194/isprs-annals-IV-2-W7-145-2019
– volume: 237
  start-page: 111563
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.013_b0200
  article-title: Integrating Google Earth imagery with Landsat data to improve 30-m resolution land cover mapping
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111563
– volume: 14
  start-page: 478
  issue: 3
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.02.013_b0430
  article-title: Multimodal Intelligence: Representation Learning, Information Fusion, and Applications
  publication-title: IEEE J. Sel. Top. Sign. Proces.
  doi: 10.1109/JSTSP.2020.2987728
SSID ssj0001568
Score 2.6161127
Snippet Land use and land cover maps provide fundamental information that has been used in different types of studies, ranging from public health to carbon cycling....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 170
SubjectTerms asymmetry
carbon
China
data collection
Deep collaborative network
Domain knowledge incorporation
image analysis
land cover
Land cover classification
land use and land cover maps
Multimodal unitemporal remote sensing
photogrammetry
public health
Title DKDFN: Domain Knowledge-Guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification
URI https://dx.doi.org/10.1016/j.isprsjprs.2022.02.013
https://www.proquest.com/docview/2675565847
Volume 186
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMCAeIq3jMQamji2k7AhSilUdAEktqhxztAK0qptkFiY-OHc5cFLQgxIyZDIjiOffb7P_u6OsUMRaC0RajiJ0pEjBeCUsoF0IJBRog0d3JGD81VXt2_l5Z26m2GntS8M0Sor3V_q9EJbV28aVW82Rv1-49pF6CAoABJ5myhFHuVSBjTKj14_aR5e6Q5HhR0q_Y3j1Z-MxpMB3ggUhSiCd3r-byvUD11dLECtZbZUWY78pPy5FTYD2Spb_BJPcJXNVynNH17W2Fuz02x1j3lz-ITgn3fqvTPnPO-nkPIUYMS_jIJn4DanrTOelcxwjuYsL_iGT8MUG87JOi3iWD3yMaCEgU-I_Z7dc2JH4rdwVnBD1jjRjwqJr7Pb1tnNadupUi44xpfh1DE2Mlb5UiShMD3bk15oLWKuEDyr3CQQQKk6VCBcMH4oIHIluKlORITAxILwN9hsNsxgk_EeqgarbOSlkZZG-wkIHaBFYFxtJcLILabrbo5NFY-c0mI8xjXxbBB_yCcm-cQuXp6_xdyPiqMyJMffVY5rOcbfRleMC8fflQ9qycc49-hApZfBMMdCiLYUmXDB9n8a2GEL9FTygXbZ7HScwx6aOtNkvxjL-2zu5KLT7r4D3zwBcA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6N7mHwgGCAGBtgJF6jJo7tJHub1pWObn1hk_ZmNc55dNrSqm2QeN8fzl1-VBsS2gNS8pLYceSzz_fZ390BfJWJMYqgRpBrkwVKIk0pn6gAE5XlxvHBHTs4n0_M6FJ9v9JXW3Dc-cIwrbLV_Y1Or7V1-6Tf9mZ_MZv1f4QEHSQHQGJvE62TZ7DN0al0D7aPTsejyUYhR41HHJcPuMIjmtdstViubugmrChlHb8ziv-1SP2lrus1aPgKXrbGozhq_u81bGG5Cy8ehBTchZ02q_nP32_gfjAeDCeHYjC_I_wvxt32WfCtmhVYiAJxIR4MhF8ofMW7Z6JsyOGCLFpRUw7v5gU1XLGBWoeyuhVLJCGjWDEBvrwWTJCkb9HEEI4NcmYg1UJ_C5fDk4vjUdBmXQhcrNJ14HzmvI6VzFPppn6qotR7gl0pRl6HeSKRs3XoRIbo4lRiFioMC5PLjLCJRxm_g145L_E9iClpB699FhWZUc7EOUqTkFHgQuMVIck9MF03W9eGJOfMGLe2457d2I18LMvHhnRF8R6Em4qLJirH01UOOznaRwPM0trxdOUvneQtTT8-U5mWOK-oEAEuzVZc8uF_GvgMO6OL8zN7djoZ78NzftPQgw6gt15W-JEsn3X-qR3ZfwCgsQQh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DKDFN%3A+Domain+Knowledge-Guided+deep+collaborative+fusion+network+for+multimodal+unitemporal+remote+sensing+land+cover+classification&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Li%2C+Yansheng&rft.au=Zhou%2C+Yuhan&rft.au=Zhang%2C+Yongjun&rft.au=Zhong%2C+Liheng&rft.date=2022-04-01&rft.issn=0924-2716&rft.volume=186&rft.spage=170&rft.epage=189&rft_id=info:doi/10.1016%2Fj.isprsjprs.2022.02.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isprsjprs_2022_02_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon