DKDFN: Domain Knowledge-Guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification
Land use and land cover maps provide fundamental information that has been used in different types of studies, ranging from public health to carbon cycling. However, the existing remote sensing image classification methods thus far suffer from the insufficient usage of multiple modalities, undercons...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 186; pp. 170 - 189 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0924-2716 |
DOI | 10.1016/j.isprsjprs.2022.02.013 |
Cover
Loading…
Abstract | Land use and land cover maps provide fundamental information that has been used in different types of studies, ranging from public health to carbon cycling. However, the existing remote sensing image classification methods thus far suffer from the insufficient usage of multiple modalities, underconsideration of prior domain knowledge, and poor performance on minority classes. To alleviate these problems, we propose a novel domain knowledge-guided deep collaborative fusion network (DKDFN) with performance boosting for minority categories for land cover classification. More specifically, the DKDFN adopts a multihead encoder and a multibranch decoder structure. The architecture of the encoder probablizes sufficient mining of complementary information from multiple modalities, which are Sentinel-2, Sentinel-1, and SRTM Digital Elevation Data (SRTM) in our case. The multibranch decoder enables land cover classification in a multitask learning setup, performing semantic segmentation and reconstructing multimodal remote sensing indices, which are selected as representatives of domain knowledge. This design incorporates domain knowledge in an effective end-to-end manner. The training stage of our DKDFN is supervised by our proposed asymmetry loss function (ALF), which boosts performance on nearly all categories, especially the categories with a low frequency of occurrence. Ablation studies of the network suggest that our design logic is worth testing in any network with an encoder-decoder structure. The study is conducted in Hunan, China and is verified using a self-labeled multimodal unitemporal remote sensing image dataset. The comparative experiments between DKDFN and 6 state-of-the-art models (U-Net, SegNet, PSPNet, DeepLab, HRNet, MP-ResNet) testify to the superiority of our method and suggest its potential to be applied more widely to map land cover in other geographical areas given the availability of Sentinel-2, Sentinel-1, and SRTM data. The dataset can be downloaded by https://github.com/LauraChow/HunanMultimodalDataset. |
---|---|
AbstractList | Land use and land cover maps provide fundamental information that has been used in different types of studies, ranging from public health to carbon cycling. However, the existing remote sensing image classification methods thus far suffer from the insufficient usage of multiple modalities, underconsideration of prior domain knowledge, and poor performance on minority classes. To alleviate these problems, we propose a novel domain knowledge-guided deep collaborative fusion network (DKDFN) with performance boosting for minority categories for land cover classification. More specifically, the DKDFN adopts a multihead encoder and a multibranch decoder structure. The architecture of the encoder probablizes sufficient mining of complementary information from multiple modalities, which are Sentinel-2, Sentinel-1, and SRTM Digital Elevation Data (SRTM) in our case. The multibranch decoder enables land cover classification in a multitask learning setup, performing semantic segmentation and reconstructing multimodal remote sensing indices, which are selected as representatives of domain knowledge. This design incorporates domain knowledge in an effective end-to-end manner. The training stage of our DKDFN is supervised by our proposed asymmetry loss function (ALF), which boosts performance on nearly all categories, especially the categories with a low frequency of occurrence. Ablation studies of the network suggest that our design logic is worth testing in any network with an encoder-decoder structure. The study is conducted in Hunan, China and is verified using a self-labeled multimodal unitemporal remote sensing image dataset. The comparative experiments between DKDFN and 6 state-of-the-art models (U-Net, SegNet, PSPNet, DeepLab, HRNet, MP-ResNet) testify to the superiority of our method and suggest its potential to be applied more widely to map land cover in other geographical areas given the availability of Sentinel-2, Sentinel-1, and SRTM data. The dataset can be downloaded by https://github.com/LauraChow/HunanMultimodalDataset. |
Author | Zhong, Liheng Wang, Jian Li, Yansheng Zhang, Yongjun Zhou, Yuhan Chen, Jingdong |
Author_xml | – sequence: 1 givenname: Yansheng surname: Li fullname: Li, Yansheng organization: School of Remote Sensing and Information Engineering, Wuhan University, China – sequence: 2 givenname: Yuhan surname: Zhou fullname: Zhou, Yuhan organization: School of Remote Sensing and Information Engineering, Wuhan University, China – sequence: 3 givenname: Yongjun surname: Zhang fullname: Zhang, Yongjun organization: School of Remote Sensing and Information Engineering, Wuhan University, China – sequence: 4 givenname: Liheng surname: Zhong fullname: Zhong, Liheng organization: Ant Group, China – sequence: 5 givenname: Jian surname: Wang fullname: Wang, Jian organization: Ant Group, China – sequence: 6 givenname: Jingdong surname: Chen fullname: Chen, Jingdong organization: Ant Group, China |
BookMark | eNqNkD9vFDEUxF0EiSTwGXBJs4ft_edFoohyJKBE0EBt-ezn6B1ee7G9F6Xng-NwKEUakObpNTMjze-MnIQYgJA3nG0448O7_QbzkvK-3kYwITasircn5JRNomvEyIeX5CznPWOM94M8Jb-2N9urL-_pNs4aA70J8d6DvYPmekULllqAhZrovd7FpAsegLo1Yww0QLmP6Qd1MdF59QXnaLWna8AC81LNniaYYwGaIWQMd9TrYGvXARI1XueMDk2tjOEVeeG0z_D67z8n368-frv81Nx-vf58eXHbmLaTpTFuMq5vO7GTwminOy6d410ngbue7UYBg2SyHwUD00oBE-uA2WEnpn4aHYj2nLw99i4p_lwhFzVjNlDHBYhrVmIY-37oZTdW63i0mhRzTuDUknDW6UFxph5Zq716Yq0eWStWxdua_PAsabD8mVmSRv8f-YtjHiqJA0JS2SAEAxYTmKJsxH92_AbHgqjh |
CitedBy_id | crossref_primary_10_1109_TITS_2024_3520487 crossref_primary_10_3390_rs16152825 crossref_primary_10_1109_TGRS_2024_3373033 crossref_primary_10_1016_j_infrared_2024_105514 crossref_primary_10_3390_su141912321 crossref_primary_10_1016_j_knosys_2023_110415 crossref_primary_10_1109_TGRS_2023_3297850 crossref_primary_10_1016_j_engappai_2024_108350 crossref_primary_10_1109_LGRS_2022_3198065 crossref_primary_10_1016_j_isprsjprs_2022_03_013 crossref_primary_10_1186_s13634_023_01008_z crossref_primary_10_1144_geochem2024_002 crossref_primary_10_3390_rs14163864 crossref_primary_10_1016_j_asoc_2022_109695 crossref_primary_10_1016_j_rse_2024_114112 crossref_primary_10_1109_TGRS_2023_3311093 crossref_primary_10_1109_LGRS_2023_3234306 crossref_primary_10_3390_rs16020431 crossref_primary_10_3390_s24227266 crossref_primary_10_1080_15481603_2025_2478689 crossref_primary_10_1109_JSTARS_2024_3522197 crossref_primary_10_1038_s41598_024_63363_7 crossref_primary_10_3390_rs16122222 crossref_primary_10_1021_acs_est_3c07908 crossref_primary_10_3390_rs15020445 crossref_primary_10_3390_rs16203852 crossref_primary_10_1109_TGRS_2025_3534199 crossref_primary_10_1109_LGRS_2023_3244532 crossref_primary_10_1109_JSTARS_2024_3509712 crossref_primary_10_1109_LGRS_2023_3242430 crossref_primary_10_1016_j_dss_2025_114401 crossref_primary_10_1109_TGRS_2023_3306042 crossref_primary_10_1109_TGRS_2022_3217893 crossref_primary_10_1109_LGRS_2023_3261402 crossref_primary_10_3390_rs16091478 crossref_primary_10_3934_math_2024009 crossref_primary_10_1186_s40359_024_01654_4 crossref_primary_10_1016_j_isprsjprs_2022_08_010 crossref_primary_10_1016_j_jag_2024_103696 crossref_primary_10_1080_01431161_2023_2240032 crossref_primary_10_3390_land12091748 crossref_primary_10_1109_LGRS_2024_3476269 crossref_primary_10_1016_j_rse_2024_114242 crossref_primary_10_1109_TGRS_2023_3313883 crossref_primary_10_1016_j_isprsjprs_2023_03_023 crossref_primary_10_1109_LGRS_2022_3185729 crossref_primary_10_1109_TCBB_2023_3272893 crossref_primary_10_3390_rs15153907 crossref_primary_10_3389_fpls_2022_1048479 crossref_primary_10_1016_j_rsase_2024_101221 crossref_primary_10_1109_JSTARS_2024_3424831 crossref_primary_10_1016_j_jag_2023_103345 crossref_primary_10_1016_j_jag_2024_103826 crossref_primary_10_3390_rs15245706 crossref_primary_10_1016_j_engappai_2024_109535 crossref_primary_10_1016_j_dsp_2025_105157 crossref_primary_10_3390_rs16234381 crossref_primary_10_3788_LOP240511 crossref_primary_10_1007_s11432_022_3599_y crossref_primary_10_1109_TGRS_2023_3284671 crossref_primary_10_1117_1_JRS_18_014514 crossref_primary_10_1016_j_inffus_2024_102689 crossref_primary_10_3390_rs15194865 crossref_primary_10_3390_rs16214029 crossref_primary_10_1109_JSTARS_2023_3270498 crossref_primary_10_1080_13682199_2023_2206761 crossref_primary_10_1109_TGRS_2023_3265752 crossref_primary_10_1007_s00521_024_10165_7 crossref_primary_10_1109_TGRS_2023_3297648 crossref_primary_10_3390_rs17061019 crossref_primary_10_1016_j_jag_2025_104426 crossref_primary_10_1109_LGRS_2025_3548757 crossref_primary_10_1016_j_cageo_2023_105340 crossref_primary_10_1016_j_envsoft_2024_106022 crossref_primary_10_1109_TGRS_2024_3404953 crossref_primary_10_1016_j_rse_2024_114190 crossref_primary_10_1080_13658816_2024_2442096 crossref_primary_10_3390_rs15235610 crossref_primary_10_1016_j_knosys_2024_112032 crossref_primary_10_1109_JSEN_2023_3348238 crossref_primary_10_1109_JSEN_2023_3318371 crossref_primary_10_1016_j_infrared_2023_104848 crossref_primary_10_1016_j_dsp_2025_105174 crossref_primary_10_1016_j_isprsjprs_2023_01_012 crossref_primary_10_1109_TGRS_2024_3434451 crossref_primary_10_1016_j_ijleo_2023_170892 crossref_primary_10_1109_TGRS_2025_3532349 crossref_primary_10_3390_rs14184458 crossref_primary_10_3390_rs16173300 crossref_primary_10_1109_TGRS_2024_3516817 |
Cites_doi | 10.1038/514434c 10.1016/j.neunet.2018.07.011 10.1016/j.isprsjprs.2020.03.020 10.3390/rs9090967 10.1007/s10115-014-0794-3 10.1007/s11119-012-9274-5 10.1016/j.ecolmodel.2011.03.042 10.1016/j.rse.2012.06.020 10.1109/IGARSS.2018.8517673 10.1016/j.rse.2021.112364 10.3390/rs11121397 10.1186/s40537-019-0192-5 10.3390/rs12142291 10.1016/j.isprsjprs.2020.07.013 10.1016/S0034-4257(03)00037-3 10.14358/PERS.70.11.1285 10.1016/j.patrec.2017.08.002 10.1016/j.isprsjprs.2015.09.013 10.1109/LGRS.2019.2892432 10.1016/j.isprsjprs.2020.04.021 10.1109/3DV.2016.79 10.1109/TGRS.2013.2288271 10.1016/j.rse.2019.111277 10.1016/j.rse.2014.12.014 10.1016/j.rse.2021.112598 10.1016/j.rse.2008.03.018 10.3390/rs13071312 10.3390/rs10040499 10.1080/01431161.2012.748992 10.1109/LGRS.2016.2628406 10.1109/TCYB.2020.2989241 10.3390/rs70505611 10.1016/j.rse.2019.111354 10.1109/TPAMI.2016.2644615 10.1145/2939672.2939785 10.1016/j.rse.2018.04.043 10.1371/journal.pone.0013575 10.1016/j.isprsjprs.2020.11.007 10.1016/j.isprsjprs.2011.08.002 10.1029/2010JD014041 10.1016/j.rse.2007.08.025 10.1016/j.rse.2020.111757 10.1016/j.rse.2019.111322 10.1016/0885-064X(90)90006-Y 10.1007/978-3-319-54181-5_14 10.1109/JPROC.2009.2036869 10.1016/j.rse.2014.04.010 10.1016/j.isprsjprs.2021.02.009 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 10.1016/j.rse.2021.112468 10.3390/rs8110945 10.1023/A:1010933404324 10.1016/j.isprsjprs.2019.09.016 10.1109/TPAMI.2018.2798607 10.1016/j.isprsjprs.2020.05.022 10.5194/bg-8-2027-2011 10.1016/j.rse.2018.06.028 10.1016/j.rse.2009.04.009 10.1016/j.rse.2018.12.016 10.1016/j.rse.2020.111967 10.1002/joc.2150 10.3390/rs9121315 10.1007/BF00994018 10.1016/j.rse.2020.112045 10.3390/rs11060690 10.1126/science.1159607 10.1038/nature14539 10.1016/j.rse.2020.112148 10.1016/j.isprsjprs.2021.08.001 10.1016/j.isprsjprs.2009.01.004 10.1016/j.rse.2015.10.001 10.5194/isprs-annals-IV-2-W7-145-2019 10.1016/j.rse.2019.111563 10.1109/JSTSP.2020.2987728 |
ContentType | Journal Article |
Copyright | 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
Copyright_xml | – notice: 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2022.02.013 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering Public Health |
EndPage | 189 |
ExternalDocumentID | 10_1016_j_isprsjprs_2022_02_013 S0924271622000557 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHBH AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABDPE ABFNM ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACLVX ACNNM ACRLP ACRPL ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPCBC SSE SSH SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION SPC 7S9 L.6 |
ID | FETCH-LOGICAL-c348t-cf9cf5342b82cafa418ff1448e1f50b72e68085720ec382e904e0d6b29597fe23 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Fri Jul 11 12:43:54 EDT 2025 Thu Apr 24 22:59:48 EDT 2025 Tue Jul 01 03:46:47 EDT 2025 Sun Apr 06 06:54:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Multimodal unitemporal remote sensing Domain knowledge incorporation Deep collaborative network Land cover classification |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-cf9cf5342b82cafa418ff1448e1f50b72e68085720ec382e904e0d6b29597fe23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2675565847 |
PQPubID | 24069 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_2675565847 crossref_primary_10_1016_j_isprsjprs_2022_02_013 crossref_citationtrail_10_1016_j_isprsjprs_2022_02_013 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2022_02_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2022 2022-04-00 20220401 |
PublicationDateYYYYMMDD | 2022-04-01 |
PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
PublicationDecade | 2020 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Ronneberger, Fischer, Brox (b0340) 2015 Robson, Nuth, Dahl, Hölbling, Strozzi, Nielsen (b0335) 2015; 170 Ienco, Interdonato, Gaetano, Ho Tong Minh (b0155) 2019; 158 Waldner, Canto, Defourny (b0405) 2015; 110 Rennó, Nobre, Cuartas, Soares, Hodnett, Tomasella, Waterloo (b0330) 2008; 112 Zhang, Yang, He, Deng (b0430) 2020; 14 Ioffe, Szegedy (b0165) 2015 Liu, Qi, Li, Yeh (b0250) 2019; 11 Matikainen, Karila, Litkey, Ahokas, Hyyppä (b0260) 2020; 164 Wan, Xiang, You (b0410) 2019; 16 Zhang, Z., Sabuncu, M.R., 2018. Generalized cross entropy loss for training deep neural networks with noisy labels. Advances in Neural Information Processing Systems 2018-Decem, 8778–8788. Buchner, Yin, Frantz, Kuemmerle, Askerov, Bakuradze, Bleyhl, Elizbarashvili, Komarova, Lewińska, Rizayeva, Sayadyan, Tan, Tepanosyan, Zazanashvili, Radeloff (b0045) 2020; 248 Li, Kong, Zhang, Tan, Chen (b0220) 2021; 179 Zhao, Shi, Qi, Wang, Jia (b0440) 2017 Frey, Paul, Strozzi (b0105) 2012; 124 Ardila, Tolpekin, Bijker, Stein (b0015) 2011; 66 von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., ... & Schuecker, J., 2019. Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems. arXiv preprint arXiv:1903.12394. Glorot, Bordes, Bengio (b0120) 2011; 15 Hazirbas, C., Ma, L., Domokos, C., on, D.C.-A. conference, 2016, undefined, 2017. Fusenet: Incorporating depth into semantic segmentation via fusion-based cnn architecture. Springer 10111 LNCS, 213–228. Liang, Xu, Chen, Liu, Cao, Fang, Feng, Goodchild, Gong, Li (b0225) 2010; 5 Denize, J., Hubert-Moy, L., Corgne, S., Betbeder, J., & Pottier, E., 2018, July. Identification of winter land use in temperate agricultural landscapes based on Sentinel-1 and 2 Times-Series. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 8271-8274). IEEE. Running (b0345) 2008; 321 Hurskainen, Adhikari, Siljander, Pellikka, Hemp (b0150) 2019; 233 Belenguer-Plomer, Tanase, Chuvieco, Bovolo (b0030) 2021; 260 van der Maaten, Hinton (b0395) 2008; 9 Ozdarici-Ok, Ok, Schindler (b0290) 2015; 7 Xu, Gong, Biging, Liang, Seto, Spear (b0415) 2004; 70 Chollet (b0075) 2017 Zhang, Kovacs (b0425) 2012; 13 Milletari, F., Navab, N., Ahmadi, S.A., 2016. V-Net: Fully convolutional neural networks for volumetric medical image segmentation. Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016 565–571. Poulter, Frank, Hodson, Zimmermann (b0310) 2011; 8 Hird, DeLancey, McDermid, Kariyeva (b0145) 2017; 9 Liu, Gong, Wang, Wang, Ning, Xu (b0240) 2021; 258 Amarsaikhan, Blotevogel, van Genderen, Ganzorig, Gantuya, Nergui (b0010) 2010; 1 Chen, T., Guestrin, C., 2016. XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 13-17-Augu, 785–794. Prati, Batista, Silva (b0315) 2015; 45 LeCun, Bengio, Hinton (b0190) 2015; 521 Bigdeli, Pahlavani (b0035) 2016; 52 Ganzeveld, Bouwman, Stehfest, van Vuuren, Eickhout, Lelieveld (b0110) 2010; 115 Phiri, Simwanda, Salekin, Nyirenda, Murayama, Ranagalage (b0305) 2020; 12 Baltrusaitis, Ahuja, Morency (b0025) 2019; 41 Tong, Xia, Lu, Shen, Li, You, Zhang (b0385) 2020; 237 Mao, Wang, Du, Li, Tian, Jia, Zeng, Song, Jiang, Wang (b0255) 2020; 164 Rees, Williams, Vitebsky (b0325) 2003; 85 Symeonakis, Higginbottom, Petroulaki, Rabe (b0380) 2018; 10 Sesnie, Gessler, Finegan, Thessler (b0355) 2008; 112 Zadeh, Chen, Poria, Cambria, Morency (b0420) 2017 Jiang, J., Zheng, L., Luo, F., & Zhang, Z., 2018. Rednet: Residual encoder-decoder network for indoor rgb-d semantic segmentation. arXiv preprint arXiv:1806.01054. Zhou, Kuester, Bochow, Bohn, Brell, Kaufmann (b0445) 2021; 264 van Beijma, Comber, Lamb (b0390) 2014; 149 Ding, Zheng, Lin, Chen, Liu, Li, Bruzzone (b0095) 2022; 19 Grohmann (b0130) 2018; 212 Ortigosa-Hernández, Inza, Lozano (b0285) 2017; 98 Shao, Fu, Fu, Yin (b0360) 2016; 8 Hibbard, Janetos, Van Vuuren, Pongratz, Rose, Betts, Herold, Feddema (b0140) 2010; 30 Cortes, Vapnik (b0080) 1995; 20 Li, Chen, Zhang, Tao, Xiao, Tan (b0205) 2020; 250 Lin, Zhang, Lin, Gamba, Liu (b0235) 2020; 242 Phiri, Morgenroth (b0300) 2017; 9 Imaoka, Kachi, Fujii, Murakami, Hori, Ono, Igarashi, Nakagawa, Oki, Honda, Shimoda (b0160) 2010; 98 Kellenberger, Marcos, Tuia (b0185) 2018; 216 Li, Dong, Fu, Wang, Yu, Gong (b0200) 2020; 237 Nghiem, Balk, Rodriguez, Neumann, Sorichetta, Small, Elvidge (b0270) 2009; 64 Nguyen, Joshi, Clay, Henebry (b0275) 2020; 238 Buda, Maki, Mazurowski (b0050) 2018; 106 Calderón-Loor, Hadjikakou, Bryan (b0055) 2021; 252 Li, Chen, Chen, Shi (b0195) 2022; 60 Johnson, Khoshgoftaar (b0175) 2019; 6 Sica, Pulella, Nannini, Pinheiro, Rizzoli (b0365) 2019; 232 Breiman (b0040) 2001; 45 Chamorro Martinez, Cué La Rosa, Feitosa, Sanches, Happ (b0060) 2021; 171 Schmitt, Hughes, Qiu, Zhu (b0350) 2019; 4 Li, Shi, Zhang, Chen, Wang, Li (b0210) 2021; 175 Olson, Dinerstein, Wikramanayake, Burgess, Powell, Underwood, D'amico, Itoua, Strand, Morrison, Loucks, Allnutt, Ricketts, Kura, Lamoreux, Wettengel, Hedao, Kassem (b0280) 2001; 51 Quin, Pinel-Puyssegur, Nicolas, Loreaux (b0320) 2014; 52 Zhu, Wang, Woodcock (b9000) 2015; 159 Lin, Du, Samat, Li, Wang, Xia (b0230) 2019; 11 El Hajj, Bégué, Guillaume, Martiné (b0100) 2009; 113 Sukawattanavijit, Chen, Zhang (b0370) 2017; 14 Sun, Xiao, Liu, Wang (b0375) 2019 Chen, Zhu, Papandreou, Schroff, Adam (b0065) 2018 Liu, Vogelmann, Zhu, Key, Sleeter, Price, Chen, Cochrane, Eidenshink, Howard, Bliss, Jiang (b0245) 2011; 222 Abu-Mostafa (b0005) 1990; 6 Jun, Ban, Li (b0180) 2014; 514 Ghorbanian, Kakooei, Amani, Mahdavi, Mohammadzadeh, Hasanlou (b0115) 2020; 167 Gong, Wang, Yu, Zhao, Zhao, Liang, Niu, Huang, Fu, Liu, Li, Li, Fu, Liu, Xu, Wang, Cheng, Hu, Yao, Zhang, Zhu, Zhao, Zhang, Zheng, Ji, Zhang, Chen, Yan, Guo, Yu, Wang, Liu, Shi, Zhu, Chen, Yang, Tang, Xu, Giri, Clinton, Zhu, Chen, Chen (b0125) 2013; 34 Li, Zhang, Zhu (b0215) 2021; 51 Pan, Guan, Chen, Yu, Nunes Gonçalves, Marcato Junior, Li (b0295) 2020; 166 Badrinarayanan, Kendall, Cipolla (b0020) 2017; 39 Cui, He, Yao, Wang, Hao, Li, Wu, Zhao, Xia, Li, Cui (b0085) 2021; 13 Wan (10.1016/j.isprsjprs.2022.02.013_b0410) 2019; 16 Phiri (10.1016/j.isprsjprs.2022.02.013_b0300) 2017; 9 Chollet (10.1016/j.isprsjprs.2022.02.013_b0075) 2017 Xu (10.1016/j.isprsjprs.2022.02.013_b0415) 2004; 70 Running (10.1016/j.isprsjprs.2022.02.013_b0345) 2008; 321 van Beijma (10.1016/j.isprsjprs.2022.02.013_b0390) 2014; 149 Buchner (10.1016/j.isprsjprs.2022.02.013_b0045) 2020; 248 Badrinarayanan (10.1016/j.isprsjprs.2022.02.013_b0020) 2017; 39 Baltrusaitis (10.1016/j.isprsjprs.2022.02.013_b0025) 2019; 41 10.1016/j.isprsjprs.2022.02.013_b0135 Liu (10.1016/j.isprsjprs.2022.02.013_b0240) 2021; 258 Ienco (10.1016/j.isprsjprs.2022.02.013_b0155) 2019; 158 Mao (10.1016/j.isprsjprs.2022.02.013_b0255) 2020; 164 Calderón-Loor (10.1016/j.isprsjprs.2022.02.013_b0055) 2021; 252 10.1016/j.isprsjprs.2022.02.013_b0090 Sun (10.1016/j.isprsjprs.2022.02.013_b0375) 2019 Zhou (10.1016/j.isprsjprs.2022.02.013_b0445) 2021; 264 10.1016/j.isprsjprs.2022.02.013_b0170 Sica (10.1016/j.isprsjprs.2022.02.013_b0365) 2019; 232 Liu (10.1016/j.isprsjprs.2022.02.013_b0245) 2011; 222 Ozdarici-Ok (10.1016/j.isprsjprs.2022.02.013_b0290) 2015; 7 Chamorro Martinez (10.1016/j.isprsjprs.2022.02.013_b0060) 2021; 171 Schmitt (10.1016/j.isprsjprs.2022.02.013_b0350) 2019; 4 Abu-Mostafa (10.1016/j.isprsjprs.2022.02.013_b0005) 1990; 6 Ioffe (10.1016/j.isprsjprs.2022.02.013_b0165) 2015 Sukawattanavijit (10.1016/j.isprsjprs.2022.02.013_b0370) 2017; 14 Hird (10.1016/j.isprsjprs.2022.02.013_b0145) 2017; 9 Tong (10.1016/j.isprsjprs.2022.02.013_b0385) 2020; 237 Zadeh (10.1016/j.isprsjprs.2022.02.013_b0420) 2017 Zhang (10.1016/j.isprsjprs.2022.02.013_b0425) 2012; 13 Glorot (10.1016/j.isprsjprs.2022.02.013_b0120) 2011; 15 Jun (10.1016/j.isprsjprs.2022.02.013_b0180) 2014; 514 Ding (10.1016/j.isprsjprs.2022.02.013_b0095) 2022; 19 10.1016/j.isprsjprs.2022.02.013_b0265 Chen (10.1016/j.isprsjprs.2022.02.013_b0065) 2018 Gong (10.1016/j.isprsjprs.2022.02.013_b0125) 2013; 34 El Hajj (10.1016/j.isprsjprs.2022.02.013_b0100) 2009; 113 Zhang (10.1016/j.isprsjprs.2022.02.013_b0430) 2020; 14 Zhao (10.1016/j.isprsjprs.2022.02.013_b0440) 2017 Imaoka (10.1016/j.isprsjprs.2022.02.013_b0160) 2010; 98 Nguyen (10.1016/j.isprsjprs.2022.02.013_b0275) 2020; 238 Hibbard (10.1016/j.isprsjprs.2022.02.013_b0140) 2010; 30 Belenguer-Plomer (10.1016/j.isprsjprs.2022.02.013_b0030) 2021; 260 Prati (10.1016/j.isprsjprs.2022.02.013_b0315) 2015; 45 Rees (10.1016/j.isprsjprs.2022.02.013_b0325) 2003; 85 Robson (10.1016/j.isprsjprs.2022.02.013_b0335) 2015; 170 Hurskainen (10.1016/j.isprsjprs.2022.02.013_b0150) 2019; 233 Li (10.1016/j.isprsjprs.2022.02.013_b0195) 2022; 60 Kellenberger (10.1016/j.isprsjprs.2022.02.013_b0185) 2018; 216 Matikainen (10.1016/j.isprsjprs.2022.02.013_b0260) 2020; 164 Grohmann (10.1016/j.isprsjprs.2022.02.013_b0130) 2018; 212 Frey (10.1016/j.isprsjprs.2022.02.013_b0105) 2012; 124 Rennó (10.1016/j.isprsjprs.2022.02.013_b0330) 2008; 112 Nghiem (10.1016/j.isprsjprs.2022.02.013_b0270) 2009; 64 Cui (10.1016/j.isprsjprs.2022.02.013_b0085) 2021; 13 Li (10.1016/j.isprsjprs.2022.02.013_b0205) 2020; 250 Lin (10.1016/j.isprsjprs.2022.02.013_b0235) 2020; 242 10.1016/j.isprsjprs.2022.02.013_b0435 Cortes (10.1016/j.isprsjprs.2022.02.013_b0080) 1995; 20 Ganzeveld (10.1016/j.isprsjprs.2022.02.013_b0110) 2010; 115 Li (10.1016/j.isprsjprs.2022.02.013_b0215) 2021; 51 10.1016/j.isprsjprs.2022.02.013_b0070 Li (10.1016/j.isprsjprs.2022.02.013_b0200) 2020; 237 van der Maaten (10.1016/j.isprsjprs.2022.02.013_b0395) 2008; 9 Liu (10.1016/j.isprsjprs.2022.02.013_b0250) 2019; 11 Pan (10.1016/j.isprsjprs.2022.02.013_b0295) 2020; 166 Amarsaikhan (10.1016/j.isprsjprs.2022.02.013_b0010) 2010; 1 Sesnie (10.1016/j.isprsjprs.2022.02.013_b0355) 2008; 112 Bigdeli (10.1016/j.isprsjprs.2022.02.013_b0035) 2016; 52 Li (10.1016/j.isprsjprs.2022.02.013_b0220) 2021; 179 Liang (10.1016/j.isprsjprs.2022.02.013_b0225) 2010; 5 Ronneberger (10.1016/j.isprsjprs.2022.02.013_b0340) 2015 LeCun (10.1016/j.isprsjprs.2022.02.013_b0190) 2015; 521 Li (10.1016/j.isprsjprs.2022.02.013_b0210) 2021; 175 Phiri (10.1016/j.isprsjprs.2022.02.013_b0305) 2020; 12 Quin (10.1016/j.isprsjprs.2022.02.013_b0320) 2014; 52 Breiman (10.1016/j.isprsjprs.2022.02.013_b0040) 2001; 45 Poulter (10.1016/j.isprsjprs.2022.02.013_b0310) 2011; 8 Waldner (10.1016/j.isprsjprs.2022.02.013_b0405) 2015; 110 10.1016/j.isprsjprs.2022.02.013_b0400 Johnson (10.1016/j.isprsjprs.2022.02.013_b0175) 2019; 6 Symeonakis (10.1016/j.isprsjprs.2022.02.013_b0380) 2018; 10 Shao (10.1016/j.isprsjprs.2022.02.013_b0360) 2016; 8 Ardila (10.1016/j.isprsjprs.2022.02.013_b0015) 2011; 66 Ortigosa-Hernández (10.1016/j.isprsjprs.2022.02.013_b0285) 2017; 98 Buda (10.1016/j.isprsjprs.2022.02.013_b0050) 2018; 106 Ghorbanian (10.1016/j.isprsjprs.2022.02.013_b0115) 2020; 167 Lin (10.1016/j.isprsjprs.2022.02.013_b0230) 2019; 11 Olson (10.1016/j.isprsjprs.2022.02.013_b0280) 2001; 51 Zhu (10.1016/j.isprsjprs.2022.02.013_b9000) 2015; 159 |
References_xml | – volume: 113 start-page: 2052 year: 2009 end-page: 2061 ident: b0100 article-title: Integrating SPOT-5 time series, crop growth modeling and expert knowledge for monitoring agricultural practices — The case of sugarcane harvest on Reunion Island publication-title: Remote Sens. Environ. – volume: 10 start-page: 499 year: 2018 ident: b0380 article-title: Optimisation of savannah land cover characterisation with optical and SAR data publication-title: Remote Sensing – volume: 237 start-page: 111322 year: 2020 ident: b0385 article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models publication-title: Remote Sens. Environ. – volume: 242 start-page: 111757 year: 2020 ident: b0235 article-title: Incorporating synthetic aperture radar and optical images to investigate the annual dynamics of anthropogenic impervious surface at large scale publication-title: Remote Sens. Environ. – volume: 514 year: 2014 ident: b0180 article-title: Open access to Earth land-cover map publication-title: Nature – volume: 112 start-page: 2145 year: 2008 end-page: 2159 ident: b0355 article-title: Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments publication-title: Remote Sens. Environ. – volume: 19 start-page: 1 year: 2022 end-page: 5 ident: b0095 article-title: MP-ResNet: Multipath Residual Network for the Semantic Segmentation of High-Resolution PolSAR Images publication-title: IEEE Geosci. Remote Sensing Lett. – volume: 12 start-page: 2291 year: 2020 ident: b0305 article-title: Sentinel-2 data for land cover/use mapping: A review publication-title: Remote Sens. – volume: 4 start-page: 145 year: 2019 end-page: 152 ident: b0350 article-title: AGGREGATING CLOUD-FREE SENTINEL-2 IMAGES with GOOGLE EARTH ENGINE publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. – year: 2015 ident: b0165 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift publication-title: 32nd International Conference on Machine Learning, ICML – volume: 212 start-page: 121 year: 2018 end-page: 133 ident: b0130 article-title: Evaluation of TanDEM-X DEMs on selected Brazilian sites: Comparison with SRTM, ASTER GDEM and ALOS AW3D30 publication-title: Remote Sens. Environ. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b0190 article-title: Deep learning publication-title: Nature – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0040 article-title: Random forests publication-title: Mach. Learn. – volume: 175 start-page: 20 year: 2021 end-page: 33 ident: b0210 article-title: Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 233 start-page: 111354 year: 2019 ident: b0150 article-title: Auxiliary datasets improve accuracy of object-based land use/land cover classification in heterogeneous savanna landscapes publication-title: Remote Sens. Environ. – volume: 16 start-page: 1026 year: 2019 end-page: 1030 ident: b0410 article-title: A Post-Classification Comparison Method for SAR and Optical Images Change Detection publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 85 start-page: 441 year: 2003 end-page: 452 ident: b0325 article-title: Mapping land cover change in a reindeer herding area of the Russian Arctic using Landsat TM and ETM+ imagery and indigenous knowledge publication-title: Remote Sens. Environ. – reference: Denize, J., Hubert-Moy, L., Corgne, S., Betbeder, J., & Pottier, E., 2018, July. Identification of winter land use in temperate agricultural landscapes based on Sentinel-1 and 2 Times-Series. In IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium (pp. 8271-8274). IEEE. – volume: 9 start-page: 2579 year: 2008 end-page: 2625 ident: b0395 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 106 start-page: 249 year: 2018 end-page: 259 ident: b0050 article-title: A systematic study of the class imbalance problem in convolutional neural networks publication-title: Neural Networks – reference: Chen, T., Guestrin, C., 2016. XGBoost: A scalable tree boosting system. Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 13-17-Augu, 785–794. – volume: 167 start-page: 276 year: 2020 end-page: 288 ident: b0115 article-title: Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 1 start-page: 83 year: 2010 end-page: 97 ident: b0010 article-title: Fusing high-resolution SAR and optical imagery for improved urban land cover study and classification publication-title: Fusing high-resolution SAR and optical imagery for improved urban land cover study and classification. – year: 2017 ident: b0440 article-title: Pyramid scene parsing network publication-title: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 2017-Janua – volume: 260 start-page: 112468 year: 2021 ident: b0030 article-title: CNN-based burned area mapping using radar and optical data publication-title: Remote Sens. Environ. – start-page: 234 year: 2015 end-page: 241 ident: b0340 article-title: U-net: Convolutional networks for biomedical image segmentation publication-title: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) – volume: 11 start-page: 1397 year: 2019 ident: b0230 article-title: Automatic Updating of Land Cover Maps in Rapidly Urbanizing Regions by Relational Knowledge Transferring from GlobeLand30 publication-title: Remote Sensing – volume: 124 start-page: 832 year: 2012 end-page: 843 ident: b0105 article-title: Compilation of a glacier inventory for the western Himalayas from satellite data: Methods, challenges, and results publication-title: Remote Sens. Environ. – volume: 159 start-page: 269 year: 2015 end-page: 277 ident: b9000 article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and sentinel 2 images publication-title: Remote Sens. Environ. – volume: 158 start-page: 11 year: 2019 end-page: 22 ident: b0155 article-title: Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 149 start-page: 118 year: 2014 end-page: 129 ident: b0390 article-title: Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data publication-title: Remote Sens. Environ. – volume: 70 start-page: 1285 year: 2004 end-page: 1294 ident: b0415 article-title: Snail density prediction for schistosomiasis control using IKONOS and ASTER images publication-title: Photogramm. Eng. Remote Sens. – year: 2017 ident: b0420 article-title: Tensor Fusion Network for Multimodal Sentiment Analysis publication-title: EMNLP 2017 - Conference on Empirical Methods in Natural Language Processing, Proceedings 1103–1114 – reference: Milletari, F., Navab, N., Ahmadi, S.A., 2016. V-Net: Fully convolutional neural networks for volumetric medical image segmentation. Proceedings - 2016 4th International Conference on 3D Vision, 3DV 2016 565–571. – volume: 41 start-page: 423 year: 2019 end-page: 443 ident: b0025 article-title: Multimodal Machine Learning: A Survey and Taxonomy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Hazirbas, C., Ma, L., Domokos, C., on, D.C.-A. conference, 2016, undefined, 2017. Fusenet: Incorporating depth into semantic segmentation via fusion-based cnn architecture. Springer 10111 LNCS, 213–228. – volume: 34 start-page: 2607 year: 2013 end-page: 2654 ident: b0125 article-title: Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data publication-title: Int. J. Remote Sens. – volume: 64 start-page: 367 year: 2009 end-page: 380 ident: b0270 article-title: Observations of urban and suburban environments with global satellite scatterometer data publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 8 start-page: 2027 year: 2011 end-page: 2036 ident: b0310 article-title: Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO 2 airborne fraction publication-title: Biogeosciences – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: b0020 article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 8 start-page: 945 year: 2016 ident: b0360 article-title: Mapping Urban Impervious Surface by Fusing Optical and SAR Data at the Decision Level publication-title: Remote Sensing – volume: 52 start-page: 5349 year: 2014 end-page: 5363 ident: b0320 article-title: MIMOSA: An automatic change detection method for sar time series publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 9 start-page: 967 year: 2017 ident: b0300 article-title: Developments in Landsat Land Cover Classification Methods: A Review publication-title: Remote Sens. – volume: 264 start-page: 112598 year: 2021 ident: b0445 article-title: A knowledge-based, validated classifier for the identification of aliphatic and aromatic plastics by WorldView-3 satellite data publication-title: Remote Sens. Environ. – volume: 30 start-page: 2118 year: 2010 end-page: 2128 ident: b0140 article-title: Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling publication-title: Int. J. Climatol. – volume: 170 start-page: 372 year: 2015 end-page: 387 ident: b0335 article-title: Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment publication-title: Remote Sens. Environ. – year: 2017 ident: b0075 article-title: Xception: Deep learning with depthwise separable convolutions publication-title: Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 2017-Janua, 1800-1807 – reference: von Rueden, L., Mayer, S., Beckh, K., Georgiev, B., Giesselbach, S., Heese, R., ... & Schuecker, J., 2019. Informed Machine Learning--A Taxonomy and Survey of Integrating Knowledge into Learning Systems. arXiv preprint arXiv:1903.12394. – volume: 248 start-page: 111967 year: 2020 ident: b0045 article-title: Land-cover change in the Caucasus Mountains since 1987 based on the topographic correction of multi-temporal Landsat composites publication-title: Remote Sens. Environ. – year: 2019 ident: b0375 article-title: Deep high-resolution representation learning for human pose estimation publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2019-June, 5686–5696 – start-page: 801 year: 2018 end-page: 818 ident: b0065 article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation publication-title: Proceedings of the European Conference on Computer Vision (ECCV) – volume: 6 start-page: 192 year: 1990 end-page: 198 ident: b0005 article-title: Learning from hints in neural networks publication-title: J. Complexity – volume: 60 start-page: 1 year: 2022 end-page: 16 ident: b0195 article-title: Geographical Knowledge-Driven Representation Learning for Remote Sensing Images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 237 start-page: 111563 year: 2020 ident: b0200 article-title: Integrating Google Earth imagery with Landsat data to improve 30-m resolution land cover mapping publication-title: Remote Sens. Environ. – volume: 98 start-page: 717 year: 2010 end-page: 734 ident: b0160 article-title: Global change observation mission (GCOM) for monitoring carbon, water cycles, and climate change publication-title: Proc. IEEE – volume: 164 start-page: 200 year: 2020 end-page: 216 ident: b0260 article-title: Combining single photon and multispectral airborne laser scanning for land cover classification publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 5 start-page: e13575 year: 2010 ident: b0225 article-title: Combining spatial-temporal and phylogenetic analysis approaches for improved understanding on global H5N1 transmission publication-title: PLoS ONE – volume: 13 start-page: 1312 year: 2021 ident: b0085 article-title: Knowledge and spatial pyramid distance-based gated graph attention network for remote sensing semantic segmentation publication-title: Remote Sensing – volume: 252 start-page: 112148 year: 2021 ident: b0055 article-title: High-resolution wall-to-wall land-cover mapping and land change assessment for Australia from 1985 to 2015 publication-title: Remote Sens. Environ. – volume: 179 start-page: 145 year: 2021 end-page: 158 ident: b0220 article-title: Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 166 start-page: 241 year: 2020 end-page: 254 ident: b0295 article-title: Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 52 start-page: 126 year: 2016 end-page: 136 ident: b0035 article-title: High resolution multisensor fusion of SAR, optical and LiDAR data based on crisp vs. fuzzy and feature vs. decision ensemble systems publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 115 year: 2010 ident: b0110 article-title: Impact of future land use and land cover changes on atmospheric chemistry-climate interactions publication-title: J. Geophys. Res. Atmos. – volume: 9 start-page: 1315 year: 2017 ident: b0145 article-title: Google earth engine, open-access satellite data, and machine learning in support of large-area probabilisticwetland mapping publication-title: Remote Sensing – volume: 164 start-page: 11 year: 2020 end-page: 25 ident: b0255 article-title: National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 321 start-page: 652 year: 2008 end-page: 653 ident: b0345 article-title: Climate change: Ecosystem disturbance, carbon, and climate publication-title: Science – volume: 51 start-page: 933 year: 2001 end-page: 938 ident: b0280 article-title: Terrestrial ecoregions of the world: A new map of life on Earth publication-title: Bioscience – volume: 232 start-page: 111277 year: 2019 ident: b0365 article-title: Repeat-pass SAR interferometry for land cover classification: A methodology using Sentinel-1 Short-Time-Series publication-title: Remote Sens. Environ. – volume: 6 start-page: 1 year: 2019 end-page: 54 ident: b0175 article-title: Survey on deep learning with class imbalance publication-title: J. Big Data – volume: 112 start-page: 3469 year: 2008 end-page: 3481 ident: b0330 article-title: HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia publication-title: Remote Sens. Environ. – volume: 14 start-page: 478 year: 2020 end-page: 493 ident: b0430 article-title: Multimodal Intelligence: Representation Learning, Information Fusion, and Applications publication-title: IEEE J. Sel. Top. Sign. Proces. – volume: 222 start-page: 2333 year: 2011 end-page: 2341 ident: b0245 article-title: Estimating California ecosystem carbon change using process model and land cover disturbance data: 1951–2000 publication-title: Ecol. Model. – volume: 110 start-page: 1 year: 2015 end-page: 13 ident: b0405 article-title: Automated annual cropland mapping using knowledge-based temporal features publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 216 start-page: 139 year: 2018 end-page: 153 ident: b0185 article-title: Detecting mammals in UAV images: Best practices to address a substantially imbalanced dataset with deep learning publication-title: Remote Sens. Environ. – volume: 45 start-page: 247 year: 2015 end-page: 270 ident: b0315 article-title: Class imbalance revisited: a new experimental setup to assess the performance of treatment methods publication-title: Knowl. Inf. Syst. – volume: 7 start-page: 5611 year: 2015 end-page: 5638 ident: b0290 article-title: Mapping of agricultural crops from single high-resolution multispectral images-data-driven smoothing vs. parcel-based smoothing publication-title: Remote Sens. – reference: Zhang, Z., Sabuncu, M.R., 2018. Generalized cross entropy loss for training deep neural networks with noisy labels. Advances in Neural Information Processing Systems 2018-Decem, 8778–8788. – volume: 15 start-page: 315 year: 2011 end-page: 323 ident: b0120 article-title: Deep sparse rectifier neural networks publication-title: J. Mach. Learn. Res. – volume: 258 start-page: 112364 year: 2021 ident: b0240 article-title: Production of global daily seamless data cubes and quantification of global land cover change from 1985 to 2020 - iMap World 1.0 publication-title: Remote Sens. Environ. – volume: 11 start-page: 690 year: 2019 ident: b0250 article-title: Integration of convolutional neural networks and object-based post-classification refinement for land use and land cover mapping with optical and SAR data publication-title: Remote Sensing – volume: 51 start-page: 1756 year: 2021 end-page: 1768 ident: b0215 article-title: Error-Tolerant Deep Learning for Remote Sensing Image Scene Classification publication-title: IEEE Trans. Cybern. – volume: 238 start-page: 111017 year: 2020 ident: b0275 article-title: Characterizing land cover/land use from multiple years of Landsat and MODIS time series: A novel approach using land surface phenology modeling and random forest classifier publication-title: Remote Sens. Environ. – volume: 98 start-page: 32 year: 2017 end-page: 38 ident: b0285 article-title: Measuring the class-imbalance extent of multi-class problems publication-title: Pattern Recogn. Lett. – volume: 13 start-page: 693 year: 2012 end-page: 712 ident: b0425 article-title: The application of small unmanned aerial systems for precision agriculture: A review publication-title: Precis. Agric. – volume: 171 start-page: 188 year: 2021 end-page: 201 ident: b0060 article-title: Fully convolutional recurrent networks for multidate crop recognition from multitemporal image sequences publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 66 start-page: 762 year: 2011 end-page: 775 ident: b0015 article-title: Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b0080 article-title: Support-vector networks publication-title: Mach. Learn. – volume: 14 start-page: 284 year: 2017 end-page: 288 ident: b0370 article-title: GA-SVM Algorithm for Improving Land-Cover Classification Using SAR and Optical Remote Sensing Data publication-title: IEEE Geosci. Remote Sens. Lett. – reference: Jiang, J., Zheng, L., Luo, F., & Zhang, Z., 2018. Rednet: Residual encoder-decoder network for indoor rgb-d semantic segmentation. arXiv preprint arXiv:1806.01054. – volume: 250 start-page: 112045 year: 2020 ident: b0205 article-title: Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning publication-title: Remote Sens. Environ. – ident: 10.1016/j.isprsjprs.2022.02.013_b0170 – volume: 1 start-page: 83 issue: 1 year: 2010 ident: 10.1016/j.isprsjprs.2022.02.013_b0010 article-title: Fusing high-resolution SAR and optical imagery for improved urban land cover study and classification publication-title: Fusing high-resolution SAR and optical imagery for improved urban land cover study and classification. – volume: 514 issue: 7523 year: 2014 ident: 10.1016/j.isprsjprs.2022.02.013_b0180 article-title: Open access to Earth land-cover map publication-title: Nature doi: 10.1038/514434c – volume: 106 start-page: 249 year: 2018 ident: 10.1016/j.isprsjprs.2022.02.013_b0050 article-title: A systematic study of the class imbalance problem in convolutional neural networks publication-title: Neural Networks doi: 10.1016/j.neunet.2018.07.011 – volume: 164 start-page: 11 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.013_b0255 article-title: National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.03.020 – volume: 9 start-page: 967 issue: 9 year: 2017 ident: 10.1016/j.isprsjprs.2022.02.013_b0300 article-title: Developments in Landsat Land Cover Classification Methods: A Review publication-title: Remote Sens. doi: 10.3390/rs9090967 – volume: 45 start-page: 247 issue: 1 year: 2015 ident: 10.1016/j.isprsjprs.2022.02.013_b0315 article-title: Class imbalance revisited: a new experimental setup to assess the performance of treatment methods publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-014-0794-3 – volume: 13 start-page: 693 issue: 6 year: 2012 ident: 10.1016/j.isprsjprs.2022.02.013_b0425 article-title: The application of small unmanned aerial systems for precision agriculture: A review publication-title: Precis. Agric. doi: 10.1007/s11119-012-9274-5 – volume: 222 start-page: 2333 issue: 14 year: 2011 ident: 10.1016/j.isprsjprs.2022.02.013_b0245 article-title: Estimating California ecosystem carbon change using process model and land cover disturbance data: 1951–2000 publication-title: Ecol. Model. doi: 10.1016/j.ecolmodel.2011.03.042 – volume: 124 start-page: 832 year: 2012 ident: 10.1016/j.isprsjprs.2022.02.013_b0105 article-title: Compilation of a glacier inventory for the western Himalayas from satellite data: Methods, challenges, and results publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.06.020 – volume: 60 start-page: 1 year: 2022 ident: 10.1016/j.isprsjprs.2022.02.013_b0195 article-title: Geographical Knowledge-Driven Representation Learning for Remote Sensing Images publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2017 ident: 10.1016/j.isprsjprs.2022.02.013_b0440 article-title: Pyramid scene parsing network – ident: 10.1016/j.isprsjprs.2022.02.013_b0090 doi: 10.1109/IGARSS.2018.8517673 – volume: 258 start-page: 112364 year: 2021 ident: 10.1016/j.isprsjprs.2022.02.013_b0240 article-title: Production of global daily seamless data cubes and quantification of global land cover change from 1985 to 2020 - iMap World 1.0 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112364 – volume: 11 start-page: 1397 issue: 12 year: 2019 ident: 10.1016/j.isprsjprs.2022.02.013_b0230 article-title: Automatic Updating of Land Cover Maps in Rapidly Urbanizing Regions by Relational Knowledge Transferring from GlobeLand30 publication-title: Remote Sensing doi: 10.3390/rs11121397 – volume: 6 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.isprsjprs.2022.02.013_b0175 article-title: Survey on deep learning with class imbalance publication-title: J. Big Data doi: 10.1186/s40537-019-0192-5 – volume: 12 start-page: 2291 issue: 14 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.013_b0305 article-title: Sentinel-2 data for land cover/use mapping: A review publication-title: Remote Sens. doi: 10.3390/rs12142291 – volume: 167 start-page: 276 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.013_b0115 article-title: Improved land cover map of Iran using Sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.07.013 – volume: 85 start-page: 441 issue: 4 year: 2003 ident: 10.1016/j.isprsjprs.2022.02.013_b0325 article-title: Mapping land cover change in a reindeer herding area of the Russian Arctic using Landsat TM and ETM+ imagery and indigenous knowledge publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(03)00037-3 – volume: 70 start-page: 1285 issue: 11 year: 2004 ident: 10.1016/j.isprsjprs.2022.02.013_b0415 article-title: Snail density prediction for schistosomiasis control using IKONOS and ASTER images publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.70.11.1285 – volume: 15 start-page: 315 year: 2011 ident: 10.1016/j.isprsjprs.2022.02.013_b0120 article-title: Deep sparse rectifier neural networks publication-title: J. Mach. Learn. Res. – volume: 98 start-page: 32 year: 2017 ident: 10.1016/j.isprsjprs.2022.02.013_b0285 article-title: Measuring the class-imbalance extent of multi-class problems publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2017.08.002 – volume: 110 start-page: 1 year: 2015 ident: 10.1016/j.isprsjprs.2022.02.013_b0405 article-title: Automated annual cropland mapping using knowledge-based temporal features publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2015.09.013 – volume: 16 start-page: 1026 issue: 7 year: 2019 ident: 10.1016/j.isprsjprs.2022.02.013_b0410 article-title: A Post-Classification Comparison Method for SAR and Optical Images Change Detection publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2892432 – year: 2017 ident: 10.1016/j.isprsjprs.2022.02.013_b0075 article-title: Xception: Deep learning with depthwise separable convolutions – volume: 164 start-page: 200 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.013_b0260 article-title: Combining single photon and multispectral airborne laser scanning for land cover classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.04.021 – ident: 10.1016/j.isprsjprs.2022.02.013_b0265 doi: 10.1109/3DV.2016.79 – volume: 52 start-page: 126 year: 2016 ident: 10.1016/j.isprsjprs.2022.02.013_b0035 article-title: High resolution multisensor fusion of SAR, optical and LiDAR data based on crisp vs. fuzzy and feature vs. decision ensemble systems publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.isprsjprs.2022.02.013_b0395 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 52 start-page: 5349 issue: 9 year: 2014 ident: 10.1016/j.isprsjprs.2022.02.013_b0320 article-title: MIMOSA: An automatic change detection method for sar time series publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2013.2288271 – volume: 232 start-page: 111277 year: 2019 ident: 10.1016/j.isprsjprs.2022.02.013_b0365 article-title: Repeat-pass SAR interferometry for land cover classification: A methodology using Sentinel-1 Short-Time-Series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111277 – start-page: 234 year: 2015 ident: 10.1016/j.isprsjprs.2022.02.013_b0340 article-title: U-net: Convolutional networks for biomedical image segmentation – volume: 159 start-page: 269 year: 2015 ident: 10.1016/j.isprsjprs.2022.02.013_b9000 article-title: Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and sentinel 2 images publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.12.014 – volume: 264 start-page: 112598 year: 2021 ident: 10.1016/j.isprsjprs.2022.02.013_b0445 article-title: A knowledge-based, validated classifier for the identification of aliphatic and aromatic plastics by WorldView-3 satellite data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112598 – volume: 112 start-page: 3469 issue: 9 year: 2008 ident: 10.1016/j.isprsjprs.2022.02.013_b0330 article-title: HAND, a new terrain descriptor using SRTM-DEM: Mapping terra-firme rainforest environments in Amazonia publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.03.018 – volume: 13 start-page: 1312 issue: 7 year: 2021 ident: 10.1016/j.isprsjprs.2022.02.013_b0085 article-title: Knowledge and spatial pyramid distance-based gated graph attention network for remote sensing semantic segmentation publication-title: Remote Sensing doi: 10.3390/rs13071312 – volume: 10 start-page: 499 issue: 4 year: 2018 ident: 10.1016/j.isprsjprs.2022.02.013_b0380 article-title: Optimisation of savannah land cover characterisation with optical and SAR data publication-title: Remote Sensing doi: 10.3390/rs10040499 – volume: 34 start-page: 2607 issue: 7 year: 2013 ident: 10.1016/j.isprsjprs.2022.02.013_b0125 article-title: Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2012.748992 – volume: 14 start-page: 284 issue: 3 year: 2017 ident: 10.1016/j.isprsjprs.2022.02.013_b0370 article-title: GA-SVM Algorithm for Improving Land-Cover Classification Using SAR and Optical Remote Sensing Data publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2016.2628406 – volume: 51 start-page: 1756 issue: 4 year: 2021 ident: 10.1016/j.isprsjprs.2022.02.013_b0215 article-title: Error-Tolerant Deep Learning for Remote Sensing Image Scene Classification publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2989241 – volume: 7 start-page: 5611 issue: 5 year: 2015 ident: 10.1016/j.isprsjprs.2022.02.013_b0290 article-title: Mapping of agricultural crops from single high-resolution multispectral images-data-driven smoothing vs. parcel-based smoothing publication-title: Remote Sens. doi: 10.3390/rs70505611 – volume: 233 start-page: 111354 year: 2019 ident: 10.1016/j.isprsjprs.2022.02.013_b0150 article-title: Auxiliary datasets improve accuracy of object-based land use/land cover classification in heterogeneous savanna landscapes publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111354 – volume: 39 start-page: 2481 issue: 12 year: 2017 ident: 10.1016/j.isprsjprs.2022.02.013_b0020 article-title: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – ident: 10.1016/j.isprsjprs.2022.02.013_b0070 doi: 10.1145/2939672.2939785 – volume: 19 start-page: 1 year: 2022 ident: 10.1016/j.isprsjprs.2022.02.013_b0095 article-title: MP-ResNet: Multipath Residual Network for the Semantic Segmentation of High-Resolution PolSAR Images publication-title: IEEE Geosci. Remote Sensing Lett. – volume: 212 start-page: 121 year: 2018 ident: 10.1016/j.isprsjprs.2022.02.013_b0130 article-title: Evaluation of TanDEM-X DEMs on selected Brazilian sites: Comparison with SRTM, ASTER GDEM and ALOS AW3D30 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.04.043 – volume: 5 start-page: e13575 issue: 10 year: 2010 ident: 10.1016/j.isprsjprs.2022.02.013_b0225 article-title: Combining spatial-temporal and phylogenetic analysis approaches for improved understanding on global H5N1 transmission publication-title: PLoS ONE doi: 10.1371/journal.pone.0013575 – volume: 171 start-page: 188 year: 2021 ident: 10.1016/j.isprsjprs.2022.02.013_b0060 article-title: Fully convolutional recurrent networks for multidate crop recognition from multitemporal image sequences publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.11.007 – volume: 66 start-page: 762 issue: 6 year: 2011 ident: 10.1016/j.isprsjprs.2022.02.013_b0015 article-title: Markov-random-field-based super-resolution mapping for identification of urban trees in VHR images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2011.08.002 – year: 2019 ident: 10.1016/j.isprsjprs.2022.02.013_b0375 article-title: Deep high-resolution representation learning for human pose estimation – volume: 115 issue: D23 year: 2010 ident: 10.1016/j.isprsjprs.2022.02.013_b0110 article-title: Impact of future land use and land cover changes on atmospheric chemistry-climate interactions publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2010JD014041 – start-page: 801 year: 2018 ident: 10.1016/j.isprsjprs.2022.02.013_b0065 article-title: Encoder-decoder with atrous separable convolution for semantic image segmentation – year: 2015 ident: 10.1016/j.isprsjprs.2022.02.013_b0165 article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift – volume: 112 start-page: 2145 issue: 5 year: 2008 ident: 10.1016/j.isprsjprs.2022.02.013_b0355 article-title: Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.08.025 – volume: 242 start-page: 111757 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.013_b0235 article-title: Incorporating synthetic aperture radar and optical images to investigate the annual dynamics of anthropogenic impervious surface at large scale publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111757 – volume: 237 start-page: 111322 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.013_b0385 article-title: Land-cover classification with high-resolution remote sensing images using transferable deep models publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111322 – volume: 6 start-page: 192 issue: 2 year: 1990 ident: 10.1016/j.isprsjprs.2022.02.013_b0005 article-title: Learning from hints in neural networks publication-title: J. Complexity doi: 10.1016/0885-064X(90)90006-Y – ident: 10.1016/j.isprsjprs.2022.02.013_b0135 doi: 10.1007/978-3-319-54181-5_14 – volume: 98 start-page: 717 issue: 5 year: 2010 ident: 10.1016/j.isprsjprs.2022.02.013_b0160 article-title: Global change observation mission (GCOM) for monitoring carbon, water cycles, and climate change publication-title: Proc. IEEE doi: 10.1109/JPROC.2009.2036869 – volume: 149 start-page: 118 year: 2014 ident: 10.1016/j.isprsjprs.2022.02.013_b0390 article-title: Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.04.010 – volume: 175 start-page: 20 year: 2021 ident: 10.1016/j.isprsjprs.2022.02.013_b0210 article-title: Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.02.009 – volume: 51 start-page: 933 issue: 11 year: 2001 ident: 10.1016/j.isprsjprs.2022.02.013_b0280 article-title: Terrestrial ecoregions of the world: A new map of life on Earth publication-title: Bioscience doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 – volume: 260 start-page: 112468 year: 2021 ident: 10.1016/j.isprsjprs.2022.02.013_b0030 article-title: CNN-based burned area mapping using radar and optical data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112468 – volume: 8 start-page: 945 issue: 11 year: 2016 ident: 10.1016/j.isprsjprs.2022.02.013_b0360 article-title: Mapping Urban Impervious Surface by Fusing Optical and SAR Data at the Decision Level publication-title: Remote Sensing doi: 10.3390/rs8110945 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.isprsjprs.2022.02.013_b0040 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 158 start-page: 11 year: 2019 ident: 10.1016/j.isprsjprs.2022.02.013_b0155 article-title: Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.09.016 – ident: 10.1016/j.isprsjprs.2022.02.013_b0435 – volume: 41 start-page: 423 issue: 2 year: 2019 ident: 10.1016/j.isprsjprs.2022.02.013_b0025 article-title: Multimodal Machine Learning: A Survey and Taxonomy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2798607 – volume: 166 start-page: 241 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.013_b0295 article-title: Land-cover classification of multispectral LiDAR data using CNN with optimized hyper-parameters publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.05.022 – volume: 8 start-page: 2027 issue: 8 year: 2011 ident: 10.1016/j.isprsjprs.2022.02.013_b0310 article-title: Impacts of land cover and climate data selection on understanding terrestrial carbon dynamics and the CO 2 airborne fraction publication-title: Biogeosciences doi: 10.5194/bg-8-2027-2011 – ident: 10.1016/j.isprsjprs.2022.02.013_b0400 – volume: 216 start-page: 139 year: 2018 ident: 10.1016/j.isprsjprs.2022.02.013_b0185 article-title: Detecting mammals in UAV images: Best practices to address a substantially imbalanced dataset with deep learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.06.028 – volume: 113 start-page: 2052 issue: 10 year: 2009 ident: 10.1016/j.isprsjprs.2022.02.013_b0100 article-title: Integrating SPOT-5 time series, crop growth modeling and expert knowledge for monitoring agricultural practices — The case of sugarcane harvest on Reunion Island publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.04.009 – volume: 238 start-page: 111017 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.013_b0275 article-title: Characterizing land cover/land use from multiple years of Landsat and MODIS time series: A novel approach using land surface phenology modeling and random forest classifier publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.12.016 – volume: 248 start-page: 111967 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.013_b0045 article-title: Land-cover change in the Caucasus Mountains since 1987 based on the topographic correction of multi-temporal Landsat composites publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.111967 – volume: 30 start-page: 2118 year: 2010 ident: 10.1016/j.isprsjprs.2022.02.013_b0140 article-title: Research priorities in land use and land-cover change for the Earth system and integrated assessment modelling publication-title: Int. J. Climatol. doi: 10.1002/joc.2150 – volume: 9 start-page: 1315 issue: 12 year: 2017 ident: 10.1016/j.isprsjprs.2022.02.013_b0145 article-title: Google earth engine, open-access satellite data, and machine learning in support of large-area probabilisticwetland mapping publication-title: Remote Sensing doi: 10.3390/rs9121315 – year: 2017 ident: 10.1016/j.isprsjprs.2022.02.013_b0420 article-title: Tensor Fusion Network for Multimodal Sentiment Analysis – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.isprsjprs.2022.02.013_b0080 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – volume: 250 start-page: 112045 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.013_b0205 article-title: Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112045 – volume: 11 start-page: 690 issue: 6 year: 2019 ident: 10.1016/j.isprsjprs.2022.02.013_b0250 article-title: Integration of convolutional neural networks and object-based post-classification refinement for land use and land cover mapping with optical and SAR data publication-title: Remote Sensing doi: 10.3390/rs11060690 – volume: 321 start-page: 652 issue: 5889 year: 2008 ident: 10.1016/j.isprsjprs.2022.02.013_b0345 article-title: Climate change: Ecosystem disturbance, carbon, and climate publication-title: Science doi: 10.1126/science.1159607 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.isprsjprs.2022.02.013_b0190 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 252 start-page: 112148 year: 2021 ident: 10.1016/j.isprsjprs.2022.02.013_b0055 article-title: High-resolution wall-to-wall land-cover mapping and land change assessment for Australia from 1985 to 2015 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112148 – volume: 179 start-page: 145 year: 2021 ident: 10.1016/j.isprsjprs.2022.02.013_b0220 article-title: Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.08.001 – volume: 64 start-page: 367 issue: 4 year: 2009 ident: 10.1016/j.isprsjprs.2022.02.013_b0270 article-title: Observations of urban and suburban environments with global satellite scatterometer data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.01.004 – volume: 170 start-page: 372 year: 2015 ident: 10.1016/j.isprsjprs.2022.02.013_b0335 article-title: Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.10.001 – volume: 4 start-page: 145 year: 2019 ident: 10.1016/j.isprsjprs.2022.02.013_b0350 article-title: AGGREGATING CLOUD-FREE SENTINEL-2 IMAGES with GOOGLE EARTH ENGINE publication-title: ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. doi: 10.5194/isprs-annals-IV-2-W7-145-2019 – volume: 237 start-page: 111563 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.013_b0200 article-title: Integrating Google Earth imagery with Landsat data to improve 30-m resolution land cover mapping publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111563 – volume: 14 start-page: 478 issue: 3 year: 2020 ident: 10.1016/j.isprsjprs.2022.02.013_b0430 article-title: Multimodal Intelligence: Representation Learning, Information Fusion, and Applications publication-title: IEEE J. Sel. Top. Sign. Proces. doi: 10.1109/JSTSP.2020.2987728 |
SSID | ssj0001568 |
Score | 2.6161127 |
Snippet | Land use and land cover maps provide fundamental information that has been used in different types of studies, ranging from public health to carbon cycling.... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 170 |
SubjectTerms | asymmetry carbon China data collection Deep collaborative network Domain knowledge incorporation image analysis land cover Land cover classification land use and land cover maps Multimodal unitemporal remote sensing photogrammetry public health |
Title | DKDFN: Domain Knowledge-Guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2022.02.013 https://www.proquest.com/docview/2675565847 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELYQDMCAeIq3jMQamji2k7AhSilUdAEktqhxztAK0qptkFiY-OHc5cFLQgxIyZDIjiOffb7P_u6OsUMRaC0RajiJ0pEjBeCUsoF0IJBRog0d3JGD81VXt2_l5Z26m2GntS8M0Sor3V_q9EJbV28aVW82Rv1-49pF6CAoABJ5myhFHuVSBjTKj14_aR5e6Q5HhR0q_Y3j1Z-MxpMB3ggUhSiCd3r-byvUD11dLECtZbZUWY78pPy5FTYD2Spb_BJPcJXNVynNH17W2Fuz02x1j3lz-ITgn3fqvTPnPO-nkPIUYMS_jIJn4DanrTOelcxwjuYsL_iGT8MUG87JOi3iWD3yMaCEgU-I_Z7dc2JH4rdwVnBD1jjRjwqJr7Pb1tnNadupUi44xpfh1DE2Mlb5UiShMD3bk15oLWKuEDyr3CQQQKk6VCBcMH4oIHIluKlORITAxILwN9hsNsxgk_EeqgarbOSlkZZG-wkIHaBFYFxtJcLILabrbo5NFY-c0mI8xjXxbBB_yCcm-cQuXp6_xdyPiqMyJMffVY5rOcbfRleMC8fflQ9qycc49-hApZfBMMdCiLYUmXDB9n8a2GEL9FTygXbZ7HScwx6aOtNkvxjL-2zu5KLT7r4D3zwBcA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6N7mHwgGCAGBtgJF6jJo7tJHub1pWObn1hk_ZmNc55dNrSqm2QeN8fzl1-VBsS2gNS8pLYceSzz_fZ390BfJWJMYqgRpBrkwVKIk0pn6gAE5XlxvHBHTs4n0_M6FJ9v9JXW3Dc-cIwrbLV_Y1Or7V1-6Tf9mZ_MZv1f4QEHSQHQGJvE62TZ7DN0al0D7aPTsejyUYhR41HHJcPuMIjmtdstViubugmrChlHb8ziv-1SP2lrus1aPgKXrbGozhq_u81bGG5Cy8ehBTchZ02q_nP32_gfjAeDCeHYjC_I_wvxt32WfCtmhVYiAJxIR4MhF8ofMW7Z6JsyOGCLFpRUw7v5gU1XLGBWoeyuhVLJCGjWDEBvrwWTJCkb9HEEI4NcmYg1UJ_C5fDk4vjUdBmXQhcrNJ14HzmvI6VzFPppn6qotR7gl0pRl6HeSKRs3XoRIbo4lRiFioMC5PLjLCJRxm_g145L_E9iClpB699FhWZUc7EOUqTkFHgQuMVIck9MF03W9eGJOfMGLe2457d2I18LMvHhnRF8R6Em4qLJirH01UOOznaRwPM0trxdOUvneQtTT8-U5mWOK-oEAEuzVZc8uF_GvgMO6OL8zN7djoZ78NzftPQgw6gt15W-JEsn3X-qR3ZfwCgsQQh |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DKDFN%3A+Domain+Knowledge-Guided+deep+collaborative+fusion+network+for+multimodal+unitemporal+remote+sensing+land+cover+classification&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Li%2C+Yansheng&rft.au=Zhou%2C+Yuhan&rft.au=Zhang%2C+Yongjun&rft.au=Zhong%2C+Liheng&rft.date=2022-04-01&rft.issn=0924-2716&rft.volume=186&rft.spage=170&rft.epage=189&rft_id=info:doi/10.1016%2Fj.isprsjprs.2022.02.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isprsjprs_2022_02_013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |