Pseudo-Hamiltonian neural networks with state-dependent external forces

Hybrid machine learning based on Hamiltonian formulations has recently been successfully demonstrated for simple mechanical systems, both energy conserving and not energy conserving. We introduce a pseudo-Hamiltonian formulation that is a generalization of the Hamiltonian formulation via the port-Ha...

Full description

Saved in:
Bibliographic Details
Published inPhysica. D Vol. 446; p. 133673
Main Authors Eidnes, Sølve, Stasik, Alexander J., Sterud, Camilla, Bøhn, Eivind, Riemer-Sørensen, Signe
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Hybrid machine learning based on Hamiltonian formulations has recently been successfully demonstrated for simple mechanical systems, both energy conserving and not energy conserving. We introduce a pseudo-Hamiltonian formulation that is a generalization of the Hamiltonian formulation via the port-Hamiltonian formulation, and show that pseudo-Hamiltonian neural network models can be used to learn external forces acting on a system. We argue that this property is particularly useful when the external forces are state dependent, in which case it is the pseudo-Hamiltonian structure that facilitates the separation of internal and external forces. Numerical results are provided for a forced and damped mass–spring system and a tank system of higher complexity, and a symmetric fourth-order integration scheme is introduced for improved training on sparse and noisy data. •We present pseudo-Hamiltonian neural networks with state-dependent external forces.•The method is tested for a mass–spring system and a system of tanks and pipes.•The method can be used to learn disturbances on a system, e.g. detection of leaks.•Models learned on a disturbed system can predict future states without disturbances.•A fourth-order symmetric integrator is introduced and outperforms standard methods.
AbstractList Hybrid machine learning based on Hamiltonian formulations has recently been successfully demonstrated for simple mechanical systems, both energy conserving and not energy conserving. We introduce a pseudo-Hamiltonian formulation that is a generalization of the Hamiltonian formulation via the port-Hamiltonian formulation, and show that pseudo-Hamiltonian neural network models can be used to learn external forces acting on a system. We argue that this property is particularly useful when the external forces are state dependent, in which case it is the pseudo-Hamiltonian structure that facilitates the separation of internal and external forces. Numerical results are provided for a forced and damped mass–spring system and a tank system of higher complexity, and a symmetric fourth-order integration scheme is introduced for improved training on sparse and noisy data. •We present pseudo-Hamiltonian neural networks with state-dependent external forces.•The method is tested for a mass–spring system and a system of tanks and pipes.•The method can be used to learn disturbances on a system, e.g. detection of leaks.•Models learned on a disturbed system can predict future states without disturbances.•A fourth-order symmetric integrator is introduced and outperforms standard methods.
ArticleNumber 133673
Author Stasik, Alexander J.
Sterud, Camilla
Bøhn, Eivind
Eidnes, Sølve
Riemer-Sørensen, Signe
Author_xml – sequence: 1
  givenname: Sølve
  orcidid: 0000-0002-1002-3543
  surname: Eidnes
  fullname: Eidnes, Sølve
  email: solve.eidnes@sintef.no
– sequence: 2
  givenname: Alexander J.
  surname: Stasik
  fullname: Stasik, Alexander J.
– sequence: 3
  givenname: Camilla
  surname: Sterud
  fullname: Sterud, Camilla
– sequence: 4
  givenname: Eivind
  surname: Bøhn
  fullname: Bøhn, Eivind
– sequence: 5
  givenname: Signe
  surname: Riemer-Sørensen
  fullname: Riemer-Sørensen, Signe
BookMark eNp9kM1OAjEYRRuDiYA-gZt5gRn7M9NOFy4MUTAh0YWum077TShCS9oi8vYO4NrV3dxzc3MmaOSDB4TuCa4IJvxhXe1Wx2QriimrCGNcsCs0Jq2gZYspHaHx0BIlFa28QZOU1hhjIpgYo_l7gr0N5UJv3SYH77QvPOyj3gyRDyF-peLg8qpIWWcoLezAW_C5gJ8M0Q-1PkQD6RZd93qT4O4vp-jz5fljtiiXb_PX2dOyNKxuc2m6Dihw2dfDF0Ja2WDNDKOcaykk2Fo01jRa267htOk4yEZLw4FyTaysGzZF7LJrYkgpQq920W11PCqC1cmFWquzC3VyoS4uBurxQsFw7dtBVMk48Aasi2CyssH9y_8CwF5sAA
CitedBy_id crossref_primary_10_1007_s11831_023_09954_5
crossref_primary_10_1007_s00466_023_02296_w
crossref_primary_10_1016_j_jcp_2023_112738
crossref_primary_10_1016_j_procir_2023_09_128
crossref_primary_10_1007_s00466_024_02508_x
Cites_doi 10.1093/imanum/2.2.211
10.1103/PhysRevE.104.035310
10.4236/jamp.2021.96088
10.1016/j.automatica.2018.11.013
10.1109/TCST.2010.2094619
10.1016/j.physd.2020.132620
10.1103/PhysRevE.56.6633
10.1016/j.cam.2022.114608
10.1016/j.sysconle.2020.104741
10.1561/2600000002
10.1093/imamci/dnaa018
10.1016/j.neunet.2020.08.017
10.1098/rsta.1999.0363
10.1553/etna_vol56s102
10.1137/110840091
10.1103/PhysRevE.56.6620
10.1007/BF01933583
10.1103/PhysRevE.104.034312
ContentType Journal Article
Copyright 2023 The Author(s)
Copyright_xml – notice: 2023 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.physd.2023.133673
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1872-8022
ExternalDocumentID 10_1016_j_physd_2023_133673
S0167278923000271
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABFNM
ABMAC
ABNEU
ABXDB
ABYKQ
ACAZW
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEKER
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
K-O
KOM
M38
M41
MHUIS
MO0
MVM
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSW
SSZ
T5K
TN5
TWZ
WUQ
XJT
XPP
YNT
YYP
~02
~G-
AAXKI
AAYXX
ADVLN
AFJKZ
CITATION
ID FETCH-LOGICAL-c348t-cbbe2e69f4278118950a3c3266a979ed475dc5aadb5625b6e95a9c6e26a1d9453
IEDL.DBID .~1
ISSN 0167-2789
IngestDate Thu Sep 26 15:56:23 EDT 2024
Fri Feb 23 02:38:48 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Physics-informed machine learning
Pseudo-Hamiltonian neural networks
Hybrid machine learning
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-cbbe2e69f4278118950a3c3266a979ed475dc5aadb5625b6e95a9c6e26a1d9453
ORCID 0000-0002-1002-3543
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0167278923000271
ParticipantIDs crossref_primary_10_1016_j_physd_2023_133673
elsevier_sciencedirect_doi_10_1016_j_physd_2023_133673
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Physica. D
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Van Der Schaft, Jeltsema (b2) 2014; 1
Finzi, Wang, Wilson (b12) 2020; 33
Y.D. Zhong, B. Dey, A. Chakraborty, Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and Control into Deep Learning, in: ICLR 2020 Workshop on Integration of Deep Neural Models and Differential Equations, 2020.
Öttinger, Grmela (b22) 1997; 56
Lee, Trask, Stinis (b36) 2022
Duong, Atanasov (b8) 2021
David, Méhats (b28) 2021
Morandin, Nicodemus, Unger (b20) 2022
Cash, Singhal (b33) 1982; 2
Desai, Mattheakis, Sondak, Protopapas, Roberts (b7) 2021; 104
Matsubara, Ishikawa, Yaguchi (b25) 2020
Hairer, Lubich, Wanner (b31) 2006; vol. 31
Brugnoli, Haine, Serhani, Vasseur (b39) 2021; 9
Y.D. Zhong, B. Dey, A. Chakraborty, Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control, in: International Conference on Learning Representations, 2020.
Grmela, Öttinger (b21) 1997; 56
Cherifi (b17) 2020; 411
Jin, Zhang, Kevrekidis, Karniadakis (b10) 2022
Celledoni, Leone, Murari, Owren (b13) 2023; 417
Cherifi, Goyal, Benner (b19) 2022; 56
Benner, Goyal, Van Dooren (b18) 2020; 143
Zhang, Shin, Karniadakis (b23) 2022; 380
DiPietro, Xiong, Zhu (b34) 2020; 33
McLachlan, Quispel, Robidoux (b14) 1999; 357
Desai, Mattheakis, Roberts (b35) 2021; 104
Duong, Atanasov (b9) 2021
De Persis, Kallesoe (b30) 2011; 19
Van Der Schaft (b15) 2006
R. Pasumarthy, A.J. van der Schaft, On interconnections of infinite dimensional port-Hamiltonian systems, in: Proceedings 16th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2004), 2004, pp. 5–9.
Rashad, Califano, van der Schaft, Stramigioli (b3) 2020; 37
van Bokhoven (b32) 1980; 20
Cardoso-Ribeiro, Brugnoli, Matignon, Lefèvre (b38) 2019
Jin, Zhang, Zhu, Tang, Karniadakis (b27) 2020; 132
Kingma, Ba (b26) 2014
Chen, Matsubara, Yaguchi (b11) 2021; 34
Beattie, Mehrmann, Van Dooren (b16) 2019; 100
Z. Chen, J. Zhang, M. Arjovsky, L. Bottou, Symplectic Recurrent Neural Networks, in: International Conference on Learning Representations, 2019.
Greydanus, Dzamba, Yosinski (b4) 2019
Hamilton (b1) 1834; 124
van der Schaft, Maschke (b29) 2013; 51
van Bokhoven (10.1016/j.physd.2023.133673_b32) 1980; 20
Lee (10.1016/j.physd.2023.133673_b36) 2022
Jin (10.1016/j.physd.2023.133673_b10) 2022
Hairer (10.1016/j.physd.2023.133673_b31) 2006; vol. 31
Van Der Schaft (10.1016/j.physd.2023.133673_b2) 2014; 1
Van Der Schaft (10.1016/j.physd.2023.133673_b15) 2006
Öttinger (10.1016/j.physd.2023.133673_b22) 1997; 56
Finzi (10.1016/j.physd.2023.133673_b12) 2020; 33
Benner (10.1016/j.physd.2023.133673_b18) 2020; 143
David (10.1016/j.physd.2023.133673_b28) 2021
Matsubara (10.1016/j.physd.2023.133673_b25) 2020
Duong (10.1016/j.physd.2023.133673_b9) 2021
Cherifi (10.1016/j.physd.2023.133673_b17) 2020; 411
van der Schaft (10.1016/j.physd.2023.133673_b29) 2013; 51
Brugnoli (10.1016/j.physd.2023.133673_b39) 2021; 9
10.1016/j.physd.2023.133673_b37
Celledoni (10.1016/j.physd.2023.133673_b13) 2023; 417
Cash (10.1016/j.physd.2023.133673_b33) 1982; 2
Desai (10.1016/j.physd.2023.133673_b35) 2021; 104
Cherifi (10.1016/j.physd.2023.133673_b19) 2022; 56
Grmela (10.1016/j.physd.2023.133673_b21) 1997; 56
DiPietro (10.1016/j.physd.2023.133673_b34) 2020; 33
Greydanus (10.1016/j.physd.2023.133673_b4) 2019
De Persis (10.1016/j.physd.2023.133673_b30) 2011; 19
Morandin (10.1016/j.physd.2023.133673_b20) 2022
Zhang (10.1016/j.physd.2023.133673_b23) 2022; 380
Jin (10.1016/j.physd.2023.133673_b27) 2020; 132
Duong (10.1016/j.physd.2023.133673_b8) 2021
McLachlan (10.1016/j.physd.2023.133673_b14) 1999; 357
Hamilton (10.1016/j.physd.2023.133673_b1) 1834; 124
Chen (10.1016/j.physd.2023.133673_b11) 2021; 34
Rashad (10.1016/j.physd.2023.133673_b3) 2020; 37
10.1016/j.physd.2023.133673_b6
Desai (10.1016/j.physd.2023.133673_b7) 2021; 104
10.1016/j.physd.2023.133673_b24
10.1016/j.physd.2023.133673_b5
Beattie (10.1016/j.physd.2023.133673_b16) 2019; 100
Kingma (10.1016/j.physd.2023.133673_b26) 2014
Cardoso-Ribeiro (10.1016/j.physd.2023.133673_b38) 2019
References_xml – volume: 19
  start-page: 1371
  year: 2011
  end-page: 1383
  ident: b30
  article-title: Pressure regulation in nonlinear hydraulic networks by positive and quantized controls
  publication-title: IEEE Trans. Control Syst. Technol.
  contributor:
    fullname: Kallesoe
– start-page: 6881
  year: 2019
  end-page: 6886
  ident: b38
  article-title: Port-Hamiltonian modeling, discretization and feedback control of a circular water tank
  publication-title: 2019 IEEE 58th Conference on Decision and Control
  contributor:
    fullname: Lefèvre
– year: 2021
  ident: b9
  article-title: Learning adaptive control for SE(3) Hamiltonian dynamics
  contributor:
    fullname: Atanasov
– year: 2014
  ident: b26
  article-title: Adam: A method for stochastic optimization
  contributor:
    fullname: Ba
– volume: 2
  start-page: 211
  year: 1982
  end-page: 227
  ident: b33
  article-title: Mono-implicit runge–kutta formulae for the numerical integration of stiff differential systems
  publication-title: IMA J. Numer. Anal.
  contributor:
    fullname: Singhal
– year: 2022
  ident: b10
  article-title: Learning Poisson systems and trajectories of autonomous systems via Poisson neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  contributor:
    fullname: Karniadakis
– volume: 357
  start-page: 1021
  year: 1999
  end-page: 1045
  ident: b14
  article-title: Geometric integration using discrete gradients
  publication-title: R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.
  contributor:
    fullname: Robidoux
– volume: 143
  start-page: 104741, 10
  year: 2020
  ident: b18
  article-title: Identification of port-Hamiltonian systems from frequency response data
  publication-title: Systems Control Lett.
  contributor:
    fullname: Van Dooren
– volume: vol. 31
  start-page: xviii+644
  year: 2006
  ident: b31
  publication-title: Geometric Numerical Integration
  contributor:
    fullname: Wanner
– year: 2022
  ident: b20
  article-title: Port-Hamiltonian dynamic mode decomposition
  contributor:
    fullname: Unger
– volume: 37
  start-page: 1400
  year: 2020
  end-page: 1422
  ident: b3
  article-title: Twenty years of distributed port-Hamiltonian systems: a literature review
  publication-title: IMA J. Math. Control Inform.
  contributor:
    fullname: Stramigioli
– year: 2021
  ident: b28
  article-title: Symplectic learning for Hamiltonian neural networks
  contributor:
    fullname: Méhats
– volume: 132
  start-page: 166
  year: 2020
  end-page: 179
  ident: b27
  article-title: SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems
  publication-title: Neural Netw.
  contributor:
    fullname: Karniadakis
– volume: 124
  start-page: 247
  year: 1834
  end-page: 308
  ident: b1
  article-title: On a general method in dynamics
  publication-title: Philos. Trans. R. Soc.
  contributor:
    fullname: Hamilton
– volume: 9
  start-page: 1278
  year: 2021
  end-page: 1321
  ident: b39
  article-title: Numerical approximation of port-Hamiltonian systems for hyperbolic or parabolic PDEs with boundary control
  publication-title: J. Appl. Math. Phys.
  contributor:
    fullname: Vasseur
– year: 2021
  ident: b8
  article-title: Hamiltonian-based neural ODE networks on the SE(3) manifold for dynamics learning and control
  publication-title: Robotics: Science and Systems
  contributor:
    fullname: Atanasov
– volume: 100
  start-page: 182
  year: 2019
  end-page: 186
  ident: b16
  article-title: Robust port-Hamiltonian representations of passive systems
  publication-title: Automatica J. IFAC
  contributor:
    fullname: Van Dooren
– volume: 56
  start-page: 102
  year: 2022
  end-page: 116
  ident: b19
  article-title: A non-intrusive method to inferring linear port-Hamiltonian realizations using time-domain data
  publication-title: Electron. Trans. Numer. Anal.
  contributor:
    fullname: Benner
– volume: 56
  start-page: 6633
  year: 1997
  ident: b22
  article-title: Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism
  publication-title: Phys. Rev. E
  contributor:
    fullname: Grmela
– year: 2019
  ident: b4
  article-title: Hamiltonian neural networks
  publication-title: Advances in Neural Information Processing Systems, vol. 32
  contributor:
    fullname: Yosinski
– volume: 33
  start-page: 6074
  year: 2020
  end-page: 6085
  ident: b34
  article-title: Sparse symplectically integrated neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Zhu
– volume: 411
  start-page: 132620, 7
  year: 2020
  ident: b17
  article-title: An overview on recent machine learning techniques for port Hamiltonian systems
  publication-title: Physica D
  contributor:
    fullname: Cherifi
– volume: 104
  year: 2021
  ident: b7
  article-title: Port-Hamiltonian neural networks for learning explicit time-dependent dynamical systems
  publication-title: Phys. Rev. E
  contributor:
    fullname: Roberts
– volume: 104
  year: 2021
  ident: b35
  article-title: Variational integrator graph networks for learning energy-conserving dynamical systems
  publication-title: Phys. Rev. E
  contributor:
    fullname: Roberts
– start-page: 65
  year: 2022
  end-page: 80
  ident: b36
  article-title: Structure-preserving sparse identification of nonlinear dynamics for data-driven modeling
  publication-title: Proceedings of Mathematical and Scientific Machine Learning, vol. 190
  contributor:
    fullname: Stinis
– volume: 380
  year: 2022
  ident: b23
  article-title: GFINNs: GENERIC formalism informed neural networks for deterministic and stochastic dynamical systems
  publication-title: Philos. Trans. Roy. Soc. A
  contributor:
    fullname: Karniadakis
– volume: 20
  start-page: 34
  year: 1980
  end-page: 43
  ident: b32
  article-title: Efficient higher order implicit one-step methods for integration of stiff differential equations
  publication-title: BIT
  contributor:
    fullname: van Bokhoven
– volume: 56
  start-page: 6620
  year: 1997
  ident: b21
  article-title: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism
  publication-title: Phys. Rev. E
  contributor:
    fullname: Öttinger
– volume: 34
  year: 2021
  ident: b11
  article-title: Neural symplectic form: Learning Hamiltonian equations on general coordinate systems
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Yaguchi
– volume: 417
  year: 2023
  ident: b13
  article-title: Learning Hamiltonians of constrained mechanical systems
  publication-title: J. Comput. Appl. Math.
  contributor:
    fullname: Owren
– start-page: 13100
  year: 2020
  end-page: 13111
  ident: b25
  article-title: Deep energy-based modeling of discrete-time physics
  publication-title: Advances in Neural Information Processing Systems, vol. 33
  contributor:
    fullname: Yaguchi
– start-page: 1339
  year: 2006
  end-page: 1365
  ident: b15
  article-title: Port-Hamiltonian systems: an introductory survey
  publication-title: Proceedings of the International Congress of Mathematicians, vol. 3
  contributor:
    fullname: Van Der Schaft
– volume: 1
  start-page: 173
  year: 2014
  end-page: 378
  ident: b2
  article-title: Port-Hamiltonian systems theory: An introductory overview
  publication-title: Found. Trends Syst. Control
  contributor:
    fullname: Jeltsema
– volume: 33
  start-page: 13880
  year: 2020
  end-page: 13889
  ident: b12
  article-title: Simplifying Hamiltonian and Lagrangian neural networks via explicit constraints
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Wilson
– volume: 51
  start-page: 906
  year: 2013
  end-page: 937
  ident: b29
  article-title: Port-Hamiltonian systems on graphs
  publication-title: SIAM J. Control Optim.
  contributor:
    fullname: Maschke
– year: 2022
  ident: 10.1016/j.physd.2023.133673_b10
  article-title: Learning Poisson systems and trajectories of autonomous systems via Poisson neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  contributor:
    fullname: Jin
– volume: 2
  start-page: 211
  issue: 2
  year: 1982
  ident: 10.1016/j.physd.2023.133673_b33
  article-title: Mono-implicit runge–kutta formulae for the numerical integration of stiff differential systems
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/2.2.211
  contributor:
    fullname: Cash
– volume: 104
  issue: 3
  year: 2021
  ident: 10.1016/j.physd.2023.133673_b35
  article-title: Variational integrator graph networks for learning energy-conserving dynamical systems
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.104.035310
  contributor:
    fullname: Desai
– start-page: 6881
  year: 2019
  ident: 10.1016/j.physd.2023.133673_b38
  article-title: Port-Hamiltonian modeling, discretization and feedback control of a circular water tank
  contributor:
    fullname: Cardoso-Ribeiro
– volume: 33
  start-page: 6074
  year: 2020
  ident: 10.1016/j.physd.2023.133673_b34
  article-title: Sparse symplectically integrated neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: DiPietro
– volume: 9
  start-page: 1278
  year: 2021
  ident: 10.1016/j.physd.2023.133673_b39
  article-title: Numerical approximation of port-Hamiltonian systems for hyperbolic or parabolic PDEs with boundary control
  publication-title: J. Appl. Math. Phys.
  doi: 10.4236/jamp.2021.96088
  contributor:
    fullname: Brugnoli
– ident: 10.1016/j.physd.2023.133673_b37
– year: 2019
  ident: 10.1016/j.physd.2023.133673_b4
  article-title: Hamiltonian neural networks
  contributor:
    fullname: Greydanus
– volume: vol. 31
  start-page: xviii+644
  year: 2006
  ident: 10.1016/j.physd.2023.133673_b31
  contributor:
    fullname: Hairer
– ident: 10.1016/j.physd.2023.133673_b6
– year: 2021
  ident: 10.1016/j.physd.2023.133673_b9
  contributor:
    fullname: Duong
– start-page: 13100
  year: 2020
  ident: 10.1016/j.physd.2023.133673_b25
  article-title: Deep energy-based modeling of discrete-time physics
  contributor:
    fullname: Matsubara
– year: 2021
  ident: 10.1016/j.physd.2023.133673_b28
  contributor:
    fullname: David
– volume: 100
  start-page: 182
  year: 2019
  ident: 10.1016/j.physd.2023.133673_b16
  article-title: Robust port-Hamiltonian representations of passive systems
  publication-title: Automatica J. IFAC
  doi: 10.1016/j.automatica.2018.11.013
  contributor:
    fullname: Beattie
– year: 2014
  ident: 10.1016/j.physd.2023.133673_b26
  contributor:
    fullname: Kingma
– volume: 19
  start-page: 1371
  issue: 6
  year: 2011
  ident: 10.1016/j.physd.2023.133673_b30
  article-title: Pressure regulation in nonlinear hydraulic networks by positive and quantized controls
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2010.2094619
  contributor:
    fullname: De Persis
– volume: 411
  start-page: 132620, 7
  year: 2020
  ident: 10.1016/j.physd.2023.133673_b17
  article-title: An overview on recent machine learning techniques for port Hamiltonian systems
  publication-title: Physica D
  doi: 10.1016/j.physd.2020.132620
  contributor:
    fullname: Cherifi
– volume: 56
  start-page: 6633
  issue: 6
  year: 1997
  ident: 10.1016/j.physd.2023.133673_b22
  article-title: Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.56.6633
  contributor:
    fullname: Öttinger
– volume: 34
  year: 2021
  ident: 10.1016/j.physd.2023.133673_b11
  article-title: Neural symplectic form: Learning Hamiltonian equations on general coordinate systems
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Chen
– volume: 417
  year: 2023
  ident: 10.1016/j.physd.2023.133673_b13
  article-title: Learning Hamiltonians of constrained mechanical systems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2022.114608
  contributor:
    fullname: Celledoni
– start-page: 1339
  year: 2006
  ident: 10.1016/j.physd.2023.133673_b15
  article-title: Port-Hamiltonian systems: an introductory survey
  contributor:
    fullname: Van Der Schaft
– volume: 143
  start-page: 104741, 10
  year: 2020
  ident: 10.1016/j.physd.2023.133673_b18
  article-title: Identification of port-Hamiltonian systems from frequency response data
  publication-title: Systems Control Lett.
  doi: 10.1016/j.sysconle.2020.104741
  contributor:
    fullname: Benner
– volume: 1
  start-page: 173
  issue: 2–3
  year: 2014
  ident: 10.1016/j.physd.2023.133673_b2
  article-title: Port-Hamiltonian systems theory: An introductory overview
  publication-title: Found. Trends Syst. Control
  doi: 10.1561/2600000002
  contributor:
    fullname: Van Der Schaft
– volume: 37
  start-page: 1400
  issue: 4
  year: 2020
  ident: 10.1016/j.physd.2023.133673_b3
  article-title: Twenty years of distributed port-Hamiltonian systems: a literature review
  publication-title: IMA J. Math. Control Inform.
  doi: 10.1093/imamci/dnaa018
  contributor:
    fullname: Rashad
– volume: 380
  issue: 2229
  year: 2022
  ident: 10.1016/j.physd.2023.133673_b23
  article-title: GFINNs: GENERIC formalism informed neural networks for deterministic and stochastic dynamical systems
  publication-title: Philos. Trans. Roy. Soc. A
  contributor:
    fullname: Zhang
– volume: 33
  start-page: 13880
  year: 2020
  ident: 10.1016/j.physd.2023.133673_b12
  article-title: Simplifying Hamiltonian and Lagrangian neural networks via explicit constraints
  publication-title: Adv. Neural Inf. Process. Syst.
  contributor:
    fullname: Finzi
– year: 2022
  ident: 10.1016/j.physd.2023.133673_b20
  contributor:
    fullname: Morandin
– year: 2021
  ident: 10.1016/j.physd.2023.133673_b8
  article-title: Hamiltonian-based neural ODE networks on the SE(3) manifold for dynamics learning and control
  contributor:
    fullname: Duong
– volume: 132
  start-page: 166
  year: 2020
  ident: 10.1016/j.physd.2023.133673_b27
  article-title: SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.08.017
  contributor:
    fullname: Jin
– ident: 10.1016/j.physd.2023.133673_b5
– volume: 357
  start-page: 1021
  issue: 1754
  year: 1999
  ident: 10.1016/j.physd.2023.133673_b14
  article-title: Geometric integration using discrete gradients
  publication-title: R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci.
  doi: 10.1098/rsta.1999.0363
  contributor:
    fullname: McLachlan
– volume: 56
  start-page: 102
  year: 2022
  ident: 10.1016/j.physd.2023.133673_b19
  article-title: A non-intrusive method to inferring linear port-Hamiltonian realizations using time-domain data
  publication-title: Electron. Trans. Numer. Anal.
  doi: 10.1553/etna_vol56s102
  contributor:
    fullname: Cherifi
– volume: 51
  start-page: 906
  issue: 2
  year: 2013
  ident: 10.1016/j.physd.2023.133673_b29
  article-title: Port-Hamiltonian systems on graphs
  publication-title: SIAM J. Control Optim.
  doi: 10.1137/110840091
  contributor:
    fullname: van der Schaft
– volume: 56
  start-page: 6620
  issue: 6
  year: 1997
  ident: 10.1016/j.physd.2023.133673_b21
  article-title: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.56.6620
  contributor:
    fullname: Grmela
– volume: 124
  start-page: 247
  year: 1834
  ident: 10.1016/j.physd.2023.133673_b1
  article-title: On a general method in dynamics
  publication-title: Philos. Trans. R. Soc.
  contributor:
    fullname: Hamilton
– start-page: 65
  year: 2022
  ident: 10.1016/j.physd.2023.133673_b36
  article-title: Structure-preserving sparse identification of nonlinear dynamics for data-driven modeling
  contributor:
    fullname: Lee
– volume: 20
  start-page: 34
  issue: 1
  year: 1980
  ident: 10.1016/j.physd.2023.133673_b32
  article-title: Efficient higher order implicit one-step methods for integration of stiff differential equations
  publication-title: BIT
  doi: 10.1007/BF01933583
  contributor:
    fullname: van Bokhoven
– volume: 104
  year: 2021
  ident: 10.1016/j.physd.2023.133673_b7
  article-title: Port-Hamiltonian neural networks for learning explicit time-dependent dynamical systems
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.104.034312
  contributor:
    fullname: Desai
– ident: 10.1016/j.physd.2023.133673_b24
SSID ssj0001737
Score 2.4706602
Snippet Hybrid machine learning based on Hamiltonian formulations has recently been successfully demonstrated for simple mechanical systems, both energy conserving and...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 133673
SubjectTerms Hybrid machine learning
Physics-informed machine learning
Pseudo-Hamiltonian neural networks
Title Pseudo-Hamiltonian neural networks with state-dependent external forces
URI https://dx.doi.org/10.1016/j.physd.2023.133673
Volume 446
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KRdCDaFWsHyUHj6YfyWY3eyzFGhWKoIXewu5mA_WQFpte_e3ObBKsIB48JmRDmF1m3kzevAG4VRi1Me6EvpUxJihCKV8LzHmYMRjfmPuTRWyLGU_m7GkRLVowaXphiFZZ-_7KpztvXd8Z1NYcrJfLwSsR6KmPE0E0JVeugx3DH57p_uc3zWMkKt1M0vempxvlIcfxouoByYUGYR9zNS7C36PTTsSZHsNRDRW9cfU1J9CyRQcOdwQEO7DvCJxmcwoPLxu7zVZ-QgULxHO46x5pVeILiorpvfGo5uq5DiK_mX1beo0MtIfoFX3GGcyn92-TxK-HJPgmZHHpG61tYLnMaWYGZgsyGqrQICjjSgppMyaizERKZZpSHc2tjJQ03AZcjTLJovAc2sWqsBfg5SrjQ5OL2KqQKRPoIM6D2CIg0CzWgnXhrjFOuq60MNKGJPaeOlumZMu0smUXeGPA9MeWpuit_1p4-d-FV3BAVxWx5hra5cfW3iBmKHXPHYoe7I0fn5PZFy7EwLc
link.rule.ids 315,783,787,4509,24128,27936,27937,45597,45691
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEJ0QiFEPRlEjfvbg0Qq02233SIhYBImJkHDb7G6XBA-FSPn_zvTDYGI8eG2zTTO7nXlv--YtwL3Cqo11x3etiJCghEq5OkTOw4zB-sbyP1mktpjweMZe5sG8Bv2qF4ZklWXuL3J6nq3LK-0ymu31ctl-JwE99XEiiCZyhRSogWhA4NfZ6A1H8eQ7IXfDwjqTLL5pQGU-lMu8aAOBHEM9_xHpGg_93wvUTtEZHMNRiRadXvFCJ1CzaRMOdzwEm7CXazjN5hSe3zZ2m6zcmPYsENLhxDtkV4kPSAux98ahbVcnbyJyq-NvM6dygnYQwGLaOIPZ4Gnaj93ynATX-CzKXKO19SwXCzo2AwmDCDrKN4jLuBKhsAkLg8QESiWa2I7mVgRKGG49rrqJYIF_DvV0ldoLcBYq4R2zCCOrfKaMp71o4UUWMYFmkQ5ZCx6q4Mh1YYchK53Yh8xjKSmWsohlC3gVQPljViUm7L8GXv534B3sx9PXsRwPJ6MrOKA7hc7mGurZ59beIITI9G25RL4A5WbDaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudo-Hamiltonian+neural+networks+with+state-dependent+external+forces&rft.jtitle=Physica.+D&rft.au=Eidnes%2C+S%C3%B8lve&rft.au=Stasik%2C+Alexander+J.&rft.au=Sterud%2C+Camilla&rft.au=B%C3%B8hn%2C+Eivind&rft.date=2023-04-01&rft.pub=Elsevier+B.V&rft.issn=0167-2789&rft.eissn=1872-8022&rft.volume=446&rft_id=info:doi/10.1016%2Fj.physd.2023.133673&rft.externalDocID=S0167278923000271
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon