Pseudo-Hamiltonian neural networks with state-dependent external forces
Hybrid machine learning based on Hamiltonian formulations has recently been successfully demonstrated for simple mechanical systems, both energy conserving and not energy conserving. We introduce a pseudo-Hamiltonian formulation that is a generalization of the Hamiltonian formulation via the port-Ha...
Saved in:
Published in | Physica. D Vol. 446; p. 133673 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.04.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Hybrid machine learning based on Hamiltonian formulations has recently been successfully demonstrated for simple mechanical systems, both energy conserving and not energy conserving. We introduce a pseudo-Hamiltonian formulation that is a generalization of the Hamiltonian formulation via the port-Hamiltonian formulation, and show that pseudo-Hamiltonian neural network models can be used to learn external forces acting on a system. We argue that this property is particularly useful when the external forces are state dependent, in which case it is the pseudo-Hamiltonian structure that facilitates the separation of internal and external forces. Numerical results are provided for a forced and damped mass–spring system and a tank system of higher complexity, and a symmetric fourth-order integration scheme is introduced for improved training on sparse and noisy data.
•We present pseudo-Hamiltonian neural networks with state-dependent external forces.•The method is tested for a mass–spring system and a system of tanks and pipes.•The method can be used to learn disturbances on a system, e.g. detection of leaks.•Models learned on a disturbed system can predict future states without disturbances.•A fourth-order symmetric integrator is introduced and outperforms standard methods. |
---|---|
AbstractList | Hybrid machine learning based on Hamiltonian formulations has recently been successfully demonstrated for simple mechanical systems, both energy conserving and not energy conserving. We introduce a pseudo-Hamiltonian formulation that is a generalization of the Hamiltonian formulation via the port-Hamiltonian formulation, and show that pseudo-Hamiltonian neural network models can be used to learn external forces acting on a system. We argue that this property is particularly useful when the external forces are state dependent, in which case it is the pseudo-Hamiltonian structure that facilitates the separation of internal and external forces. Numerical results are provided for a forced and damped mass–spring system and a tank system of higher complexity, and a symmetric fourth-order integration scheme is introduced for improved training on sparse and noisy data.
•We present pseudo-Hamiltonian neural networks with state-dependent external forces.•The method is tested for a mass–spring system and a system of tanks and pipes.•The method can be used to learn disturbances on a system, e.g. detection of leaks.•Models learned on a disturbed system can predict future states without disturbances.•A fourth-order symmetric integrator is introduced and outperforms standard methods. |
ArticleNumber | 133673 |
Author | Stasik, Alexander J. Sterud, Camilla Bøhn, Eivind Eidnes, Sølve Riemer-Sørensen, Signe |
Author_xml | – sequence: 1 givenname: Sølve orcidid: 0000-0002-1002-3543 surname: Eidnes fullname: Eidnes, Sølve email: solve.eidnes@sintef.no – sequence: 2 givenname: Alexander J. surname: Stasik fullname: Stasik, Alexander J. – sequence: 3 givenname: Camilla surname: Sterud fullname: Sterud, Camilla – sequence: 4 givenname: Eivind surname: Bøhn fullname: Bøhn, Eivind – sequence: 5 givenname: Signe surname: Riemer-Sørensen fullname: Riemer-Sørensen, Signe |
BookMark | eNp9kM1OAjEYRRuDiYA-gZt5gRn7M9NOFy4MUTAh0YWum077TShCS9oi8vYO4NrV3dxzc3MmaOSDB4TuCa4IJvxhXe1Wx2QriimrCGNcsCs0Jq2gZYspHaHx0BIlFa28QZOU1hhjIpgYo_l7gr0N5UJv3SYH77QvPOyj3gyRDyF-peLg8qpIWWcoLezAW_C5gJ8M0Q-1PkQD6RZd93qT4O4vp-jz5fljtiiXb_PX2dOyNKxuc2m6Dihw2dfDF0Ja2WDNDKOcaykk2Fo01jRa267htOk4yEZLw4FyTaysGzZF7LJrYkgpQq920W11PCqC1cmFWquzC3VyoS4uBurxQsFw7dtBVMk48Aasi2CyssH9y_8CwF5sAA |
CitedBy_id | crossref_primary_10_1007_s11831_023_09954_5 crossref_primary_10_1007_s00466_023_02296_w crossref_primary_10_1016_j_jcp_2023_112738 crossref_primary_10_1016_j_procir_2023_09_128 crossref_primary_10_1007_s00466_024_02508_x |
Cites_doi | 10.1093/imanum/2.2.211 10.1103/PhysRevE.104.035310 10.4236/jamp.2021.96088 10.1016/j.automatica.2018.11.013 10.1109/TCST.2010.2094619 10.1016/j.physd.2020.132620 10.1103/PhysRevE.56.6633 10.1016/j.cam.2022.114608 10.1016/j.sysconle.2020.104741 10.1561/2600000002 10.1093/imamci/dnaa018 10.1016/j.neunet.2020.08.017 10.1098/rsta.1999.0363 10.1553/etna_vol56s102 10.1137/110840091 10.1103/PhysRevE.56.6620 10.1007/BF01933583 10.1103/PhysRevE.104.034312 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) |
Copyright_xml | – notice: 2023 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.physd.2023.133673 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1872-8022 |
ExternalDocumentID | 10_1016_j_physd_2023_133673 S0167278923000271 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABFNM ABMAC ABNEU ABXDB ABYKQ ACAZW ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEKER AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HMV HVGLF HZ~ H~9 IHE J1W K-O KOM M38 M41 MHUIS MO0 MVM N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSW SSZ T5K TN5 TWZ WUQ XJT XPP YNT YYP ~02 ~G- AAXKI AAYXX ADVLN AFJKZ CITATION |
ID | FETCH-LOGICAL-c348t-cbbe2e69f4278118950a3c3266a979ed475dc5aadb5625b6e95a9c6e26a1d9453 |
IEDL.DBID | .~1 |
ISSN | 0167-2789 |
IngestDate | Thu Sep 26 15:56:23 EDT 2024 Fri Feb 23 02:38:48 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Physics-informed machine learning Pseudo-Hamiltonian neural networks Hybrid machine learning |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-cbbe2e69f4278118950a3c3266a979ed475dc5aadb5625b6e95a9c6e26a1d9453 |
ORCID | 0000-0002-1002-3543 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0167278923000271 |
ParticipantIDs | crossref_primary_10_1016_j_physd_2023_133673 elsevier_sciencedirect_doi_10_1016_j_physd_2023_133673 |
PublicationCentury | 2000 |
PublicationDate | April 2023 2023-04-00 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
PublicationDecade | 2020 |
PublicationTitle | Physica. D |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Van Der Schaft, Jeltsema (b2) 2014; 1 Finzi, Wang, Wilson (b12) 2020; 33 Y.D. Zhong, B. Dey, A. Chakraborty, Dissipative SymODEN: Encoding Hamiltonian Dynamics with Dissipation and Control into Deep Learning, in: ICLR 2020 Workshop on Integration of Deep Neural Models and Differential Equations, 2020. Öttinger, Grmela (b22) 1997; 56 Lee, Trask, Stinis (b36) 2022 Duong, Atanasov (b8) 2021 David, Méhats (b28) 2021 Morandin, Nicodemus, Unger (b20) 2022 Cash, Singhal (b33) 1982; 2 Desai, Mattheakis, Sondak, Protopapas, Roberts (b7) 2021; 104 Matsubara, Ishikawa, Yaguchi (b25) 2020 Hairer, Lubich, Wanner (b31) 2006; vol. 31 Brugnoli, Haine, Serhani, Vasseur (b39) 2021; 9 Y.D. Zhong, B. Dey, A. Chakraborty, Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control, in: International Conference on Learning Representations, 2020. Grmela, Öttinger (b21) 1997; 56 Cherifi (b17) 2020; 411 Jin, Zhang, Kevrekidis, Karniadakis (b10) 2022 Celledoni, Leone, Murari, Owren (b13) 2023; 417 Cherifi, Goyal, Benner (b19) 2022; 56 Benner, Goyal, Van Dooren (b18) 2020; 143 Zhang, Shin, Karniadakis (b23) 2022; 380 DiPietro, Xiong, Zhu (b34) 2020; 33 McLachlan, Quispel, Robidoux (b14) 1999; 357 Desai, Mattheakis, Roberts (b35) 2021; 104 Duong, Atanasov (b9) 2021 De Persis, Kallesoe (b30) 2011; 19 Van Der Schaft (b15) 2006 R. Pasumarthy, A.J. van der Schaft, On interconnections of infinite dimensional port-Hamiltonian systems, in: Proceedings 16th International Symposium on Mathematical Theory of Networks and Systems (MTNS 2004), 2004, pp. 5–9. Rashad, Califano, van der Schaft, Stramigioli (b3) 2020; 37 van Bokhoven (b32) 1980; 20 Cardoso-Ribeiro, Brugnoli, Matignon, Lefèvre (b38) 2019 Jin, Zhang, Zhu, Tang, Karniadakis (b27) 2020; 132 Kingma, Ba (b26) 2014 Chen, Matsubara, Yaguchi (b11) 2021; 34 Beattie, Mehrmann, Van Dooren (b16) 2019; 100 Z. Chen, J. Zhang, M. Arjovsky, L. Bottou, Symplectic Recurrent Neural Networks, in: International Conference on Learning Representations, 2019. Greydanus, Dzamba, Yosinski (b4) 2019 Hamilton (b1) 1834; 124 van der Schaft, Maschke (b29) 2013; 51 van Bokhoven (10.1016/j.physd.2023.133673_b32) 1980; 20 Lee (10.1016/j.physd.2023.133673_b36) 2022 Jin (10.1016/j.physd.2023.133673_b10) 2022 Hairer (10.1016/j.physd.2023.133673_b31) 2006; vol. 31 Van Der Schaft (10.1016/j.physd.2023.133673_b2) 2014; 1 Van Der Schaft (10.1016/j.physd.2023.133673_b15) 2006 Öttinger (10.1016/j.physd.2023.133673_b22) 1997; 56 Finzi (10.1016/j.physd.2023.133673_b12) 2020; 33 Benner (10.1016/j.physd.2023.133673_b18) 2020; 143 David (10.1016/j.physd.2023.133673_b28) 2021 Matsubara (10.1016/j.physd.2023.133673_b25) 2020 Duong (10.1016/j.physd.2023.133673_b9) 2021 Cherifi (10.1016/j.physd.2023.133673_b17) 2020; 411 van der Schaft (10.1016/j.physd.2023.133673_b29) 2013; 51 Brugnoli (10.1016/j.physd.2023.133673_b39) 2021; 9 10.1016/j.physd.2023.133673_b37 Celledoni (10.1016/j.physd.2023.133673_b13) 2023; 417 Cash (10.1016/j.physd.2023.133673_b33) 1982; 2 Desai (10.1016/j.physd.2023.133673_b35) 2021; 104 Cherifi (10.1016/j.physd.2023.133673_b19) 2022; 56 Grmela (10.1016/j.physd.2023.133673_b21) 1997; 56 DiPietro (10.1016/j.physd.2023.133673_b34) 2020; 33 Greydanus (10.1016/j.physd.2023.133673_b4) 2019 De Persis (10.1016/j.physd.2023.133673_b30) 2011; 19 Morandin (10.1016/j.physd.2023.133673_b20) 2022 Zhang (10.1016/j.physd.2023.133673_b23) 2022; 380 Jin (10.1016/j.physd.2023.133673_b27) 2020; 132 Duong (10.1016/j.physd.2023.133673_b8) 2021 McLachlan (10.1016/j.physd.2023.133673_b14) 1999; 357 Hamilton (10.1016/j.physd.2023.133673_b1) 1834; 124 Chen (10.1016/j.physd.2023.133673_b11) 2021; 34 Rashad (10.1016/j.physd.2023.133673_b3) 2020; 37 10.1016/j.physd.2023.133673_b6 Desai (10.1016/j.physd.2023.133673_b7) 2021; 104 10.1016/j.physd.2023.133673_b24 10.1016/j.physd.2023.133673_b5 Beattie (10.1016/j.physd.2023.133673_b16) 2019; 100 Kingma (10.1016/j.physd.2023.133673_b26) 2014 Cardoso-Ribeiro (10.1016/j.physd.2023.133673_b38) 2019 |
References_xml | – volume: 19 start-page: 1371 year: 2011 end-page: 1383 ident: b30 article-title: Pressure regulation in nonlinear hydraulic networks by positive and quantized controls publication-title: IEEE Trans. Control Syst. Technol. contributor: fullname: Kallesoe – start-page: 6881 year: 2019 end-page: 6886 ident: b38 article-title: Port-Hamiltonian modeling, discretization and feedback control of a circular water tank publication-title: 2019 IEEE 58th Conference on Decision and Control contributor: fullname: Lefèvre – year: 2021 ident: b9 article-title: Learning adaptive control for SE(3) Hamiltonian dynamics contributor: fullname: Atanasov – year: 2014 ident: b26 article-title: Adam: A method for stochastic optimization contributor: fullname: Ba – volume: 2 start-page: 211 year: 1982 end-page: 227 ident: b33 article-title: Mono-implicit runge–kutta formulae for the numerical integration of stiff differential systems publication-title: IMA J. Numer. Anal. contributor: fullname: Singhal – year: 2022 ident: b10 article-title: Learning Poisson systems and trajectories of autonomous systems via Poisson neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. contributor: fullname: Karniadakis – volume: 357 start-page: 1021 year: 1999 end-page: 1045 ident: b14 article-title: Geometric integration using discrete gradients publication-title: R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. contributor: fullname: Robidoux – volume: 143 start-page: 104741, 10 year: 2020 ident: b18 article-title: Identification of port-Hamiltonian systems from frequency response data publication-title: Systems Control Lett. contributor: fullname: Van Dooren – volume: vol. 31 start-page: xviii+644 year: 2006 ident: b31 publication-title: Geometric Numerical Integration contributor: fullname: Wanner – year: 2022 ident: b20 article-title: Port-Hamiltonian dynamic mode decomposition contributor: fullname: Unger – volume: 37 start-page: 1400 year: 2020 end-page: 1422 ident: b3 article-title: Twenty years of distributed port-Hamiltonian systems: a literature review publication-title: IMA J. Math. Control Inform. contributor: fullname: Stramigioli – year: 2021 ident: b28 article-title: Symplectic learning for Hamiltonian neural networks contributor: fullname: Méhats – volume: 132 start-page: 166 year: 2020 end-page: 179 ident: b27 article-title: SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems publication-title: Neural Netw. contributor: fullname: Karniadakis – volume: 124 start-page: 247 year: 1834 end-page: 308 ident: b1 article-title: On a general method in dynamics publication-title: Philos. Trans. R. Soc. contributor: fullname: Hamilton – volume: 9 start-page: 1278 year: 2021 end-page: 1321 ident: b39 article-title: Numerical approximation of port-Hamiltonian systems for hyperbolic or parabolic PDEs with boundary control publication-title: J. Appl. Math. Phys. contributor: fullname: Vasseur – year: 2021 ident: b8 article-title: Hamiltonian-based neural ODE networks on the SE(3) manifold for dynamics learning and control publication-title: Robotics: Science and Systems contributor: fullname: Atanasov – volume: 100 start-page: 182 year: 2019 end-page: 186 ident: b16 article-title: Robust port-Hamiltonian representations of passive systems publication-title: Automatica J. IFAC contributor: fullname: Van Dooren – volume: 56 start-page: 102 year: 2022 end-page: 116 ident: b19 article-title: A non-intrusive method to inferring linear port-Hamiltonian realizations using time-domain data publication-title: Electron. Trans. Numer. Anal. contributor: fullname: Benner – volume: 56 start-page: 6633 year: 1997 ident: b22 article-title: Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism publication-title: Phys. Rev. E contributor: fullname: Grmela – year: 2019 ident: b4 article-title: Hamiltonian neural networks publication-title: Advances in Neural Information Processing Systems, vol. 32 contributor: fullname: Yosinski – volume: 33 start-page: 6074 year: 2020 end-page: 6085 ident: b34 article-title: Sparse symplectically integrated neural networks publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Zhu – volume: 411 start-page: 132620, 7 year: 2020 ident: b17 article-title: An overview on recent machine learning techniques for port Hamiltonian systems publication-title: Physica D contributor: fullname: Cherifi – volume: 104 year: 2021 ident: b7 article-title: Port-Hamiltonian neural networks for learning explicit time-dependent dynamical systems publication-title: Phys. Rev. E contributor: fullname: Roberts – volume: 104 year: 2021 ident: b35 article-title: Variational integrator graph networks for learning energy-conserving dynamical systems publication-title: Phys. Rev. E contributor: fullname: Roberts – start-page: 65 year: 2022 end-page: 80 ident: b36 article-title: Structure-preserving sparse identification of nonlinear dynamics for data-driven modeling publication-title: Proceedings of Mathematical and Scientific Machine Learning, vol. 190 contributor: fullname: Stinis – volume: 380 year: 2022 ident: b23 article-title: GFINNs: GENERIC formalism informed neural networks for deterministic and stochastic dynamical systems publication-title: Philos. Trans. Roy. Soc. A contributor: fullname: Karniadakis – volume: 20 start-page: 34 year: 1980 end-page: 43 ident: b32 article-title: Efficient higher order implicit one-step methods for integration of stiff differential equations publication-title: BIT contributor: fullname: van Bokhoven – volume: 56 start-page: 6620 year: 1997 ident: b21 article-title: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism publication-title: Phys. Rev. E contributor: fullname: Öttinger – volume: 34 year: 2021 ident: b11 article-title: Neural symplectic form: Learning Hamiltonian equations on general coordinate systems publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Yaguchi – volume: 417 year: 2023 ident: b13 article-title: Learning Hamiltonians of constrained mechanical systems publication-title: J. Comput. Appl. Math. contributor: fullname: Owren – start-page: 13100 year: 2020 end-page: 13111 ident: b25 article-title: Deep energy-based modeling of discrete-time physics publication-title: Advances in Neural Information Processing Systems, vol. 33 contributor: fullname: Yaguchi – start-page: 1339 year: 2006 end-page: 1365 ident: b15 article-title: Port-Hamiltonian systems: an introductory survey publication-title: Proceedings of the International Congress of Mathematicians, vol. 3 contributor: fullname: Van Der Schaft – volume: 1 start-page: 173 year: 2014 end-page: 378 ident: b2 article-title: Port-Hamiltonian systems theory: An introductory overview publication-title: Found. Trends Syst. Control contributor: fullname: Jeltsema – volume: 33 start-page: 13880 year: 2020 end-page: 13889 ident: b12 article-title: Simplifying Hamiltonian and Lagrangian neural networks via explicit constraints publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Wilson – volume: 51 start-page: 906 year: 2013 end-page: 937 ident: b29 article-title: Port-Hamiltonian systems on graphs publication-title: SIAM J. Control Optim. contributor: fullname: Maschke – year: 2022 ident: 10.1016/j.physd.2023.133673_b10 article-title: Learning Poisson systems and trajectories of autonomous systems via Poisson neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. contributor: fullname: Jin – volume: 2 start-page: 211 issue: 2 year: 1982 ident: 10.1016/j.physd.2023.133673_b33 article-title: Mono-implicit runge–kutta formulae for the numerical integration of stiff differential systems publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/2.2.211 contributor: fullname: Cash – volume: 104 issue: 3 year: 2021 ident: 10.1016/j.physd.2023.133673_b35 article-title: Variational integrator graph networks for learning energy-conserving dynamical systems publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.104.035310 contributor: fullname: Desai – start-page: 6881 year: 2019 ident: 10.1016/j.physd.2023.133673_b38 article-title: Port-Hamiltonian modeling, discretization and feedback control of a circular water tank contributor: fullname: Cardoso-Ribeiro – volume: 33 start-page: 6074 year: 2020 ident: 10.1016/j.physd.2023.133673_b34 article-title: Sparse symplectically integrated neural networks publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: DiPietro – volume: 9 start-page: 1278 year: 2021 ident: 10.1016/j.physd.2023.133673_b39 article-title: Numerical approximation of port-Hamiltonian systems for hyperbolic or parabolic PDEs with boundary control publication-title: J. Appl. Math. Phys. doi: 10.4236/jamp.2021.96088 contributor: fullname: Brugnoli – ident: 10.1016/j.physd.2023.133673_b37 – year: 2019 ident: 10.1016/j.physd.2023.133673_b4 article-title: Hamiltonian neural networks contributor: fullname: Greydanus – volume: vol. 31 start-page: xviii+644 year: 2006 ident: 10.1016/j.physd.2023.133673_b31 contributor: fullname: Hairer – ident: 10.1016/j.physd.2023.133673_b6 – year: 2021 ident: 10.1016/j.physd.2023.133673_b9 contributor: fullname: Duong – start-page: 13100 year: 2020 ident: 10.1016/j.physd.2023.133673_b25 article-title: Deep energy-based modeling of discrete-time physics contributor: fullname: Matsubara – year: 2021 ident: 10.1016/j.physd.2023.133673_b28 contributor: fullname: David – volume: 100 start-page: 182 year: 2019 ident: 10.1016/j.physd.2023.133673_b16 article-title: Robust port-Hamiltonian representations of passive systems publication-title: Automatica J. IFAC doi: 10.1016/j.automatica.2018.11.013 contributor: fullname: Beattie – year: 2014 ident: 10.1016/j.physd.2023.133673_b26 contributor: fullname: Kingma – volume: 19 start-page: 1371 issue: 6 year: 2011 ident: 10.1016/j.physd.2023.133673_b30 article-title: Pressure regulation in nonlinear hydraulic networks by positive and quantized controls publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2010.2094619 contributor: fullname: De Persis – volume: 411 start-page: 132620, 7 year: 2020 ident: 10.1016/j.physd.2023.133673_b17 article-title: An overview on recent machine learning techniques for port Hamiltonian systems publication-title: Physica D doi: 10.1016/j.physd.2020.132620 contributor: fullname: Cherifi – volume: 56 start-page: 6633 issue: 6 year: 1997 ident: 10.1016/j.physd.2023.133673_b22 article-title: Dynamics and thermodynamics of complex fluids. II. Illustrations of a general formalism publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.56.6633 contributor: fullname: Öttinger – volume: 34 year: 2021 ident: 10.1016/j.physd.2023.133673_b11 article-title: Neural symplectic form: Learning Hamiltonian equations on general coordinate systems publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Chen – volume: 417 year: 2023 ident: 10.1016/j.physd.2023.133673_b13 article-title: Learning Hamiltonians of constrained mechanical systems publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2022.114608 contributor: fullname: Celledoni – start-page: 1339 year: 2006 ident: 10.1016/j.physd.2023.133673_b15 article-title: Port-Hamiltonian systems: an introductory survey contributor: fullname: Van Der Schaft – volume: 143 start-page: 104741, 10 year: 2020 ident: 10.1016/j.physd.2023.133673_b18 article-title: Identification of port-Hamiltonian systems from frequency response data publication-title: Systems Control Lett. doi: 10.1016/j.sysconle.2020.104741 contributor: fullname: Benner – volume: 1 start-page: 173 issue: 2–3 year: 2014 ident: 10.1016/j.physd.2023.133673_b2 article-title: Port-Hamiltonian systems theory: An introductory overview publication-title: Found. Trends Syst. Control doi: 10.1561/2600000002 contributor: fullname: Van Der Schaft – volume: 37 start-page: 1400 issue: 4 year: 2020 ident: 10.1016/j.physd.2023.133673_b3 article-title: Twenty years of distributed port-Hamiltonian systems: a literature review publication-title: IMA J. Math. Control Inform. doi: 10.1093/imamci/dnaa018 contributor: fullname: Rashad – volume: 380 issue: 2229 year: 2022 ident: 10.1016/j.physd.2023.133673_b23 article-title: GFINNs: GENERIC formalism informed neural networks for deterministic and stochastic dynamical systems publication-title: Philos. Trans. Roy. Soc. A contributor: fullname: Zhang – volume: 33 start-page: 13880 year: 2020 ident: 10.1016/j.physd.2023.133673_b12 article-title: Simplifying Hamiltonian and Lagrangian neural networks via explicit constraints publication-title: Adv. Neural Inf. Process. Syst. contributor: fullname: Finzi – year: 2022 ident: 10.1016/j.physd.2023.133673_b20 contributor: fullname: Morandin – year: 2021 ident: 10.1016/j.physd.2023.133673_b8 article-title: Hamiltonian-based neural ODE networks on the SE(3) manifold for dynamics learning and control contributor: fullname: Duong – volume: 132 start-page: 166 year: 2020 ident: 10.1016/j.physd.2023.133673_b27 article-title: SympNets: Intrinsic structure-preserving symplectic networks for identifying Hamiltonian systems publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.08.017 contributor: fullname: Jin – ident: 10.1016/j.physd.2023.133673_b5 – volume: 357 start-page: 1021 issue: 1754 year: 1999 ident: 10.1016/j.physd.2023.133673_b14 article-title: Geometric integration using discrete gradients publication-title: R. Soc. Lond. Philos. Trans. Ser. A Math. Phys. Eng. Sci. doi: 10.1098/rsta.1999.0363 contributor: fullname: McLachlan – volume: 56 start-page: 102 year: 2022 ident: 10.1016/j.physd.2023.133673_b19 article-title: A non-intrusive method to inferring linear port-Hamiltonian realizations using time-domain data publication-title: Electron. Trans. Numer. Anal. doi: 10.1553/etna_vol56s102 contributor: fullname: Cherifi – volume: 51 start-page: 906 issue: 2 year: 2013 ident: 10.1016/j.physd.2023.133673_b29 article-title: Port-Hamiltonian systems on graphs publication-title: SIAM J. Control Optim. doi: 10.1137/110840091 contributor: fullname: van der Schaft – volume: 56 start-page: 6620 issue: 6 year: 1997 ident: 10.1016/j.physd.2023.133673_b21 article-title: Dynamics and thermodynamics of complex fluids. I. Development of a general formalism publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.56.6620 contributor: fullname: Grmela – volume: 124 start-page: 247 year: 1834 ident: 10.1016/j.physd.2023.133673_b1 article-title: On a general method in dynamics publication-title: Philos. Trans. R. Soc. contributor: fullname: Hamilton – start-page: 65 year: 2022 ident: 10.1016/j.physd.2023.133673_b36 article-title: Structure-preserving sparse identification of nonlinear dynamics for data-driven modeling contributor: fullname: Lee – volume: 20 start-page: 34 issue: 1 year: 1980 ident: 10.1016/j.physd.2023.133673_b32 article-title: Efficient higher order implicit one-step methods for integration of stiff differential equations publication-title: BIT doi: 10.1007/BF01933583 contributor: fullname: van Bokhoven – volume: 104 year: 2021 ident: 10.1016/j.physd.2023.133673_b7 article-title: Port-Hamiltonian neural networks for learning explicit time-dependent dynamical systems publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.104.034312 contributor: fullname: Desai – ident: 10.1016/j.physd.2023.133673_b24 |
SSID | ssj0001737 |
Score | 2.4706602 |
Snippet | Hybrid machine learning based on Hamiltonian formulations has recently been successfully demonstrated for simple mechanical systems, both energy conserving and... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 133673 |
SubjectTerms | Hybrid machine learning Physics-informed machine learning Pseudo-Hamiltonian neural networks |
Title | Pseudo-Hamiltonian neural networks with state-dependent external forces |
URI | https://dx.doi.org/10.1016/j.physd.2023.133673 |
Volume | 446 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8NAEB1KRdCDaFWsHyUHj6YfyWY3eyzFGhWKoIXewu5mA_WQFpte_e3ObBKsIB48JmRDmF1m3kzevAG4VRi1Me6EvpUxJihCKV8LzHmYMRjfmPuTRWyLGU_m7GkRLVowaXphiFZZ-_7KpztvXd8Z1NYcrJfLwSsR6KmPE0E0JVeugx3DH57p_uc3zWMkKt1M0vempxvlIcfxouoByYUGYR9zNS7C36PTTsSZHsNRDRW9cfU1J9CyRQcOdwQEO7DvCJxmcwoPLxu7zVZ-QgULxHO46x5pVeILiorpvfGo5uq5DiK_mX1beo0MtIfoFX3GGcyn92-TxK-HJPgmZHHpG61tYLnMaWYGZgsyGqrQICjjSgppMyaizERKZZpSHc2tjJQ03AZcjTLJovAc2sWqsBfg5SrjQ5OL2KqQKRPoIM6D2CIg0CzWgnXhrjFOuq60MNKGJPaeOlumZMu0smUXeGPA9MeWpuit_1p4-d-FV3BAVxWx5hra5cfW3iBmKHXPHYoe7I0fn5PZFy7EwLc |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEJ0QiFEPRlEjfvbg0Qq02233SIhYBImJkHDb7G6XBA-FSPn_zvTDYGI8eG2zTTO7nXlv--YtwL3Cqo11x3etiJCghEq5OkTOw4zB-sbyP1mktpjweMZe5sG8Bv2qF4ZklWXuL3J6nq3LK-0ymu31ctl-JwE99XEiiCZyhRSogWhA4NfZ6A1H8eQ7IXfDwjqTLL5pQGU-lMu8aAOBHEM9_xHpGg_93wvUTtEZHMNRiRadXvFCJ1CzaRMOdzwEm7CXazjN5hSe3zZ2m6zcmPYsENLhxDtkV4kPSAux98ahbVcnbyJyq-NvM6dygnYQwGLaOIPZ4Gnaj93ynATX-CzKXKO19SwXCzo2AwmDCDrKN4jLuBKhsAkLg8QESiWa2I7mVgRKGG49rrqJYIF_DvV0ldoLcBYq4R2zCCOrfKaMp71o4UUWMYFmkQ5ZCx6q4Mh1YYchK53Yh8xjKSmWsohlC3gVQPljViUm7L8GXv534B3sx9PXsRwPJ6MrOKA7hc7mGurZ59beIITI9G25RL4A5WbDaw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pseudo-Hamiltonian+neural+networks+with+state-dependent+external+forces&rft.jtitle=Physica.+D&rft.au=Eidnes%2C+S%C3%B8lve&rft.au=Stasik%2C+Alexander+J.&rft.au=Sterud%2C+Camilla&rft.au=B%C3%B8hn%2C+Eivind&rft.date=2023-04-01&rft.pub=Elsevier+B.V&rft.issn=0167-2789&rft.eissn=1872-8022&rft.volume=446&rft_id=info:doi/10.1016%2Fj.physd.2023.133673&rft.externalDocID=S0167278923000271 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-2789&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-2789&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-2789&client=summon |