PhaSeDis: A Manually Curated Database of Phase Separation–disease Associations and Corresponding Small Molecules
Biomacromolecules form membraneless organelles through liquid–liquid phase separation in order to regulate the efficiency of particular biochemical reactions. Dysregulation of phase separation might result in pathological condensation or sequestration of biomolecules, leading to diseases. Thus, phas...
Saved in:
Published in | Genomics, proteomics & bioinformatics Vol. 23; no. 1 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
10.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Biomacromolecules form membraneless organelles through liquid–liquid phase separation in order to regulate the efficiency of particular biochemical reactions. Dysregulation of phase separation might result in pathological condensation or sequestration of biomolecules, leading to diseases. Thus, phase separation and phase separating factors may serve as drug targets for disease treatment. Nevertheless, such associations have not yet been integrated into phase separation-related databases. Therefore, based on MloDisDB, a database for membraneless organelle factor–disease associations previously developed by our lab, we constructed PhaSeDis, the phase separation–disease association database. We increased the number of phase separation entries from 52 to 185, and supplemented the evidence provided by the original articles verifying the phase separation nature of the factors. Moreover, we included the information of interacting small molecules with low-throughput or high-throughput evidence that might serve as potential drugs for phase separation entries. PhaSeDis strives to offer comprehensive descriptions of each entry, elucidating how phase separating factors induce pathological conditions via phase separation and the mechanisms by which small molecules intervene. We believe that PhaSeDis would be very important in the application of phase separation regulation in treating related diseases. PhaSeDis is available at http://mlodis.phasep.pro. |
---|---|
AbstractList | Biomacromolecules form membraneless organelles through liquid-liquid phase separation in order to regulate the efficiency of particular biochemical reactions. Dysregulation of phase separation might result in pathological condensation or sequestration of biomolecules, leading to diseases. Thus, phase separation and phase separating factors may serve as drug targets for disease treatment. Nevertheless, such associations have not yet been integrated into phase separation-related databases. Therefore, based on MloDisDB, a database for membraneless organelle factor-disease associations previously developed by our lab, we constructed PhaSeDis, the phase separation-disease association database. We increased the number of phase separation entries from 52 to 185, and supplemented the evidence provided by the original articles verifying the phase separation nature of the factors. Moreover, we included the information of interacting small molecules with low-throughput or high-throughput evidence that might serve as potential drugs for phase separation entries. PhaSeDis strives to offer comprehensive descriptions of each entry, elucidating how phase separating factors induce pathological conditions via phase separation and the mechanisms by which small molecules intervene. We believe that PhaSeDis would be very important in the application of phase separation regulation in treating related diseases. PhaSeDis is available at http://mlodis.phasep.pro. Biomacromolecules form membraneless organelles through liquid–liquid phase separation in order to regulate the efficiency of particular biochemical reactions. Dysregulation of phase separation might result in pathological condensation or sequestration of biomolecules, leading to diseases. Thus, phase separation and phase separating factors may serve as drug targets for disease treatment. Nevertheless, such associations have not yet been integrated into phase separation-related databases. Therefore, based on MloDisDB, a database for membraneless organelle factor–disease associations previously developed by our lab, we constructed PhaSeDis, the phase separation–disease association database. We increased the number of phase separation entries from 52 to 185, and supplemented the evidence provided by the original articles verifying the phase separation nature of the factors. Moreover, we included the information of interacting small molecules with low-throughput or high-throughput evidence that might serve as potential drugs for phase separation entries. PhaSeDis strives to offer comprehensive descriptions of each entry, elucidating how phase separating factors induce pathological conditions via phase separation and the mechanisms by which small molecules intervene. We believe that PhaSeDis would be very important in the application of phase separation regulation in treating related diseases. PhaSeDis is available at http://mlodis.phasep.pro . |
Author | Li (李婷婷), Tingting Hou (侯超), Chao Ma (马利伟), Liwei Tang (唐果菓), Guoguo Chen (陈韬宇), Taoyu Du (杜泽州), Zezhou Yanghong (杨宏芷宁), Zhining You (游铠强), Kaiqiang Li (李天昊), Tianhao |
Author_xml | – sequence: 1 givenname: Taoyu orcidid: 0000-0002-8966-1264 surname: Chen (陈韬宇) fullname: Chen (陈韬宇), Taoyu – sequence: 2 givenname: Guoguo orcidid: 0009-0007-8504-8597 surname: Tang (唐果菓) fullname: Tang (唐果菓), Guoguo – sequence: 3 givenname: Tianhao orcidid: 0009-0003-4900-6948 surname: Li (李天昊) fullname: Li (李天昊), Tianhao – sequence: 4 givenname: Zhining orcidid: 0009-0004-6571-8096 surname: Yanghong (杨宏芷宁) fullname: Yanghong (杨宏芷宁), Zhining – sequence: 5 givenname: Chao orcidid: 0000-0003-4806-7637 surname: Hou (侯超) fullname: Hou (侯超), Chao – sequence: 6 givenname: Zezhou orcidid: 0009-0005-8953-8345 surname: Du (杜泽州) fullname: Du (杜泽州), Zezhou – sequence: 7 givenname: Kaiqiang orcidid: 0000-0002-5038-1185 surname: You (游铠强) fullname: You (游铠强), Kaiqiang – sequence: 8 givenname: Liwei orcidid: 0009-0000-2429-4881 surname: Ma (马利伟) fullname: Ma (马利伟), Liwei – sequence: 9 givenname: Tingting orcidid: 0000-0003-4266-0317 surname: Li (李婷婷) fullname: Li (李婷婷), Tingting |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40037809$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUlOw0AQRVsIRBJgyxL1BUx68sQGRWGUgkAKrK1yD8GR0226Y6Sw4g7ckJPgEIhgVaX_f71F_QHatc5qhI4pOaUk58NZU85tPXx5A0Oo2EF9xiiJOBNiF_VpkrKIMJb30CCEOSEiFoLuo54ghKcZyfvIPzzDVF9U4QyP8B3YFup6hceth6VW-AKWUELQ2BncBbtlqhvovMrZz_cPVQW9FkchOFl9qwGDVXjsvNehcVZVdoaniw6K71ytZVvrcIj2DNRBH_3MA_R0dfk4vokm99e349Ekklxky0jmTBGgOhbSaB3LPEkUBcUNjROTqU5JMqOSjEGpVNrt1KQ0JpIRwzg3JT9A5xtu05YLraS2Sw910fhqAX5VOKiK_46tnouZey0oYySLOekIJ38J29Pf93WB001AeheC12YboaRY91Ns-il--uFfp_KJ7A |
Cites_doi | 10.1146/annurev-cellbio-100913-013325 10.1093/nar/gkz1027 10.1016/j.cell.2021.10.001 10.1681/ASN.2021111425 10.1016/j.gpb.2022.12.004 10.1126/science.1172046 10.1016/j.cell.2018.12.035 10.1016/j.jbc.2022.102857 10.1038/s41392-022-01076-x 10.1016/j.cell.2017.10.049 10.1016/j.tips.2022.07.001 10.1016/j.tibs.2021.01.002 10.1016/j.molcel.2021.04.010 10.1021/acs.accounts.6b00491 10.3724/abbs.2023106 10.1093/nar/gkv1072 10.1126/scitranslmed.aba3613 10.1016/j.tips.2023.02.007 10.3389/fmolb.2022.1007744 10.3390/ijms21186796 10.1016/j.devcel.2022.06.010 10.1093/nar/gkac783 10.1016/j.jmb.2021.167201 10.1016/j.tcb.2016.05.004 10.1083/jcb.201504117 10.1016/j.devcel.2020.09.014 10.1038/s41573-022-00505-4 10.1038/s41580-020-0272-6 10.1093/bib/bbaa271 10.1016/j.tcb.2022.01.011 10.1093/nar/gkx1037 10.1016/j.cbpa.2023.102317 10.1038/s41467-022-32940-7 10.1016/j.ccell.2020.12.003 10.1038/s41422-021-00530-9 10.1016/j.cell.2020.09.002 10.1016/j.jbc.2021.101222 10.1093/nar/gkac1158 10.1101/gad.331520.119 10.1126/science.aaz4427 10.1038/s41589-023-01432-0 10.1016/j.csbj.2022.05.004 10.1093/bioinformatics/btac026 10.1038/s41568-022-00444-7 |
ContentType | Journal Article |
Copyright | The Author(s) 2025. Published by Oxford University Press and Science Press on behalf of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. The Author(s) 2025. Published by Oxford University Press and Science Press on behalf of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. 2025 |
Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press and Science Press on behalf of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. – notice: The Author(s) 2025. Published by Oxford University Press and Science Press on behalf of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. 2025 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 5PM |
DOI | 10.1093/gpbjnl/qzaf014 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2210-3244 |
ExternalDocumentID | PMC12208530 40037809 10_1093_gpbjnl_qzaf014 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 1B1 1~5 4.4 457 4G. 53G 5GY 5VR 5VS 7-5 71M 92E 92I AAEDT AAEDW AAHBH AAIKJ AALRI AAXUO AAYWO AAYXX ABEJV ABGNP ABMAC ABXVV ACGFS ACVFH ADBBV ADCNI ADEZE ADVLN AEKER AEUPX AEXQZ AFJKZ AFPUW AFTJW AGHFR AIGII AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMNDL AMRAJ AOIJS BAWUL BCNDV CCEZO CCVFK CHBEP CITATION CS3 CW9 DIK DU5 EBS EMOBN EO9 EP2 EP3 FDB FEDTE FNPLU GBLVA GROUPED_DOAJ H13 HVGLF HYE IXB J1W KQ8 MO0 N9A O-L O9- OK1 P2P ROL RPM SDC SDG SES SSZ TOX WFFXF CGR CUY CVF ECM EIF NPM 5PM M41 M48 |
ID | FETCH-LOGICAL-c348t-c92d0a1e54cfee5c966d1ad3f156f8de5c68fd682abdd768f1f7150c20f233fb3 |
ISSN | 1672-0229 |
IngestDate | Thu Aug 21 18:33:46 EDT 2025 Mon Jul 21 06:08:47 EDT 2025 Wed Jul 16 16:44:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Database Biomolecular condensation Small molecule Disease Phase separation |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 The Author(s) 2025. Published by Oxford University Press and Science Press on behalf of the Beijing Institute of Genomics, Chinese Academy of Sciences / China National Center for Bioinformation and Genetics Society of China. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c348t-c92d0a1e54cfee5c966d1ad3f156f8de5c68fd682abdd768f1f7150c20f233fb3 |
Notes | Taoyu Chen (陈韬宇), Guoguo Tang (唐果菓), Tianhao Li (李天昊) and Zhining Yanghong (杨宏芷宁) Equal contribution. |
ORCID | 0000-0003-4806-7637 0000-0002-8966-1264 0009-0003-4900-6948 0009-0005-8953-8345 0000-0002-5038-1185 0000-0003-4266-0317 0009-0004-6571-8096 0009-0007-8504-8597 0009-0000-2429-4881 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC12208530 |
PMID | 40037809 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12208530 pubmed_primary_40037809 crossref_primary_10_1093_gpbjnl_qzaf014 |
PublicationCentury | 2000 |
PublicationDate | 2025-May-10 |
PublicationDateYYYYMMDD | 2025-05-10 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-May-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Genomics, proteomics & bioinformatics |
PublicationTitleAlternate | Genomics Proteomics Bioinformatics |
PublicationYear | 2025 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Gilson (2025070915221190900_qzaf014-B34) 2016; 44 Navarro (2025070915221190900_qzaf014-B41) 2022; 20 Vendruscolo (2025070915221190900_qzaf014-B42) 2022; 434 Hennig (2025070915221190900_qzaf014-B4) 2015; 210 Wishart (2025070915221190900_qzaf014-B33) 2018; 46 Conti (2025070915221190900_qzaf014-B39) 2022; 43 Rose (2025070915221190900_qzaf014-B35) 2017; 45 Boija (2025070915221190900_qzaf014-B11) 2021; 39 Hou (2025070915221190900_qzaf014-B27) 2021; 22 Dang (2025070915221190900_qzaf014-B30) 2022; 33 Kilgore (2025070915221190900_qzaf014-B19) 2024; 20 Li (2025070915221190900_qzaf014-B26) 2020; 21 Tong (2025070915221190900_qzaf014-B10) 2022; 7 Hyman (2025070915221190900_qzaf014-B1) 2014; 30 Alberti (2025070915221190900_qzaf014-B13) 2019; 176 Mitrea (2025070915221190900_qzaf014-B9) 2022; 21 Cai (2025070915221190900_qzaf014-B14) 2021; 46 Ghodke (2025070915221190900_qzaf014-B20) 2021; 81 Li (2025070915221190900_qzaf014-B15) 2021; 31 Hou (2025070915221190900_qzaf014-B22) 2023; 51 Banani (2025070915221190900_qzaf014-B37) 2022; 57 Li (2025070915221190900_qzaf014-B38) 2023; 55 Mészáros (2025070915221190900_qzaf014-B24) 2020; 48 Lafontaine (2025070915221190900_qzaf014-B5) 2021; 22 Zhu (2025070915221190900_qzaf014-B32) 2020; 183 Subramanian (2025070915221190900_qzaf014-B40) 2017; 171 Patel (2025070915221190900_qzaf014-B45) 2022; 9 Mehta (2025070915221190900_qzaf014-B6) 2022; 22 Hardenberg (2025070915221190900_qzaf014-B18) 2021; 13 Zbinden (2025070915221190900_qzaf014-B7) 2020; 55 Liu (2025070915221190900_qzaf014-B28) 2021; 184 Zhang (2025070915221190900_qzaf014-B29) 2023; 51 Gu (2025070915221190900_qzaf014-B17) 2023; 299 Wang (2025070915221190900_qzaf014-B23) 2022; 38 Fallatah (2025070915221190900_qzaf014-B31) 2023; 44 Boyko (2025070915221190900_qzaf014-B44) 2022; 32 Vendruscolo (2025070915221190900_qzaf014-B46) 2022; 13 Klein (2025070915221190900_qzaf014-B8) 2020; 368 Ma (2025070915221190900_qzaf014-B47) 2023; 21 Lu (2025070915221190900_qzaf014-B16) 2020; 12 Protter (2025070915221190900_qzaf014-B3) 2016; 26 Vendruscolo (2025070915221190900_qzaf014-B43) 2023; 75 Brangwynne (2025070915221190900_qzaf014-B2) 2009; 324 Dai (2025070915221190900_qzaf014-B21) 2021; 297 McSwiggen (2025070915221190900_qzaf014-B12) 2019; 33 Ning (2025070915221190900_qzaf014-B25) 2020; 48 Liu (2025070915221190900_qzaf014-B36) 2017; 50 |
References_xml | – volume: 30 start-page: 39 year: 2014 ident: 2025070915221190900_qzaf014-B1 article-title: Liquid–liquid phase separation in biology publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-100913-013325 – volume: 48 start-page: D288 year: 2020 ident: 2025070915221190900_qzaf014-B25 article-title: DrLLPS: a data resource of liquid–liquid phase separation in eukaryotes publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz1027 – volume: 184 start-page: 5559 year: 2021 ident: 2025070915221190900_qzaf014-B28 article-title: Glycogen accumulation and phase separation drives liver tumor initiation publication-title: Cell doi: 10.1016/j.cell.2021.10.001 – volume: 33 start-page: 1708 year: 2022 ident: 2025070915221190900_qzaf014-B30 article-title: Nuclear condensation of CDYL links histone crotonylation and cystogenesis in autosomal dominant polycystic kidney disease publication-title: J Am Soc Nephrol doi: 10.1681/ASN.2021111425 – volume: 21 start-page: 1054 year: 2023 ident: 2025070915221190900_qzaf014-B47 article-title: Database Commons: a catalog of worldwide biological databases publication-title: Genomics Proteomics Bioinformatics doi: 10.1016/j.gpb.2022.12.004 – volume: 324 start-page: 1729 year: 2009 ident: 2025070915221190900_qzaf014-B2 article-title: Germline P granules are liquid droplets that localize by controlled dissolution/condensation publication-title: Science doi: 10.1126/science.1172046 – volume: 176 start-page: 419 year: 2019 ident: 2025070915221190900_qzaf014-B13 article-title: Considerations and challenges in studying liquid–liquid phase separation and biomolecular condensates publication-title: Cell doi: 10.1016/j.cell.2018.12.035 – volume: 299 start-page: 102857 year: 2023 ident: 2025070915221190900_qzaf014-B17 article-title: A liquid-to-solid phase transition of Cu/Zn superoxide dismutase 1 initiated by oxidation and disease mutation publication-title: J Biol Chem doi: 10.1016/j.jbc.2022.102857 – volume: 7 start-page: 221 year: 2022 ident: 2025070915221190900_qzaf014-B10 article-title: Liquid–liquid phase separation in tumor biology publication-title: Signal Transduct Target Ther doi: 10.1038/s41392-022-01076-x – volume: 171 start-page: 1437 year: 2017 ident: 2025070915221190900_qzaf014-B40 article-title: A next generation Connectivity Map: L1000 platform and the first 1,000,000 profiles publication-title: Cell doi: 10.1016/j.cell.2017.10.049 – volume: 45 start-page: D271 year: 2017 ident: 2025070915221190900_qzaf014-B35 article-title: The RCSB Protein Data Bank: integrative view of protein, gene and 3D structural information publication-title: Nucleic Acids Res – volume: 43 start-page: 820 year: 2022 ident: 2025070915221190900_qzaf014-B39 article-title: Biomolecular condensates: new opportunities for drug discovery and RNA therapeutics publication-title: Trends Pharmacol Sci doi: 10.1016/j.tips.2022.07.001 – volume: 46 start-page: 535 year: 2021 ident: 2025070915221190900_qzaf014-B14 article-title: Biomolecular condensates and their links to cancer progression publication-title: Trends Biochem Sci doi: 10.1016/j.tibs.2021.01.002 – volume: 81 start-page: 2596 year: 2021 ident: 2025070915221190900_qzaf014-B20 article-title: AHNAK controls 53BP1-mediated p53 response by restraining 53BP1 oligomerization and phase separation publication-title: Mol Cell doi: 10.1016/j.molcel.2021.04.010 – volume: 50 start-page: 302 year: 2017 ident: 2025070915221190900_qzaf014-B36 article-title: Forging the basis for developing protein–ligand interaction scoring functions publication-title: Acc Chem Res doi: 10.1021/acs.accounts.6b00491 – volume: 55 start-page: 1075 year: 2023 ident: 2025070915221190900_qzaf014-B38 article-title: Small molecules in regulating protein phase separation publication-title: Acta Biochim Biophys Sin doi: 10.3724/abbs.2023106 – volume: 44 start-page: D1045 year: 2016 ident: 2025070915221190900_qzaf014-B34 article-title: BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology publication-title: Nucleic Acids Res doi: 10.1093/nar/gkv1072 – volume: 12 start-page: eaba3613 year: 2020 ident: 2025070915221190900_qzaf014-B16 article-title: Activation of NRF2 ameliorates oxidative stress and cystogenesis in autosomal dominant polycystic kidney disease publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aba3613 – volume: 44 start-page: 274 year: 2023 ident: 2025070915221190900_qzaf014-B31 article-title: Small-molecule correctors and stabilizers to target p53 publication-title: Trends Pharmacol Sci doi: 10.1016/j.tips.2023.02.007 – volume: 9 start-page: 1007744 year: 2022 ident: 2025070915221190900_qzaf014-B45 article-title: Principles and functions of condensate modifying drugs publication-title: Front Mol Biosci doi: 10.3389/fmolb.2022.1007744 – volume: 21 start-page: 6796 year: 2020 ident: 2025070915221190900_qzaf014-B26 article-title: Protein databases related to liquid–liquid phase separation publication-title: Int J Mol Sci doi: 10.3390/ijms21186796 – volume: 57 start-page: 1776– year: 2022 ident: 2025070915221190900_qzaf014-B37 article-title: Genetic variation associated with condensate dysregulation in disease publication-title: Dev Cell doi: 10.1016/j.devcel.2022.06.010 – volume: 51 start-page: D460 year: 2023 ident: 2025070915221190900_qzaf014-B22 article-title: PhaSepDB in 2022: annotating phase separation-related proteins with droplet states, co-phase separation partners and other experimental information publication-title: Nucleic Acids Res doi: 10.1093/nar/gkac783 – volume: 434 start-page: 167201 year: 2022 ident: 2025070915221190900_qzaf014-B42 article-title: Sequence determinants of the aggregation of proteins within condensates generated by liquid–liquid phase separation publication-title: J Mol Biol doi: 10.1016/j.jmb.2021.167201 – volume: 26 start-page: 668 year: 2016 ident: 2025070915221190900_qzaf014-B3 article-title: Principles and properties of stress granules publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2016.05.004 – volume: 210 start-page: 529 year: 2015 ident: 2025070915221190900_qzaf014-B4 article-title: Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles publication-title: J Cell Biol doi: 10.1083/jcb.201504117 – volume: 55 start-page: 45 year: 2020 ident: 2025070915221190900_qzaf014-B7 article-title: Phase separation and neurodegenerative diseases: a disturbance in the force publication-title: Dev Cell doi: 10.1016/j.devcel.2020.09.014 – volume: 13 start-page: 282 year: 2021 ident: 2025070915221190900_qzaf014-B18 article-title: Observation of an α-synuclein liquid droplet state and its maturation into Lewy body-like assemblies publication-title: J Mol Cell Biol – volume: 21 start-page: 841 year: 2022 ident: 2025070915221190900_qzaf014-B9 article-title: Modulating biomolecular condensates: a novel approach to drug discovery publication-title: Nat Rev Drug Discov doi: 10.1038/s41573-022-00505-4 – volume: 22 start-page: 165 year: 2021 ident: 2025070915221190900_qzaf014-B5 article-title: The nucleolus as a multiphase liquid condensate publication-title: Nat Rev Mol Cell Biol doi: 10.1038/s41580-020-0272-6 – volume: 22 start-page: bbaa271 year: 2021 ident: 2025070915221190900_qzaf014-B27 article-title: MloDisDB: a manually curated database of the relations between membraneless organelles and diseases publication-title: Brief Bioinform doi: 10.1093/bib/bbaa271 – volume: 32 start-page: 611 year: 2022 ident: 2025070915221190900_qzaf014-B44 article-title: Tau liquid–liquid phase separation in neurodegenerative diseases publication-title: Trends Cell Biol doi: 10.1016/j.tcb.2022.01.011 – volume: 46 start-page: D1074 year: 2018 ident: 2025070915221190900_qzaf014-B33 article-title: DrugBank 5.0: a major update to the DrugBank database for 2018 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkx1037 – volume: 75 start-page: 102317 year: 2023 ident: 2025070915221190900_qzaf014-B43 article-title: Towards sequence-based principles for protein phase separation predictions publication-title: Curr Opin Chem Biol doi: 10.1016/j.cbpa.2023.102317 – volume: 13 start-page: 5550 year: 2022 ident: 2025070915221190900_qzaf014-B46 article-title: Protein condensation diseases: therapeutic opportunities publication-title: Nat Commun doi: 10.1038/s41467-022-32940-7 – volume: 39 start-page: 174 year: 2021 ident: 2025070915221190900_qzaf014-B11 article-title: Biomolecular condensates and cancer publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.12.003 – volume: 48 start-page: D360 year: 2020 ident: 2025070915221190900_qzaf014-B24 article-title: PhaSePro: the database of proteins driving liquid–liquid phase separation publication-title: Nucleic Acids Res – volume: 31 start-page: 1088 year: 2021 ident: 2025070915221190900_qzaf014-B15 article-title: A phosphatidic acid-binding lncRNA SNHG9 facilitates LATS1 liquid–liquid phase separation to promote oncogenic YAP signaling publication-title: Cell Res doi: 10.1038/s41422-021-00530-9 – volume: 183 start-page: 490 year: 2020 ident: 2025070915221190900_qzaf014-B32 article-title: Phase separation of disease-associated SHP2 mutants underlies MAPK hyperactivation publication-title: Cell doi: 10.1016/j.cell.2020.09.002 – volume: 297 start-page: 101222 year: 2021 ident: 2025070915221190900_qzaf014-B21 article-title: Myricetin slows liquid–liquid phase separation of Tau and activates ATG5-dependent autophagy to suppress Tau toxicity publication-title: J Biol Chem doi: 10.1016/j.jbc.2021.101222 – volume: 51 start-page: 99 year: 2023 ident: 2025070915221190900_qzaf014-B29 article-title: Dynamic phase separation of the androgen receptor and its coactivators key to regulate gene expression publication-title: Nucleic Acids Res doi: 10.1093/nar/gkac1158 – volume: 33 start-page: 1619 year: 2019 ident: 2025070915221190900_qzaf014-B12 article-title: Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences publication-title: Genes Dev doi: 10.1101/gad.331520.119 – volume: 368 start-page: 1386 year: 2020 ident: 2025070915221190900_qzaf014-B8 article-title: Partitioning of cancer therapeutics in nuclear condensates publication-title: Science doi: 10.1126/science.aaz4427 – volume: 20 start-page: 291 year: 2024 ident: 2025070915221190900_qzaf014-B19 article-title: Distinct chemical environments in biomolecular condensates publication-title: Nat Chem Biol doi: 10.1038/s41589-023-01432-0 – volume: 20 start-page: 2551 year: 2022 ident: 2025070915221190900_qzaf014-B41 article-title: DisPhaseDB: an integrative database of diseases related variations in liquid–liquid phase separation proteins publication-title: Comput Struct Biotechnol J doi: 10.1016/j.csbj.2022.05.004 – volume: 38 start-page: 2010 year: 2022 ident: 2025070915221190900_qzaf014-B23 article-title: LLPSDB v2.0: an updated database of proteins undergoing liquid–liquid phase separation publication-title: Bioinformatics doi: 10.1093/bioinformatics/btac026 – volume: 22 start-page: 239 year: 2022 ident: 2025070915221190900_qzaf014-B6 article-title: Liquid–liquid phase separation drives cellular function and dysfunction in cancer publication-title: Nat Rev Cancer doi: 10.1038/s41568-022-00444-7 |
SSID | ssj0045441 ssib060475339 |
Score | 2.3513505 |
Snippet | Biomacromolecules form membraneless organelles through liquid–liquid phase separation in order to regulate the efficiency of particular biochemical reactions.... Biomacromolecules form membraneless organelles through liquid-liquid phase separation in order to regulate the efficiency of particular biochemical reactions.... |
SourceID | pubmedcentral pubmed crossref |
SourceType | Open Access Repository Index Database |
SubjectTerms | Databases, Factual Disease Humans Phase Separation Small Molecule Libraries |
Title | PhaSeDis: A Manually Curated Database of Phase Separation–disease Associations and Corresponding Small Molecules |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40037809 https://pubmed.ncbi.nlm.nih.gov/PMC12208530 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLe2IdAuiL-j_Jl8wOIUlthO6nALXboJqdOkbdLgUsWNvRSxpoz2sJ34DnxDPgnPdpymYgfYpXJdO0793i_v2XnvZ4TehrIvJDz4Aq0SFnAmZSAlB-AxTmWhS6ktpdDoKDk845_O4_ONzWEnamm5kO8nN7fmldxFqlAHcjVZsv8h2faiUAFlkC98goTh859kfFwVJ2p_-sOll48KQy9q6IqXhv-hBIkuCmOlbJxbZQonylF9g7_XBDmw5g1NV06Otnlgz-2Y1y7t5eTSvMMeucN0m7jDxqc9UDa12SqEpX2w36xOyWndMLMuOlH1g0oZlRMkT0maEuEKQ5INSB6TLCd2g8JqUlFfL1ebC25XwzRKOUlDkickzUkK3QQRQ2IYq2y3g2V9sazbWKOp6wWN94nI7RicZKmtgY6ZHwyQUhVtt88wXFX7IW3nTPgbHNohM_Kx72ui5ipfKnvkRnc3hcaBJWJdrb1vz9LsGIikTwPwe9xjXtk6So0to47H0lsVl0XdRc9fxsoReV3M5dfZNyh8vyl06DJqO7o7v7TKyw1RkAjTldlugymPR4OImqNWWbiJ7lFYLtH1Xask5LAoNeyvzkPh5tw5sxHh_0tLZsr23N3sNfeyjR74gdf8ttZZWw8k7nhmp4_Qw2ZJhTOHj8doQ82eoPvukNXrp-jKo-QDzrDHCG4wgj1GcK2xxQheYeT3z18NOnAXHRjQgdfQgS06cIuOZ-hsmJ8ODoPmpJFgwrhYBJOUlmERqZhPtFLxJE2SMipKpqM40aKEmkToMhG0kGUJC3Qd6T6spCY01JQxLdlztDWrZ-oFwirpG74mBU0VB_OYRoWUVMY84WXKWNRD7_w8jueOUGbsAkHY2E3-uJn8Htpxs9u287LoIbE2720DwxW__stsWlnOeK8hL-_e9RXaXiHmNdpaXC3VG_DIF3IXbR4dj3at0v0Bp4TW1A |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PhaSeDis%3A+A+Manually+Curated+Database+of+Phase+Separation%E2%80%93disease+Associations+and+Corresponding+Small+Molecules&rft.jtitle=Genomics%2C+proteomics+%26+bioinformatics&rft.au=Chen+%28%E9%99%88%E9%9F%AC%E5%AE%87%29%2C+Taoyu&rft.au=Tang+%28%E5%94%90%E6%9E%9C%E8%8F%93%29%2C+Guoguo&rft.au=Li+%28%E6%9D%8E%E5%A4%A9%E6%98%8A%29%2C+Tianhao&rft.au=Yanghong+%28%E6%9D%A8%E5%AE%8F%E8%8A%B7%E5%AE%81%29%2C+Zhining&rft.date=2025-05-10&rft.pub=Oxford+University+Press&rft.issn=1672-0229&rft.eissn=2210-3244&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1093%2Fgpbjnl%2Fqzaf014&rft_id=info%3Apmid%2F40037809&rft.externalDocID=PMC12208530 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1672-0229&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1672-0229&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1672-0229&client=summon |