Recovery of spent LiCoO2 lithium-ion battery via environmentally friendly pyrolysis and hydrometallurgical leaching
LiCoO2 (LCO) lithium-ion battery (LIB) is rich in valuable metals (cobalt and lithium), which has high recycling value. The existing process has basically realized the extraction of cobalt, but there are still shortcomings in harmless disposal of fluorine-containing electrolyte, binder and other org...
Saved in:
Published in | Resources, conservation and recycling Vol. 176; p. 105921 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | LiCoO2 (LCO) lithium-ion battery (LIB) is rich in valuable metals (cobalt and lithium), which has high recycling value. The existing process has basically realized the extraction of cobalt, but there are still shortcomings in harmless disposal of fluorine-containing electrolyte, binder and other organic matters, selective extraction of lithium and low-cost extraction of cobalt. In this context, a novel process was developed to realize the full-component recovery of spent LiCoO2 battery via environmentally friendly pyrolysis and hydrometallurgical leaching. The organic matters were recovered in the form of pyrolytic oil and gas, in which the harmful fluorine element was absorbed by Ca(OH)2 solution. The current collectors (copper and aluminum) were recovered after the easy separation of electrode materials due to the degradation of binders. During pyrolysis the cathode material was deconstructed and reduced under the synergistic effect of pyrolytic gas and anode graphite. Selective recovery of lithium and cobalt was achieved through carbonated water leaching and reductant-free acid leaching. The leaching efficiencies of lithium and cobalt were respectively 87.9% and 99.1% under the optimal conditions. Lithium carbonate and cobalt sulfate were obtained by evaporative crystallization, respectively. The remaining residue was only graphite without impurity entrainment. The results in this research suggest that the process consisting of pyrolysis and hydrometallurgical leaching is inexpensive, efficient, and eco-friendly for full-component recycling of spent LiCoO2 battery.
[Display omitted] |
---|---|
AbstractList | LiCoO₂ (LCO) lithium-ion battery (LIB) is rich in valuable metals (cobalt and lithium), which has high recycling value. The existing process has basically realized the extraction of cobalt, but there are still shortcomings in harmless disposal of fluorine-containing electrolyte, binder and other organic matters, selective extraction of lithium and low-cost extraction of cobalt. In this context, a novel process was developed to realize the full-component recovery of spent LiCoO₂ battery via environmentally friendly pyrolysis and hydrometallurgical leaching. The organic matters were recovered in the form of pyrolytic oil and gas, in which the harmful fluorine element was absorbed by Ca(OH)₂ solution. The current collectors (copper and aluminum) were recovered after the easy separation of electrode materials due to the degradation of binders. During pyrolysis the cathode material was deconstructed and reduced under the synergistic effect of pyrolytic gas and anode graphite. Selective recovery of lithium and cobalt was achieved through carbonated water leaching and reductant-free acid leaching. The leaching efficiencies of lithium and cobalt were respectively 87.9% and 99.1% under the optimal conditions. Lithium carbonate and cobalt sulfate were obtained by evaporative crystallization, respectively. The remaining residue was only graphite without impurity entrainment. The results in this research suggest that the process consisting of pyrolysis and hydrometallurgical leaching is inexpensive, efficient, and eco-friendly for full-component recycling of spent LiCoO₂ battery. LiCoO2 (LCO) lithium-ion battery (LIB) is rich in valuable metals (cobalt and lithium), which has high recycling value. The existing process has basically realized the extraction of cobalt, but there are still shortcomings in harmless disposal of fluorine-containing electrolyte, binder and other organic matters, selective extraction of lithium and low-cost extraction of cobalt. In this context, a novel process was developed to realize the full-component recovery of spent LiCoO2 battery via environmentally friendly pyrolysis and hydrometallurgical leaching. The organic matters were recovered in the form of pyrolytic oil and gas, in which the harmful fluorine element was absorbed by Ca(OH)2 solution. The current collectors (copper and aluminum) were recovered after the easy separation of electrode materials due to the degradation of binders. During pyrolysis the cathode material was deconstructed and reduced under the synergistic effect of pyrolytic gas and anode graphite. Selective recovery of lithium and cobalt was achieved through carbonated water leaching and reductant-free acid leaching. The leaching efficiencies of lithium and cobalt were respectively 87.9% and 99.1% under the optimal conditions. Lithium carbonate and cobalt sulfate were obtained by evaporative crystallization, respectively. The remaining residue was only graphite without impurity entrainment. The results in this research suggest that the process consisting of pyrolysis and hydrometallurgical leaching is inexpensive, efficient, and eco-friendly for full-component recycling of spent LiCoO2 battery. [Display omitted] |
ArticleNumber | 105921 |
Author | Tao, Ren Wu, Yufeng Sun, Zhenhua Xing, Peng Li, Huiquan |
Author_xml | – sequence: 1 givenname: Ren surname: Tao fullname: Tao, Ren organization: CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China – sequence: 2 givenname: Peng surname: Xing fullname: Xing, Peng email: xingpeng@ipe.ac.cn organization: CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China – sequence: 3 givenname: Huiquan surname: Li fullname: Li, Huiquan email: hqli@ipe.ac.cn organization: CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China – sequence: 4 givenname: Zhenhua surname: Sun fullname: Sun, Zhenhua organization: CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China – sequence: 5 givenname: Yufeng surname: Wu fullname: Wu, Yufeng email: wuyufeng3r@126.com organization: Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China |
BookMark | eNqNkE1rGzEQhkVIoY7T31Ade1lHWq20u4cegmk-wBAIyVlopdlYRiu5kmzYfx8Zhx56SS4zw_C8A_NcoUsfPCD0k5IVJVTc7FYRkg4-gl7VpKZly_uaXqAF7dq-IoJ3l2hByqpiTdN_R1cp7QghrOvZAqVn0OEIccZhxGkPPuONXYenGjubt_YwVTZ4PKicT8zRKgz-aGPwU0GVczMeowVvyrCfY3Bzsgkrb_B2NjFMcGIO8c1q5bADpbfWv12jb6NyCX589CV6vfvzsn6oNk_3j-vbTaVZ0-VS22YQvB36mquh0dwo2gsxUjOM0HAlNLABNBCjCK_BgOCk4UAJgR4YZ2yJfp3v7mP4e4CU5WSTBueUh3BIshZMtJ0QpS_R7zOqY0gpwii1zSqX33NU1klK5Em23Ml_suVJtjzLLvn2v_w-2knF-QvJ23MSiomjhSiTLkI1GFvQLE2wn954B_-ypNw |
CitedBy_id | crossref_primary_10_1016_j_ijhydene_2024_05_356 crossref_primary_10_1016_j_envpol_2024_124570 crossref_primary_10_3390_membranes14120277 crossref_primary_10_1016_j_renene_2023_02_005 crossref_primary_10_1016_j_est_2024_111229 crossref_primary_10_1080_17518253_2023_2260401 crossref_primary_10_1007_s40820_024_01434_0 crossref_primary_10_1002_cnl2_31 crossref_primary_10_1016_j_jece_2022_109160 crossref_primary_10_1016_j_seppur_2024_131236 crossref_primary_10_1016_j_est_2023_108691 crossref_primary_10_1007_s41918_024_00231_y crossref_primary_10_1016_j_jpowsour_2024_234731 crossref_primary_10_1039_D3GC01077E crossref_primary_10_1016_j_jenvman_2025_125025 crossref_primary_10_1016_j_cej_2022_138535 crossref_primary_10_1016_j_wasman_2022_10_033 crossref_primary_10_1016_j_wasman_2025_01_037 crossref_primary_10_1016_j_wasman_2025_114749 crossref_primary_10_1007_s42461_024_01043_w crossref_primary_10_1016_j_scitotenv_2023_166095 crossref_primary_10_1021_acs_energyfuels_2c02871 crossref_primary_10_1016_j_resconrec_2022_106690 crossref_primary_10_20517_gmo_2024_070201 crossref_primary_10_1016_j_heliyon_2024_e40251 crossref_primary_10_1021_acs_iecr_4c01742 crossref_primary_10_1002_smtd_202300820 crossref_primary_10_1016_j_scitotenv_2023_168543 crossref_primary_10_1021_acssuschemeng_2c05534 crossref_primary_10_1016_j_wasman_2022_11_002 crossref_primary_10_1039_D2CC06113A crossref_primary_10_1016_j_jallcom_2022_164691 crossref_primary_10_1016_j_seppur_2025_131710 crossref_primary_10_1016_j_seppur_2024_128332 crossref_primary_10_1002_adma_202308494 crossref_primary_10_1016_j_cej_2024_154573 crossref_primary_10_1021_acssuschemeng_4c02488 crossref_primary_10_1016_j_cej_2024_158699 crossref_primary_10_1016_j_scitotenv_2023_162567 crossref_primary_10_1016_j_seppur_2024_126596 crossref_primary_10_1016_j_est_2023_107551 crossref_primary_10_1016_j_jiec_2024_10_032 crossref_primary_10_1039_D2EE03257K crossref_primary_10_1002_aic_18786 crossref_primary_10_1016_j_resconrec_2025_108257 crossref_primary_10_1016_j_wasman_2024_11_038 crossref_primary_10_1021_acs_energyfuels_3c04038 crossref_primary_10_1016_j_wasman_2023_03_031 crossref_primary_10_1016_j_jenvman_2024_121314 crossref_primary_10_1016_j_resconrec_2024_108005 crossref_primary_10_1016_j_matchemphys_2024_129236 crossref_primary_10_1149_1945_7111_ada644 crossref_primary_10_1002_slct_202301983 crossref_primary_10_1039_D3CS00898C crossref_primary_10_1016_j_est_2024_113308 crossref_primary_10_1007_s41918_023_00206_5 crossref_primary_10_1016_j_jallcom_2022_164661 crossref_primary_10_1016_j_wasman_2024_04_021 crossref_primary_10_3390_met14010067 crossref_primary_10_3390_en15051611 crossref_primary_10_1016_j_jpowsour_2022_232571 crossref_primary_10_1016_j_jece_2022_108534 crossref_primary_10_1007_s11837_025_07193_6 crossref_primary_10_1016_j_cogsc_2024_100914 crossref_primary_10_1016_j_hydromet_2025_106452 crossref_primary_10_1016_j_polymdegradstab_2025_111326 crossref_primary_10_1016_j_resconrec_2023_107390 crossref_primary_10_1016_j_rser_2022_112809 crossref_primary_10_3390_min14111120 crossref_primary_10_1016_j_jclepro_2022_130493 crossref_primary_10_1016_j_resconrec_2022_106782 crossref_primary_10_1016_j_resconrec_2023_107034 crossref_primary_10_1007_s10163_024_02146_8 crossref_primary_10_1016_j_ccst_2022_100074 crossref_primary_10_1007_s11837_022_05684_4 crossref_primary_10_1016_j_desal_2023_117142 crossref_primary_10_1016_j_jclepro_2023_139343 crossref_primary_10_1016_j_jechem_2023_06_040 crossref_primary_10_1021_acssuschemeng_2c03616 crossref_primary_10_1016_j_hazadv_2023_100242 crossref_primary_10_3390_batteries9080423 crossref_primary_10_1016_j_fuel_2025_134327 crossref_primary_10_1016_j_ensm_2024_103304 crossref_primary_10_1016_j_seppur_2024_130917 crossref_primary_10_1016_j_surfin_2022_102424 crossref_primary_10_1016_j_cej_2022_139258 crossref_primary_10_1016_j_cej_2024_158114 crossref_primary_10_1016_j_cej_2024_152297 crossref_primary_10_1016_j_est_2023_109073 crossref_primary_10_3390_batteries10080261 crossref_primary_10_1016_j_cej_2024_152299 crossref_primary_10_1039_D4CP01464B crossref_primary_10_1080_15567036_2023_2243863 crossref_primary_10_1016_j_cogsc_2024_100881 |
Cites_doi | 10.1016/j.jhazmat.2018.09.039 10.1016/j.jhazmat.2020.122667 10.1016/j.jhazmat.2015.09.050 10.1007/s11814-010-0405-2 10.1016/j.jclepro.2020.121439 10.3390/met10040433 10.1021/acssuschemeng.0c07166 10.1016/j.hydromet.2015.10.012 10.1021/acsami.0c00420 10.1016/j.jpowsour.2017.03.093 10.1016/0368-2048(84)80006-7 10.1016/j.jhazmat.2020.123491 10.1016/0039-6028(76)90026-1 10.3390/met8080565 10.1016/j.jclepro.2019.01.178 10.1016/j.resconrec.2020.104809 10.1016/j.tca.2019.178483 10.1016/j.resconrec.2020.105142 10.1016/j.jhazmat.2020.123068 10.1016/j.fuproc.2019.106149 10.1016/j.seppur.2007.01.015 10.1016/j.wasman.2017.03.018 10.1021/acssuschemeng.9b05896 10.1016/S0169-4332(97)00599-0 10.1016/j.corsci.2008.04.013 10.1016/j.resconrec.2020.105348 10.1016/j.jclepro.2019.119340 10.1016/j.jallcom.2018.12.226 10.1021/acssuschemeng.0c04940 10.1016/j.resconrec.2020.105019 10.1016/j.resconrec.2018.04.024 10.1021/ja00226a004 10.1007/s11356-020-10108-4 10.1016/j.wasman.2019.03.068 10.1016/j.jclepro.2015.08.026 10.1016/0368-2048(75)80047-8 10.1007/s10973-018-7732-7 10.1016/j.jpowsour.2007.02.046 10.1021/acssuschemeng.0c05676 10.1016/j.hydromet.2009.10.010 10.1021/acssuschemeng.8b04939 10.1134/S1990793120040247 10.1016/j.jclepro.2018.09.098 10.1016/j.wasman.2019.11.045 10.1016/j.wasman.2018.01.021 10.1021/acssuschemeng.9b04175 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.resconrec.2021.105921 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Ecology Environmental Sciences |
EISSN | 1879-0658 |
ExternalDocumentID | 10_1016_j_resconrec_2021_105921 S0921344921005309 |
GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN 9JO AACTN AAEDT AAEDW AAFJI AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABEFU ABFNM ABFYP ABJNI ABLST ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDP SEN SES SEW SPC SPCBC SSB SSJ SSO SSR SSZ T5K WUQ ZY4 ~A~ ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c348t-c374b657b925ab4c5da1966f1dbfe45a6ce3bece0da052ede65045e100e9e3533 |
IEDL.DBID | .~1 |
ISSN | 0921-3449 |
IngestDate | Thu Jul 10 23:41:27 EDT 2025 Tue Jul 01 03:49:49 EDT 2025 Thu Apr 24 23:08:46 EDT 2025 Fri Feb 23 02:41:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Reductant-free acid leaching Reduction Carbonated water leaching Spent LiCoO2 lithium-ion battery Full-component pyrolysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-c374b657b925ab4c5da1966f1dbfe45a6ce3bece0da052ede65045e100e9e3533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2636786626 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2636786626 crossref_citationtrail_10_1016_j_resconrec_2021_105921 crossref_primary_10_1016_j_resconrec_2021_105921 elsevier_sciencedirect_doi_10_1016_j_resconrec_2021_105921 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Resources, conservation and recycling |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mao, Li, Xu (bib0029) 2018; 205 Kwon, Sohn (bib0020) 2020; 158 Zhang, He, Wang, Feng, Xie, Zhu (bib0044) 2020; 8 dos Santos, Alves, da Silva, Sita, da Silva, de Almeida, Scarminio (bib0009) 2019; 362 Brojerdi, Eddrief, Fargues, Tyuliev, Balkanski (bib0003) 1998; 126 Yi, Yan, Ma (bib0042) 2011; 28 Ghassa, Farzanegan, Gharabaghi, Abdollahi (bib0010) 2021; 166 Chen, Guo, Ma, Li, Zhou, Cao, Kang (bib0005) 2018; 75 Nshizirungu, Rana, Jo, Park (bib0031) 2020; 396 Lin, Li, Fan, Liu, Zhang, Cao, Sun, Chen (bib0022) 2020; 12 Swain, Jeong, Lee, Lee, Sohn (bib0033) 2007; 167 Liu, Xiao, Chen, Tang, Wu, Chen (bib0023) 2019; 783 Mandale, Badrinarayanan, Date, Sinha (bib0028) 1984; 33 Calderon, Barcia, Mattos (bib0004) 2008; 50 Dean (bib0007) 1999 Arshad, Li, Amin, Fan, Manurkar, Ahmad, Yang, Wu, Chen (bib0001) 2020; 8 Golmohammadzadeh, Faraji, Rashchi (bib0011) 2018; 136 Sloop, Crandon, Allen, Koetje, Reed, Gaines, Sirisaksoontorn, Lerner (bib0032) 2020; 25 Hu, Zhang, Li, Chen, Wang (bib0013) 2017; 351 Ma, Tang, Wanaldi, Zhou, Wang, Zhou, Yang (bib0027) 2021; 402 Liu, Zhong, Han, Qin, Liu, Zhao, Chang (bib0025) 2019; 7 Zhong, Liu, Han, Jiao, Qin, Liu (bib0047) 2020; 263 Zhong, Liu, Han, Jiao, Qin, Liu, Zhao (bib0048) 2019; 89 Hanisch, Loellhoeffel, Diekmann, Markley, Haselrieder, Kwade (bib0012) 2015; 108 Wang, Zhang, Zhang, Xu (bib0038) 2020; 249 Tao, Yan, Hua, Qiang, Ming (bib0035) 2007; 56 Zhao, Zhang, Li, Zhu, Huang, He (bib0046) 2020; 162 Tereza, Agafonov, Anderzhanov, Medvedev, Khomik, Petrov, Chernyshov (bib0036) 2020; 14 Yadav, Jie, Tan, Srinivasan (bib0039) 2020; 399 King, Boxall (bib0018) 2019; 215 Yu, Xiong, Wu, Lu, Yao, Xu, Tang (bib0043) 2020; 27 Kuzuhara, Ota, Tsugita, Kasuya (bib0019) 2020; 10 Lombardo, Ebin, Steenari, Alemrajabi, Karlsson, Petranikova (bib0026) 2021; 164 Tan, Klabunde, Tanaka, Kanai, Yoshida (bib0034) 1988; 110 Muelas, Callen, Murillo, Ballester (bib0030) 2019; 196 Jie, Yang, Hu, Li, Ye, Zhao, Jin, Chang, Lai, Chen (bib0014) 2020; 684 Chuang, Brundle, Rice (bib0006) 1976; 59 Bonnelle, Grimblot, Dhuysser (bib0002) 1975; 7 Wang, Han, Zhang, Zhang, Xu (bib0037) 2019; 7 Yang, Xu, He (bib0041) 2017; 64 Joo, Shin, Oh, Wang, Senanayake, Shin (bib0016) 2016; 159 Yang, Zhang, Cao, Jing, Chen, Wang (bib0040) 2020; 8 Diaz, Wang, Moorthy, Friedrich (bib0008) 2018; 8 Liu, Xiao, Tang, Chen, Ye, Zhu (bib0024) 2019; 136 Kang, Senanayake, Sohn, Shin (bib0017) 2010; 100 Zhang, Wang, Fang, Xu (bib0045) 2020; 102 Jing, Zhang, Liu, Zhang, Chen, Wang (bib0015) 2020; 8 Li, Wang, Xu (bib0021) 2016; 302 Yang (10.1016/j.resconrec.2021.105921_bib0040) 2020; 8 Hanisch (10.1016/j.resconrec.2021.105921_bib0012) 2015; 108 Zhang (10.1016/j.resconrec.2021.105921_bib0044) 2020; 8 Tan (10.1016/j.resconrec.2021.105921_bib0034) 1988; 110 Zhang (10.1016/j.resconrec.2021.105921_bib0045) 2020; 102 Zhong (10.1016/j.resconrec.2021.105921_bib0048) 2019; 89 Arshad (10.1016/j.resconrec.2021.105921_bib0001) 2020; 8 Ma (10.1016/j.resconrec.2021.105921_bib0027) 2021; 402 Yadav (10.1016/j.resconrec.2021.105921_bib0039) 2020; 399 Mao (10.1016/j.resconrec.2021.105921_bib0029) 2018; 205 Tereza (10.1016/j.resconrec.2021.105921_bib0036) 2020; 14 Liu (10.1016/j.resconrec.2021.105921_bib0025) 2019; 7 Mandale (10.1016/j.resconrec.2021.105921_bib0028) 1984; 33 Yang (10.1016/j.resconrec.2021.105921_bib0041) 2017; 64 Golmohammadzadeh (10.1016/j.resconrec.2021.105921_bib0011) 2018; 136 Liu (10.1016/j.resconrec.2021.105921_bib0024) 2019; 136 Kuzuhara (10.1016/j.resconrec.2021.105921_bib0019) 2020; 10 Yu (10.1016/j.resconrec.2021.105921_bib0043) 2020; 27 Muelas (10.1016/j.resconrec.2021.105921_bib0030) 2019; 196 Calderon (10.1016/j.resconrec.2021.105921_bib0004) 2008; 50 King (10.1016/j.resconrec.2021.105921_bib0018) 2019; 215 Kwon (10.1016/j.resconrec.2021.105921_bib0020) 2020; 158 Nshizirungu (10.1016/j.resconrec.2021.105921_bib0031) 2020; 396 Yi (10.1016/j.resconrec.2021.105921_bib0042) 2011; 28 Joo (10.1016/j.resconrec.2021.105921_bib0016) 2016; 159 Lombardo (10.1016/j.resconrec.2021.105921_bib0026) 2021; 164 Dean (10.1016/j.resconrec.2021.105921_bib0007) 1999 Liu (10.1016/j.resconrec.2021.105921_bib0023) 2019; 783 dos Santos (10.1016/j.resconrec.2021.105921_bib0009) 2019; 362 Wang (10.1016/j.resconrec.2021.105921_bib0038) 2020; 249 Zhao (10.1016/j.resconrec.2021.105921_bib0046) 2020; 162 Swain (10.1016/j.resconrec.2021.105921_bib0033) 2007; 167 Kang (10.1016/j.resconrec.2021.105921_bib0017) 2010; 100 Ghassa (10.1016/j.resconrec.2021.105921_bib0010) 2021; 166 Hu (10.1016/j.resconrec.2021.105921_bib0013) 2017; 351 Lin (10.1016/j.resconrec.2021.105921_bib0022) 2020; 12 Brojerdi (10.1016/j.resconrec.2021.105921_bib0003) 1998; 126 Li (10.1016/j.resconrec.2021.105921_bib0021) 2016; 302 Chen (10.1016/j.resconrec.2021.105921_bib0005) 2018; 75 Zhong (10.1016/j.resconrec.2021.105921_bib0047) 2020; 263 Diaz (10.1016/j.resconrec.2021.105921_bib0008) 2018; 8 Jing (10.1016/j.resconrec.2021.105921_bib0015) 2020; 8 Wang (10.1016/j.resconrec.2021.105921_bib0037) 2019; 7 Bonnelle (10.1016/j.resconrec.2021.105921_bib0002) 1975; 7 Jie (10.1016/j.resconrec.2021.105921_bib0014) 2020; 684 Chuang (10.1016/j.resconrec.2021.105921_bib0006) 1976; 59 Sloop (10.1016/j.resconrec.2021.105921_bib0032) 2020; 25 Tao (10.1016/j.resconrec.2021.105921_bib0035) 2007; 56 |
References_xml | – volume: 396 start-page: 122667 year: 2020 end-page: 122676 ident: bib0031 article-title: Rapid leaching and recovery of valuable metals from spent lithium ion batteries (LIBs) via environmentally benign subcritical nickel-containing water over chlorinated polyvinyl chloride publication-title: J. Hazard. Mater – volume: 166 start-page: 105348 year: 2021 end-page: 105358 ident: bib0010 article-title: Iron scrap, a sustainable reducing agent for waste lithium ions batteries leaching: an environmentally friendly method to treating waste with waste publication-title: Resour. Conserv. Recy – year: 1999 ident: bib0007 article-title: Lange's Handbook of Chemistry – volume: 302 start-page: 97 year: 2016 end-page: 104 ident: bib0021 article-title: Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO publication-title: J. Hazard. Mater – volume: 783 start-page: 743 year: 2019 end-page: 752 ident: bib0023 article-title: Recovering valuable metals from LiNi publication-title: J. Alloy. Compd – volume: 362 start-page: 458 year: 2019 end-page: 466 ident: bib0009 article-title: A closed-loop process to recover Li and Co compounds and to resynthesize LiCoO publication-title: J. Hazard. Mater – volume: 56 start-page: 241 year: 2007 end-page: 248 ident: bib0035 article-title: Refining of crude Li2CO3 via slurry phase dissolution using CO publication-title: Sep. Purif. Technol. – volume: 249 start-page: 119340 year: 2020 end-page: 119349 ident: bib0038 article-title: Cleaner recycling of cathode material by in-situ thermite reduction publication-title: J. Clean. Prod. – volume: 14 start-page: 654 year: 2020 end-page: 659 ident: bib0036 article-title: Conversion kinetics of the gaseous products of pyrolysis of polypropylene and waste tires publication-title: Russ. J. Phys. Chem. B – volume: 263 start-page: 121439 year: 2020 end-page: 121449 ident: bib0047 article-title: Pretreatment for the recovery of spent lithium ion batteries: theoretical and practical aspects publication-title: J. Clean. Prod. – volume: 215 start-page: 1279 year: 2019 end-page: 1287 ident: bib0018 article-title: Lithium battery recycling in Australia: defining the status and identifying opportunities for the development of a new industry publication-title: J. Clean. Prod – volume: 27 start-page: 40205 year: 2020 end-page: 40209 ident: bib0043 article-title: Pyrolysis characteristics of cathode from spent lithium-ion batteries using advanced TG-FTIR-GC/MS analysis – volume: 102 start-page: 847 year: 2020 end-page: 855 ident: bib0045 article-title: Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching publication-title: Waste Manage. – volume: 100 start-page: 168 year: 2010 end-page: 171 ident: bib0017 article-title: Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272 publication-title: Hydrometallurgy – volume: 351 start-page: 192 year: 2017 end-page: 199 ident: bib0013 article-title: A promising approach for the recovery of high value-added metals from spent lithium-ion batteries publication-title: J. Power Sources – volume: 75 start-page: 459 year: 2018 end-page: 468 ident: bib0005 article-title: Organic reductants based leaching: a sustainable process for the recovery of valuable metals from spent lithium ion batteries publication-title: Waste Manage. – volume: 158 start-page: 104809 year: 2020 end-page: 104821 ident: bib0020 article-title: Fundamental thermokinetic study of a sustainable lithium-ion battery pyrometallurgical recycling process publication-title: Resour. Conserv. Recy – volume: 159 start-page: 65 year: 2016 end-page: 74 ident: bib0016 article-title: Selective extraction and separation of nickel from cobalt, manganese and lithium in pre-treated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic 10 acid and LIX 84-I publication-title: Hydrometallurgy – volume: 8 start-page: 13527 year: 2020 end-page: 13554 ident: bib0001 article-title: A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries publication-title: Eng. – volume: 399 start-page: 123068 year: 2020 end-page: 123078 ident: bib0039 article-title: Recycling of cathode from spent lithium iron phosphate batteries publication-title: J. Hazard. Mater. – volume: 28 start-page: 703 year: 2011 end-page: 709 ident: bib0042 article-title: Kinetic study on carbonation of crude Li publication-title: Korean J. Chem. Eng. – volume: 89 start-page: 83 year: 2019 end-page: 93 ident: bib0048 article-title: Pyrolysis and physical separation for the recovery of spent LiFePO publication-title: Waste Manage. – volume: 108 start-page: 301 year: 2015 end-page: 311 ident: bib0012 article-title: Recycling of lithium-ion batteries: a novel method to separate coating and foil of electrodes publication-title: J. Clean. Prod – volume: 205 start-page: 923 year: 2018 end-page: 929 ident: bib0029 article-title: Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO publication-title: J. Clean. Prod – volume: 7 start-page: 16729 year: 2019 end-page: 16737 ident: bib0037 article-title: Alkali metal salt catalyzed carbothermic reduction for sustainable recovery of LiCoO publication-title: ACS Sustain. Chem. Eng. – volume: 59 start-page: 413 year: 1976 end-page: 429 ident: bib0006 article-title: Interpretation of X-Ray photoemission spectra of cobalt oxides and cobalt oxide surfaces publication-title: Surf. Sci – volume: 136 start-page: 418 year: 2018 end-page: 435 ident: bib0011 article-title: Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: a review publication-title: Resour. Conserv. Recy – volume: 8 start-page: 2205 year: 2020 end-page: 2214 ident: bib0044 article-title: Removal of organics by pyrolysis for enhancing liberation and flotation behavior of electrode materials derived from spent Lithium-Ion batteries publication-title: ACS Sustain. Chem. Eng. – volume: 8 start-page: 17622 year: 2020 end-page: 17628 ident: bib0015 article-title: Direct regeneration of spent LiFePO publication-title: ACS Sustain. Chem. Eng. – volume: 126 start-page: 273 year: 1998 end-page: 280 ident: bib0003 article-title: Interface between a III-VI intercalation compound and a solid electrolyte: XPS and RHEED study publication-title: Appl. Surf. Sci – volume: 50 start-page: 2101 year: 2008 end-page: 2109 ident: bib0004 article-title: Reaction model for kinetic of cobalt dissolution in carbonate/bicarbonate media publication-title: Corrosion Sci – volume: 7 start-page: 151 year: 1975 end-page: 162 ident: bib0002 article-title: Influence of polarizaton of bonds on ESCA spectra of cobalt oxides publication-title: J. Electron Spectrosc – volume: 196 start-page: 106149 year: 2019 end-page: 106159 ident: bib0030 article-title: Production and droplet combustion characteristics of waste tire pyrolysis oil publication-title: Fuel Process. Technol – volume: 25 start-page: e00152 year: 2020 end-page: e11062 ident: bib0032 article-title: A direct recycling case study from a lithium-ion battery recall publication-title: Sustain. Mater. Techno – volume: 110 start-page: 5951 year: 1988 end-page: 5958 ident: bib0034 article-title: An EXAFS Study of Co-Mn/SiO publication-title: J. Am. Chem. Soc – volume: 8 start-page: 15732 year: 2020 end-page: 15739 ident: bib0040 article-title: Sustainable and facile process for lithium recovery from spent LiNi publication-title: ACS Sustain. Chem. Eng. – volume: 10 start-page: 433 year: 2020 end-page: 447 ident: bib0019 article-title: Recovering lithium from the cathode active material in lithium-ion batteries via thermal decomposition publication-title: Metals (Basel) – volume: 12 start-page: 18482 year: 2020 end-page: 18489 ident: bib0022 article-title: Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting publication-title: ACS Appl. Mater. Inter – volume: 64 start-page: 219 year: 2017 end-page: 227 ident: bib0041 article-title: Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes publication-title: Waste Manage. – volume: 684 start-page: 178483 year: 2020 end-page: 178490 ident: bib0014 article-title: Gas evolution characterization and phase transformation during thermal treatment of cathode plates from spent LiFePO publication-title: Thermochim. Acta – volume: 136 start-page: 1323 year: 2019 end-page: 1332 ident: bib0024 article-title: Study on the reduction roasting of spent LiNi publication-title: J. Therm. Anal. Calorim – volume: 33 start-page: 61 year: 1984 end-page: 72 ident: bib0028 article-title: Photoelectron-spectroscopic study of nikel, mangnese and cobalt selenides publication-title: J. Electron Spectrosc – volume: 7 start-page: 1289 year: 2019 end-page: 1299 ident: bib0025 article-title: Kinetic study and pyrolysis behaviors of spent LiFePO publication-title: ACS Sustain. Chem. Eng – volume: 164 start-page: 105142 year: 2021 end-page: 105153 ident: bib0026 article-title: Comparison of the effects of incineration, vacuum pyrolysis and dynamic pyrolysis on the composition of NMC-lithium battery cathode-material production scraps and separation of the current collector publication-title: Resour. Conserv. Recy – volume: 167 start-page: 536 year: 2007 end-page: 544 ident: bib0033 article-title: Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries publication-title: J. Power Sources – volume: 8 start-page: 565 year: 2018 end-page: 571 ident: bib0008 article-title: Degradation mechanism of nickel-cobalt-aluminum (NCA) cathode material from spent lithium-ion batteries in Microwave-Assisted Pyrolysis publication-title: Metals (Basel) – volume: 402 start-page: 123491 year: 2021 end-page: 123502 ident: bib0027 article-title: A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching publication-title: J. Hazard. Mater – volume: 162 start-page: 105019 year: 2020 end-page: 105030 ident: bib0046 article-title: Ultrasonic renovation mechanism of spent LCO batteries: a mild condition for cathode materials recycling publication-title: Resour. Conserv. Recy. – volume: 362 start-page: 458 year: 2019 ident: 10.1016/j.resconrec.2021.105921_bib0009 article-title: A closed-loop process to recover Li and Co compounds and to resynthesize LiCoO2 from spent mobile phone batteries publication-title: J. Hazard. Mater doi: 10.1016/j.jhazmat.2018.09.039 – volume: 396 start-page: 122667 year: 2020 ident: 10.1016/j.resconrec.2021.105921_bib0031 article-title: Rapid leaching and recovery of valuable metals from spent lithium ion batteries (LIBs) via environmentally benign subcritical nickel-containing water over chlorinated polyvinyl chloride publication-title: J. Hazard. Mater doi: 10.1016/j.jhazmat.2020.122667 – volume: 302 start-page: 97 year: 2016 ident: 10.1016/j.resconrec.2021.105921_bib0021 article-title: Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries publication-title: J. Hazard. Mater doi: 10.1016/j.jhazmat.2015.09.050 – volume: 28 start-page: 703 year: 2011 ident: 10.1016/j.resconrec.2021.105921_bib0042 article-title: Kinetic study on carbonation of crude Li2CO3 with CO2-water solutions in a slurry bubble column reactor publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-010-0405-2 – volume: 263 start-page: 121439 year: 2020 ident: 10.1016/j.resconrec.2021.105921_bib0047 article-title: Pretreatment for the recovery of spent lithium ion batteries: theoretical and practical aspects publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.121439 – volume: 10 start-page: 433 year: 2020 ident: 10.1016/j.resconrec.2021.105921_bib0019 article-title: Recovering lithium from the cathode active material in lithium-ion batteries via thermal decomposition publication-title: Metals (Basel) doi: 10.3390/met10040433 – volume: 8 start-page: 17622 year: 2020 ident: 10.1016/j.resconrec.2021.105921_bib0015 article-title: Direct regeneration of spent LiFePO4 cathode material by a green and efficient one-step hydrothermal method publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c07166 – volume: 159 start-page: 65 year: 2016 ident: 10.1016/j.resconrec.2021.105921_bib0016 article-title: Selective extraction and separation of nickel from cobalt, manganese and lithium in pre-treated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic 10 acid and LIX 84-I publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2015.10.012 – volume: 12 start-page: 18482 year: 2020 ident: 10.1016/j.resconrec.2021.105921_bib0022 article-title: Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting publication-title: ACS Appl. Mater. Inter doi: 10.1021/acsami.0c00420 – volume: 351 start-page: 192 year: 2017 ident: 10.1016/j.resconrec.2021.105921_bib0013 article-title: A promising approach for the recovery of high value-added metals from spent lithium-ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.03.093 – volume: 33 start-page: 61 year: 1984 ident: 10.1016/j.resconrec.2021.105921_bib0028 article-title: Photoelectron-spectroscopic study of nikel, mangnese and cobalt selenides publication-title: J. Electron Spectrosc doi: 10.1016/0368-2048(84)80006-7 – volume: 402 start-page: 123491 year: 2021 ident: 10.1016/j.resconrec.2021.105921_bib0027 article-title: A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching publication-title: J. Hazard. Mater doi: 10.1016/j.jhazmat.2020.123491 – volume: 59 start-page: 413 year: 1976 ident: 10.1016/j.resconrec.2021.105921_bib0006 article-title: Interpretation of X-Ray photoemission spectra of cobalt oxides and cobalt oxide surfaces publication-title: Surf. Sci doi: 10.1016/0039-6028(76)90026-1 – volume: 8 start-page: 565 year: 2018 ident: 10.1016/j.resconrec.2021.105921_bib0008 article-title: Degradation mechanism of nickel-cobalt-aluminum (NCA) cathode material from spent lithium-ion batteries in Microwave-Assisted Pyrolysis publication-title: Metals (Basel) doi: 10.3390/met8080565 – volume: 25 start-page: e00152 year: 2020 ident: 10.1016/j.resconrec.2021.105921_bib0032 article-title: A direct recycling case study from a lithium-ion battery recall publication-title: Sustain. Mater. Techno – volume: 215 start-page: 1279 year: 2019 ident: 10.1016/j.resconrec.2021.105921_bib0018 article-title: Lithium battery recycling in Australia: defining the status and identifying opportunities for the development of a new industry publication-title: J. Clean. Prod doi: 10.1016/j.jclepro.2019.01.178 – volume: 158 start-page: 104809 year: 2020 ident: 10.1016/j.resconrec.2021.105921_bib0020 article-title: Fundamental thermokinetic study of a sustainable lithium-ion battery pyrometallurgical recycling process publication-title: Resour. Conserv. Recy doi: 10.1016/j.resconrec.2020.104809 – volume: 684 start-page: 178483 year: 2020 ident: 10.1016/j.resconrec.2021.105921_bib0014 article-title: Gas evolution characterization and phase transformation during thermal treatment of cathode plates from spent LiFePO4 batteries publication-title: Thermochim. Acta doi: 10.1016/j.tca.2019.178483 – volume: 164 start-page: 105142 year: 2021 ident: 10.1016/j.resconrec.2021.105921_bib0026 article-title: Comparison of the effects of incineration, vacuum pyrolysis and dynamic pyrolysis on the composition of NMC-lithium battery cathode-material production scraps and separation of the current collector publication-title: Resour. Conserv. Recy doi: 10.1016/j.resconrec.2020.105142 – volume: 399 start-page: 123068 year: 2020 ident: 10.1016/j.resconrec.2021.105921_bib0039 article-title: Recycling of cathode from spent lithium iron phosphate batteries publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.123068 – volume: 196 start-page: 106149 year: 2019 ident: 10.1016/j.resconrec.2021.105921_bib0030 article-title: Production and droplet combustion characteristics of waste tire pyrolysis oil publication-title: Fuel Process. Technol doi: 10.1016/j.fuproc.2019.106149 – volume: 56 start-page: 241 year: 2007 ident: 10.1016/j.resconrec.2021.105921_bib0035 article-title: Refining of crude Li2CO3 via slurry phase dissolution using CO2 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2007.01.015 – volume: 64 start-page: 219 year: 2017 ident: 10.1016/j.resconrec.2021.105921_bib0041 article-title: Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes publication-title: Waste Manage. doi: 10.1016/j.wasman.2017.03.018 – volume: 8 start-page: 2205 year: 2020 ident: 10.1016/j.resconrec.2021.105921_bib0044 article-title: Removal of organics by pyrolysis for enhancing liberation and flotation behavior of electrode materials derived from spent Lithium-Ion batteries publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b05896 – volume: 126 start-page: 273 year: 1998 ident: 10.1016/j.resconrec.2021.105921_bib0003 article-title: Interface between a III-VI intercalation compound and a solid electrolyte: XPS and RHEED study publication-title: Appl. Surf. Sci doi: 10.1016/S0169-4332(97)00599-0 – volume: 50 start-page: 2101 year: 2008 ident: 10.1016/j.resconrec.2021.105921_bib0004 article-title: Reaction model for kinetic of cobalt dissolution in carbonate/bicarbonate media publication-title: Corrosion Sci doi: 10.1016/j.corsci.2008.04.013 – volume: 166 start-page: 105348 year: 2021 ident: 10.1016/j.resconrec.2021.105921_bib0010 article-title: Iron scrap, a sustainable reducing agent for waste lithium ions batteries leaching: an environmentally friendly method to treating waste with waste publication-title: Resour. Conserv. Recy doi: 10.1016/j.resconrec.2020.105348 – volume: 249 start-page: 119340 year: 2020 ident: 10.1016/j.resconrec.2021.105921_bib0038 article-title: Cleaner recycling of cathode material by in-situ thermite reduction publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.119340 – volume: 783 start-page: 743 year: 2019 ident: 10.1016/j.resconrec.2021.105921_bib0023 article-title: Recovering valuable metals from LiNixCoyMn1-x-yO2 cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching publication-title: J. Alloy. Compd doi: 10.1016/j.jallcom.2018.12.226 – volume: 8 start-page: 13527 year: 2020 ident: 10.1016/j.resconrec.2021.105921_bib0001 article-title: A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c04940 – volume: 162 start-page: 105019 year: 2020 ident: 10.1016/j.resconrec.2021.105921_bib0046 article-title: Ultrasonic renovation mechanism of spent LCO batteries: a mild condition for cathode materials recycling publication-title: Resour. Conserv. Recy. doi: 10.1016/j.resconrec.2020.105019 – year: 1999 ident: 10.1016/j.resconrec.2021.105921_bib0007 – volume: 136 start-page: 418 year: 2018 ident: 10.1016/j.resconrec.2021.105921_bib0011 article-title: Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: a review publication-title: Resour. Conserv. Recy doi: 10.1016/j.resconrec.2018.04.024 – volume: 110 start-page: 5951 year: 1988 ident: 10.1016/j.resconrec.2021.105921_bib0034 article-title: An EXAFS Study of Co-Mn/SiO2 bimetallic solvated metal atom dispersed (SMAD) catalysts publication-title: J. Am. Chem. Soc doi: 10.1021/ja00226a004 – volume: 27 start-page: 40205 year: 2020 ident: 10.1016/j.resconrec.2021.105921_bib0043 article-title: Pyrolysis characteristics of cathode from spent lithium-ion batteries using advanced TG-FTIR-GC/MS analysis publication-title: Environ. Sci. Pollut. Res doi: 10.1007/s11356-020-10108-4 – volume: 89 start-page: 83 year: 2019 ident: 10.1016/j.resconrec.2021.105921_bib0048 article-title: Pyrolysis and physical separation for the recovery of spent LiFePO4 batteries publication-title: Waste Manage. doi: 10.1016/j.wasman.2019.03.068 – volume: 108 start-page: 301 year: 2015 ident: 10.1016/j.resconrec.2021.105921_bib0012 article-title: Recycling of lithium-ion batteries: a novel method to separate coating and foil of electrodes publication-title: J. Clean. Prod doi: 10.1016/j.jclepro.2015.08.026 – volume: 7 start-page: 151 year: 1975 ident: 10.1016/j.resconrec.2021.105921_bib0002 article-title: Influence of polarizaton of bonds on ESCA spectra of cobalt oxides publication-title: J. Electron Spectrosc doi: 10.1016/0368-2048(75)80047-8 – volume: 136 start-page: 1323 year: 2019 ident: 10.1016/j.resconrec.2021.105921_bib0024 article-title: Study on the reduction roasting of spent LiNixCoyMnzO2 lithium-ion battery cathode materials publication-title: J. Therm. Anal. Calorim doi: 10.1007/s10973-018-7732-7 – volume: 167 start-page: 536 year: 2007 ident: 10.1016/j.resconrec.2021.105921_bib0033 article-title: Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2007.02.046 – volume: 8 start-page: 15732 year: 2020 ident: 10.1016/j.resconrec.2021.105921_bib0040 article-title: Sustainable and facile process for lithium recovery from spent LiNixCoyMnzO2 cathode materials via selective sulfation with ammonium sulfate publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c05676 – volume: 100 start-page: 168 year: 2010 ident: 10.1016/j.resconrec.2021.105921_bib0017 article-title: Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272 publication-title: Hydrometallurgy doi: 10.1016/j.hydromet.2009.10.010 – volume: 7 start-page: 1289 year: 2019 ident: 10.1016/j.resconrec.2021.105921_bib0025 article-title: Kinetic study and pyrolysis behaviors of spent LiFePO4 batteries publication-title: ACS Sustain. Chem. Eng doi: 10.1021/acssuschemeng.8b04939 – volume: 14 start-page: 654 year: 2020 ident: 10.1016/j.resconrec.2021.105921_bib0036 article-title: Conversion kinetics of the gaseous products of pyrolysis of polypropylene and waste tires publication-title: Russ. J. Phys. Chem. B doi: 10.1134/S1990793120040247 – volume: 205 start-page: 923 year: 2018 ident: 10.1016/j.resconrec.2021.105921_bib0029 article-title: Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO2 batteries publication-title: J. Clean. Prod doi: 10.1016/j.jclepro.2018.09.098 – volume: 102 start-page: 847 year: 2020 ident: 10.1016/j.resconrec.2021.105921_bib0045 article-title: Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching publication-title: Waste Manage. doi: 10.1016/j.wasman.2019.11.045 – volume: 75 start-page: 459 year: 2018 ident: 10.1016/j.resconrec.2021.105921_bib0005 article-title: Organic reductants based leaching: a sustainable process for the recovery of valuable metals from spent lithium ion batteries publication-title: Waste Manage. doi: 10.1016/j.wasman.2018.01.021 – volume: 7 start-page: 16729 year: 2019 ident: 10.1016/j.resconrec.2021.105921_bib0037 article-title: Alkali metal salt catalyzed carbothermic reduction for sustainable recovery of LiCoO2: accurately controlled reduction and efficient water leaching publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b04175 |
SSID | ssj0003893 |
Score | 2.6189904 |
Snippet | LiCoO2 (LCO) lithium-ion battery (LIB) is rich in valuable metals (cobalt and lithium), which has high recycling value. The existing process has basically... LiCoO₂ (LCO) lithium-ion battery (LIB) is rich in valuable metals (cobalt and lithium), which has high recycling value. The existing process has basically... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105921 |
SubjectTerms | aluminum anodes Carbonated water leaching carbonates cathodes cobalt cobalt sulfate copper crystallization electrolytes fluorine Full-component pyrolysis graphene lithium lithium batteries lithium cobalt oxide oils pyrolysis Reductant-free acid leaching Reduction Spent LiCoO2 lithium-ion battery synergism |
Title | Recovery of spent LiCoO2 lithium-ion battery via environmentally friendly pyrolysis and hydrometallurgical leaching |
URI | https://dx.doi.org/10.1016/j.resconrec.2021.105921 https://www.proquest.com/docview/2636786626 |
Volume | 176 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hqkrtAZVtUYEWuVKv6SaO7WBuaLVoYSmV2qJys-zYEUFLstoHUi78dsbehEclxIGLEyV2HHneycxngO9U232DQhbFWvOIFVZGJjE8ojKRRZ7LLBW-wPnnmRids5MLfrEGg64WxqdVtrp_pdODtm6v9NvV7E_Lsv8nlh6NjGHrOSkU8TGWeS7_cfuQ5uENcsDbo0nkez_J8cKIFqNOnAYDRZr4PW8lTZ6zUP_p6mCAjj7ARus5ksPVy23Cmqt68HYYUKebHrx_hCzYg63hQwEbDmoleP4R5j7eRPZtSF2Q-RRvk9NyUP-iBP3xy3J5HSGhiAmomw25KTVxj580aUjhkZEtnkybWR0ATYiuLLlsAvKB77OcBXVKJm2m5ic4Pxr-HYyiduOFKE_Z_gLbjBnBMyMp14bl3GoUVFEk1hSOcS1ylyLtXWx1zKmzDt08xh3SwUmXogO5BetVXbnPQITA2DsxqU0KwyzNJY9TaaXgjgrNM7kNoltslbeo5H5zjInq0s-u1D2VlKeSWlFpG-L7gdMVMMfLQw46aqonPKbQfLw8-FtHf4US6H-r6MrVy7miIkWLLzAy3HnNBLvwjvrSivB55wusL2ZL9xUdnoXZCxy9B28Oj8ejM38c__43vgOC-gXn |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-aOiHggKAwMRhgJK5RE8d2Z25T1aljXTmwSbtZduxoQSWp-oGU_55n1-k2pGmHXawoyYsjv-_kvZ8BvlFtjw0qWZJqzRNWWpmYzPCEykyWRSGHufANzhczMbliP6759R6Mul4YX1YZbf_WpgdrHc8M4moOFlU1-JVKj0bGcPSS5Jv49j06Fe_B_snZ-WS2M8jeJwfIPZolnuBemRcmtZh44kyYK9LMb3srafaQk_rPXAcfdPoaXsXgkZxs3-8N7Lm6D8_GAXi67cPLO-CCfTgY3_awIVFU4tVbWPmUEyW4JU1JVgu8TKbVqPlJCYbkN9XmT4K8IiYAb7bkb6WJu_ukeUtKD45s8WDRLpuAaUJ0bclNG8AP_D2bZbCoZB6LNd_B1en4cjRJ4t4LSZGz4zWOQ2YEHxpJuTas4Fajrooys6Z0jGtRuBzZ71KrU06ddRjpMe6QFU66HGPIA-jVTe3eAxEC0-_M5DYrDbO0kDzNpZWCOyo0H8pDEN1iqyICk_v9Meaqq0D7rXZcUp5LasulQ0h3hIstNsfjJN87bqp7YqbQgzxO_LXjv0Il9H9WdO2azUpRkaPTF5gcfnjKBF_g-eTyYqqmZ7Pzj_CC-k6L8LXnCHrr5cZ9wvhnbT5H-f4HNcIG9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recovery+of+spent+LiCoO2+lithium-ion+battery+via+environmentally+friendly+pyrolysis+and+hydrometallurgical+leaching&rft.jtitle=Resources%2C+conservation+and+recycling&rft.au=Tao%2C+Ren&rft.au=Xing%2C+Peng&rft.au=Li%2C+Huiquan&rft.au=Sun%2C+Zhenhua&rft.date=2022-01-01&rft.pub=Elsevier+B.V&rft.issn=0921-3449&rft.eissn=1879-0658&rft.volume=176&rft_id=info:doi/10.1016%2Fj.resconrec.2021.105921&rft.externalDocID=S0921344921005309 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-3449&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-3449&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-3449&client=summon |