Recovery of spent LiCoO2 lithium-ion battery via environmentally friendly pyrolysis and hydrometallurgical leaching

LiCoO2 (LCO) lithium-ion battery (LIB) is rich in valuable metals (cobalt and lithium), which has high recycling value. The existing process has basically realized the extraction of cobalt, but there are still shortcomings in harmless disposal of fluorine-containing electrolyte, binder and other org...

Full description

Saved in:
Bibliographic Details
Published inResources, conservation and recycling Vol. 176; p. 105921
Main Authors Tao, Ren, Xing, Peng, Li, Huiquan, Sun, Zhenhua, Wu, Yufeng
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract LiCoO2 (LCO) lithium-ion battery (LIB) is rich in valuable metals (cobalt and lithium), which has high recycling value. The existing process has basically realized the extraction of cobalt, but there are still shortcomings in harmless disposal of fluorine-containing electrolyte, binder and other organic matters, selective extraction of lithium and low-cost extraction of cobalt. In this context, a novel process was developed to realize the full-component recovery of spent LiCoO2 battery via environmentally friendly pyrolysis and hydrometallurgical leaching. The organic matters were recovered in the form of pyrolytic oil and gas, in which the harmful fluorine element was absorbed by Ca(OH)2 solution. The current collectors (copper and aluminum) were recovered after the easy separation of electrode materials due to the degradation of binders. During pyrolysis the cathode material was deconstructed and reduced under the synergistic effect of pyrolytic gas and anode graphite. Selective recovery of lithium and cobalt was achieved through carbonated water leaching and reductant-free acid leaching. The leaching efficiencies of lithium and cobalt were respectively 87.9% and 99.1% under the optimal conditions. Lithium carbonate and cobalt sulfate were obtained by evaporative crystallization, respectively. The remaining residue was only graphite without impurity entrainment. The results in this research suggest that the process consisting of pyrolysis and hydrometallurgical leaching is inexpensive, efficient, and eco-friendly for full-component recycling of spent LiCoO2 battery. [Display omitted]
AbstractList LiCoO₂ (LCO) lithium-ion battery (LIB) is rich in valuable metals (cobalt and lithium), which has high recycling value. The existing process has basically realized the extraction of cobalt, but there are still shortcomings in harmless disposal of fluorine-containing electrolyte, binder and other organic matters, selective extraction of lithium and low-cost extraction of cobalt. In this context, a novel process was developed to realize the full-component recovery of spent LiCoO₂ battery via environmentally friendly pyrolysis and hydrometallurgical leaching. The organic matters were recovered in the form of pyrolytic oil and gas, in which the harmful fluorine element was absorbed by Ca(OH)₂ solution. The current collectors (copper and aluminum) were recovered after the easy separation of electrode materials due to the degradation of binders. During pyrolysis the cathode material was deconstructed and reduced under the synergistic effect of pyrolytic gas and anode graphite. Selective recovery of lithium and cobalt was achieved through carbonated water leaching and reductant-free acid leaching. The leaching efficiencies of lithium and cobalt were respectively 87.9% and 99.1% under the optimal conditions. Lithium carbonate and cobalt sulfate were obtained by evaporative crystallization, respectively. The remaining residue was only graphite without impurity entrainment. The results in this research suggest that the process consisting of pyrolysis and hydrometallurgical leaching is inexpensive, efficient, and eco-friendly for full-component recycling of spent LiCoO₂ battery.
LiCoO2 (LCO) lithium-ion battery (LIB) is rich in valuable metals (cobalt and lithium), which has high recycling value. The existing process has basically realized the extraction of cobalt, but there are still shortcomings in harmless disposal of fluorine-containing electrolyte, binder and other organic matters, selective extraction of lithium and low-cost extraction of cobalt. In this context, a novel process was developed to realize the full-component recovery of spent LiCoO2 battery via environmentally friendly pyrolysis and hydrometallurgical leaching. The organic matters were recovered in the form of pyrolytic oil and gas, in which the harmful fluorine element was absorbed by Ca(OH)2 solution. The current collectors (copper and aluminum) were recovered after the easy separation of electrode materials due to the degradation of binders. During pyrolysis the cathode material was deconstructed and reduced under the synergistic effect of pyrolytic gas and anode graphite. Selective recovery of lithium and cobalt was achieved through carbonated water leaching and reductant-free acid leaching. The leaching efficiencies of lithium and cobalt were respectively 87.9% and 99.1% under the optimal conditions. Lithium carbonate and cobalt sulfate were obtained by evaporative crystallization, respectively. The remaining residue was only graphite without impurity entrainment. The results in this research suggest that the process consisting of pyrolysis and hydrometallurgical leaching is inexpensive, efficient, and eco-friendly for full-component recycling of spent LiCoO2 battery. [Display omitted]
ArticleNumber 105921
Author Tao, Ren
Wu, Yufeng
Sun, Zhenhua
Xing, Peng
Li, Huiquan
Author_xml – sequence: 1
  givenname: Ren
  surname: Tao
  fullname: Tao, Ren
  organization: CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 2
  givenname: Peng
  surname: Xing
  fullname: Xing, Peng
  email: xingpeng@ipe.ac.cn
  organization: CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 3
  givenname: Huiquan
  surname: Li
  fullname: Li, Huiquan
  email: hqli@ipe.ac.cn
  organization: CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 4
  givenname: Zhenhua
  surname: Sun
  fullname: Sun, Zhenhua
  organization: CAS Key Laboratory of Green Process and Engineering, National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 5
  givenname: Yufeng
  surname: Wu
  fullname: Wu, Yufeng
  email: wuyufeng3r@126.com
  organization: Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
BookMark eNqNkE1rGzEQhkVIoY7T31Ade1lHWq20u4cegmk-wBAIyVlopdlYRiu5kmzYfx8Zhx56SS4zw_C8A_NcoUsfPCD0k5IVJVTc7FYRkg4-gl7VpKZly_uaXqAF7dq-IoJ3l2hByqpiTdN_R1cp7QghrOvZAqVn0OEIccZhxGkPPuONXYenGjubt_YwVTZ4PKicT8zRKgz-aGPwU0GVczMeowVvyrCfY3Bzsgkrb_B2NjFMcGIO8c1q5bADpbfWv12jb6NyCX589CV6vfvzsn6oNk_3j-vbTaVZ0-VS22YQvB36mquh0dwo2gsxUjOM0HAlNLABNBCjCK_BgOCk4UAJgR4YZ2yJfp3v7mP4e4CU5WSTBueUh3BIshZMtJ0QpS_R7zOqY0gpwii1zSqX33NU1klK5Em23Ml_suVJtjzLLvn2v_w-2knF-QvJ23MSiomjhSiTLkI1GFvQLE2wn954B_-ypNw
CitedBy_id crossref_primary_10_1016_j_ijhydene_2024_05_356
crossref_primary_10_1016_j_envpol_2024_124570
crossref_primary_10_3390_membranes14120277
crossref_primary_10_1016_j_renene_2023_02_005
crossref_primary_10_1016_j_est_2024_111229
crossref_primary_10_1080_17518253_2023_2260401
crossref_primary_10_1007_s40820_024_01434_0
crossref_primary_10_1002_cnl2_31
crossref_primary_10_1016_j_jece_2022_109160
crossref_primary_10_1016_j_seppur_2024_131236
crossref_primary_10_1016_j_est_2023_108691
crossref_primary_10_1007_s41918_024_00231_y
crossref_primary_10_1016_j_jpowsour_2024_234731
crossref_primary_10_1039_D3GC01077E
crossref_primary_10_1016_j_jenvman_2025_125025
crossref_primary_10_1016_j_cej_2022_138535
crossref_primary_10_1016_j_wasman_2022_10_033
crossref_primary_10_1016_j_wasman_2025_01_037
crossref_primary_10_1016_j_wasman_2025_114749
crossref_primary_10_1007_s42461_024_01043_w
crossref_primary_10_1016_j_scitotenv_2023_166095
crossref_primary_10_1021_acs_energyfuels_2c02871
crossref_primary_10_1016_j_resconrec_2022_106690
crossref_primary_10_20517_gmo_2024_070201
crossref_primary_10_1016_j_heliyon_2024_e40251
crossref_primary_10_1021_acs_iecr_4c01742
crossref_primary_10_1002_smtd_202300820
crossref_primary_10_1016_j_scitotenv_2023_168543
crossref_primary_10_1021_acssuschemeng_2c05534
crossref_primary_10_1016_j_wasman_2022_11_002
crossref_primary_10_1039_D2CC06113A
crossref_primary_10_1016_j_jallcom_2022_164691
crossref_primary_10_1016_j_seppur_2025_131710
crossref_primary_10_1016_j_seppur_2024_128332
crossref_primary_10_1002_adma_202308494
crossref_primary_10_1016_j_cej_2024_154573
crossref_primary_10_1021_acssuschemeng_4c02488
crossref_primary_10_1016_j_cej_2024_158699
crossref_primary_10_1016_j_scitotenv_2023_162567
crossref_primary_10_1016_j_seppur_2024_126596
crossref_primary_10_1016_j_est_2023_107551
crossref_primary_10_1016_j_jiec_2024_10_032
crossref_primary_10_1039_D2EE03257K
crossref_primary_10_1002_aic_18786
crossref_primary_10_1016_j_resconrec_2025_108257
crossref_primary_10_1016_j_wasman_2024_11_038
crossref_primary_10_1021_acs_energyfuels_3c04038
crossref_primary_10_1016_j_wasman_2023_03_031
crossref_primary_10_1016_j_jenvman_2024_121314
crossref_primary_10_1016_j_resconrec_2024_108005
crossref_primary_10_1016_j_matchemphys_2024_129236
crossref_primary_10_1149_1945_7111_ada644
crossref_primary_10_1002_slct_202301983
crossref_primary_10_1039_D3CS00898C
crossref_primary_10_1016_j_est_2024_113308
crossref_primary_10_1007_s41918_023_00206_5
crossref_primary_10_1016_j_jallcom_2022_164661
crossref_primary_10_1016_j_wasman_2024_04_021
crossref_primary_10_3390_met14010067
crossref_primary_10_3390_en15051611
crossref_primary_10_1016_j_jpowsour_2022_232571
crossref_primary_10_1016_j_jece_2022_108534
crossref_primary_10_1007_s11837_025_07193_6
crossref_primary_10_1016_j_cogsc_2024_100914
crossref_primary_10_1016_j_hydromet_2025_106452
crossref_primary_10_1016_j_polymdegradstab_2025_111326
crossref_primary_10_1016_j_resconrec_2023_107390
crossref_primary_10_1016_j_rser_2022_112809
crossref_primary_10_3390_min14111120
crossref_primary_10_1016_j_jclepro_2022_130493
crossref_primary_10_1016_j_resconrec_2022_106782
crossref_primary_10_1016_j_resconrec_2023_107034
crossref_primary_10_1007_s10163_024_02146_8
crossref_primary_10_1016_j_ccst_2022_100074
crossref_primary_10_1007_s11837_022_05684_4
crossref_primary_10_1016_j_desal_2023_117142
crossref_primary_10_1016_j_jclepro_2023_139343
crossref_primary_10_1016_j_jechem_2023_06_040
crossref_primary_10_1021_acssuschemeng_2c03616
crossref_primary_10_1016_j_hazadv_2023_100242
crossref_primary_10_3390_batteries9080423
crossref_primary_10_1016_j_fuel_2025_134327
crossref_primary_10_1016_j_ensm_2024_103304
crossref_primary_10_1016_j_seppur_2024_130917
crossref_primary_10_1016_j_surfin_2022_102424
crossref_primary_10_1016_j_cej_2022_139258
crossref_primary_10_1016_j_cej_2024_158114
crossref_primary_10_1016_j_cej_2024_152297
crossref_primary_10_1016_j_est_2023_109073
crossref_primary_10_3390_batteries10080261
crossref_primary_10_1016_j_cej_2024_152299
crossref_primary_10_1039_D4CP01464B
crossref_primary_10_1080_15567036_2023_2243863
crossref_primary_10_1016_j_cogsc_2024_100881
Cites_doi 10.1016/j.jhazmat.2018.09.039
10.1016/j.jhazmat.2020.122667
10.1016/j.jhazmat.2015.09.050
10.1007/s11814-010-0405-2
10.1016/j.jclepro.2020.121439
10.3390/met10040433
10.1021/acssuschemeng.0c07166
10.1016/j.hydromet.2015.10.012
10.1021/acsami.0c00420
10.1016/j.jpowsour.2017.03.093
10.1016/0368-2048(84)80006-7
10.1016/j.jhazmat.2020.123491
10.1016/0039-6028(76)90026-1
10.3390/met8080565
10.1016/j.jclepro.2019.01.178
10.1016/j.resconrec.2020.104809
10.1016/j.tca.2019.178483
10.1016/j.resconrec.2020.105142
10.1016/j.jhazmat.2020.123068
10.1016/j.fuproc.2019.106149
10.1016/j.seppur.2007.01.015
10.1016/j.wasman.2017.03.018
10.1021/acssuschemeng.9b05896
10.1016/S0169-4332(97)00599-0
10.1016/j.corsci.2008.04.013
10.1016/j.resconrec.2020.105348
10.1016/j.jclepro.2019.119340
10.1016/j.jallcom.2018.12.226
10.1021/acssuschemeng.0c04940
10.1016/j.resconrec.2020.105019
10.1016/j.resconrec.2018.04.024
10.1021/ja00226a004
10.1007/s11356-020-10108-4
10.1016/j.wasman.2019.03.068
10.1016/j.jclepro.2015.08.026
10.1016/0368-2048(75)80047-8
10.1007/s10973-018-7732-7
10.1016/j.jpowsour.2007.02.046
10.1021/acssuschemeng.0c05676
10.1016/j.hydromet.2009.10.010
10.1021/acssuschemeng.8b04939
10.1134/S1990793120040247
10.1016/j.jclepro.2018.09.098
10.1016/j.wasman.2019.11.045
10.1016/j.wasman.2018.01.021
10.1021/acssuschemeng.9b04175
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.resconrec.2021.105921
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Ecology
Environmental Sciences
EISSN 1879-0658
ExternalDocumentID 10_1016_j_resconrec_2021_105921
S0921344921005309
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
9JO
AACTN
AAEDT
AAEDW
AAFJI
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABEFU
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABMMH
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSB
SSJ
SSO
SSR
SSZ
T5K
WUQ
ZY4
~A~
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c348t-c374b657b925ab4c5da1966f1dbfe45a6ce3bece0da052ede65045e100e9e3533
IEDL.DBID .~1
ISSN 0921-3449
IngestDate Thu Jul 10 23:41:27 EDT 2025
Tue Jul 01 03:49:49 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
Fri Feb 23 02:41:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Reductant-free acid leaching
Reduction
Carbonated water leaching
Spent LiCoO2 lithium-ion battery
Full-component pyrolysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-c374b657b925ab4c5da1966f1dbfe45a6ce3bece0da052ede65045e100e9e3533
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2636786626
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2636786626
crossref_citationtrail_10_1016_j_resconrec_2021_105921
crossref_primary_10_1016_j_resconrec_2021_105921
elsevier_sciencedirect_doi_10_1016_j_resconrec_2021_105921
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Resources, conservation and recycling
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mao, Li, Xu (bib0029) 2018; 205
Kwon, Sohn (bib0020) 2020; 158
Zhang, He, Wang, Feng, Xie, Zhu (bib0044) 2020; 8
dos Santos, Alves, da Silva, Sita, da Silva, de Almeida, Scarminio (bib0009) 2019; 362
Brojerdi, Eddrief, Fargues, Tyuliev, Balkanski (bib0003) 1998; 126
Yi, Yan, Ma (bib0042) 2011; 28
Ghassa, Farzanegan, Gharabaghi, Abdollahi (bib0010) 2021; 166
Chen, Guo, Ma, Li, Zhou, Cao, Kang (bib0005) 2018; 75
Nshizirungu, Rana, Jo, Park (bib0031) 2020; 396
Lin, Li, Fan, Liu, Zhang, Cao, Sun, Chen (bib0022) 2020; 12
Swain, Jeong, Lee, Lee, Sohn (bib0033) 2007; 167
Liu, Xiao, Chen, Tang, Wu, Chen (bib0023) 2019; 783
Mandale, Badrinarayanan, Date, Sinha (bib0028) 1984; 33
Calderon, Barcia, Mattos (bib0004) 2008; 50
Dean (bib0007) 1999
Arshad, Li, Amin, Fan, Manurkar, Ahmad, Yang, Wu, Chen (bib0001) 2020; 8
Golmohammadzadeh, Faraji, Rashchi (bib0011) 2018; 136
Sloop, Crandon, Allen, Koetje, Reed, Gaines, Sirisaksoontorn, Lerner (bib0032) 2020; 25
Hu, Zhang, Li, Chen, Wang (bib0013) 2017; 351
Ma, Tang, Wanaldi, Zhou, Wang, Zhou, Yang (bib0027) 2021; 402
Liu, Zhong, Han, Qin, Liu, Zhao, Chang (bib0025) 2019; 7
Zhong, Liu, Han, Jiao, Qin, Liu (bib0047) 2020; 263
Zhong, Liu, Han, Jiao, Qin, Liu, Zhao (bib0048) 2019; 89
Hanisch, Loellhoeffel, Diekmann, Markley, Haselrieder, Kwade (bib0012) 2015; 108
Wang, Zhang, Zhang, Xu (bib0038) 2020; 249
Tao, Yan, Hua, Qiang, Ming (bib0035) 2007; 56
Zhao, Zhang, Li, Zhu, Huang, He (bib0046) 2020; 162
Tereza, Agafonov, Anderzhanov, Medvedev, Khomik, Petrov, Chernyshov (bib0036) 2020; 14
Yadav, Jie, Tan, Srinivasan (bib0039) 2020; 399
King, Boxall (bib0018) 2019; 215
Yu, Xiong, Wu, Lu, Yao, Xu, Tang (bib0043) 2020; 27
Kuzuhara, Ota, Tsugita, Kasuya (bib0019) 2020; 10
Lombardo, Ebin, Steenari, Alemrajabi, Karlsson, Petranikova (bib0026) 2021; 164
Tan, Klabunde, Tanaka, Kanai, Yoshida (bib0034) 1988; 110
Muelas, Callen, Murillo, Ballester (bib0030) 2019; 196
Jie, Yang, Hu, Li, Ye, Zhao, Jin, Chang, Lai, Chen (bib0014) 2020; 684
Chuang, Brundle, Rice (bib0006) 1976; 59
Bonnelle, Grimblot, Dhuysser (bib0002) 1975; 7
Wang, Han, Zhang, Zhang, Xu (bib0037) 2019; 7
Yang, Xu, He (bib0041) 2017; 64
Joo, Shin, Oh, Wang, Senanayake, Shin (bib0016) 2016; 159
Yang, Zhang, Cao, Jing, Chen, Wang (bib0040) 2020; 8
Diaz, Wang, Moorthy, Friedrich (bib0008) 2018; 8
Liu, Xiao, Tang, Chen, Ye, Zhu (bib0024) 2019; 136
Kang, Senanayake, Sohn, Shin (bib0017) 2010; 100
Zhang, Wang, Fang, Xu (bib0045) 2020; 102
Jing, Zhang, Liu, Zhang, Chen, Wang (bib0015) 2020; 8
Li, Wang, Xu (bib0021) 2016; 302
Yang (10.1016/j.resconrec.2021.105921_bib0040) 2020; 8
Hanisch (10.1016/j.resconrec.2021.105921_bib0012) 2015; 108
Zhang (10.1016/j.resconrec.2021.105921_bib0044) 2020; 8
Tan (10.1016/j.resconrec.2021.105921_bib0034) 1988; 110
Zhang (10.1016/j.resconrec.2021.105921_bib0045) 2020; 102
Zhong (10.1016/j.resconrec.2021.105921_bib0048) 2019; 89
Arshad (10.1016/j.resconrec.2021.105921_bib0001) 2020; 8
Ma (10.1016/j.resconrec.2021.105921_bib0027) 2021; 402
Yadav (10.1016/j.resconrec.2021.105921_bib0039) 2020; 399
Mao (10.1016/j.resconrec.2021.105921_bib0029) 2018; 205
Tereza (10.1016/j.resconrec.2021.105921_bib0036) 2020; 14
Liu (10.1016/j.resconrec.2021.105921_bib0025) 2019; 7
Mandale (10.1016/j.resconrec.2021.105921_bib0028) 1984; 33
Yang (10.1016/j.resconrec.2021.105921_bib0041) 2017; 64
Golmohammadzadeh (10.1016/j.resconrec.2021.105921_bib0011) 2018; 136
Liu (10.1016/j.resconrec.2021.105921_bib0024) 2019; 136
Kuzuhara (10.1016/j.resconrec.2021.105921_bib0019) 2020; 10
Yu (10.1016/j.resconrec.2021.105921_bib0043) 2020; 27
Muelas (10.1016/j.resconrec.2021.105921_bib0030) 2019; 196
Calderon (10.1016/j.resconrec.2021.105921_bib0004) 2008; 50
King (10.1016/j.resconrec.2021.105921_bib0018) 2019; 215
Kwon (10.1016/j.resconrec.2021.105921_bib0020) 2020; 158
Nshizirungu (10.1016/j.resconrec.2021.105921_bib0031) 2020; 396
Yi (10.1016/j.resconrec.2021.105921_bib0042) 2011; 28
Joo (10.1016/j.resconrec.2021.105921_bib0016) 2016; 159
Lombardo (10.1016/j.resconrec.2021.105921_bib0026) 2021; 164
Dean (10.1016/j.resconrec.2021.105921_bib0007) 1999
Liu (10.1016/j.resconrec.2021.105921_bib0023) 2019; 783
dos Santos (10.1016/j.resconrec.2021.105921_bib0009) 2019; 362
Wang (10.1016/j.resconrec.2021.105921_bib0038) 2020; 249
Zhao (10.1016/j.resconrec.2021.105921_bib0046) 2020; 162
Swain (10.1016/j.resconrec.2021.105921_bib0033) 2007; 167
Kang (10.1016/j.resconrec.2021.105921_bib0017) 2010; 100
Ghassa (10.1016/j.resconrec.2021.105921_bib0010) 2021; 166
Hu (10.1016/j.resconrec.2021.105921_bib0013) 2017; 351
Lin (10.1016/j.resconrec.2021.105921_bib0022) 2020; 12
Brojerdi (10.1016/j.resconrec.2021.105921_bib0003) 1998; 126
Li (10.1016/j.resconrec.2021.105921_bib0021) 2016; 302
Chen (10.1016/j.resconrec.2021.105921_bib0005) 2018; 75
Zhong (10.1016/j.resconrec.2021.105921_bib0047) 2020; 263
Diaz (10.1016/j.resconrec.2021.105921_bib0008) 2018; 8
Jing (10.1016/j.resconrec.2021.105921_bib0015) 2020; 8
Wang (10.1016/j.resconrec.2021.105921_bib0037) 2019; 7
Bonnelle (10.1016/j.resconrec.2021.105921_bib0002) 1975; 7
Jie (10.1016/j.resconrec.2021.105921_bib0014) 2020; 684
Chuang (10.1016/j.resconrec.2021.105921_bib0006) 1976; 59
Sloop (10.1016/j.resconrec.2021.105921_bib0032) 2020; 25
Tao (10.1016/j.resconrec.2021.105921_bib0035) 2007; 56
References_xml – volume: 396
  start-page: 122667
  year: 2020
  end-page: 122676
  ident: bib0031
  article-title: Rapid leaching and recovery of valuable metals from spent lithium ion batteries (LIBs) via environmentally benign subcritical nickel-containing water over chlorinated polyvinyl chloride
  publication-title: J. Hazard. Mater
– volume: 166
  start-page: 105348
  year: 2021
  end-page: 105358
  ident: bib0010
  article-title: Iron scrap, a sustainable reducing agent for waste lithium ions batteries leaching: an environmentally friendly method to treating waste with waste
  publication-title: Resour. Conserv. Recy
– year: 1999
  ident: bib0007
  article-title: Lange's Handbook of Chemistry
– volume: 302
  start-page: 97
  year: 2016
  end-page: 104
  ident: bib0021
  article-title: Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO
  publication-title: J. Hazard. Mater
– volume: 783
  start-page: 743
  year: 2019
  end-page: 752
  ident: bib0023
  article-title: Recovering valuable metals from LiNi
  publication-title: J. Alloy. Compd
– volume: 362
  start-page: 458
  year: 2019
  end-page: 466
  ident: bib0009
  article-title: A closed-loop process to recover Li and Co compounds and to resynthesize LiCoO
  publication-title: J. Hazard. Mater
– volume: 56
  start-page: 241
  year: 2007
  end-page: 248
  ident: bib0035
  article-title: Refining of crude Li2CO3 via slurry phase dissolution using CO
  publication-title: Sep. Purif. Technol.
– volume: 249
  start-page: 119340
  year: 2020
  end-page: 119349
  ident: bib0038
  article-title: Cleaner recycling of cathode material by in-situ thermite reduction
  publication-title: J. Clean. Prod.
– volume: 14
  start-page: 654
  year: 2020
  end-page: 659
  ident: bib0036
  article-title: Conversion kinetics of the gaseous products of pyrolysis of polypropylene and waste tires
  publication-title: Russ. J. Phys. Chem. B
– volume: 263
  start-page: 121439
  year: 2020
  end-page: 121449
  ident: bib0047
  article-title: Pretreatment for the recovery of spent lithium ion batteries: theoretical and practical aspects
  publication-title: J. Clean. Prod.
– volume: 215
  start-page: 1279
  year: 2019
  end-page: 1287
  ident: bib0018
  article-title: Lithium battery recycling in Australia: defining the status and identifying opportunities for the development of a new industry
  publication-title: J. Clean. Prod
– volume: 27
  start-page: 40205
  year: 2020
  end-page: 40209
  ident: bib0043
  article-title: Pyrolysis characteristics of cathode from spent lithium-ion batteries using advanced TG-FTIR-GC/MS analysis
– volume: 102
  start-page: 847
  year: 2020
  end-page: 855
  ident: bib0045
  article-title: Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching
  publication-title: Waste Manage.
– volume: 100
  start-page: 168
  year: 2010
  end-page: 171
  ident: bib0017
  article-title: Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272
  publication-title: Hydrometallurgy
– volume: 351
  start-page: 192
  year: 2017
  end-page: 199
  ident: bib0013
  article-title: A promising approach for the recovery of high value-added metals from spent lithium-ion batteries
  publication-title: J. Power Sources
– volume: 75
  start-page: 459
  year: 2018
  end-page: 468
  ident: bib0005
  article-title: Organic reductants based leaching: a sustainable process for the recovery of valuable metals from spent lithium ion batteries
  publication-title: Waste Manage.
– volume: 158
  start-page: 104809
  year: 2020
  end-page: 104821
  ident: bib0020
  article-title: Fundamental thermokinetic study of a sustainable lithium-ion battery pyrometallurgical recycling process
  publication-title: Resour. Conserv. Recy
– volume: 159
  start-page: 65
  year: 2016
  end-page: 74
  ident: bib0016
  article-title: Selective extraction and separation of nickel from cobalt, manganese and lithium in pre-treated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic 10 acid and LIX 84-I
  publication-title: Hydrometallurgy
– volume: 8
  start-page: 13527
  year: 2020
  end-page: 13554
  ident: bib0001
  article-title: A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries
  publication-title: Eng.
– volume: 399
  start-page: 123068
  year: 2020
  end-page: 123078
  ident: bib0039
  article-title: Recycling of cathode from spent lithium iron phosphate batteries
  publication-title: J. Hazard. Mater.
– volume: 28
  start-page: 703
  year: 2011
  end-page: 709
  ident: bib0042
  article-title: Kinetic study on carbonation of crude Li
  publication-title: Korean J. Chem. Eng.
– volume: 89
  start-page: 83
  year: 2019
  end-page: 93
  ident: bib0048
  article-title: Pyrolysis and physical separation for the recovery of spent LiFePO
  publication-title: Waste Manage.
– volume: 108
  start-page: 301
  year: 2015
  end-page: 311
  ident: bib0012
  article-title: Recycling of lithium-ion batteries: a novel method to separate coating and foil of electrodes
  publication-title: J. Clean. Prod
– volume: 205
  start-page: 923
  year: 2018
  end-page: 929
  ident: bib0029
  article-title: Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO
  publication-title: J. Clean. Prod
– volume: 7
  start-page: 16729
  year: 2019
  end-page: 16737
  ident: bib0037
  article-title: Alkali metal salt catalyzed carbothermic reduction for sustainable recovery of LiCoO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 59
  start-page: 413
  year: 1976
  end-page: 429
  ident: bib0006
  article-title: Interpretation of X-Ray photoemission spectra of cobalt oxides and cobalt oxide surfaces
  publication-title: Surf. Sci
– volume: 136
  start-page: 418
  year: 2018
  end-page: 435
  ident: bib0011
  article-title: Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: a review
  publication-title: Resour. Conserv. Recy
– volume: 8
  start-page: 2205
  year: 2020
  end-page: 2214
  ident: bib0044
  article-title: Removal of organics by pyrolysis for enhancing liberation and flotation behavior of electrode materials derived from spent Lithium-Ion batteries
  publication-title: ACS Sustain. Chem. Eng.
– volume: 8
  start-page: 17622
  year: 2020
  end-page: 17628
  ident: bib0015
  article-title: Direct regeneration of spent LiFePO
  publication-title: ACS Sustain. Chem. Eng.
– volume: 126
  start-page: 273
  year: 1998
  end-page: 280
  ident: bib0003
  article-title: Interface between a III-VI intercalation compound and a solid electrolyte: XPS and RHEED study
  publication-title: Appl. Surf. Sci
– volume: 50
  start-page: 2101
  year: 2008
  end-page: 2109
  ident: bib0004
  article-title: Reaction model for kinetic of cobalt dissolution in carbonate/bicarbonate media
  publication-title: Corrosion Sci
– volume: 7
  start-page: 151
  year: 1975
  end-page: 162
  ident: bib0002
  article-title: Influence of polarizaton of bonds on ESCA spectra of cobalt oxides
  publication-title: J. Electron Spectrosc
– volume: 196
  start-page: 106149
  year: 2019
  end-page: 106159
  ident: bib0030
  article-title: Production and droplet combustion characteristics of waste tire pyrolysis oil
  publication-title: Fuel Process. Technol
– volume: 25
  start-page: e00152
  year: 2020
  end-page: e11062
  ident: bib0032
  article-title: A direct recycling case study from a lithium-ion battery recall
  publication-title: Sustain. Mater. Techno
– volume: 110
  start-page: 5951
  year: 1988
  end-page: 5958
  ident: bib0034
  article-title: An EXAFS Study of Co-Mn/SiO
  publication-title: J. Am. Chem. Soc
– volume: 8
  start-page: 15732
  year: 2020
  end-page: 15739
  ident: bib0040
  article-title: Sustainable and facile process for lithium recovery from spent LiNi
  publication-title: ACS Sustain. Chem. Eng.
– volume: 10
  start-page: 433
  year: 2020
  end-page: 447
  ident: bib0019
  article-title: Recovering lithium from the cathode active material in lithium-ion batteries via thermal decomposition
  publication-title: Metals (Basel)
– volume: 12
  start-page: 18482
  year: 2020
  end-page: 18489
  ident: bib0022
  article-title: Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting
  publication-title: ACS Appl. Mater. Inter
– volume: 64
  start-page: 219
  year: 2017
  end-page: 227
  ident: bib0041
  article-title: Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes
  publication-title: Waste Manage.
– volume: 684
  start-page: 178483
  year: 2020
  end-page: 178490
  ident: bib0014
  article-title: Gas evolution characterization and phase transformation during thermal treatment of cathode plates from spent LiFePO
  publication-title: Thermochim. Acta
– volume: 136
  start-page: 1323
  year: 2019
  end-page: 1332
  ident: bib0024
  article-title: Study on the reduction roasting of spent LiNi
  publication-title: J. Therm. Anal. Calorim
– volume: 33
  start-page: 61
  year: 1984
  end-page: 72
  ident: bib0028
  article-title: Photoelectron-spectroscopic study of nikel, mangnese and cobalt selenides
  publication-title: J. Electron Spectrosc
– volume: 7
  start-page: 1289
  year: 2019
  end-page: 1299
  ident: bib0025
  article-title: Kinetic study and pyrolysis behaviors of spent LiFePO
  publication-title: ACS Sustain. Chem. Eng
– volume: 164
  start-page: 105142
  year: 2021
  end-page: 105153
  ident: bib0026
  article-title: Comparison of the effects of incineration, vacuum pyrolysis and dynamic pyrolysis on the composition of NMC-lithium battery cathode-material production scraps and separation of the current collector
  publication-title: Resour. Conserv. Recy
– volume: 167
  start-page: 536
  year: 2007
  end-page: 544
  ident: bib0033
  article-title: Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries
  publication-title: J. Power Sources
– volume: 8
  start-page: 565
  year: 2018
  end-page: 571
  ident: bib0008
  article-title: Degradation mechanism of nickel-cobalt-aluminum (NCA) cathode material from spent lithium-ion batteries in Microwave-Assisted Pyrolysis
  publication-title: Metals (Basel)
– volume: 402
  start-page: 123491
  year: 2021
  end-page: 123502
  ident: bib0027
  article-title: A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching
  publication-title: J. Hazard. Mater
– volume: 162
  start-page: 105019
  year: 2020
  end-page: 105030
  ident: bib0046
  article-title: Ultrasonic renovation mechanism of spent LCO batteries: a mild condition for cathode materials recycling
  publication-title: Resour. Conserv. Recy.
– volume: 362
  start-page: 458
  year: 2019
  ident: 10.1016/j.resconrec.2021.105921_bib0009
  article-title: A closed-loop process to recover Li and Co compounds and to resynthesize LiCoO2 from spent mobile phone batteries
  publication-title: J. Hazard. Mater
  doi: 10.1016/j.jhazmat.2018.09.039
– volume: 396
  start-page: 122667
  year: 2020
  ident: 10.1016/j.resconrec.2021.105921_bib0031
  article-title: Rapid leaching and recovery of valuable metals from spent lithium ion batteries (LIBs) via environmentally benign subcritical nickel-containing water over chlorinated polyvinyl chloride
  publication-title: J. Hazard. Mater
  doi: 10.1016/j.jhazmat.2020.122667
– volume: 302
  start-page: 97
  year: 2016
  ident: 10.1016/j.resconrec.2021.105921_bib0021
  article-title: Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries
  publication-title: J. Hazard. Mater
  doi: 10.1016/j.jhazmat.2015.09.050
– volume: 28
  start-page: 703
  year: 2011
  ident: 10.1016/j.resconrec.2021.105921_bib0042
  article-title: Kinetic study on carbonation of crude Li2CO3 with CO2-water solutions in a slurry bubble column reactor
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-010-0405-2
– volume: 263
  start-page: 121439
  year: 2020
  ident: 10.1016/j.resconrec.2021.105921_bib0047
  article-title: Pretreatment for the recovery of spent lithium ion batteries: theoretical and practical aspects
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.121439
– volume: 10
  start-page: 433
  year: 2020
  ident: 10.1016/j.resconrec.2021.105921_bib0019
  article-title: Recovering lithium from the cathode active material in lithium-ion batteries via thermal decomposition
  publication-title: Metals (Basel)
  doi: 10.3390/met10040433
– volume: 8
  start-page: 17622
  year: 2020
  ident: 10.1016/j.resconrec.2021.105921_bib0015
  article-title: Direct regeneration of spent LiFePO4 cathode material by a green and efficient one-step hydrothermal method
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c07166
– volume: 159
  start-page: 65
  year: 2016
  ident: 10.1016/j.resconrec.2021.105921_bib0016
  article-title: Selective extraction and separation of nickel from cobalt, manganese and lithium in pre-treated leach liquors of ternary cathode material of spent lithium-ion batteries using synergism caused by Versatic 10 acid and LIX 84-I
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2015.10.012
– volume: 12
  start-page: 18482
  year: 2020
  ident: 10.1016/j.resconrec.2021.105921_bib0022
  article-title: Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting
  publication-title: ACS Appl. Mater. Inter
  doi: 10.1021/acsami.0c00420
– volume: 351
  start-page: 192
  year: 2017
  ident: 10.1016/j.resconrec.2021.105921_bib0013
  article-title: A promising approach for the recovery of high value-added metals from spent lithium-ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.03.093
– volume: 33
  start-page: 61
  year: 1984
  ident: 10.1016/j.resconrec.2021.105921_bib0028
  article-title: Photoelectron-spectroscopic study of nikel, mangnese and cobalt selenides
  publication-title: J. Electron Spectrosc
  doi: 10.1016/0368-2048(84)80006-7
– volume: 402
  start-page: 123491
  year: 2021
  ident: 10.1016/j.resconrec.2021.105921_bib0027
  article-title: A promising selective recovery process of valuable metals from spent lithium ion batteries via reduction roasting and ammonia leaching
  publication-title: J. Hazard. Mater
  doi: 10.1016/j.jhazmat.2020.123491
– volume: 59
  start-page: 413
  year: 1976
  ident: 10.1016/j.resconrec.2021.105921_bib0006
  article-title: Interpretation of X-Ray photoemission spectra of cobalt oxides and cobalt oxide surfaces
  publication-title: Surf. Sci
  doi: 10.1016/0039-6028(76)90026-1
– volume: 8
  start-page: 565
  year: 2018
  ident: 10.1016/j.resconrec.2021.105921_bib0008
  article-title: Degradation mechanism of nickel-cobalt-aluminum (NCA) cathode material from spent lithium-ion batteries in Microwave-Assisted Pyrolysis
  publication-title: Metals (Basel)
  doi: 10.3390/met8080565
– volume: 25
  start-page: e00152
  year: 2020
  ident: 10.1016/j.resconrec.2021.105921_bib0032
  article-title: A direct recycling case study from a lithium-ion battery recall
  publication-title: Sustain. Mater. Techno
– volume: 215
  start-page: 1279
  year: 2019
  ident: 10.1016/j.resconrec.2021.105921_bib0018
  article-title: Lithium battery recycling in Australia: defining the status and identifying opportunities for the development of a new industry
  publication-title: J. Clean. Prod
  doi: 10.1016/j.jclepro.2019.01.178
– volume: 158
  start-page: 104809
  year: 2020
  ident: 10.1016/j.resconrec.2021.105921_bib0020
  article-title: Fundamental thermokinetic study of a sustainable lithium-ion battery pyrometallurgical recycling process
  publication-title: Resour. Conserv. Recy
  doi: 10.1016/j.resconrec.2020.104809
– volume: 684
  start-page: 178483
  year: 2020
  ident: 10.1016/j.resconrec.2021.105921_bib0014
  article-title: Gas evolution characterization and phase transformation during thermal treatment of cathode plates from spent LiFePO4 batteries
  publication-title: Thermochim. Acta
  doi: 10.1016/j.tca.2019.178483
– volume: 164
  start-page: 105142
  year: 2021
  ident: 10.1016/j.resconrec.2021.105921_bib0026
  article-title: Comparison of the effects of incineration, vacuum pyrolysis and dynamic pyrolysis on the composition of NMC-lithium battery cathode-material production scraps and separation of the current collector
  publication-title: Resour. Conserv. Recy
  doi: 10.1016/j.resconrec.2020.105142
– volume: 399
  start-page: 123068
  year: 2020
  ident: 10.1016/j.resconrec.2021.105921_bib0039
  article-title: Recycling of cathode from spent lithium iron phosphate batteries
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2020.123068
– volume: 196
  start-page: 106149
  year: 2019
  ident: 10.1016/j.resconrec.2021.105921_bib0030
  article-title: Production and droplet combustion characteristics of waste tire pyrolysis oil
  publication-title: Fuel Process. Technol
  doi: 10.1016/j.fuproc.2019.106149
– volume: 56
  start-page: 241
  year: 2007
  ident: 10.1016/j.resconrec.2021.105921_bib0035
  article-title: Refining of crude Li2CO3 via slurry phase dissolution using CO2
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2007.01.015
– volume: 64
  start-page: 219
  year: 2017
  ident: 10.1016/j.resconrec.2021.105921_bib0041
  article-title: Lithium recycling and cathode material regeneration from acid leach liquor of spent lithium-ion battery via facile co-extraction and co-precipitation processes
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2017.03.018
– volume: 8
  start-page: 2205
  year: 2020
  ident: 10.1016/j.resconrec.2021.105921_bib0044
  article-title: Removal of organics by pyrolysis for enhancing liberation and flotation behavior of electrode materials derived from spent Lithium-Ion batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b05896
– volume: 126
  start-page: 273
  year: 1998
  ident: 10.1016/j.resconrec.2021.105921_bib0003
  article-title: Interface between a III-VI intercalation compound and a solid electrolyte: XPS and RHEED study
  publication-title: Appl. Surf. Sci
  doi: 10.1016/S0169-4332(97)00599-0
– volume: 50
  start-page: 2101
  year: 2008
  ident: 10.1016/j.resconrec.2021.105921_bib0004
  article-title: Reaction model for kinetic of cobalt dissolution in carbonate/bicarbonate media
  publication-title: Corrosion Sci
  doi: 10.1016/j.corsci.2008.04.013
– volume: 166
  start-page: 105348
  year: 2021
  ident: 10.1016/j.resconrec.2021.105921_bib0010
  article-title: Iron scrap, a sustainable reducing agent for waste lithium ions batteries leaching: an environmentally friendly method to treating waste with waste
  publication-title: Resour. Conserv. Recy
  doi: 10.1016/j.resconrec.2020.105348
– volume: 249
  start-page: 119340
  year: 2020
  ident: 10.1016/j.resconrec.2021.105921_bib0038
  article-title: Cleaner recycling of cathode material by in-situ thermite reduction
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.119340
– volume: 783
  start-page: 743
  year: 2019
  ident: 10.1016/j.resconrec.2021.105921_bib0023
  article-title: Recovering valuable metals from LiNixCoyMn1-x-yO2 cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching
  publication-title: J. Alloy. Compd
  doi: 10.1016/j.jallcom.2018.12.226
– volume: 8
  start-page: 13527
  year: 2020
  ident: 10.1016/j.resconrec.2021.105921_bib0001
  article-title: A comprehensive review of the advancement in recycling the anode and electrolyte from spent lithium ion batteries
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c04940
– volume: 162
  start-page: 105019
  year: 2020
  ident: 10.1016/j.resconrec.2021.105921_bib0046
  article-title: Ultrasonic renovation mechanism of spent LCO batteries: a mild condition for cathode materials recycling
  publication-title: Resour. Conserv. Recy.
  doi: 10.1016/j.resconrec.2020.105019
– year: 1999
  ident: 10.1016/j.resconrec.2021.105921_bib0007
– volume: 136
  start-page: 418
  year: 2018
  ident: 10.1016/j.resconrec.2021.105921_bib0011
  article-title: Recovery of lithium and cobalt from spent lithium ion batteries (LIBs) using organic acids as leaching reagents: a review
  publication-title: Resour. Conserv. Recy
  doi: 10.1016/j.resconrec.2018.04.024
– volume: 110
  start-page: 5951
  year: 1988
  ident: 10.1016/j.resconrec.2021.105921_bib0034
  article-title: An EXAFS Study of Co-Mn/SiO2 bimetallic solvated metal atom dispersed (SMAD) catalysts
  publication-title: J. Am. Chem. Soc
  doi: 10.1021/ja00226a004
– volume: 27
  start-page: 40205
  year: 2020
  ident: 10.1016/j.resconrec.2021.105921_bib0043
  article-title: Pyrolysis characteristics of cathode from spent lithium-ion batteries using advanced TG-FTIR-GC/MS analysis
  publication-title: Environ. Sci. Pollut. Res
  doi: 10.1007/s11356-020-10108-4
– volume: 89
  start-page: 83
  year: 2019
  ident: 10.1016/j.resconrec.2021.105921_bib0048
  article-title: Pyrolysis and physical separation for the recovery of spent LiFePO4 batteries
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2019.03.068
– volume: 108
  start-page: 301
  year: 2015
  ident: 10.1016/j.resconrec.2021.105921_bib0012
  article-title: Recycling of lithium-ion batteries: a novel method to separate coating and foil of electrodes
  publication-title: J. Clean. Prod
  doi: 10.1016/j.jclepro.2015.08.026
– volume: 7
  start-page: 151
  year: 1975
  ident: 10.1016/j.resconrec.2021.105921_bib0002
  article-title: Influence of polarizaton of bonds on ESCA spectra of cobalt oxides
  publication-title: J. Electron Spectrosc
  doi: 10.1016/0368-2048(75)80047-8
– volume: 136
  start-page: 1323
  year: 2019
  ident: 10.1016/j.resconrec.2021.105921_bib0024
  article-title: Study on the reduction roasting of spent LiNixCoyMnzO2 lithium-ion battery cathode materials
  publication-title: J. Therm. Anal. Calorim
  doi: 10.1007/s10973-018-7732-7
– volume: 167
  start-page: 536
  year: 2007
  ident: 10.1016/j.resconrec.2021.105921_bib0033
  article-title: Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2007.02.046
– volume: 8
  start-page: 15732
  year: 2020
  ident: 10.1016/j.resconrec.2021.105921_bib0040
  article-title: Sustainable and facile process for lithium recovery from spent LiNixCoyMnzO2 cathode materials via selective sulfation with ammonium sulfate
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c05676
– volume: 100
  start-page: 168
  year: 2010
  ident: 10.1016/j.resconrec.2021.105921_bib0017
  article-title: Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272
  publication-title: Hydrometallurgy
  doi: 10.1016/j.hydromet.2009.10.010
– volume: 7
  start-page: 1289
  year: 2019
  ident: 10.1016/j.resconrec.2021.105921_bib0025
  article-title: Kinetic study and pyrolysis behaviors of spent LiFePO4 batteries
  publication-title: ACS Sustain. Chem. Eng
  doi: 10.1021/acssuschemeng.8b04939
– volume: 14
  start-page: 654
  year: 2020
  ident: 10.1016/j.resconrec.2021.105921_bib0036
  article-title: Conversion kinetics of the gaseous products of pyrolysis of polypropylene and waste tires
  publication-title: Russ. J. Phys. Chem. B
  doi: 10.1134/S1990793120040247
– volume: 205
  start-page: 923
  year: 2018
  ident: 10.1016/j.resconrec.2021.105921_bib0029
  article-title: Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO2 batteries
  publication-title: J. Clean. Prod
  doi: 10.1016/j.jclepro.2018.09.098
– volume: 102
  start-page: 847
  year: 2020
  ident: 10.1016/j.resconrec.2021.105921_bib0045
  article-title: Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2019.11.045
– volume: 75
  start-page: 459
  year: 2018
  ident: 10.1016/j.resconrec.2021.105921_bib0005
  article-title: Organic reductants based leaching: a sustainable process for the recovery of valuable metals from spent lithium ion batteries
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2018.01.021
– volume: 7
  start-page: 16729
  year: 2019
  ident: 10.1016/j.resconrec.2021.105921_bib0037
  article-title: Alkali metal salt catalyzed carbothermic reduction for sustainable recovery of LiCoO2: accurately controlled reduction and efficient water leaching
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.9b04175
SSID ssj0003893
Score 2.6189904
Snippet LiCoO2 (LCO) lithium-ion battery (LIB) is rich in valuable metals (cobalt and lithium), which has high recycling value. The existing process has basically...
LiCoO₂ (LCO) lithium-ion battery (LIB) is rich in valuable metals (cobalt and lithium), which has high recycling value. The existing process has basically...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105921
SubjectTerms aluminum
anodes
Carbonated water leaching
carbonates
cathodes
cobalt
cobalt sulfate
copper
crystallization
electrolytes
fluorine
Full-component pyrolysis
graphene
lithium
lithium batteries
lithium cobalt oxide
oils
pyrolysis
Reductant-free acid leaching
Reduction
Spent LiCoO2 lithium-ion battery
synergism
Title Recovery of spent LiCoO2 lithium-ion battery via environmentally friendly pyrolysis and hydrometallurgical leaching
URI https://dx.doi.org/10.1016/j.resconrec.2021.105921
https://www.proquest.com/docview/2636786626
Volume 176
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4hqkrtAZVtUYEWuVKv6SaO7WBuaLVoYSmV2qJys-zYEUFLstoHUi78dsbehEclxIGLEyV2HHneycxngO9U232DQhbFWvOIFVZGJjE8ojKRRZ7LLBW-wPnnmRids5MLfrEGg64WxqdVtrp_pdODtm6v9NvV7E_Lsv8nlh6NjGHrOSkU8TGWeS7_cfuQ5uENcsDbo0nkez_J8cKIFqNOnAYDRZr4PW8lTZ6zUP_p6mCAjj7ARus5ksPVy23Cmqt68HYYUKebHrx_hCzYg63hQwEbDmoleP4R5j7eRPZtSF2Q-RRvk9NyUP-iBP3xy3J5HSGhiAmomw25KTVxj580aUjhkZEtnkybWR0ATYiuLLlsAvKB77OcBXVKJm2m5ic4Pxr-HYyiduOFKE_Z_gLbjBnBMyMp14bl3GoUVFEk1hSOcS1ylyLtXWx1zKmzDt08xh3SwUmXogO5BetVXbnPQITA2DsxqU0KwyzNJY9TaaXgjgrNM7kNoltslbeo5H5zjInq0s-u1D2VlKeSWlFpG-L7gdMVMMfLQw46aqonPKbQfLw8-FtHf4US6H-r6MrVy7miIkWLLzAy3HnNBLvwjvrSivB55wusL2ZL9xUdnoXZCxy9B28Oj8ejM38c__43vgOC-gXn
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Nb9MwFH-aOiHggKAwMRhgJK5RE8d2Z25T1aljXTmwSbtZduxoQSWp-oGU_55n1-k2pGmHXawoyYsjv-_kvZ8BvlFtjw0qWZJqzRNWWpmYzPCEykyWRSGHufANzhczMbliP6759R6Mul4YX1YZbf_WpgdrHc8M4moOFlU1-JVKj0bGcPSS5Jv49j06Fe_B_snZ-WS2M8jeJwfIPZolnuBemRcmtZh44kyYK9LMb3srafaQk_rPXAcfdPoaXsXgkZxs3-8N7Lm6D8_GAXi67cPLO-CCfTgY3_awIVFU4tVbWPmUEyW4JU1JVgu8TKbVqPlJCYbkN9XmT4K8IiYAb7bkb6WJu_ukeUtKD45s8WDRLpuAaUJ0bclNG8AP_D2bZbCoZB6LNd_B1en4cjRJ4t4LSZGz4zWOQ2YEHxpJuTas4Fajrooys6Z0jGtRuBzZ71KrU06ddRjpMe6QFU66HGPIA-jVTe3eAxEC0-_M5DYrDbO0kDzNpZWCOyo0H8pDEN1iqyICk_v9Meaqq0D7rXZcUp5LasulQ0h3hIstNsfjJN87bqp7YqbQgzxO_LXjv0Il9H9WdO2azUpRkaPTF5gcfnjKBF_g-eTyYqqmZ7Pzj_CC-k6L8LXnCHrr5cZ9wvhnbT5H-f4HNcIG9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recovery+of+spent+LiCoO2+lithium-ion+battery+via+environmentally+friendly+pyrolysis+and+hydrometallurgical+leaching&rft.jtitle=Resources%2C+conservation+and+recycling&rft.au=Tao%2C+Ren&rft.au=Xing%2C+Peng&rft.au=Li%2C+Huiquan&rft.au=Sun%2C+Zhenhua&rft.date=2022-01-01&rft.pub=Elsevier+B.V&rft.issn=0921-3449&rft.eissn=1879-0658&rft.volume=176&rft_id=info:doi/10.1016%2Fj.resconrec.2021.105921&rft.externalDocID=S0921344921005309
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0921-3449&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0921-3449&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0921-3449&client=summon