Specialized microbiomes facilitate natural rhizosphere microbiome interactions counteracting high salinity stress in plants
•Specialized microbiome transfers increased plant growth at higher salinities.•Rice field microbiome is better suited to support plant growth.•Halotolerant microbiome promoted similar network structures between salinities.•Plant growth at high salinities was linked to denser and more complex network...
Saved in:
Published in | Environmental and experimental botany Vol. 186; p. 104430 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Specialized microbiome transfers increased plant growth at higher salinities.•Rice field microbiome is better suited to support plant growth.•Halotolerant microbiome promoted similar network structures between salinities.•Plant growth at high salinities was linked to denser and more complex networks.•Potential keystone taxa tolerant to salinity were identified.
The root microbiota is crucial for plant productivity and stress tolerance. Still, our understanding of the factors that structure these microbial communities is limited, and we lack a theoretical framework to predict their assemblage and interactions. Here, we used rice as a model system to explore the hypothesis that microbiomes from specific environments enhance plant tolerance to salinity. We used 16S rRNA sequencing to track salinity-induced changes in microbiomes of plants inoculated with either a rice field microbiome, or a halotolerant microbiome, compared to only the seed microbiome. We found that, at salinities higher than 1.1 % plant growth was severely impeded. Nevertheless, at 0.11 % and 0.35 % salinity, plants inoculated with rice field and halotolerant microbiomes displayed enhanced shoot and root biomass, when compared to plants surviving only with the seed microbiome. Rice field microbiome had the highest plant growth-promoting effect and was the only treatment that promoted growth at 0.35 % salinity. The salinity effects on bacterial composition and alpha diversity were more pronounced for plants that relied only on the seed microbiome. The root-associated compartments harboured distinct microbiomes, but salinity explained most of the variation observed. Rice plants interacted with the rice field and halotolerant microbiomes to shape rhizosphere microbial community composition and the co-occurrence patterns, supporting plant growth at higher salinity. Assemblages of the halotolerant microbiome promoted similar network structures between the different salinity treatments, when compared to the other inoculations. Moreover, salinity responsive and keystone bacteria were taxonomically diverse and responded in guilds of taxa to the salinity levels. We conclude that both specialized inoculations differ greatly in how they influence the plant microbiome and that plant growth at higher salinity levels was associated with a denser and more complex root microbial community. |
---|---|
AbstractList | The root microbiota is crucial for plant productivity and stress tolerance. Still, our understanding of the factors that structure these microbial communities is limited, and we lack a theoretical framework to predict their assemblage and interactions. Here, we used rice as a model system to explore the hypothesis that microbiomes from specific environments enhance plant tolerance to salinity. We used 16S rRNA sequencing to track salinity-induced changes in microbiomes of plants inoculated with either a rice field microbiome, or a halotolerant microbiome, compared to only the seed microbiome. We found that, at salinities higher than 1.1 % plant growth was severely impeded. Nevertheless, at 0.11 % and 0.35 % salinity, plants inoculated with rice field and halotolerant microbiomes displayed enhanced shoot and root biomass, when compared to plants surviving only with the seed microbiome. Rice field microbiome had the highest plant growth-promoting effect and was the only treatment that promoted growth at 0.35 % salinity. The salinity effects on bacterial composition and alpha diversity were more pronounced for plants that relied only on the seed microbiome. The root-associated compartments harboured distinct microbiomes, but salinity explained most of the variation observed. Rice plants interacted with the rice field and halotolerant microbiomes to shape rhizosphere microbial community composition and the co-occurrence patterns, supporting plant growth at higher salinity. Assemblages of the halotolerant microbiome promoted similar network structures between the different salinity treatments, when compared to the other inoculations. Moreover, salinity responsive and keystone bacteria were taxonomically diverse and responded in guilds of taxa to the salinity levels. We conclude that both specialized inoculations differ greatly in how they influence the plant microbiome and that plant growth at higher salinity levels was associated with a denser and more complex root microbial community. •Specialized microbiome transfers increased plant growth at higher salinities.•Rice field microbiome is better suited to support plant growth.•Halotolerant microbiome promoted similar network structures between salinities.•Plant growth at high salinities was linked to denser and more complex networks.•Potential keystone taxa tolerant to salinity were identified. The root microbiota is crucial for plant productivity and stress tolerance. Still, our understanding of the factors that structure these microbial communities is limited, and we lack a theoretical framework to predict their assemblage and interactions. Here, we used rice as a model system to explore the hypothesis that microbiomes from specific environments enhance plant tolerance to salinity. We used 16S rRNA sequencing to track salinity-induced changes in microbiomes of plants inoculated with either a rice field microbiome, or a halotolerant microbiome, compared to only the seed microbiome. We found that, at salinities higher than 1.1 % plant growth was severely impeded. Nevertheless, at 0.11 % and 0.35 % salinity, plants inoculated with rice field and halotolerant microbiomes displayed enhanced shoot and root biomass, when compared to plants surviving only with the seed microbiome. Rice field microbiome had the highest plant growth-promoting effect and was the only treatment that promoted growth at 0.35 % salinity. The salinity effects on bacterial composition and alpha diversity were more pronounced for plants that relied only on the seed microbiome. The root-associated compartments harboured distinct microbiomes, but salinity explained most of the variation observed. Rice plants interacted with the rice field and halotolerant microbiomes to shape rhizosphere microbial community composition and the co-occurrence patterns, supporting plant growth at higher salinity. Assemblages of the halotolerant microbiome promoted similar network structures between the different salinity treatments, when compared to the other inoculations. Moreover, salinity responsive and keystone bacteria were taxonomically diverse and responded in guilds of taxa to the salinity levels. We conclude that both specialized inoculations differ greatly in how they influence the plant microbiome and that plant growth at higher salinity levels was associated with a denser and more complex root microbial community. |
ArticleNumber | 104430 |
Author | Santos, Susana Silva Vestergård, Mette Rask, Klara Andrés Ekelund, Flemming Frøslev, Tobias Guldberg González, Ana M. Martín Priemé, Anders Johansen, Jesper Liengaard He, Huan |
Author_xml | – sequence: 1 givenname: Susana Silva orcidid: 0000-0001-7014-4999 surname: Santos fullname: Santos, Susana Silva email: suss@agro.au.dk organization: Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark – sequence: 2 givenname: Klara Andrés orcidid: 0000-0003-0872-1083 surname: Rask fullname: Rask, Klara Andrés organization: Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark – sequence: 3 givenname: Mette orcidid: 0000-0002-0054-4855 surname: Vestergård fullname: Vestergård, Mette organization: Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse, Denmark – sequence: 4 givenname: Jesper Liengaard orcidid: 0000-0001-7602-316X surname: Johansen fullname: Johansen, Jesper Liengaard organization: Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark – sequence: 5 givenname: Anders surname: Priemé fullname: Priemé, Anders organization: Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark – sequence: 6 givenname: Tobias Guldberg surname: Frøslev fullname: Frøslev, Tobias Guldberg organization: Section for Geogenetics, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350, Copenhagen, Denmark – sequence: 7 givenname: Ana M. Martín orcidid: 0000-0001-9429-7180 surname: González fullname: González, Ana M. Martín organization: Pacific Ecoinformatics and Computational Ecology Lab, Berkeley, CA, USA – sequence: 8 givenname: Huan surname: He fullname: He, Huan organization: Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark – sequence: 9 givenname: Flemming surname: Ekelund fullname: Ekelund, Flemming email: fekelund@bio.ku.dk organization: Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen, Denmark |
BookMark | eNqNkD1v2zAQhjmkQPPR31COXexSlGRJQ4cgaJMCATI0mQnyeIrPkEmVRwdN8udDw21QdEkn4oj3eXH3nIijEAMK8bFSy0pVq8-bJYYH_DW7mJda6ar8Nk2tjsSxUkO_6JtOvxcnzBulVFd3q2Px_GNGIDvRE3q5JUjRUdwiy9ECTZRtRhls3iU7ybSmp8jzGhP-FZUUMiYLmWJgCXH3Zwz3ck33a8mlPVB-lJwTMpe8nCcbMp-Jd6OdGD_8fk_F3bevtxdXi-uby-8X59cLqJs-L9zoxrpGC4N3Guq27a2vWu0BqmrA0Vo_tG4A51Xnuk73K-9U7WHVa6sbGJr6VHw69M4p_twhZ7MlBpzKEhh3bHTbqGboClCi3SFarmNOOJo50damR1Mps1dsNuZVsdkrNgfFhfzyDwl7e0VKTpam_-DPDzwWEw-EyTAQBkBPCSEbH-nNjhdMX6fO |
CitedBy_id | crossref_primary_10_1016_j_scitotenv_2022_156706 crossref_primary_10_1016_j_scitotenv_2021_150400 crossref_primary_10_3389_fmicb_2022_856078 crossref_primary_10_1016_j_envexpbot_2022_104988 crossref_primary_10_1016_j_apsoil_2024_105306 crossref_primary_10_1002_ldr_4308 crossref_primary_10_1094_MPMI_12_21_0294_FI crossref_primary_10_1016_j_scitotenv_2023_168828 crossref_primary_10_1016_j_pedsph_2024_09_002 crossref_primary_10_3390_agriculture13030734 crossref_primary_10_3390_agronomy14010103 crossref_primary_10_1007_s13199_021_00787_z crossref_primary_10_1016_j_envexpbot_2025_106115 crossref_primary_10_3390_agronomy12040913 crossref_primary_10_1128_msystems_00060_22 crossref_primary_10_1016_j_scitotenv_2022_156817 crossref_primary_10_1016_j_apsoil_2023_105258 crossref_primary_10_1016_j_ecoenv_2024_116129 crossref_primary_10_3390_horticulturae8121174 crossref_primary_10_1002_ldr_4877 crossref_primary_10_1016_j_ecss_2022_108005 crossref_primary_10_1038_s41467_024_47773_9 crossref_primary_10_3389_fmicb_2021_740721 crossref_primary_10_1007_s00425_022_03997_x crossref_primary_10_1007_s13157_023_01696_1 crossref_primary_10_3390_su15031804 crossref_primary_10_3389_fpls_2022_1002772 |
Cites_doi | 10.1073/pnas.1202319109 10.1038/s41467-018-05956-1 10.3389/fmicb.2018.00148 10.1093/bioinformatics/btp616 10.1371/journal.pone.0106662 10.1111/ele.12630 10.1038/ismej.2016.168 10.1073/pnas.1414592112 10.1038/nmeth.3869 10.3389/fbioe.2020.00568 10.1890/08-1823.1 10.1186/s13059-014-0550-8 10.1038/srep20687 10.1093/femsec/fiz190 10.1186/s40168-019-0677-7 10.1104/pp.18.01224 10.1016/j.jare.2019.03.004 10.1371/journal.pone.0061217 10.1128/mBio.00764-17 10.1016/j.jplph.2015.12.009 10.1016/j.soilbio.2014.11.001 10.1093/bioinformatics/btu494 10.1371/journal.pcbi.1004226 10.1093/femsec/fiz040 10.1099/ijs.0.63811-0 10.1007/s00122-005-1958-z 10.1186/1471-2105-13-113 10.3389/fmicb.2015.01013 10.1007/s13199-016-0387-x 10.1016/j.envexpbot.2016.09.009 10.1038/s41396-018-0313-8 10.1016/j.biocon.2019.02.038 10.1016/j.scitotenv.2020.139020 10.3389/fmicb.2014.00283 10.1038/srep32467 10.1128/aem.59.3.695-700.1993 10.1016/j.fcr.2019.03.007 10.1016/j.apsoil.2012.01.006 10.1111/nph.13312 10.1111/geb.12718 10.1016/S0734-9750(98)00003-2 10.14806/ej.17.1.200 10.3390/plants9030372 10.1038/s41467-017-01312-x 10.1186/s40168-018-0456-x 10.1038/s41477-018-0139-4 10.1111/brv.12433 10.1016/j.molp.2019.05.006 10.3389/fmicb.2017.02102 10.1186/s12866-017-1117-0 10.1111/nph.13697 10.1186/s40168-018-0445-0 10.2111/06-144R3.1 10.1371/journal.pbio.2003862 10.1073/pnas.1000080107 10.1016/j.ecocom.2009.03.008 10.3389/fmicb.2018.00651 10.1093/mp/sst028 10.1016/j.micres.2018.02.003 |
ContentType | Journal Article |
Copyright | 2021 Elsevier B.V. |
Copyright_xml | – notice: 2021 Elsevier B.V. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.envexpbot.2021.104430 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany Environmental Sciences |
ExternalDocumentID | 10_1016_j_envexpbot_2021_104430 S0098847221000599 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AATTM AAXKI AAXUO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABPPZ ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACNCT ACRLP ACRPL ADBBV ADEZE ADMUD ADNMO ADQTV AEBSH AEFWE AEGFY AEIPS AEKER AENEX AEQOU AFFNX AFJKZ AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W KOM LW9 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SDP SEN SES SEW SPCBC SSA SSH SSZ T5K TN5 TWZ WH7 WUQ XOL ~G- ~KM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP CITATION GROUPED_DOAJ 7S9 L.6 |
ID | FETCH-LOGICAL-c348t-bfbf33eac9db2c3558ad152dcc119efaad95b9cbd07b77286db03dc682a24c943 |
IEDL.DBID | .~1 |
ISSN | 0098-8472 |
IngestDate | Fri Jul 11 11:31:45 EDT 2025 Thu Apr 24 23:16:01 EDT 2025 Tue Jul 01 01:41:12 EDT 2025 Sun Apr 06 06:54:21 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Seed endophytes Rhizosphere effects Microbiome transfer Rice Halotolerant crops 16S rRNA gene |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-bfbf33eac9db2c3558ad152dcc119efaad95b9cbd07b77286db03dc682a24c943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7602-316X 0000-0002-0054-4855 0000-0003-0872-1083 0000-0001-9429-7180 0000-0001-7014-4999 |
PQID | 2540497682 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_2540497682 crossref_primary_10_1016_j_envexpbot_2021_104430 crossref_citationtrail_10_1016_j_envexpbot_2021_104430 elsevier_sciencedirect_doi_10_1016_j_envexpbot_2021_104430 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 2021-06-00 20210601 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationTitle | Environmental and experimental botany |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Coleman-derr, Desgarennes, Fonseca-garcia, Gross, Clingenpeel, Woyke (bib0035) 2016; 209 Singh, Jha (bib0255) 2016; 69 Toju, Peay, Yamamichi, Narisawa, Hiruma, Naito (bib0265) 2018; 4 Wang, Wang, Han, Deng (bib0290) 2018; 27 Rojas-Tapias, Moreno-Galván, Pardo-Díaz, Obando, Rivera, Bonilla (bib0240) 2012; 61 Canfora, Bacci, Pinzari, Lo Papa, Dazzi, Benedetti (bib0020) 2014; 9 Yuan, Druzhinina, Labbé, Redman, Qin, Rodriguez (bib0315) 2016; 6 Ding, Cui, Nie, Long, Duan, Zhu (bib0070) 2019; 95 Lau, Lennon (bib0145) 2012; 109 Cáceres, Legendre (bib0010) 2009; 90 Delmas, Besson, Brice, Burkle, Dalla Riva, Fortin (bib0060) 2019; 94 Etesami, Beattie (bib0090) 2018; 9 Love, Huber, Anders (bib0155) 2014; 15 Frøslev, Kjøller, Bruun, Ejrnæs, Hansen, Læssøe (bib0105) 2019; 233 Numan, Bashir, Khan, Mumtaz, Shinwari, Khan (bib0195) 2018; 209 Benidire, El Khalloufi, Oufdou, Barakat, Tulumello, Ortet (bib0005) 2020; 729 Hartman, van der Heijden, Wittwer, Banerjee, Walser, Schlaeppi (bib0110) 2018; 6 Morrissey, Franklin (bib0180) 2015; 6 Warnes, Bolker, Bonebakker, Gentleman, Huber, Liaw, Lumley, Maechler, Magnusson, Moeller, Schwartz, Venables (bib0295) 2020 Wassmann, Phong, Tho, Hoanh, Khoi, Hien (bib0300) 2019; 236 Kurtz, Müller, Miraldi, Littman, Blaser, Bonneau (bib0140) 2015; 11 Dong, Ronald (bib0075) 2019; 180 Zerrouk, Benchabane, Khelifi, Yokawa, Ludwig-Müller, Baluska (bib0320) 2016; 191 Li, Mu, Li, Zhang, Li, Gao (bib0150) 2005; 110 Verma, White (bib0275) 2019 Munkager, Vestergård, Priemé, Altenburger, de Visser, Johansen (bib0185) 2020; 9 Parks, Tyson, Hugenholtz, Beiko (bib0210) 2014; 30 Martin (bib0165) 2011; 17 Martín González, Dalsgaard, Olesen (bib0170) 2010; 7 Callahan, Mcmurdie, Rosen, Han, Johnson, Holmes (bib0015) 2016; 13 Rodriguez, Rothballer, Chowdhury, Nussbaumer, Gutjahr, Falter-Braun (bib0235) 2019; 12 Finley (bib0095) 1930; 11 Knapp, van der Heijden (bib0130) 2018; 9 Rath, Fierer, Murphy, Rousk (bib0220) 2019; 13 Ji, Kong, Yue, Wang, Deng, Zhu (bib0120) 2019; 95 Walitang, Kim, Madhaiyan, Kim, Kang, Sa (bib0280) 2017; 17 Coleman-Derr, Tringe (bib0040) 2014; 5 Khan, Waqas, Asaf, Kamran, Shahzad, Bilal (bib0125) 2017; 133 Caporaso, Lauber, Walters, Berg-Lyons, Lozupone, Turnbaugh (bib0025) 2011; 108 Hassani, Durán, Hacquard (bib0115) 2018; 6 Shi, Nuccio, Shi, He, Zhou, Firestone (bib0250) 2016; 19 Santos-Medellín, Edwards, Liechty, Nguyen, Venkatesan (bib0245) 2017; 8 Lucero, Barrow, Osuna, Reyes, Duke (bib0160) 2008; 61 Muyzer, Waal, Uitierlinden (bib0190) 1993 Yoav Bashan (bib0310) 1998; 16 Rodriguez, Durán (bib0230) 2020; 8 Edwards, Santos-Medellín, Liechty, Nguyen, Lurie, Eason (bib0085) 2018; 16 Kudjordjie, Sapkota, Steffensen, Fomsgaard, Nicolaisen (bib0135) 2019; 7 Oksanen, Blanchet, Friendly, Kindt, Legendre, McGlinn, Minchin, O’Hara, Simpson, Solymos, Stevens, Szoecs, Wagner (bib0200) 2020 Rath, Rousk (bib0215) 2015; 81 Choi, Yang, Stepanauskas, Cardenas, Garoutte, Williams (bib0030) 2017; 11 Yang, Hu, Long, Liu, Rengel (bib0305) 2016; 6 Park, Baik, Seong, Bae, Kim, Chun (bib0205) 2006; 56 McMurdie, Holmes (bib0175) 2013; 8 Csárdi, Nepusz (bib0050) 2006; 1695 Vandenkoornhuyse, Quaiser, Duhamel, Le Van, Dufresne (bib0270) 2015; 206 Robinson, McCarthy, Smyth (bib0225) 2009; 26 Wang, Li, Liu, Jousset, Salles (bib0285) 2017; 8 Thiem, Gołebiewski, Hulisz, Piernik, Hrynkiewicz (bib0260) 2018; 9 Compant, Samad, Faist, Sessitsch (bib0045) 2019; 19 Edwards, Johnson, Santos-Medellín, Lurie, Podishetty, Bhatnagar (bib0080) 2015; 112 de Zelicourt, Al-Yousif, Hirt (bib0055) 2013; 6 Deng, Jiang, Yang, He, Luo, Zhou (bib0065) 2012; 13 Frøslev, Kjøller, Bruun, Ejrnæs, Brunbjerg, Pietroni (bib0100) 2017; 8 Walitang (10.1016/j.envexpbot.2021.104430_bib0280) 2017; 17 Deng (10.1016/j.envexpbot.2021.104430_bib0065) 2012; 13 Santos-Medellín (10.1016/j.envexpbot.2021.104430_bib0245) 2017; 8 Ji (10.1016/j.envexpbot.2021.104430_bib0120) 2019; 95 Martín González (10.1016/j.envexpbot.2021.104430_bib0170) 2010; 7 Rodriguez (10.1016/j.envexpbot.2021.104430_bib0235) 2019; 12 McMurdie (10.1016/j.envexpbot.2021.104430_bib0175) 2013; 8 Edwards (10.1016/j.envexpbot.2021.104430_bib0080) 2015; 112 Lau (10.1016/j.envexpbot.2021.104430_bib0145) 2012; 109 Finley (10.1016/j.envexpbot.2021.104430_bib0095) 1930; 11 Yoav Bashan (10.1016/j.envexpbot.2021.104430_bib0310) 1998; 16 de Zelicourt (10.1016/j.envexpbot.2021.104430_bib0055) 2013; 6 Coleman-derr (10.1016/j.envexpbot.2021.104430_bib0035) 2016; 209 Edwards (10.1016/j.envexpbot.2021.104430_bib0085) 2018; 16 Etesami (10.1016/j.envexpbot.2021.104430_bib0090) 2018; 9 Thiem (10.1016/j.envexpbot.2021.104430_bib0260) 2018; 9 Csárdi (10.1016/j.envexpbot.2021.104430_bib0050) 2006; 1695 Parks (10.1016/j.envexpbot.2021.104430_bib0210) 2014; 30 Canfora (10.1016/j.envexpbot.2021.104430_bib0020) 2014; 9 Zerrouk (10.1016/j.envexpbot.2021.104430_bib0320) 2016; 191 Delmas (10.1016/j.envexpbot.2021.104430_bib0060) 2019; 94 Khan (10.1016/j.envexpbot.2021.104430_bib0125) 2017; 133 Wang (10.1016/j.envexpbot.2021.104430_bib0285) 2017; 8 Frøslev (10.1016/j.envexpbot.2021.104430_bib0105) 2019; 233 Toju (10.1016/j.envexpbot.2021.104430_bib0265) 2018; 4 Hartman (10.1016/j.envexpbot.2021.104430_bib0110) 2018; 6 Love (10.1016/j.envexpbot.2021.104430_bib0155) 2014; 15 Singh (10.1016/j.envexpbot.2021.104430_bib0255) 2016; 69 Yuan (10.1016/j.envexpbot.2021.104430_bib0315) 2016; 6 Park (10.1016/j.envexpbot.2021.104430_bib0205) 2006; 56 Verma (10.1016/j.envexpbot.2021.104430_bib0275) 2019 Yang (10.1016/j.envexpbot.2021.104430_bib0305) 2016; 6 Warnes (10.1016/j.envexpbot.2021.104430_bib0295) 2020 Benidire (10.1016/j.envexpbot.2021.104430_bib0005) 2020; 729 Caporaso (10.1016/j.envexpbot.2021.104430_bib0025) 2011; 108 Rodriguez (10.1016/j.envexpbot.2021.104430_bib0230) 2020; 8 Martin (10.1016/j.envexpbot.2021.104430_bib0165) 2011; 17 Vandenkoornhuyse (10.1016/j.envexpbot.2021.104430_bib0270) 2015; 206 Coleman-Derr (10.1016/j.envexpbot.2021.104430_bib0040) 2014; 5 Knapp (10.1016/j.envexpbot.2021.104430_bib0130) 2018; 9 Rath (10.1016/j.envexpbot.2021.104430_bib0220) 2019; 13 Callahan (10.1016/j.envexpbot.2021.104430_bib0015) 2016; 13 Hassani (10.1016/j.envexpbot.2021.104430_bib0115) 2018; 6 Frøslev (10.1016/j.envexpbot.2021.104430_bib0100) 2017; 8 Muyzer (10.1016/j.envexpbot.2021.104430_bib0190) 1993 Robinson (10.1016/j.envexpbot.2021.104430_bib0225) 2009; 26 Shi (10.1016/j.envexpbot.2021.104430_bib0250) 2016; 19 Oksanen (10.1016/j.envexpbot.2021.104430_bib0200) 2020 Compant (10.1016/j.envexpbot.2021.104430_bib0045) 2019; 19 Choi (10.1016/j.envexpbot.2021.104430_bib0030) 2017; 11 Numan (10.1016/j.envexpbot.2021.104430_bib0195) 2018; 209 Rojas-Tapias (10.1016/j.envexpbot.2021.104430_bib0240) 2012; 61 Dong (10.1016/j.envexpbot.2021.104430_bib0075) 2019; 180 Cáceres (10.1016/j.envexpbot.2021.104430_bib0010) 2009; 90 Rath (10.1016/j.envexpbot.2021.104430_bib0215) 2015; 81 Wang (10.1016/j.envexpbot.2021.104430_bib0290) 2018; 27 Li (10.1016/j.envexpbot.2021.104430_bib0150) 2005; 110 Kurtz (10.1016/j.envexpbot.2021.104430_bib0140) 2015; 11 Wassmann (10.1016/j.envexpbot.2021.104430_bib0300) 2019; 236 Ding (10.1016/j.envexpbot.2021.104430_bib0070) 2019; 95 Lucero (10.1016/j.envexpbot.2021.104430_bib0160) 2008; 61 Munkager (10.1016/j.envexpbot.2021.104430_bib0185) 2020; 9 Kudjordjie (10.1016/j.envexpbot.2021.104430_bib0135) 2019; 7 Morrissey (10.1016/j.envexpbot.2021.104430_bib0180) 2015; 6 |
References_xml | – volume: 8 year: 2013 ident: bib0175 article-title: Phyloseq: an R Package for reproducible interactive analysis and graphics of microbiome census data publication-title: PLoS One – volume: 191 start-page: 111 year: 2016 end-page: 119 ident: bib0320 article-title: A publication-title: J. Plant Physiol. – volume: 61 start-page: 124 year: 2008 end-page: 130 ident: bib0160 article-title: Enhancing native grass productivity by cocultivating with endophyte-laden calli publication-title: Rangel. Ecol. Manag. – volume: 9 start-page: 3632 year: 2018 ident: bib0130 article-title: A global meta-analysis of yield stability in organic and conservation agriculture publication-title: Nat. Commun. – volume: 95 start-page: 5 year: 2019 ident: bib0070 article-title: Microbiomes inhabiting rice roots and rhizosphere publication-title: FEMS Microbiol. Ecol. – volume: 9 year: 2014 ident: bib0020 article-title: Salinity and bacterial diversity: To what extent does the concentration of salt affect the bacterial community in a saline soil? publication-title: PLoS One – volume: 233 start-page: 201 year: 2019 end-page: 212 ident: bib0105 article-title: Man against machine: do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients? publication-title: Conserv. – volume: 9 start-page: 148 year: 2018 ident: bib0090 article-title: Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops publication-title: Front. Microbiol. – volume: 13 start-page: 581 year: 2016 end-page: 587 ident: bib0015 article-title: DADA2: high-resolution sample inference from Illumina amplicon data publication-title: Nat. Methods – volume: 90 start-page: 3566 year: 2009 end-page: 3574 ident: bib0010 article-title: Associations between species and groups of sites: indices and statistical inference publication-title: Ecology – volume: 236 start-page: 111 year: 2019 end-page: 120 ident: bib0300 article-title: High-resolution mapping of flood and salinity risks for rice production in the Vietnamese Mekong Delta publication-title: F. Crop. Res. – volume: 11 year: 2015 ident: bib0140 article-title: Sparse and compositionally robust inference of microbial ecological networks publication-title: PLoS Comput. Biol. – volume: 6 start-page: 58 year: 2018 ident: bib0115 article-title: Microbial interactions within the plant holobiont publication-title: Microbiome – year: 2019 ident: bib0275 article-title: Seed Endophytes. Biology and Biotechnology – volume: 109 start-page: 14058 year: 2012 end-page: 14062 ident: bib0145 article-title: Rapid responses of soil microorganisms improve plant fitness in novel environments publication-title: Proc. Natl. Acad. Sci. – volume: 108 start-page: 4516 year: 2011 end-page: 4522 ident: bib0025 article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample publication-title: Proc. Natl. Acad. Sci. – volume: 6 start-page: 242 year: 2013 end-page: 245 ident: bib0055 article-title: Rhizosphere microbes as essential partners for plant stress tolerance publication-title: Mol. Plant – volume: 5 start-page: 283 year: 2014 ident: bib0040 article-title: Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance publication-title: Front. Microbiol. – volume: 729 year: 2020 ident: bib0005 article-title: Phytobeneficial bacteria improve saline stress tolerance in publication-title: Sci. Total Environ. – volume: 69 start-page: 101 year: 2016 end-page: 111 ident: bib0255 article-title: Alleviation of salinity-induced damage on wheat plant by an ACC deaminase-producing halophilic bacterium publication-title: Symbiosis – volume: 6 start-page: 74 year: 2018 ident: bib0110 article-title: Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming publication-title: Microbiome – volume: 13 start-page: 113 year: 2012 ident: bib0065 article-title: Molecular ecological network analyses publication-title: BMC Bioinformatics – volume: 7 start-page: 36 year: 2010 end-page: 43 ident: bib0170 article-title: Centrality measures and the importance of generalist species in pollination networks publication-title: Ecol. Complex. – volume: 209 start-page: 21 year: 2018 end-page: 32 ident: bib0195 article-title: Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review publication-title: Microbiol. Res. – volume: 15 start-page: 550 year: 2014 ident: bib0155 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. – volume: 112 start-page: E911 year: 2015 end-page: E920 ident: bib0080 article-title: Structure, variation, and assembly of the root-associated microbiomes of rice publication-title: Proc. Natl. Acad. Sci. – volume: 9 start-page: 6 year: 2020 end-page: 8 ident: bib0185 article-title: AgNO3 sterilizes grains of barley ( publication-title: Plants – volume: 27 start-page: 570 year: 2018 end-page: 580 ident: bib0290 article-title: Higher precipitation strengthens the microbial interactions in semi-arid grassland soils publication-title: Glob. Ecol. Biogeogr. – volume: 11 start-page: 829 year: 2017 end-page: 834 ident: bib0030 article-title: Strategies to improve reference databases for soil microbiomes publication-title: ISME J. – volume: 95 start-page: 12 year: 2019 ident: bib0120 article-title: Salinity reduces bacterial diversity, but increases network complexity in Tibetan Plateau lakes publication-title: FEMS Microb. Ecol. – volume: 133 start-page: 58 year: 2017 end-page: 69 ident: bib0125 article-title: Plant growth-promoting endophyte publication-title: Environ. Exp. Bot. – volume: 19 start-page: 926 year: 2016 end-page: 936 ident: bib0250 article-title: The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages publication-title: Ecol. Lett. – volume: 17 start-page: 209 year: 2017 ident: bib0280 article-title: Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of rice publication-title: BMC Microbiol. – volume: 1695 start-page: 1 year: 2006 end-page: 9 ident: bib0050 article-title: The igraph software package for complex network research publication-title: InterJournal Complex Syst. – volume: 16 start-page: 729 year: 1998 end-page: 770 ident: bib0310 article-title: Inoculants of plant growth-promoting bacteria for use in agriculture publication-title: Biotechnol. Adv. – volume: 206 start-page: 1196 year: 2015 end-page: 1206 ident: bib0270 article-title: The importance of the microbiome of the plant holobiont publication-title: New Phytol. – volume: 26 start-page: 139 year: 2009 end-page: 140 ident: bib0225 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics – volume: 4 start-page: 247 year: 2018 end-page: 257 ident: bib0265 article-title: Core microbiomes for sustainable agroecosystems publication-title: Nat. Plants – year: 2020 ident: bib0295 article-title: Gplots: various R programming tools for plotting data publication-title: R Package Version 3.1.1 – volume: 6 start-page: 1013 year: 2015 ident: bib0180 article-title: Evolutionary history influences the salinity preference of bacterial taxa in wetland soils publication-title: Front. Microbiol. – volume: 19 start-page: 29 year: 2019 end-page: 37 ident: bib0045 article-title: A review on the plant microbiome: ecology, functions, and emerging trends in microbial application publication-title: J. Adv. Res. – volume: 110 start-page: 1244 year: 2005 end-page: 1252 ident: bib0150 article-title: QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments publication-title: Theor. Appl. Genet. – volume: 13 start-page: 836 year: 2019 end-page: 846 ident: bib0220 article-title: Linking bacterial community composition to soil salinity along environmental gradients publication-title: ISME J. – volume: 12 start-page: 804 year: 2019 end-page: 821 ident: bib0235 article-title: Systems biology of plant-microbiome interactions publication-title: Mol. Plant – volume: 17 start-page: 10 year: 2011 end-page: 12 ident: bib0165 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet.journal – volume: 94 start-page: 16 year: 2019 end-page: 36 ident: bib0060 article-title: Analysing ecological networks of species interactions publication-title: Biol. Rev. – volume: 180 start-page: 26 year: 2019 end-page: 38 ident: bib0075 article-title: Genetic engineering for disease resistance in plants: recent progress and future perspectives publication-title: Plant Physiol. – volume: 6 start-page: 32467 year: 2016 ident: bib0315 article-title: Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity publication-title: Sci. Rep. – start-page: 695 year: 1993 end-page: 700 ident: bib0190 article-title: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA publication-title: Appl. Environ. Microbiol. – volume: 11 start-page: 337 year: 1930 end-page: 347 ident: bib0095 article-title: Toleration of fresh water protozoa to increased salinity publication-title: Ecol. Soc. Am. Am. – volume: 30 start-page: 3123 year: 2014 end-page: 3124 ident: bib0210 article-title: STAMP: statistical analysis of taxonomic and functional profiles publication-title: Bioinformatics – volume: 209 start-page: 798 year: 2016 end-page: 811 ident: bib0035 article-title: Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species publication-title: New Phytol. – volume: 8 start-page: 2102 year: 2017 ident: bib0285 article-title: Functionality of root-associated bacteria along a salt marsh primary succession publication-title: Front. Microbiol. – volume: 81 start-page: 108 year: 2015 end-page: 123 ident: bib0215 article-title: Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review publication-title: Soil Biol. Biochem. – volume: 6 start-page: 20687 year: 2016 ident: bib0305 article-title: Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke publication-title: Sci. Rep. – volume: 8 start-page: 1188 year: 2017 ident: bib0100 article-title: Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates publication-title: Nat. Commun. – volume: 56 start-page: 745 year: 2006 end-page: 749 ident: bib0205 article-title: sp. nov., a halophilic bacterium isolated from sea water publication-title: Int. J. Syst. Evol. Microbiol. – volume: 16 year: 2018 ident: bib0085 article-title: Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice publication-title: PLoS Biol. – volume: 8 start-page: 568 year: 2020 ident: bib0230 article-title: Natural holobiome engineering by using native extreme microbiome to counteract the climate change effects publication-title: Front. Bioeng. Biotechnol. – volume: 9 start-page: 651 year: 2018 ident: bib0260 article-title: How does salinity shape bacterial and fungal microbiomes of publication-title: Front. Microbiol. – volume: 7 start-page: 59 year: 2019 ident: bib0135 article-title: Maize synthesized benzoxazinoids affect the host associated microbiome publication-title: Microbiome – volume: 61 start-page: 264 year: 2012 end-page: 272 ident: bib0240 article-title: Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize ( publication-title: Agric., Ecosyst. Environ., Appl. Soil Ecol. – year: 2020 ident: bib0200 article-title: Vegan: Community ecology package publication-title: R Package Version 2.5-7 – volume: 8 start-page: e00764 year: 2017 end-page: 17 ident: bib0245 article-title: Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes publication-title: mBio – volume: 109 start-page: 14058 year: 2012 ident: 10.1016/j.envexpbot.2021.104430_bib0145 article-title: Rapid responses of soil microorganisms improve plant fitness in novel environments publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1202319109 – volume: 9 start-page: 3632 year: 2018 ident: 10.1016/j.envexpbot.2021.104430_bib0130 article-title: A global meta-analysis of yield stability in organic and conservation agriculture publication-title: Nat. Commun. doi: 10.1038/s41467-018-05956-1 – volume: 9 start-page: 148 year: 2018 ident: 10.1016/j.envexpbot.2021.104430_bib0090 article-title: Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00148 – volume: 26 start-page: 139 year: 2009 ident: 10.1016/j.envexpbot.2021.104430_bib0225 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 9 year: 2014 ident: 10.1016/j.envexpbot.2021.104430_bib0020 article-title: Salinity and bacterial diversity: To what extent does the concentration of salt affect the bacterial community in a saline soil? publication-title: PLoS One doi: 10.1371/journal.pone.0106662 – volume: 19 start-page: 926 year: 2016 ident: 10.1016/j.envexpbot.2021.104430_bib0250 article-title: The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages publication-title: Ecol. Lett. doi: 10.1111/ele.12630 – volume: 11 start-page: 829 year: 2017 ident: 10.1016/j.envexpbot.2021.104430_bib0030 article-title: Strategies to improve reference databases for soil microbiomes publication-title: ISME J. doi: 10.1038/ismej.2016.168 – volume: 112 start-page: E911 year: 2015 ident: 10.1016/j.envexpbot.2021.104430_bib0080 article-title: Structure, variation, and assembly of the root-associated microbiomes of rice publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1414592112 – volume: 13 start-page: 581 year: 2016 ident: 10.1016/j.envexpbot.2021.104430_bib0015 article-title: DADA2: high-resolution sample inference from Illumina amplicon data publication-title: Nat. Methods doi: 10.1038/nmeth.3869 – volume: 8 start-page: 568 year: 2020 ident: 10.1016/j.envexpbot.2021.104430_bib0230 article-title: Natural holobiome engineering by using native extreme microbiome to counteract the climate change effects publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2020.00568 – volume: 90 start-page: 3566 year: 2009 ident: 10.1016/j.envexpbot.2021.104430_bib0010 article-title: Associations between species and groups of sites: indices and statistical inference publication-title: Ecology doi: 10.1890/08-1823.1 – volume: 15 start-page: 550 issue: 12 year: 2014 ident: 10.1016/j.envexpbot.2021.104430_bib0155 article-title: Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 6 start-page: 20687 year: 2016 ident: 10.1016/j.envexpbot.2021.104430_bib0305 article-title: Salinity altered root distribution and increased diversity of bacterial communities in the rhizosphere soil of Jerusalem artichoke publication-title: Sci. Rep. doi: 10.1038/srep20687 – volume: 95 start-page: 12 year: 2019 ident: 10.1016/j.envexpbot.2021.104430_bib0120 article-title: Salinity reduces bacterial diversity, but increases network complexity in Tibetan Plateau lakes publication-title: FEMS Microb. Ecol. doi: 10.1093/femsec/fiz190 – year: 2019 ident: 10.1016/j.envexpbot.2021.104430_bib0275 – volume: 1695 start-page: 1 year: 2006 ident: 10.1016/j.envexpbot.2021.104430_bib0050 article-title: The igraph software package for complex network research publication-title: InterJournal Complex Syst. – volume: 7 start-page: 59 year: 2019 ident: 10.1016/j.envexpbot.2021.104430_bib0135 article-title: Maize synthesized benzoxazinoids affect the host associated microbiome publication-title: Microbiome doi: 10.1186/s40168-019-0677-7 – volume: 180 start-page: 26 year: 2019 ident: 10.1016/j.envexpbot.2021.104430_bib0075 article-title: Genetic engineering for disease resistance in plants: recent progress and future perspectives publication-title: Plant Physiol. doi: 10.1104/pp.18.01224 – volume: 19 start-page: 29 year: 2019 ident: 10.1016/j.envexpbot.2021.104430_bib0045 article-title: A review on the plant microbiome: ecology, functions, and emerging trends in microbial application publication-title: J. Adv. Res. doi: 10.1016/j.jare.2019.03.004 – volume: 8 year: 2013 ident: 10.1016/j.envexpbot.2021.104430_bib0175 article-title: Phyloseq: an R Package for reproducible interactive analysis and graphics of microbiome census data publication-title: PLoS One doi: 10.1371/journal.pone.0061217 – volume: 8 start-page: e00764 year: 2017 ident: 10.1016/j.envexpbot.2021.104430_bib0245 article-title: Drought stress results in a compartment-specific restructuring of the rice root-associated microbiomes publication-title: mBio doi: 10.1128/mBio.00764-17 – volume: 191 start-page: 111 year: 2016 ident: 10.1016/j.envexpbot.2021.104430_bib0320 article-title: A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress publication-title: J. Plant Physiol. doi: 10.1016/j.jplph.2015.12.009 – volume: 81 start-page: 108 year: 2015 ident: 10.1016/j.envexpbot.2021.104430_bib0215 article-title: Salt effects on the soil microbial decomposer community and their role in organic carbon cycling: a review publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.11.001 – volume: 30 start-page: 3123 year: 2014 ident: 10.1016/j.envexpbot.2021.104430_bib0210 article-title: STAMP: statistical analysis of taxonomic and functional profiles publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu494 – volume: 11 year: 2015 ident: 10.1016/j.envexpbot.2021.104430_bib0140 article-title: Sparse and compositionally robust inference of microbial ecological networks publication-title: PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1004226 – volume: 95 start-page: 5 year: 2019 ident: 10.1016/j.envexpbot.2021.104430_bib0070 article-title: Microbiomes inhabiting rice roots and rhizosphere publication-title: FEMS Microbiol. Ecol. doi: 10.1093/femsec/fiz040 – volume: 56 start-page: 745 year: 2006 ident: 10.1016/j.envexpbot.2021.104430_bib0205 article-title: Photobacterium ganghwense sp. nov., a halophilic bacterium isolated from sea water publication-title: Int. J. Syst. Evol. Microbiol. doi: 10.1099/ijs.0.63811-0 – volume: 110 start-page: 1244 year: 2005 ident: 10.1016/j.envexpbot.2021.104430_bib0150 article-title: QTL mapping of root traits in a doubled haploid population from a cross between upland and lowland japonica rice in three environments publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-005-1958-z – year: 2020 ident: 10.1016/j.envexpbot.2021.104430_bib0200 article-title: Vegan: Community ecology package – volume: 13 start-page: 113 year: 2012 ident: 10.1016/j.envexpbot.2021.104430_bib0065 article-title: Molecular ecological network analyses publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-13-113 – volume: 6 start-page: 1013 year: 2015 ident: 10.1016/j.envexpbot.2021.104430_bib0180 article-title: Evolutionary history influences the salinity preference of bacterial taxa in wetland soils publication-title: Front. Microbiol. doi: 10.3389/fmicb.2015.01013 – volume: 11 start-page: 337 year: 1930 ident: 10.1016/j.envexpbot.2021.104430_bib0095 article-title: Toleration of fresh water protozoa to increased salinity publication-title: Ecol. Soc. Am. Am. – volume: 69 start-page: 101 year: 2016 ident: 10.1016/j.envexpbot.2021.104430_bib0255 article-title: Alleviation of salinity-induced damage on wheat plant by an ACC deaminase-producing halophilic bacterium Serratia sp. SL- 12 isolated from a salt lake publication-title: Symbiosis doi: 10.1007/s13199-016-0387-x – volume: 133 start-page: 58 year: 2017 ident: 10.1016/j.envexpbot.2021.104430_bib0125 article-title: Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium publication-title: Environ. Exp. Bot. doi: 10.1016/j.envexpbot.2016.09.009 – volume: 13 start-page: 836 year: 2019 ident: 10.1016/j.envexpbot.2021.104430_bib0220 article-title: Linking bacterial community composition to soil salinity along environmental gradients publication-title: ISME J. doi: 10.1038/s41396-018-0313-8 – volume: 233 start-page: 201 year: 2019 ident: 10.1016/j.envexpbot.2021.104430_bib0105 article-title: Man against machine: do fungal fruitbodies and eDNA give similar biodiversity assessments across broad environmental gradients? Biol publication-title: Conserv. doi: 10.1016/j.biocon.2019.02.038 – year: 2020 ident: 10.1016/j.envexpbot.2021.104430_bib0295 article-title: Gplots: various R programming tools for plotting data – volume: 729 year: 2020 ident: 10.1016/j.envexpbot.2021.104430_bib0005 article-title: Phytobeneficial bacteria improve saline stress tolerance in Vicia faba and modulate microbial interaction network publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2020.139020 – volume: 5 start-page: 283 year: 2014 ident: 10.1016/j.envexpbot.2021.104430_bib0040 article-title: Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance publication-title: Front. Microbiol. doi: 10.3389/fmicb.2014.00283 – volume: 6 start-page: 32467 year: 2016 ident: 10.1016/j.envexpbot.2021.104430_bib0315 article-title: Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity publication-title: Sci. Rep. doi: 10.1038/srep32467 – start-page: 695 year: 1993 ident: 10.1016/j.envexpbot.2021.104430_bib0190 article-title: Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA publication-title: Appl. Environ. Microbiol. doi: 10.1128/aem.59.3.695-700.1993 – volume: 236 start-page: 111 year: 2019 ident: 10.1016/j.envexpbot.2021.104430_bib0300 article-title: High-resolution mapping of flood and salinity risks for rice production in the Vietnamese Mekong Delta publication-title: F. Crop. Res. doi: 10.1016/j.fcr.2019.03.007 – volume: 61 start-page: 264 year: 2012 ident: 10.1016/j.envexpbot.2021.104430_bib0240 article-title: Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays) publication-title: Agric., Ecosyst. Environ., Appl. Soil Ecol. doi: 10.1016/j.apsoil.2012.01.006 – volume: 206 start-page: 1196 year: 2015 ident: 10.1016/j.envexpbot.2021.104430_bib0270 article-title: The importance of the microbiome of the plant holobiont publication-title: New Phytol. doi: 10.1111/nph.13312 – volume: 27 start-page: 570 year: 2018 ident: 10.1016/j.envexpbot.2021.104430_bib0290 article-title: Higher precipitation strengthens the microbial interactions in semi-arid grassland soils publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12718 – volume: 16 start-page: 729 year: 1998 ident: 10.1016/j.envexpbot.2021.104430_bib0310 article-title: Inoculants of plant growth-promoting bacteria for use in agriculture publication-title: Biotechnol. Adv. doi: 10.1016/S0734-9750(98)00003-2 – volume: 17 start-page: 10 issue: 1 year: 2011 ident: 10.1016/j.envexpbot.2021.104430_bib0165 article-title: Cutadapt removes adapter sequences from high-throughput sequencing reads publication-title: EMBnet.journal doi: 10.14806/ej.17.1.200 – volume: 9 start-page: 6 year: 2020 ident: 10.1016/j.envexpbot.2021.104430_bib0185 article-title: AgNO3 sterilizes grains of barley (Hordeum vulgare) without inhibiting germination—a necessary tool for plant–microbiome research publication-title: Plants doi: 10.3390/plants9030372 – volume: 8 start-page: 1188 year: 2017 ident: 10.1016/j.envexpbot.2021.104430_bib0100 article-title: Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates publication-title: Nat. Commun. doi: 10.1038/s41467-017-01312-x – volume: 6 start-page: 74 year: 2018 ident: 10.1016/j.envexpbot.2021.104430_bib0110 article-title: Cropping practices manipulate abundance patterns of root and soil microbiome members paving the way to smart farming publication-title: Microbiome doi: 10.1186/s40168-018-0456-x – volume: 4 start-page: 247 year: 2018 ident: 10.1016/j.envexpbot.2021.104430_bib0265 article-title: Core microbiomes for sustainable agroecosystems publication-title: Nat. Plants doi: 10.1038/s41477-018-0139-4 – volume: 94 start-page: 16 year: 2019 ident: 10.1016/j.envexpbot.2021.104430_bib0060 article-title: Analysing ecological networks of species interactions publication-title: Biol. Rev. doi: 10.1111/brv.12433 – volume: 12 start-page: 804 year: 2019 ident: 10.1016/j.envexpbot.2021.104430_bib0235 article-title: Systems biology of plant-microbiome interactions publication-title: Mol. Plant doi: 10.1016/j.molp.2019.05.006 – volume: 8 start-page: 2102 year: 2017 ident: 10.1016/j.envexpbot.2021.104430_bib0285 article-title: Functionality of root-associated bacteria along a salt marsh primary succession publication-title: Front. Microbiol. doi: 10.3389/fmicb.2017.02102 – volume: 17 start-page: 209 year: 2017 ident: 10.1016/j.envexpbot.2021.104430_bib0280 article-title: Characterizing endophytic competence and plant growth promotion of bacterial endophytes inhabiting the seed endosphere of rice publication-title: BMC Microbiol. doi: 10.1186/s12866-017-1117-0 – volume: 209 start-page: 798 year: 2016 ident: 10.1016/j.envexpbot.2021.104430_bib0035 article-title: Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species publication-title: New Phytol. doi: 10.1111/nph.13697 – volume: 6 start-page: 58 year: 2018 ident: 10.1016/j.envexpbot.2021.104430_bib0115 article-title: Microbial interactions within the plant holobiont publication-title: Microbiome doi: 10.1186/s40168-018-0445-0 – volume: 61 start-page: 124 year: 2008 ident: 10.1016/j.envexpbot.2021.104430_bib0160 article-title: Enhancing native grass productivity by cocultivating with endophyte-laden calli publication-title: Rangel. Ecol. Manag. doi: 10.2111/06-144R3.1 – volume: 16 year: 2018 ident: 10.1016/j.envexpbot.2021.104430_bib0085 article-title: Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2003862 – volume: 108 start-page: 4516 year: 2011 ident: 10.1016/j.envexpbot.2021.104430_bib0025 article-title: Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1000080107 – volume: 7 start-page: 36 year: 2010 ident: 10.1016/j.envexpbot.2021.104430_bib0170 article-title: Centrality measures and the importance of generalist species in pollination networks publication-title: Ecol. Complex. doi: 10.1016/j.ecocom.2009.03.008 – volume: 9 start-page: 651 year: 2018 ident: 10.1016/j.envexpbot.2021.104430_bib0260 article-title: How does salinity shape bacterial and fungal microbiomes of Alnus glutinosa roots? publication-title: Front. Microbiol. doi: 10.3389/fmicb.2018.00651 – volume: 6 start-page: 242 year: 2013 ident: 10.1016/j.envexpbot.2021.104430_bib0055 article-title: Rhizosphere microbes as essential partners for plant stress tolerance publication-title: Mol. Plant doi: 10.1093/mp/sst028 – volume: 209 start-page: 21 year: 2018 ident: 10.1016/j.envexpbot.2021.104430_bib0195 article-title: Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: a review publication-title: Microbiol. Res. doi: 10.1016/j.micres.2018.02.003 |
SSID | ssj0007376 |
Score | 2.4667041 |
Snippet | •Specialized microbiome transfers increased plant growth at higher salinities.•Rice field microbiome is better suited to support plant growth.•Halotolerant... The root microbiota is crucial for plant productivity and stress tolerance. Still, our understanding of the factors that structure these microbial communities... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104430 |
SubjectTerms | 16S rRNA gene biomass community structure Halotolerant crops microbial communities microbiome Microbiome transfer paddies phytobiome plant growth rhizosphere Rhizosphere effects Rice salinity salt stress salt tolerance Seed endophytes species diversity stress tolerance |
Title | Specialized microbiomes facilitate natural rhizosphere microbiome interactions counteracting high salinity stress in plants |
URI | https://dx.doi.org/10.1016/j.envexpbot.2021.104430 https://www.proquest.com/docview/2540497682 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LevAiuiq-ieC12jbpI95UlFVxTwreQl4rK9pdtrviA_ztzjStuiJ48NgyQ0smmQf55htC9kyWQ5BQaaAF0wFE_CRQaaiDkEcaM7osZ9jvfNVNOzf84ja5bZGTphcGYZW17_c-vfLW9ZuDejUPhv0-9viKPEeuw8izjGAHO89wl--_f8E8MlYNmKt4M1F6CuPliif3PNQDBFXGEd53coRD_x6hfvjqKgCdLZKFOnOkR_7nlkjLFW0ydzyA7O6lTVZPvzrWQKo-suUyeasnzPdfnaWPfc-79OhK2lPGM3Q7WrF7gtYIAXglEg24b6IUKSVGvgGipNVwCf9Y3FFkO6alwvbK8Qv1jScgT4cPiK9ZITdnp9cnnaCeuBAYxvNxoHu6xxj4YmF1bJB5XVkI8NaYKBKup5QViRZG2zDTkJbnqdUhsybNYxVzIzhbJTPFoHBrhGphuUk4VEMm58pFKlRQ7SSZc46JVGXrJG1WWZqajhynYjzIBnd2Lz_NI9E80ptnnYSfikPPyPG3ymFjRjm1uSTEjb-VdxvDSzh6eJ-iCjeYlBJqa6ivoF6LN_7zgU0yj08ef7ZFZsajiduGTGesd6qtvENmj84vO90P-swD0Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFH7oKOhFXHE3gtdi23SLNxVl3Oak4C1kGxnRzjAdxeXPm9ek44LgwWPTPFrykreQ730PYE_lhXUSIgskozKwHj8NRBbKIEwiiRFdXlCsd77qZO2b5Pw2vZ2A46YWBmGV3vY7m15baz-y71dzf9DrYY0vKwrkOowcy8gkTCE7VdqCqcOzi3ZnbJBzWveYq6kzUeAbzMuUz-ZlIPuIq4wjvPJMEBH9u5P6Ya5rH3Q6D3M-eCSH7v8WYMKUizB91LcB3usirJx8Fq3ZWf7UVkvw7pvM996MJo89R730aCrSFcqRdBtSE3xaqSFi8CrkGjBfphJklRi6GoiK1P0l3GN5R5DwmFQCKyxHr8TVntj5ZPCAEJtluDk9uT5uB77pQqBoUowC2ZVdSq05ZlrGCsnXhbY-XisVRcx0hdAslUxJHebSRuZFpmVItcqKWMSJYgldgVbZL80qEMl0olAjVBWJMJEIhU140twYQ1km8jXImlXmyjOSY2OMB95Az-75WD0c1cOdetYgHAsOHCnH3yIHjRr5t_3Frev4W3i3UTy3pw-vVERp-k8Vt-m1TbFsyhav_-cDOzDTvr665JdnnYsNmMU3Do62Ca3R8Mls2cBnJLf9xv4AygoGgg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Specialized+microbiomes+facilitate+natural+rhizosphere+microbiome+interactions+counteracting+high+salinity+stress+in+plants&rft.jtitle=Environmental+and+experimental+botany&rft.au=Santos%2C+Susana+Silva&rft.au=Rask%2C+Klara+Andr%C3%A9s&rft.au=Vesterg%C3%A5rd%2C+Mette&rft.au=Johansen%2C+Jesper+Liengaard&rft.date=2021-06-01&rft.issn=0098-8472&rft.volume=186+p.104430-&rft_id=info:doi/10.1016%2Fj.envexpbot.2021.104430&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-8472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-8472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-8472&client=summon |