A practical method for angular normalization of global MODIS land surface temperature over vegetated surfaces
Land surface temperature (LST) is an essential physical quantity in surface energy balance and a good indicator of exchange of heat and water between the land and atmosphere at regional and global scales. However, the thermal-infrared remotely sensed LST from large swath-width polar-orbiting and geo...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 199; pp. 289 - 304 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Land surface temperature (LST) is an essential physical quantity in surface energy balance and a good indicator of exchange of heat and water between the land and atmosphere at regional and global scales. However, the thermal-infrared remotely sensed LST from large swath-width polar-orbiting and geostationary satellite sensors is usually subject to the angular anisotropy, bringing great uncertainties in the application of LST products in many fields such as evapotranspiration estimation, urban thermal environment monitoring, and climate change study. In this study, a practical angular normalization method was developed for the first time for correcting global MODIS off-nadir LST to nadir over vegetated surfaces, using MODIS (Terra + Aqua) products from 2000 to 2020, simultaneous and collocated observations at 213 sites worldwide from the AmeriFlux, FLUXNET, and National Tibetan Plateau/Third Pole Environment Data Center (TPDC), and ERA5-Land reanalysis datasets. Results showed that the angular normalization method could well correct the angular anisotropy of MODIS LST products. Validated against datasets at 213 sites, the angular normalization model showed root mean square errors (RMSE) of 1.57 K, mean bias errors (MBE) of 0 K, and coefficient of determination (R2) of 0.99. In the cross-validation of nadir LST by correcting global MODIS/Terra off-nadir LST products against Sentinel-3A nadir LST products over four typical days in 2020 (February 26, June 1, August 12 and November 16), the angular normalization model presented the RMSE of 2.26 K and the MBE of −1.20 K, in contrast to the RMSE of 3.01 K and the MBE of −2.15 K when MODIS off-nadir LST was compared to the Sentinel-3A nadir LST. The angular anisotropy of global MODIS/Terra LST over vegetated surfaces for the four days of interest ranged between −1.79 to −1.30 K (1% quantile) and 3.64 to 4.37 K (99% quantile), with a median of 0.33 to 0.74 K, and a mean of 0.46 to 0.89 K. The developed angular normalization model is a promising approach to operationally correcting all time-series of global MODIS/Terra and MODIS/Aqua LST products with high accuracies, which is significant to provide a benchmark of angle-consistent MODIS LST product for its further application. |
---|---|
AbstractList | Land surface temperature (LST) is an essential physical quantity in surface energy balance and a good indicator of exchange of heat and water between the land and atmosphere at regional and global scales. However, the thermal-infrared remotely sensed LST from large swath-width polar-orbiting and geostationary satellite sensors is usually subject to the angular anisotropy, bringing great uncertainties in the application of LST products in many fields such as evapotranspiration estimation, urban thermal environment monitoring, and climate change study. In this study, a practical angular normalization method was developed for the first time for correcting global MODIS off-nadir LST to nadir over vegetated surfaces, using MODIS (Terra + Aqua) products from 2000 to 2020, simultaneous and collocated observations at 213 sites worldwide from the AmeriFlux, FLUXNET, and National Tibetan Plateau/Third Pole Environment Data Center (TPDC), and ERA5-Land reanalysis datasets. Results showed that the angular normalization method could well correct the angular anisotropy of MODIS LST products. Validated against datasets at 213 sites, the angular normalization model showed root mean square errors (RMSE) of 1.57 K, mean bias errors (MBE) of 0 K, and coefficient of determination (R²) of 0.99. In the cross-validation of nadir LST by correcting global MODIS/Terra off-nadir LST products against Sentinel-3A nadir LST products over four typical days in 2020 (February 26, June 1, August 12 and November 16), the angular normalization model presented the RMSE of 2.26 K and the MBE of −1.20 K, in contrast to the RMSE of 3.01 K and the MBE of −2.15 K when MODIS off-nadir LST was compared to the Sentinel-3A nadir LST. The angular anisotropy of global MODIS/Terra LST over vegetated surfaces for the four days of interest ranged between −1.79 to −1.30 K (1% quantile) and 3.64 to 4.37 K (99% quantile), with a median of 0.33 to 0.74 K, and a mean of 0.46 to 0.89 K. The developed angular normalization model is a promising approach to operationally correcting all time-series of global MODIS/Terra and MODIS/Aqua LST products with high accuracies, which is significant to provide a benchmark of angle-consistent MODIS LST product for its further application. Land surface temperature (LST) is an essential physical quantity in surface energy balance and a good indicator of exchange of heat and water between the land and atmosphere at regional and global scales. However, the thermal-infrared remotely sensed LST from large swath-width polar-orbiting and geostationary satellite sensors is usually subject to the angular anisotropy, bringing great uncertainties in the application of LST products in many fields such as evapotranspiration estimation, urban thermal environment monitoring, and climate change study. In this study, a practical angular normalization method was developed for the first time for correcting global MODIS off-nadir LST to nadir over vegetated surfaces, using MODIS (Terra + Aqua) products from 2000 to 2020, simultaneous and collocated observations at 213 sites worldwide from the AmeriFlux, FLUXNET, and National Tibetan Plateau/Third Pole Environment Data Center (TPDC), and ERA5-Land reanalysis datasets. Results showed that the angular normalization method could well correct the angular anisotropy of MODIS LST products. Validated against datasets at 213 sites, the angular normalization model showed root mean square errors (RMSE) of 1.57 K, mean bias errors (MBE) of 0 K, and coefficient of determination (R2) of 0.99. In the cross-validation of nadir LST by correcting global MODIS/Terra off-nadir LST products against Sentinel-3A nadir LST products over four typical days in 2020 (February 26, June 1, August 12 and November 16), the angular normalization model presented the RMSE of 2.26 K and the MBE of −1.20 K, in contrast to the RMSE of 3.01 K and the MBE of −2.15 K when MODIS off-nadir LST was compared to the Sentinel-3A nadir LST. The angular anisotropy of global MODIS/Terra LST over vegetated surfaces for the four days of interest ranged between −1.79 to −1.30 K (1% quantile) and 3.64 to 4.37 K (99% quantile), with a median of 0.33 to 0.74 K, and a mean of 0.46 to 0.89 K. The developed angular normalization model is a promising approach to operationally correcting all time-series of global MODIS/Terra and MODIS/Aqua LST products with high accuracies, which is significant to provide a benchmark of angle-consistent MODIS LST product for its further application. |
Author | Jiang, Yazhen Wang, Junrui Tang, Ronglin Li, Zhao-Liang Liu, Meng |
Author_xml | – sequence: 1 givenname: Junrui orcidid: 0000-0003-0315-5457 surname: Wang fullname: Wang, Junrui organization: State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China – sequence: 2 givenname: Ronglin surname: Tang fullname: Tang, Ronglin email: tangrl@lreis.ac.cn organization: State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China – sequence: 3 givenname: Yazhen surname: Jiang fullname: Jiang, Yazhen organization: State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China – sequence: 4 givenname: Meng surname: Liu fullname: Liu, Meng organization: State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China – sequence: 5 givenname: Zhao-Liang orcidid: 0000-0002-9130-5437 surname: Li fullname: Li, Zhao-Liang organization: State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China |
BookMark | eNqNkE1v1DAQQC1UJLaF34CPXBL8kY2TA4dV-apU1ANwtmbtyeJVEoexsxL99bhs1QMXOIzm8t5o9C7ZxRxnZOy1FLUUsn17rENaKB3L1EooXYumFnL7jG1kZ1TVKb29YBvRq6ZSRrYv2GVKRyEK0nYbNu34QuBycDDyCfOP6PkQicN8WEcgPkeaYAz3kEOceRz4YYz7gn65e3_zlY8we55WGsAhzzgtSJBXQh5PSPyEB8yQ8QlJL9nzAcaErx73Ffv-8cO368_V7d2nm-vdbeV00-Vqj6ABWzM0TvSwHaRv9512feO8F33fbPcajMAOvZGoO62gV94J1Wk_eIOtvmJvzncXij9XTNlOITkcy78Y12QL2SijhNEFNWfUUUyJcLALhQnol5XCPgS2R_sU2D4EtqKxpV4x3_1lupD_dMoEYfwPf3f2sZQ4BSSbXMDZoQ-ELlsfwz9v_AZcbqKS |
CitedBy_id | crossref_primary_10_1016_j_rse_2024_114176 crossref_primary_10_1080_01431161_2023_2240523 crossref_primary_10_1109_JSTARS_2023_3297709 crossref_primary_10_1109_TGRS_2024_3501411 crossref_primary_10_1016_j_rse_2025_114705 crossref_primary_10_1016_j_isprsjprs_2024_02_012 crossref_primary_10_1109_TGRS_2024_3381696 crossref_primary_10_1109_TGRS_2025_3541287 crossref_primary_10_1016_j_scitotenv_2024_178269 crossref_primary_10_1016_j_isprsjprs_2023_12_001 crossref_primary_10_3390_rs16101790 crossref_primary_10_1016_j_rse_2024_114532 |
Cites_doi | 10.1016/j.rse.2016.12.008 10.1109/36.841980 10.1109/IGARSS39084.2020.9324616 10.1016/j.rse.2016.03.043 10.1016/j.rse.2009.08.012 10.1016/j.rse.2008.04.004 10.3390/rs10030420 10.1016/S0034-4257(02)00084-6 10.1080/02757259509532285 10.1016/S0034-4257(99)00085-1 10.1016/j.isprsjprs.2013.12.010 10.1080/01431168308948548 10.1016/j.isprsjprs.2021.11.015 10.1109/TGRS.2019.2899600 10.1109/TGRS.2004.831886 10.1016/j.isprsjprs.2016.01.011 10.1016/j.isprsjprs.2011.02.008 10.1016/j.rse.2019.111304 10.1109/LGRS.2013.2260319 10.3390/rs11030330 10.1016/j.rse.2016.03.006 10.1016/j.rse.2016.08.012 10.3390/rs13112211 10.1016/j.isprsjprs.2009.03.007 10.1109/TGRS.2007.895844 10.1029/2022RG000777 10.1360/02yd9106 10.1109/TGRS.2005.863827 10.1016/S0034-4257(99)00080-2 10.1016/j.rse.2016.02.024 10.1016/0168-1923(95)02260-5 10.1016/j.rse.2014.03.016 10.1016/j.rse.2008.07.009 10.1023/A:1010933404324 10.5194/bg-6-3109-2009 10.1016/j.rse.2021.112294 10.1002/qj.49708837811 10.1016/j.rse.2012.12.008 10.1109/TGRS.2009.2027697 10.1109/JSTARS.2017.2685528 10.1016/j.rse.2020.112157 10.1016/j.rse.2006.02.001 10.1016/j.rse.2022.113306 10.2134/agronj1967.00021962005900050040x 10.1016/S0034-4257(02)00091-3 10.1080/02626669609491522 10.1016/0034-4257(84)90057-9 10.1016/j.rse.2019.02.020 10.1016/j.rse.2014.10.019 10.1029/2012GL054059 10.3724/SP.J.1010.2011.00361 10.1016/j.rse.2022.113421 10.1016/j.rse.2022.113212 |
ContentType | Journal Article |
Copyright | 2023 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
Copyright_xml | – notice: 2023 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2023.04.015 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 304 |
ExternalDocumentID | 10_1016_j_isprsjprs_2023_04_015 S0924271623001041 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c348t-bea3ae67f4c09a5f1d6b83c94cdd09945b3a70e8ed71e3832a92dc0283dfd7e63 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Thu Jul 10 18:03:27 EDT 2025 Tue Jul 01 03:46:50 EDT 2025 Thu Apr 24 23:08:15 EDT 2025 Fri Feb 23 02:35:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Angular normalization TaERA5 ASPECTSTD cDOY Land surface temperature Angular anisotropy Ta cosφv LWIN cosφs LWOUT NETRAD KLSF Tr cosθv SMERA5 cosθs Fhot NDVIoff SLOPESTD Lon KLiSparseR DEM DEMSTD MODIS NDVIN DOY LSTMODISoff LAI KSolar KEmissivity Fillu KRossThick ASPECT KLiDenseR SLOPE Lat PTC ξ Emis32 Emis31 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-bea3ae67f4c09a5f1d6b83c94cdd09945b3a70e8ed71e3832a92dc0283dfd7e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0315-5457 0000-0002-9130-5437 |
PQID | 2834272073 |
PQPubID | 24069 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2834272073 crossref_primary_10_1016_j_isprsjprs_2023_04_015 crossref_citationtrail_10_1016_j_isprsjprs_2023_04_015 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2023_04_015 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2023 2023-05-00 20230501 |
PublicationDateYYYYMMDD | 2023-05-01 |
PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
PublicationDecade | 2020 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Li, Tang, Wu, Ren, Yan, Wan, Trigo, Sobrino (b0165) 2013; 131 Breiman (b0015) 2001; 45 Duffour, Lagouarde, Olioso, Demarty, Roujean (b0060) 2016; 177 Roujean (b0235) 2000; 71 Xu, Cheng, Zhang (b0300) 2021; 13 Anderson, Norman, Kustas, Houborg, Starks, Agam (b0005) 2008; 112 Duffour, Olioso, Demarty, Van der Tol, Lagouarde (b0055) 2015; 158 Pinheiro, Privette, Mahoney, Tucker (b0215) 2004; 42 Su, L., Li, X., FRIEDL, M., STRAHLER, A., Gu, X., 2002. A kernel-driven model of effective directional emissivity for non-isothermal surfaces. . Prog. Nat. Sci. 12, 603–607. Ermida, DaCamara, Trigo, Pires, Ghent, Remedios (b0075) 2017; 190 Guillevic, Bork-Unkelbach, Gottsche, Hulley, Gastellu-Etchegorry, Olesen, Privette (b0095) 2013; 10 Hu, Tang, Jiang, Li, Jiang, Liu, Gao, Zhou (b0105) 2023; 286 Prata, A.J., V. Casellescoll, C., Sobrino, J.A., Ottle, C., 1995. Thermal remote sensing of land surface temperature from satellites: current status and future prospects. Remote Sens. Rev. 12, 175–224. Doi: 10.1080/02757259509532285. Verhoef (b0275) 1984; 16 Freitas, Trigo, Bioucas-dias, Göttsche (b0080) 2010; 48 Wan, Z., 2006. MODIS Land Surface Temperature Products User’s Guide. Inst. Comput. Earth Syst. Sci. Univ. Calif. St. Barbar. CA, USA 805. Weng (b0295) 2009; 64 Liu, Tang, Li (b0175) 2018; 10 Lagouarde, Ballans, Moreau, Guyon, Coraboeuf (b0150) 2000; 72 Sagan, Maimaitijiang, Sidike, Eblimit, Peterson, Hartling, Esposito, Khanal, Newcomb, Pauli, Ward, Fritschi, Shakoor, Mockler (b0240) 2019; 11 Li, Duan, Tang, Wu, Ren, Yan, Tang, Leng (b0160) 2016; 20 Ermida, Trigo, DaCamara, Göttsche, Olesen, Hulley (b0070) 2014; 148 Hu, Monaghan, Voogt, Barlage (b0100) 2016; 181 Chen, Liu, Fan, Li, Xiao, Yan, Tian (b0045) 2002; 45 Gastellu-Etchegorry, Lauret, Yin, Landier, Kallel, Malenovský, Al Bitar, Aval, Benhmida, Qi, Medjdoub, Guilleux, Chavanon, Cook, Morton, Chrysoulakis, Mitraka (b0090) 2017; 10 Hutengs, Vohland (b0110) 2016; 178 Kimes, Kirchner (b0130) 1983; 4 Verhoef, Jia, Xiao, Su (b0280) 2007; 45 Pinheiro, Privette, Guillevic (b0220) 2006; 44 Cao, Liu, Du, Roujean, Gastellu-etchegorry, Trigo, Zhan, Yu, Cheng (b0025) 2019; 232 Lagouarde, Kerr, Brunet (b0145) 1995; 77 Peng, Liu, Liu, Li, Ma, Fang (b0205) 2011; 30 Cao, Du, Bian, Dong, Zhao, Hu, Ran, Qin, Li, Xiao, Liu (b0030) 2021; 21 Justice, Townshend, Vermote, Masuoka, Wolfe, Saleous, Roy, Morisette (b0125) 2002; 83 Fuchs, Kanemasu, Kerr, Tanner (b0085) 1967; 59 Tang, Li (b0260) 2008; 112 Cao, Roujean, Gastellu-Etchegorry, Liu, Du, Lagouarde, Huang, Li, Bian, Hu, Qin, Ran, Xiao (b0035) 2021; 252 Lagouarde, Hénon, Kurz, Moreau, Irvine, Voogt, Mestayer (b0155) 2010; 114 Ren, Yan, Chen, Li (b0230) 2011; 66 Vinnikov, Yu, Goldberg, Tarpley, Romanov, Laszlo, Chen (b0285) 2012; 39 Lucht, Schaaf (b0185) 2000; 38 Kustas, Norman (b0135) 1996; 41 Jiang, Tang, Li (b0120) 2022; 283 Chen, Fan, Liu (b0040) 2001; 20 Kuter (b0140) 2021; 255 Van Der Tol, Verhoef, Timmermans, Verhoef, Su (b0270) 2009; 6 Schaaf, Gao, Strahler, Lucht, Li, Tsang, Strugnell, Zhang, Jin, Muller, Lewis, Barnsley, Hobson, Disney, Roberts, Dunderdale, Doll, Robert, Hu, Liang, Privette, Roy (b0245) 2002; 83 Duan, Li, Li, Göttsche, Wu, Zhao, Leng, Zhang, Coll (b0050) 2019; 225 Cao, Gastellu-Etchegorry, Du, Li, Bian, Hu, Fan, Xiao, Liu (b0020) 2019; 57 Mutanga, Adam, Cho (b0200) 2012; 18 Duffour, Lagouarde, Roujean (b0065) 2016; 186 Peng, Tang, Jiang, Liu, Li (b0210) 2022; 183 Tang, Li, Liu, Jiang, Peng (b0265) 2022; 280 Maimaitiyiming, Ghulam, Tiyip, Pla, Latorre-Carmona, Halik, Sawut, Caetano (b0190) 2014; 89 Monteith, Szeice (b0195) 1962; 88 Jiang, Tang, Jiang (b0115) 2020; Symp Liu, Tang, Wu, Tang, Li, Shang (b0180) 2019; 1849–1852 Li, Wu, Duan, Zhao, Ren, Liu, Leng, Tang, Ye, Zhu, Sun, Si, Liu, Li, Zhang, Shang, Tang, Yan, Zhou (b0170) 2023; 61 Sobrino, Jiménez-Muñoz, Zarco-Tejada, Sepulcre-Cantó, de Miguel (b0250) 2006; 102 Belgiu, Drăgu (b0010) 2016; 114 Cao (10.1016/j.isprsjprs.2023.04.015_b0035) 2021; 252 Duffour (10.1016/j.isprsjprs.2023.04.015_b0055) 2015; 158 Kuter (10.1016/j.isprsjprs.2023.04.015_b0140) 2021; 255 Sobrino (10.1016/j.isprsjprs.2023.04.015_b0250) 2006; 102 Roujean (10.1016/j.isprsjprs.2023.04.015_b0235) 2000; 71 Cao (10.1016/j.isprsjprs.2023.04.015_b0020) 2019; 57 Li (10.1016/j.isprsjprs.2023.04.015_b0165) 2013; 131 Verhoef (10.1016/j.isprsjprs.2023.04.015_b0275) 1984; 16 Hu (10.1016/j.isprsjprs.2023.04.015_b0100) 2016; 181 Weng (10.1016/j.isprsjprs.2023.04.015_b0295) 2009; 64 Peng (10.1016/j.isprsjprs.2023.04.015_b0205) 2011; 30 Ren (10.1016/j.isprsjprs.2023.04.015_b0230) 2011; 66 Pinheiro (10.1016/j.isprsjprs.2023.04.015_b0215) 2004; 42 Jiang (10.1016/j.isprsjprs.2023.04.015_b0115) 2020; Symp Ermida (10.1016/j.isprsjprs.2023.04.015_b0070) 2014; 148 Kustas (10.1016/j.isprsjprs.2023.04.015_b0135) 1996; 41 10.1016/j.isprsjprs.2023.04.015_b0225 Maimaitiyiming (10.1016/j.isprsjprs.2023.04.015_b0190) 2014; 89 Anderson (10.1016/j.isprsjprs.2023.04.015_b0005) 2008; 112 Lagouarde (10.1016/j.isprsjprs.2023.04.015_b0150) 2000; 72 Verhoef (10.1016/j.isprsjprs.2023.04.015_b0280) 2007; 45 Liu (10.1016/j.isprsjprs.2023.04.015_b0175) 2018; 10 Li (10.1016/j.isprsjprs.2023.04.015_b0170) 2023; 61 Cao (10.1016/j.isprsjprs.2023.04.015_b0030) 2021; 21 Chen (10.1016/j.isprsjprs.2023.04.015_b0040) 2001; 20 Mutanga (10.1016/j.isprsjprs.2023.04.015_b0200) 2012; 18 Tang (10.1016/j.isprsjprs.2023.04.015_b0260) 2008; 112 Vinnikov (10.1016/j.isprsjprs.2023.04.015_b0285) 2012; 39 Ermida (10.1016/j.isprsjprs.2023.04.015_b0075) 2017; 190 Duffour (10.1016/j.isprsjprs.2023.04.015_b0060) 2016; 177 Justice (10.1016/j.isprsjprs.2023.04.015_b0125) 2002; 83 10.1016/j.isprsjprs.2023.04.015_b0255 Liu (10.1016/j.isprsjprs.2023.04.015_b0180) 2019; 1849–1852 Van Der Tol (10.1016/j.isprsjprs.2023.04.015_b0270) 2009; 6 Cao (10.1016/j.isprsjprs.2023.04.015_b0025) 2019; 232 Peng (10.1016/j.isprsjprs.2023.04.015_b0210) 2022; 183 Gastellu-Etchegorry (10.1016/j.isprsjprs.2023.04.015_b0090) 2017; 10 Hu (10.1016/j.isprsjprs.2023.04.015_b0105) 2023; 286 Pinheiro (10.1016/j.isprsjprs.2023.04.015_b0220) 2006; 44 Monteith (10.1016/j.isprsjprs.2023.04.015_b0195) 1962; 88 Schaaf (10.1016/j.isprsjprs.2023.04.015_b0245) 2002; 83 10.1016/j.isprsjprs.2023.04.015_b0290 Duffour (10.1016/j.isprsjprs.2023.04.015_b0065) 2016; 186 Freitas (10.1016/j.isprsjprs.2023.04.015_b0080) 2010; 48 Hutengs (10.1016/j.isprsjprs.2023.04.015_b0110) 2016; 178 Breiman (10.1016/j.isprsjprs.2023.04.015_b0015) 2001; 45 Lagouarde (10.1016/j.isprsjprs.2023.04.015_b0145) 1995; 77 Chen (10.1016/j.isprsjprs.2023.04.015_b0045) 2002; 45 Guillevic (10.1016/j.isprsjprs.2023.04.015_b0095) 2013; 10 Duan (10.1016/j.isprsjprs.2023.04.015_b0050) 2019; 225 Li (10.1016/j.isprsjprs.2023.04.015_b0160) 2016; 20 Jiang (10.1016/j.isprsjprs.2023.04.015_b0120) 2022; 283 Xu (10.1016/j.isprsjprs.2023.04.015_b0300) 2021; 13 Kimes (10.1016/j.isprsjprs.2023.04.015_b0130) 1983; 4 Lucht (10.1016/j.isprsjprs.2023.04.015_b0185) 2000; 38 Lagouarde (10.1016/j.isprsjprs.2023.04.015_b0155) 2010; 114 Sagan (10.1016/j.isprsjprs.2023.04.015_b0240) 2019; 11 Belgiu (10.1016/j.isprsjprs.2023.04.015_b0010) 2016; 114 Tang (10.1016/j.isprsjprs.2023.04.015_b0265) 2022; 280 Fuchs (10.1016/j.isprsjprs.2023.04.015_b0085) 1967; 59 |
References_xml | – volume: 71 start-page: 197 year: 2000 end-page: 206 ident: b0235 article-title: A parametric hot spot model for optical remote sensing applications publication-title: Remote Sens. Environ. – volume: 232 year: 2019 ident: b0025 article-title: A review of earth surface thermal radiation directionality observing and modeling : Historical development, current status and perspectives publication-title: Remote Sens. Environ. – volume: 177 start-page: 248 year: 2016 end-page: 264 ident: b0060 article-title: Driving factors of the directional variability of thermal infrared signal in temperate regions publication-title: Remote Sens. Environ. – volume: 77 start-page: 167 year: 1995 end-page: 190 ident: b0145 article-title: An experimental study of angular effects on surface temperature for various plant canopies and bare soils publication-title: Agric. For. Meteorol. – volume: 114 start-page: 87 year: 2010 end-page: 105 ident: b0155 article-title: Modelling daytime thermal infrared directional anisotropy over Toulouse city centre publication-title: Remote Sens. Environ. – volume: 6 start-page: 3109 year: 2009 end-page: 3129 ident: b0270 article-title: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance publication-title: Biogeosciences – volume: 30 start-page: 361 year: 2011 end-page: 365 ident: b0205 article-title: Kernel-driven model ftting of multi-angle thermal infrared brightness temperature and its application publication-title: J. Infrared Millim. Waves – volume: 112 start-page: 4227 year: 2008 end-page: 4241 ident: b0005 article-title: A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales publication-title: Remote Sens. Environ. – volume: 57 start-page: 5456 year: 2019 end-page: 5475 ident: b0020 article-title: Evaluation of Four Kernel-Driven Models in the Thermal Infrared Band publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 114 start-page: 24 year: 2016 end-page: 31 ident: b0010 article-title: Random forest in remote sensing: A review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 10 start-page: 2640 year: 2017 end-page: 2649 ident: b0090 article-title: DART: Recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence. IEEE J publication-title: Sel. Top. Appl. Earth Obs. Remote Sens. – reference: Su, L., Li, X., FRIEDL, M., STRAHLER, A., Gu, X., 2002. A kernel-driven model of effective directional emissivity for non-isothermal surfaces. . Prog. Nat. Sci. 12, 603–607. – volume: 252 year: 2021 ident: b0035 article-title: A general framework of kernel-driven modeling in the thermal infrared domain publication-title: Remote Sens. Environ. – volume: Symp start-page: 4558 year: 2020 end-page: 4561 ident: b0115 article-title: Assessing the directional effects of remotely sensed land surface temperature on evapotranspiration estimation publication-title: IGARSS 2020–2020 IEEE Int. Geosci. Remote Sens. – volume: 286 year: 2023 ident: b0105 article-title: A physical method for downscaling land surface temperatures using surface energy balance theory publication-title: Remote Sens. Environ. – volume: 41 start-page: 495 year: 1996 end-page: 516 ident: b0135 article-title: Use of remote sensing for evapotranspiration monitoring over land surfaces publication-title: Hydrol. Sci. J. – volume: 183 start-page: 336 year: 2022 end-page: 351 ident: b0210 article-title: Global estimates of 500 m daily aerodynamic roughness length from MODIS data publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 20 start-page: 262 year: 2001 end-page: 267 ident: b0040 article-title: The Study on Thermal Infrared Radiant Directionality of Non-isothermal Land Surface publication-title: Prog. Geogr. – volume: 158 start-page: 362 year: 2015 end-page: 375 ident: b0055 article-title: An evaluation of SCOPE: A tool to simulate the directional anisotropy of satellite-measured surface temperatures publication-title: Remote Sens. Environ. – volume: 1849–1852 year: 2019 ident: b0180 article-title: A Method for Angular Normalization of Land Surface Temperature Products Based on Component Temperatures and Fractional Vegetation Cover publication-title: Int. Geosci. Remote Sens. Symp. – volume: 225 start-page: 16 year: 2019 end-page: 29 ident: b0050 article-title: Validation of Collection 6 MODIS land surface temperature product using in situ measurements publication-title: Remote Sens. Environ. – volume: 83 start-page: 135 year: 2002 end-page: 148 ident: b0245 article-title: First operational BRDF, albedo nadir reflectance products from MODIS publication-title: Remote Sens. Environ. – volume: 66 start-page: 498 year: 2011 end-page: 507 ident: b0230 article-title: Angular effect of MODIS emissivity products and its application to the split-window algorithm publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 42 start-page: 1941 year: 2004 end-page: 1954 ident: b0215 article-title: Directional effects in a daily AVHRR land surface temperature dataset over Africa publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 178 start-page: 127 year: 2016 end-page: 141 ident: b0110 article-title: Downscaling land surface temperatures at regional scales with random forest regression publication-title: Remote Sens. Environ. – volume: 72 start-page: 17 year: 2000 end-page: 34 ident: b0150 article-title: Experimental study of brightness surface temperature angular variations of maritime pine (Pinus pinaster) stands publication-title: Remote Sens. Environ. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0015 article-title: Random Forests publication-title: Mach. Learn. – volume: 61 start-page: 1 year: 2023 end-page: 77 ident: b0170 article-title: Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications publication-title: Rev. Geophys. – volume: 186 start-page: 250 year: 2016 end-page: 261 ident: b0065 article-title: A two parameter model to simulate thermal infrared directional effects for remote sensing applications publication-title: Remote Sens. Environ. – volume: 64 start-page: 335 year: 2009 end-page: 344 ident: b0295 article-title: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 48 start-page: 523 year: 2010 end-page: 534 ident: b0080 article-title: Quantifying the Uncertainty of Land Surface Temperature Retrievals From SEVIRI / Meteosat publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 38 start-page: 977 year: 2000 end-page: 998 ident: b0185 article-title: An Algorithm for the Retrieval of Albedo from Space Using Semiempirical BRDF Models publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 88 start-page: 496 year: 1962 end-page: 507 ident: b0195 article-title: Radiative temperature in the heat balance of nature surfaces. Q.J.R publication-title: Meteorol. Soc. – volume: 89 start-page: 59 year: 2014 end-page: 66 ident: b0190 article-title: Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation publication-title: ISPRS J. Photogramm. Remote Sens. – reference: Prata, A.J., V. Casellescoll, C., Sobrino, J.A., Ottle, C., 1995. Thermal remote sensing of land surface temperature from satellites: current status and future prospects. Remote Sens. Rev. 12, 175–224. Doi: 10.1080/02757259509532285. – volume: 16 start-page: 125 year: 1984 end-page: 141 ident: b0275 article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model publication-title: Remote Sens. Environ. – volume: 280 year: 2022 ident: b0265 article-title: A moisture-based triangle approach for estimating surface evaporative fraction with time-series of remotely sensed data publication-title: Remote Sens. Environ. – volume: 21 start-page: 1710 year: 2021 end-page: 1721 ident: b0030 article-title: Assessment of thermal infrared kernel-driven models over row-planted canopies publication-title: Remote Sens. – volume: 18 start-page: 399 year: 2012 end-page: 406 ident: b0200 article-title: High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 102 start-page: 99 year: 2006 end-page: 115 ident: b0250 article-title: Land surface temperature derived from airborne hyperspectral scanner thermal infrared data publication-title: Remote Sens. Environ. – volume: 4 start-page: 299 year: 1983 end-page: 311 ident: b0130 article-title: International Journal of Remote Sensing Directional radiometric measurements of row-crop temperatures publication-title: Int. J. Remote Sens. – volume: 10 start-page: 420 year: 2018 ident: b0175 article-title: Evaluation of three parametric models for estimating directional thermal radiation from simulation, airborne, and satellite data publication-title: Remote Sens. – volume: 131 start-page: 14 year: 2013 end-page: 37 ident: b0165 article-title: Satellite-derived land surface temperature: Current status and perspectives publication-title: Remote Sens. Environ. – volume: 13 start-page: 2211 year: 2021 ident: b0300 article-title: A Random Forest-Based Data Fusion Method for Obtaining All-Weather Land Surface Temperature with High Spatial Resolution publication-title: Remote Sens. – volume: 45 start-page: 1087 year: 2002 end-page: 1098 ident: b0045 article-title: A bi-directional gap model for simulating the directional thermal radiance of row crops. Sci. China publication-title: Ser. D Earth Sci. – volume: 181 start-page: 111 year: 2016 end-page: 121 ident: b0100 article-title: A first satellite-based observational assessment of urban thermal anisotropy publication-title: Remote Sens. Environ. – volume: 44 start-page: 1036 year: 2006 end-page: 1047 ident: b0220 article-title: Modeling the observed angular anisotropy of land surface temperature in a Savanna publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 59 start-page: 494 year: 1967 end-page: 496 ident: b0085 article-title: Effect of Viewing Angle on Canopy Temperature Measurements with Infrared Thermometers publication-title: Agron. J. – volume: 20 start-page: 899 year: 2016 end-page: 920 ident: b0160 article-title: Review of methods for land surface temperature derived from thermal infrared remotely sensed data publication-title: Yaogan Xuebao/Journal Remote Sens. – volume: 45 start-page: 1808 year: 2007 end-page: 1822 ident: b0280 article-title: Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 10 start-page: 1464 year: 2013 end-page: 1468 ident: b0095 article-title: Directional viewing effects on satellite land surface temperature products over sparse vegetation canopies-a multisensor analysis publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 11 start-page: 330 year: 2019 ident: b0240 article-title: UAV-based high resolution thermal imaging for vegetation monitoring, and plant phenotyping using ICI 8640 P, FLIR Vue Pro R 640, and thermomap cameras publication-title: Remote Sens. – reference: Wan, Z., 2006. MODIS Land Surface Temperature Products User’s Guide. Inst. Comput. Earth Syst. Sci. Univ. Calif. St. Barbar. CA, USA 805. – volume: 283 year: 2022 ident: b0120 article-title: A framework of correcting the angular effect of land surface temperature on evapotranspiration estimation in single-source energy balance models publication-title: Remote Sens. Environ. – volume: 255 year: 2021 ident: b0140 article-title: Completing the machine learning saga in fractional snow cover estimation from MODIS Terra reflectance data: Random forests versus support vector regression publication-title: Remote Sens. Environ. – volume: 112 start-page: 3482 year: 2008 end-page: 3492 ident: b0260 article-title: Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data publication-title: Remote Sens. Environ. – volume: 190 start-page: 56 year: 2017 end-page: 69 ident: b0075 article-title: Modelling directional effects on remotely sensed land surface temperature publication-title: Remote Sens. Environ. – volume: 148 start-page: 16 year: 2014 end-page: 27 ident: b0070 article-title: Validation of remotely sensed surface temperature over an oak woodland landscape - The problem of viewing and illumination geometries publication-title: Remote Sens. Environ. – volume: 83 start-page: 3 year: 2002 end-page: 15 ident: b0125 article-title: An overview of MODIS Land data processing and product status publication-title: Remote Sens. Environ. – volume: 39 start-page: 1 year: 2012 end-page: 7 ident: b0285 article-title: Angular anisotropy of satellite observations of land surface temperature publication-title: Geophys. Res. Lett. – volume: 190 start-page: 56 year: 2017 ident: 10.1016/j.isprsjprs.2023.04.015_b0075 article-title: Modelling directional effects on remotely sensed land surface temperature publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.12.008 – volume: 38 start-page: 977 year: 2000 ident: 10.1016/j.isprsjprs.2023.04.015_b0185 article-title: An Algorithm for the Retrieval of Albedo from Space Using Semiempirical BRDF Models publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/36.841980 – volume: 1849–1852 year: 2019 ident: 10.1016/j.isprsjprs.2023.04.015_b0180 article-title: A Method for Angular Normalization of Land Surface Temperature Products Based on Component Temperatures and Fractional Vegetation Cover publication-title: Int. Geosci. Remote Sens. Symp. – volume: 18 start-page: 399 year: 2012 ident: 10.1016/j.isprsjprs.2023.04.015_b0200 article-title: High density biomass estimation for wetland vegetation using worldview-2 imagery and random forest regression algorithm publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: Symp start-page: 4558 year: 2020 ident: 10.1016/j.isprsjprs.2023.04.015_b0115 article-title: Assessing the directional effects of remotely sensed land surface temperature on evapotranspiration estimation publication-title: IGARSS 2020–2020 IEEE Int. Geosci. Remote Sens. doi: 10.1109/IGARSS39084.2020.9324616 – volume: 181 start-page: 111 year: 2016 ident: 10.1016/j.isprsjprs.2023.04.015_b0100 article-title: A first satellite-based observational assessment of urban thermal anisotropy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.03.043 – volume: 114 start-page: 87 year: 2010 ident: 10.1016/j.isprsjprs.2023.04.015_b0155 article-title: Modelling daytime thermal infrared directional anisotropy over Toulouse city centre publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.08.012 – volume: 112 start-page: 3482 year: 2008 ident: 10.1016/j.isprsjprs.2023.04.015_b0260 article-title: Estimation of instantaneous net surface longwave radiation from MODIS cloud-free data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.04.004 – volume: 10 start-page: 420 year: 2018 ident: 10.1016/j.isprsjprs.2023.04.015_b0175 article-title: Evaluation of three parametric models for estimating directional thermal radiation from simulation, airborne, and satellite data publication-title: Remote Sens. doi: 10.3390/rs10030420 – volume: 83 start-page: 3 year: 2002 ident: 10.1016/j.isprsjprs.2023.04.015_b0125 article-title: An overview of MODIS Land data processing and product status publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00084-6 – ident: 10.1016/j.isprsjprs.2023.04.015_b0225 doi: 10.1080/02757259509532285 – volume: 72 start-page: 17 year: 2000 ident: 10.1016/j.isprsjprs.2023.04.015_b0150 article-title: Experimental study of brightness surface temperature angular variations of maritime pine (Pinus pinaster) stands publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(99)00085-1 – volume: 89 start-page: 59 year: 2014 ident: 10.1016/j.isprsjprs.2023.04.015_b0190 article-title: Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.12.010 – volume: 4 start-page: 299 year: 1983 ident: 10.1016/j.isprsjprs.2023.04.015_b0130 article-title: International Journal of Remote Sensing Directional radiometric measurements of row-crop temperatures publication-title: Int. J. Remote Sens. doi: 10.1080/01431168308948548 – volume: 183 start-page: 336 year: 2022 ident: 10.1016/j.isprsjprs.2023.04.015_b0210 article-title: Global estimates of 500 m daily aerodynamic roughness length from MODIS data publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.11.015 – volume: 57 start-page: 5456 year: 2019 ident: 10.1016/j.isprsjprs.2023.04.015_b0020 article-title: Evaluation of Four Kernel-Driven Models in the Thermal Infrared Band publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2899600 – volume: 42 start-page: 1941 year: 2004 ident: 10.1016/j.isprsjprs.2023.04.015_b0215 article-title: Directional effects in a daily AVHRR land surface temperature dataset over Africa publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2004.831886 – volume: 20 start-page: 262 year: 2001 ident: 10.1016/j.isprsjprs.2023.04.015_b0040 article-title: The Study on Thermal Infrared Radiant Directionality of Non-isothermal Land Surface publication-title: Prog. Geogr. – volume: 114 start-page: 24 year: 2016 ident: 10.1016/j.isprsjprs.2023.04.015_b0010 article-title: Random forest in remote sensing: A review of applications and future directions publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.011 – volume: 66 start-page: 498 year: 2011 ident: 10.1016/j.isprsjprs.2023.04.015_b0230 article-title: Angular effect of MODIS emissivity products and its application to the split-window algorithm publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2011.02.008 – volume: 232 year: 2019 ident: 10.1016/j.isprsjprs.2023.04.015_b0025 article-title: A review of earth surface thermal radiation directionality observing and modeling : Historical development, current status and perspectives publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111304 – volume: 10 start-page: 1464 year: 2013 ident: 10.1016/j.isprsjprs.2023.04.015_b0095 article-title: Directional viewing effects on satellite land surface temperature products over sparse vegetation canopies-a multisensor analysis publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2013.2260319 – volume: 11 start-page: 330 year: 2019 ident: 10.1016/j.isprsjprs.2023.04.015_b0240 article-title: UAV-based high resolution thermal imaging for vegetation monitoring, and plant phenotyping using ICI 8640 P, FLIR Vue Pro R 640, and thermomap cameras publication-title: Remote Sens. doi: 10.3390/rs11030330 – volume: 178 start-page: 127 year: 2016 ident: 10.1016/j.isprsjprs.2023.04.015_b0110 article-title: Downscaling land surface temperatures at regional scales with random forest regression publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.03.006 – volume: 186 start-page: 250 year: 2016 ident: 10.1016/j.isprsjprs.2023.04.015_b0065 article-title: A two parameter model to simulate thermal infrared directional effects for remote sensing applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.08.012 – volume: 13 start-page: 2211 year: 2021 ident: 10.1016/j.isprsjprs.2023.04.015_b0300 article-title: A Random Forest-Based Data Fusion Method for Obtaining All-Weather Land Surface Temperature with High Spatial Resolution publication-title: Remote Sens. doi: 10.3390/rs13112211 – volume: 64 start-page: 335 year: 2009 ident: 10.1016/j.isprsjprs.2023.04.015_b0295 article-title: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.03.007 – volume: 20 start-page: 899 year: 2016 ident: 10.1016/j.isprsjprs.2023.04.015_b0160 article-title: Review of methods for land surface temperature derived from thermal infrared remotely sensed data publication-title: Yaogan Xuebao/Journal Remote Sens. – volume: 45 start-page: 1808 year: 2007 ident: 10.1016/j.isprsjprs.2023.04.015_b0280 article-title: Unified optical-thermal four-stream radiative transfer theory for homogeneous vegetation canopies publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2007.895844 – volume: 61 start-page: 1 year: 2023 ident: 10.1016/j.isprsjprs.2023.04.015_b0170 article-title: Satellite Remote Sensing of Global Land Surface Temperature: Definition, Methods, Products, and Applications publication-title: Rev. Geophys. doi: 10.1029/2022RG000777 – volume: 45 start-page: 1087 year: 2002 ident: 10.1016/j.isprsjprs.2023.04.015_b0045 article-title: A bi-directional gap model for simulating the directional thermal radiance of row crops. Sci. China publication-title: Ser. D Earth Sci. doi: 10.1360/02yd9106 – volume: 44 start-page: 1036 year: 2006 ident: 10.1016/j.isprsjprs.2023.04.015_b0220 article-title: Modeling the observed angular anisotropy of land surface temperature in a Savanna publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2005.863827 – volume: 71 start-page: 197 year: 2000 ident: 10.1016/j.isprsjprs.2023.04.015_b0235 article-title: A parametric hot spot model for optical remote sensing applications publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(99)00080-2 – volume: 177 start-page: 248 year: 2016 ident: 10.1016/j.isprsjprs.2023.04.015_b0060 article-title: Driving factors of the directional variability of thermal infrared signal in temperate regions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.02.024 – volume: 77 start-page: 167 year: 1995 ident: 10.1016/j.isprsjprs.2023.04.015_b0145 article-title: An experimental study of angular effects on surface temperature for various plant canopies and bare soils publication-title: Agric. For. Meteorol. doi: 10.1016/0168-1923(95)02260-5 – volume: 148 start-page: 16 year: 2014 ident: 10.1016/j.isprsjprs.2023.04.015_b0070 article-title: Validation of remotely sensed surface temperature over an oak woodland landscape - The problem of viewing and illumination geometries publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.03.016 – volume: 112 start-page: 4227 year: 2008 ident: 10.1016/j.isprsjprs.2023.04.015_b0005 article-title: A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.07.009 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.isprsjprs.2023.04.015_b0015 article-title: Random Forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 6 start-page: 3109 year: 2009 ident: 10.1016/j.isprsjprs.2023.04.015_b0270 article-title: An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance publication-title: Biogeosciences doi: 10.5194/bg-6-3109-2009 – volume: 255 year: 2021 ident: 10.1016/j.isprsjprs.2023.04.015_b0140 article-title: Completing the machine learning saga in fractional snow cover estimation from MODIS Terra reflectance data: Random forests versus support vector regression publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112294 – volume: 88 start-page: 496 year: 1962 ident: 10.1016/j.isprsjprs.2023.04.015_b0195 article-title: Radiative temperature in the heat balance of nature surfaces. Q.J.R publication-title: Meteorol. Soc. doi: 10.1002/qj.49708837811 – volume: 131 start-page: 14 year: 2013 ident: 10.1016/j.isprsjprs.2023.04.015_b0165 article-title: Satellite-derived land surface temperature: Current status and perspectives publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.12.008 – volume: 48 start-page: 523 year: 2010 ident: 10.1016/j.isprsjprs.2023.04.015_b0080 article-title: Quantifying the Uncertainty of Land Surface Temperature Retrievals From SEVIRI / Meteosat publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2009.2027697 – volume: 10 start-page: 2640 year: 2017 ident: 10.1016/j.isprsjprs.2023.04.015_b0090 article-title: DART: Recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence. IEEE J publication-title: Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2017.2685528 – volume: 252 year: 2021 ident: 10.1016/j.isprsjprs.2023.04.015_b0035 article-title: A general framework of kernel-driven modeling in the thermal infrared domain publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112157 – ident: 10.1016/j.isprsjprs.2023.04.015_b0255 – volume: 102 start-page: 99 year: 2006 ident: 10.1016/j.isprsjprs.2023.04.015_b0250 article-title: Land surface temperature derived from airborne hyperspectral scanner thermal infrared data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.02.001 – volume: 283 year: 2022 ident: 10.1016/j.isprsjprs.2023.04.015_b0120 article-title: A framework of correcting the angular effect of land surface temperature on evapotranspiration estimation in single-source energy balance models publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113306 – volume: 59 start-page: 494 year: 1967 ident: 10.1016/j.isprsjprs.2023.04.015_b0085 article-title: Effect of Viewing Angle on Canopy Temperature Measurements with Infrared Thermometers publication-title: Agron. J. doi: 10.2134/agronj1967.00021962005900050040x – ident: 10.1016/j.isprsjprs.2023.04.015_b0290 – volume: 83 start-page: 135 year: 2002 ident: 10.1016/j.isprsjprs.2023.04.015_b0245 article-title: First operational BRDF, albedo nadir reflectance products from MODIS publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00091-3 – volume: 41 start-page: 495 year: 1996 ident: 10.1016/j.isprsjprs.2023.04.015_b0135 article-title: Use of remote sensing for evapotranspiration monitoring over land surfaces publication-title: Hydrol. Sci. J. doi: 10.1080/02626669609491522 – volume: 16 start-page: 125 year: 1984 ident: 10.1016/j.isprsjprs.2023.04.015_b0275 article-title: Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model publication-title: Remote Sens. Environ. doi: 10.1016/0034-4257(84)90057-9 – volume: 21 start-page: 1710 year: 2021 ident: 10.1016/j.isprsjprs.2023.04.015_b0030 article-title: Assessment of thermal infrared kernel-driven models over row-planted canopies publication-title: Remote Sens. – volume: 225 start-page: 16 year: 2019 ident: 10.1016/j.isprsjprs.2023.04.015_b0050 article-title: Validation of Collection 6 MODIS land surface temperature product using in situ measurements publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.02.020 – volume: 158 start-page: 362 year: 2015 ident: 10.1016/j.isprsjprs.2023.04.015_b0055 article-title: An evaluation of SCOPE: A tool to simulate the directional anisotropy of satellite-measured surface temperatures publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.10.019 – volume: 39 start-page: 1 year: 2012 ident: 10.1016/j.isprsjprs.2023.04.015_b0285 article-title: Angular anisotropy of satellite observations of land surface temperature publication-title: Geophys. Res. Lett. doi: 10.1029/2012GL054059 – volume: 30 start-page: 361 year: 2011 ident: 10.1016/j.isprsjprs.2023.04.015_b0205 article-title: Kernel-driven model ftting of multi-angle thermal infrared brightness temperature and its application publication-title: J. Infrared Millim. Waves doi: 10.3724/SP.J.1010.2011.00361 – volume: 286 year: 2023 ident: 10.1016/j.isprsjprs.2023.04.015_b0105 article-title: A physical method for downscaling land surface temperatures using surface energy balance theory publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113421 – volume: 280 year: 2022 ident: 10.1016/j.isprsjprs.2023.04.015_b0265 article-title: A moisture-based triangle approach for estimating surface evaporative fraction with time-series of remotely sensed data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2022.113212 |
SSID | ssj0001568 |
Score | 2.4829621 |
Snippet | Land surface temperature (LST) is an essential physical quantity in surface energy balance and a good indicator of exchange of heat and water between the land... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 289 |
SubjectTerms | Angular anisotropy Angular normalization anisotropy China climate change data collection energy balance evapotranspiration heat Land surface temperature MODIS photogrammetry satellites surface temperature time series analysis |
Title | A practical method for angular normalization of global MODIS land surface temperature over vegetated surfaces |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2023.04.015 https://www.proquest.com/docview/2834272073 |
Volume | 199 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQHCiHCmgraAG5Etew2diJN9xWPLRQ7fZAV9qb5dhjWESzq31U6oXfzkziLFBV4sAhh0QzSeSxx2P7m28YO8Zp1ILyApclICJpFUS5KJIoB5kU3oACoH3I_iDrDeX1KB2tsbMmF4ZglcH31z698tbhSSu0Zms6HrduYlw6JESAJCqSmSqDXSrq5SePzzCPdp0OR8IRSb_CeI3n09n8Hq8TqiJecZ5Sfdz_z1D_-OpqArrcZh9D5Mi79c_tsDUod9nWCz7BXbYZSprf_f3Efnd5yIBCpbpONMcAldP-JK5meUnB6kPIwuQTz2tqEN7_eX51wwnvyOfLmTcWONFXBe5lTohP_gduCaUIK5H5Zza8vPh11otCbYXICtlZRAUYYSBTXto4N6lvu6zoCJtL6xwGjTIthFExdMApNCIOe5MnzlIw4rxTkIkvbL2clLDHuM9S6VKJr3JU0Mzjq9vCO8hza1Tis32WNe2pbSAep_oXD7pBmN3rlSE0GULHUqMh9lm8UpzW3Btvq5w2BtOvupHGGeJt5e-NiTUOMjo5MSVMlijUEZIOrJX4-p4PfGMf6K7GSx6w9cVsCYcY0yyKo6rTHrGN7tWP3uAJ_zj7ZA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9N3cPgAY0BYsDASLyGprETN7xV-1DL1vKwTdqb5djn0WmkVT-Q-O-5a5yKIaQ98JA8JL448tn3Yd_9DuATqVGHOkhyS1AmymlMSlllSYkqq4JFjcj7kONJMbxWX2_ymx04bnNhOKwyyv5Gpm-kdXzSjaPZnU-n3cuUXIeMAZDkBmSGXKBdRqfKO7A7GJ0PJ1uB3Gsy4rh9wgQPwrymy_lieUfXZy4kvoE95RK5_1ZSf4nrjQ4624dn0XgUg-b_nsMO1gfw9A9IwQPYi1XNv_96AT8GIiZBEVFTKlqQjSp4i5IcWlGzvXofEzHFLIgGHUSMv52MLgWHPIrlehGsQ8EIVhF-WXDQp_iJtxyoiNsmy5dwfXZ6dTxMYnmFxEnVXyUVWmmx0EG5tLR56Pmi6ktXKuc92Y0qr6TVKfbRa-IjrXxbZt6xPeKD11jIV9CpZzW-BhGKXHka-8B31Qv06Z4MHsvSWZ2F4hCKdjyNi9jjXALj3rRBZndmywjDjDCpMsSIQ0i3hPMGfuNxki8tw8yDmWRISTxO_LFlsaF1xocntsbZmhr1peIzay3f_E8HH2BveDW-MBejyflbeMJvmvDJd9BZLdZ4RCbOqnofp_Bvjo3-FQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+practical+method+for+angular+normalization+of+global+MODIS+land+surface+temperature+over+vegetated+surfaces&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Wang%2C+Junrui&rft.au=Tang%2C+Ronglin&rft.au=Jiang%2C+Yazhen&rft.au=Liu%2C+Meng&rft.date=2023-05-01&rft.pub=Elsevier+B.V&rft.issn=0924-2716&rft.eissn=1872-8235&rft.volume=199&rft.spage=289&rft.epage=304&rft_id=info:doi/10.1016%2Fj.isprsjprs.2023.04.015&rft.externalDocID=S0924271623001041 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |