Dynamic Data Driven Sensor Array Fusion for Target Detection and Classification
Target detection and classification using unattended ground sensors (UGS) has been addressed in literature. Various tech- niques have been proposed for target detection, but target classification is a challenging task to accomplish using the limited processing power on each sensor module. The major...
Saved in:
Published in | Procedia computer science Vol. 18; pp. 2046 - 2055 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1877-0509 1877-0509 |
DOI | 10.1016/j.procs.2013.05.374 |
Cover
Abstract | Target detection and classification using unattended ground sensors (UGS) has been addressed in literature. Various tech- niques have been proposed for target detection, but target classification is a challenging task to accomplish using the limited processing power on each sensor module. The major hindrance in using these sensors reliably is, that, the sensor observations are significantly affected by external conditions, which are referred to as context. When the context is slowly time-varying (e.g., day-night cycling and seasonal variations) the usage of the same classifier may not be a good way to perform target classification. In this paper, a new framework is proposed as a Dynamic Data Driven Application System (DDDAS) to dy- namically extract and use the knowledge of context as feedback in order to adaptively choose the appropriate classifiers and thereby enhance the target classification performance. The features are extracted by symbolic dynamic filtering (SDF) from the time series of sensors in an array and spatio-temporal aggregation of these features represents the context. Then, a context evolution model is constructed as a deterministic finite state automata (DFSA) and, for every context state in this DFSA, an event classifier is trained to classify the targets. The proposed technique of detection and classification has been compared with a traditional method of training classifiers without using any contextual information. |
---|---|
AbstractList | Target detection and classification using unattended ground sensors (UGS) has been addressed in literature. Various tech- niques have been proposed for target detection, but target classification is a challenging task to accomplish using the limited processing power on each sensor module. The major hindrance in using these sensors reliably is, that, the sensor observations are significantly affected by external conditions, which are referred to as context. When the context is slowly time-varying (e.g., day-night cycling and seasonal variations) the usage of the same classifier may not be a good way to perform target classification. In this paper, a new framework is proposed as a Dynamic Data Driven Application System (DDDAS) to dy- namically extract and use the knowledge of context as feedback in order to adaptively choose the appropriate classifiers and thereby enhance the target classification performance. The features are extracted by symbolic dynamic filtering (SDF) from the time series of sensors in an array and spatio-temporal aggregation of these features represents the context. Then, a context evolution model is constructed as a deterministic finite state automata (DFSA) and, for every context state in this DFSA, an event classifier is trained to classify the targets. The proposed technique of detection and classification has been compared with a traditional method of training classifiers without using any contextual information. |
Author | Mukherjee, Kushal Virani, Nurali Marcks, Shane Phoha, Shashi Ray, Asok Sarkar, Soumalya |
Author_xml | – sequence: 1 givenname: Nurali surname: Virani fullname: Virani, Nurali organization: Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 2 givenname: Shane surname: Marcks fullname: Marcks, Shane organization: Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 3 givenname: Soumalya surname: Sarkar fullname: Sarkar, Soumalya organization: Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 4 givenname: Kushal surname: Mukherjee fullname: Mukherjee, Kushal organization: Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 5 givenname: Asok surname: Ray fullname: Ray, Asok organization: Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA – sequence: 6 givenname: Shashi surname: Phoha fullname: Phoha, Shashi email: sxp26@arl.psu.edu organization: Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16802, USA |
BookMark | eNqFkMFOAjEQhhuDiYg8gZe-wK4tZbftwQNhRU1IOIjnZuhOTQl0SbuS8PbuggfjQecykz_5JjPfLRmEJiAh95zlnPHyYZsfYmNTPmFc5KzIhZxekSFXUmasYHrwY74h45S2rCuhlOZySFbVKcDeW1pBC7SK_oiBvmFITaSzGOFEF5_JN4G6LlhD_MCWVtiibfsQQk3nO0jJO2-hj-7ItYNdwvF3H5H3xdN6_pItV8-v89kys2Kq2myD5UQoCbjRWhfKSSakAzHhdelELWrQrhDKTrkSXHHHpJZYlFBo3NhSciZGRFz22tikFNGZQ_R7iCfDmem1mK05azG9FsMK02npKP2Lsr49391G8Lt_2McLi91bR4_RJOsxWKx97HSYuvF_8l_8LYFi |
CitedBy_id | crossref_primary_10_1016_j_engappai_2019_02_015 crossref_primary_10_1016_j_procs_2014_05_119 crossref_primary_10_1109_ACCESS_2019_2934893 crossref_primary_10_1109_JSEN_2015_2448734 crossref_primary_10_1145_3568671 crossref_primary_10_3390_e20060396 |
Cites_doi | 10.1109/JSEN.2011.2177257 10.1016/j.jcss.2012.02.001 10.1016/j.sigpro.2004.03.011 10.1016/j.sigpro.2006.01.014 10.1016/j.patcog.2010.12.003 10.1109/ACC.2011.5990861 |
ContentType | Journal Article |
Copyright | 2013 The Authors |
Copyright_xml | – notice: 2013 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2013.05.374 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 2055 |
ExternalDocumentID | 10_1016_j_procs_2013_05_374 S1877050913005176 |
GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c348t-be62387aeb99958f7037fa321d6f3d3da9f538c4183181f0797e56a59ebc67103 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Thu Apr 24 23:09:05 EDT 2025 Tue Jul 01 01:26:47 EDT 2025 Wed May 17 02:10:29 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Sensor fusion DDDAS Pattern Recognition Context Modeling Symbolic Dynamics |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/3.0 https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-be62387aeb99958f7037fa321d6f3d3da9f538c4183181f0797e56a59ebc67103 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050913005176 |
PageCount | 10 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2013_05_374 crossref_citationtrail_10_1016_j_procs_2013_05_374 elsevier_sciencedirect_doi_10_1016_j_procs_2013_05_374 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013 2013-00-00 |
PublicationDateYYYYMMDD | 2013-01-01 |
PublicationDate_xml | – year: 2013 text: 2013 |
PublicationDecade | 2010 |
PublicationTitle | Procedia computer science |
PublicationYear | 2013 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Elnahrawy, Nath (bib0035) 2004 Iyengar, Varshney, Damarla (bib0005) 2007 Ray (bib0045) 2004; 84 P. Adenis, K. Mukherjee, A. Ray, State splitting and state merging in probabilistic finite state automata, in: American Control Conference, 2011. Jin, Gupta, Mukherjee, Ray (bib0055) 2011; 44 Wen, Ray (bib0050) 2012; 78 Jin, Sarkar, Ray, Gupta, Damarla (bib0015) 2012; 12 Bland (bib0010) 2006 McKenna, McKenna (bib0020) 2006 Toussaint (bib0030) 1978; 10 Wilson, Marlin, Mackay (bib0025) 2007 Rajagopalan, Ray (bib0060) 2006; 86 Zhao, Govindan, Estrin (bib0040) 2003 Bland (10.1016/j.procs.2013.05.374_bib0010) 2006 Jin (10.1016/j.procs.2013.05.374_bib0015) 2012; 12 Wen (10.1016/j.procs.2013.05.374_bib0050) 2012; 78 Zhao (10.1016/j.procs.2013.05.374_bib0040) 2003 Rajagopalan (10.1016/j.procs.2013.05.374_bib0060) 2006; 86 Wilson (10.1016/j.procs.2013.05.374_bib0025) 2007 10.1016/j.procs.2013.05.374_bib0065 Iyengar (10.1016/j.procs.2013.05.374_bib0005) 2007 Elnahrawy (10.1016/j.procs.2013.05.374_bib0035) 2004 Toussaint (10.1016/j.procs.2013.05.374_bib0030) 1978; 10 Jin (10.1016/j.procs.2013.05.374_bib0055) 2011; 44 Ray (10.1016/j.procs.2013.05.374_bib0045) 2004; 84 McKenna (10.1016/j.procs.2013.05.374_bib0020) 2006 |
References_xml | – year: 2006 ident: bib0010 article-title: Acoustic and seismic signal processing for footstep detection, Master's thesis, Massachusetts Institute of Technology publication-title: Dept. of Electrical Engineering and Computer Science – volume: 44 start-page: 1343 year: 2011 end-page: 1356 ident: bib0055 article-title: Wavelet-based feature extraction using probabilistic finite state automata for pattern classifica- tion publication-title: Pattern Recognition – start-page: 6562 year: 2007 ident: bib0025 publication-title: Acoustic/seismic signal propagation and sensor performance modeling, in: SPIE, Vol. – volume: 84 start-page: 1115 year: 2004 end-page: 1130 ident: bib0045 article-title: Symbolic dynamic analysis of complex systems for anomaly detection publication-title: Signal Processing – year: 2004 ident: bib0035 publication-title: Context-aware sensors, in: EWSN – reference: P. Adenis, K. Mukherjee, A. Ray, State splitting and state merging in probabilistic finite state automata, in: American Control Conference, 2011. – volume: 10 start-page: 189 year: 1978 end-page: 204 ident: bib0030 publication-title: The use of context in pattern recognition, Pattern Recognition – year: 2006 ident: bib0020 article-title: Effects of local meterological variability on surface and subsurface seismic-acoustic signals, in: 25th Army publication-title: Science Conference – volume: 12 start-page: 1709 year: 2012 end-page: 1718 ident: bib0015 article-title: Target detection and classification using seismic and pir sensors publication-title: IEEE Sensors Journal – year: 2003 ident: bib0040 article-title: Computing aggregates for monitoring wireless sensor networks, in: IEEE ICC Workshop on Sensor Network Protocols and Applications – volume: 86 start-page: 3309 year: 2006 end-page: 3320 ident: bib0060 article-title: Symbolic time series analysis via wavelet-based partitioning publication-title: Signal Processing – start-page: 2248 year: 2007 end-page: 2252 ident: bib0005 article-title: On the detection of footsteps based on acoustic and seismic sensing, in: Forty-First Asilomar Conference on Signals publication-title: Systems and Computers ACSSC – volume: 78 start-page: 1127 year: 2012 end-page: 1141 ident: bib0050 article-title: Vector space formulation of probabilistic finite state automata publication-title: Journal of Computer and System Sciences – volume: 10 start-page: 189 year: 1978 ident: 10.1016/j.procs.2013.05.374_bib0030 publication-title: The use of context in pattern recognition, Pattern Recognition – year: 2003 ident: 10.1016/j.procs.2013.05.374_bib0040 – volume: 12 start-page: 1709 issue: 6 year: 2012 ident: 10.1016/j.procs.2013.05.374_bib0015 article-title: Target detection and classification using seismic and pir sensors publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2011.2177257 – volume: 78 start-page: 1127 year: 2012 ident: 10.1016/j.procs.2013.05.374_bib0050 article-title: Vector space formulation of probabilistic finite state automata publication-title: Journal of Computer and System Sciences doi: 10.1016/j.jcss.2012.02.001 – start-page: 2248 year: 2007 ident: 10.1016/j.procs.2013.05.374_bib0005 article-title: On the detection of footsteps based on acoustic and seismic sensing, in: Forty-First Asilomar Conference on Signals publication-title: Systems and Computers ACSSC – year: 2006 ident: 10.1016/j.procs.2013.05.374_bib0010 article-title: Acoustic and seismic signal processing for footstep detection, Master's thesis, Massachusetts Institute of Technology publication-title: Dept. of Electrical Engineering and Computer Science – volume: 84 start-page: 1115 issue: 7 year: 2004 ident: 10.1016/j.procs.2013.05.374_bib0045 article-title: Symbolic dynamic analysis of complex systems for anomaly detection publication-title: Signal Processing doi: 10.1016/j.sigpro.2004.03.011 – volume: 86 start-page: 3309 issue: 11 year: 2006 ident: 10.1016/j.procs.2013.05.374_bib0060 article-title: Symbolic time series analysis via wavelet-based partitioning publication-title: Signal Processing doi: 10.1016/j.sigpro.2006.01.014 – volume: 44 start-page: 1343 issue: 7 year: 2011 ident: 10.1016/j.procs.2013.05.374_bib0055 article-title: Wavelet-based feature extraction using probabilistic finite state automata for pattern classifica- tion publication-title: Pattern Recognition doi: 10.1016/j.patcog.2010.12.003 – start-page: 6562 year: 2007 ident: 10.1016/j.procs.2013.05.374_bib0025 publication-title: Acoustic/seismic signal propagation and sensor performance modeling, in: SPIE, Vol. – year: 2006 ident: 10.1016/j.procs.2013.05.374_bib0020 article-title: Effects of local meterological variability on surface and subsurface seismic-acoustic signals, in: 25th Army publication-title: Science Conference – ident: 10.1016/j.procs.2013.05.374_bib0065 doi: 10.1109/ACC.2011.5990861 – year: 2004 ident: 10.1016/j.procs.2013.05.374_bib0035 publication-title: Context-aware sensors, in: EWSN |
SSID | ssj0000388917 |
Score | 2.0176523 |
Snippet | Target detection and classification using unattended ground sensors (UGS) has been addressed in literature. Various tech- niques have been proposed for target... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 2046 |
SubjectTerms | Context Modeling DDDAS Pattern Recognition Sensor fusion Symbolic Dynamics |
Title | Dynamic Data Driven Sensor Array Fusion for Target Detection and Classification |
URI | https://dx.doi.org/10.1016/j.procs.2013.05.374 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWFh4I8qj8sCI1TwcOxlLQ1VRARJtRTcrD1sqQmkVpQP_njsnqUBCHVgjn2Rf7Lsvzt33EXKXQYoz0vOZyQPDeB64LPWEZhxm7RiRGW5VFJ5fxHjOnxbBokOGbS8MllU2sb-O6TZaN0_6jTf76-WyP3VDKZG9BH_IBK5E2m3sKsUmvsXD9p4F2U4iK7yL4xkatORDtswL8wTSdrs-Mnj6kv-doH4kndExOWzQIh3UEzohHV2ckqNWiYE2B_OMvMa1sDyNkyqhcYkhjE7hC3VVgnGZfNHRBq_FKEBUOrPF3zTWlS3DKmhS5NSKY2LZkH1T52Q-epwNx6yRSmAZrLliqQYYE8pEpwD4gtDAOZYm8T03F8bP_TyJDES2jMMBhpRuHBlJHYgkiHSaCQAZ_gXZK1aFviQUIBDXUap5hGyAvghlFuk8FRKSvXYd0yVe6x-VNTziKGfxqdqCsQ9lnarQqcoJFDi1S-63RuuaRmP3cNE6Xv3aDQoC_S7Dq_8aXpMDzwpd4OXKDdmryo2-BbhRpT2yP5i8vU96dl99Ayt809U |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwELVKGWDhG1E-PTASNYkdOxmhoWqhLUNbqZuVD1sqQmlVpQP_njs3qUBCDKxRTrIuvncvzuU9Qu4zaHFG-swxeWAcngeek_pCOxxW7RqRGW5dFIYj0Zvyl1kwa5BO_S8MjlVW2L_BdIvW1ZV2lc32cj5vj71QSlQvwQ8ygSfFDtkFNiBQQL8_e9oetKDcSWSddzHAwYhafcjOeWGjQN1uj6GEJ5P89w71ret0j8hBRRfp42ZFx6ShixNyWFsx0KoyT8lbvHGWp3FSJjReIYbRMbyiLlYQvEo-aXeN52IUOCqd2OlvGuvSzmEVNClyat0xcW7IPqozMu0-Tzo9p_JKcDLGw9JJNfCYUCY6BcYXhAYKWZqE-V4uDMtZnkQGoC3jUMHQ040rI6kDkQSRTjMBLIOdk2axKPQFocCBuI5SzSOUA2QilFmk81RI6Pbac02L-HV-VFYJiaOfxYeqJ8belU2qwqQqN1CQ1BZ52AYtNzoaf98u6sSrH9tBAdL_FXj538A7stebDAdq0B-9XpF937pe4EnLNWmWq7W-Ae5Rprd2b30BPSLVVg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Data+Driven+Sensor+Array+Fusion+for+Target+Detection+and+Classification&rft.jtitle=Procedia+computer+science&rft.au=Virani%2C+Nurali&rft.au=Marcks%2C+Shane&rft.au=Sarkar%2C+Soumalya&rft.au=Mukherjee%2C+Kushal&rft.date=2013&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=18&rft.spage=2046&rft.epage=2055&rft_id=info:doi/10.1016%2Fj.procs.2013.05.374&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2013_05_374 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |