A hybrid piezoelectric and electrostatic energy harvester for scavenging arterial pulsations

Implantable and wearable biomedical devices suffer from a limited lifespan of on-board batteries which require change causing physical discomfort. In order to overcome this, various energy harvesters have been developed as the human body possesses several types of energy available for scavenging thr...

Full description

Saved in:
Bibliographic Details
Published inMaterials today : proceedings Vol. 93; pp. 16 - 23
Main Authors Sobianin, Ihor, Psoma, Sotiria D., Tourlidakis, Antonios
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Implantable and wearable biomedical devices suffer from a limited lifespan of on-board batteries which require change causing physical discomfort. In order to overcome this, various energy harvesters have been developed as the human body possesses several types of energy available for scavenging through appropriately designed energy harvesting devices, while the cardiovascular system in particular represents a constant reliable source of mechanical energy from vibration. Most conventional energy harvesters exploit only a single phenomenon, such piezo- or triboelectricity, thus producing reduced power density. As an improvement, hybridisation of energy harvesters intends to negate this drawback by simultaneously scavenging energy by multiple harvesters. In the present work, the reverse electrowetting on dielectric (REWOD) phenomenon is combined with the piezoelectric effect in a proof-of-concept hybrid harvester for scavenging biomechanical energy from arterial or other type pulsations. A mathematical model of the harvester was developed; and, an investigation using computational fluid dynamics simulations was carried out using the COMSOL Multiphysics software. The effect of the materials of piezoelectric film and geometrical features of the harvester on parameters such as the displacement, the frequency of pulsations and the energy produced were studied. An experimental setup that could model the time-varying pressures and displacements caused from arterial pulsations was designed and the characteristics of the produced piezoelectrical energy were analysed. A comparison between experimental and computational data was carried out demonstrating a good agreement. The dependencies between geometrical parameters and electrical output were determined and recommendations on piezoelectric materials and design solutions were provided.
AbstractList Implantable and wearable biomedical devices suffer from a limited lifespan of on-board batteries which require change causing physical discomfort. In order to overcome this, various energy harvesters have been developed as the human body possesses several types of energy available for scavenging through appropriately designed energy harvesting devices, while the cardiovascular system in particular represents a constant reliable source of mechanical energy from vibration. Most conventional energy harvesters exploit only a single phenomenon, such piezo- or triboelectricity, thus producing reduced power density. As an improvement, hybridisation of energy harvesters intends to negate this drawback by simultaneously scavenging energy by multiple harvesters. In the present work, the reverse electrowetting on dielectric (REWOD) phenomenon is combined with the piezoelectric effect in a proof-of-concept hybrid harvester for scavenging biomechanical energy from arterial or other type pulsations. A mathematical model of the harvester was developed; and, an investigation using computational fluid dynamics simulations was carried out using the COMSOL Multiphysics software. The effect of the materials of piezoelectric film and geometrical features of the harvester on parameters such as the displacement, the frequency of pulsations and the energy produced were studied. An experimental setup that could model the time-varying pressures and displacements caused from arterial pulsations was designed and the characteristics of the produced piezoelectrical energy were analysed. A comparison between experimental and computational data was carried out demonstrating a good agreement. The dependencies between geometrical parameters and electrical output were determined and recommendations on piezoelectric materials and design solutions were provided.
Author Psoma, Sotiria D.
Sobianin, Ihor
Tourlidakis, Antonios
Author_xml – sequence: 1
  givenname: Ihor
  surname: Sobianin
  fullname: Sobianin, Ihor
  organization: School of Engineering & Innovation, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
– sequence: 2
  givenname: Sotiria D.
  orcidid: 0000-0002-9375-8173
  surname: Psoma
  fullname: Psoma, Sotiria D.
  email: Sotiria.Psoma@open.ac.uk
  organization: School of Engineering & Innovation, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK
– sequence: 3
  givenname: Antonios
  surname: Tourlidakis
  fullname: Tourlidakis, Antonios
  organization: Department of Mecahnical Engineering, University of Western Macedonia, Kozani 50100, Greece
BookMark eNp9kMFKAzEQhoNUsNY-gZe8wK5JdpONBw-lqBUKXvQmhGwyaVO22SVZC_XpTa0HT55m5odvmPmu0ST0ARC6paSkhIq7XbnX4xBLRlhVEl4yWl2gKWO0LhrJq8mf_grNU9oRQigXRFIxRR8LvD220Vs8ePjqoQMzRm-wDhafhz6NeswJBIibI97qeIA0QsSujzgZfYCw8WGDdcyh1x0ePruUiT6kG3TpdJdg_ltn6P3p8W25Ktavzy_LxbowVS3HorVCUk5MI41wVMtGN1xwSZ11UmojraauaZxmtagtcCbuqWEtE1q0jrmaVjNUnfeafG2K4NQQ_V7Ho6JEnRypnfpxpE6OFOEqO8rUw5mCfNrBQ1TJeAgGrI_5cWV7_y__DYzQdRY
CitedBy_id crossref_primary_10_3390_s23115257
crossref_primary_10_3390_mi15010118
Cites_doi 10.1088/1361-6439/ac168e
10.1016/j.ijmultiphaseflow.2018.08.001
10.3390/s21113806
10.1002/advs.202100864
10.1038/s41598-021-84414-3
10.2337/cd17-0130
10.3390/en15217959
10.3390/app11062487
10.1126/scitranslmed.abe5383
10.1021/acsanm.0c01551
10.1002/adma.202001699
10.3390/mi13030411
10.1016/j.nanoen.2018.12.003
10.1038/ncomms1454
10.1038/srep16537
10.1016/j.isci.2020.101934
10.2196/18636
10.1063/1.1779954
10.1109/LED.2019.2954878
10.1109/92.920820
10.1063/5.0030302
10.1016/j.solmat.2021.111353
10.1016/j.nanoen.2020.105442
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.matpr.2023.05.213
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2214-7853
EndPage 23
ExternalDocumentID 10_1016_j_matpr_2023_05_213
S2214785323028390
GroupedDBID --M
.~1
0R~
1~.
4.4
457
4G.
5VS
6I.
7-5
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
HZ~
KOM
M41
NCXOZ
O9-
OAUVE
P-8
P-9
PC.
ROL
SPC
SPCBC
SSM
SSZ
T5K
~G-
0SF
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c348t-bd68150c78c6f1a87a756581fdf88ac8da1f77fa2464de52691c2b26a6bf2f413
IEDL.DBID AIKHN
ISSN 2214-7853
IngestDate Thu Sep 26 16:16:56 EDT 2024
Sat Feb 17 16:12:09 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Reverse electrowetting on dielectric (REWOD) phenomenon
Wearable biosensors
Human energy harvesting
Hybrid harvester
Piezoelectric nanogenerator
Computational fluid dynamics (CFD)
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-bd68150c78c6f1a87a756581fdf88ac8da1f77fa2464de52691c2b26a6bf2f413
ORCID 0000-0002-9375-8173
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2214785323028390
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_matpr_2023_05_213
elsevier_sciencedirect_doi_10_1016_j_matpr_2023_05_213
PublicationCentury 2000
PublicationDate 2023
2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationTitle Materials today : proceedings
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Göhl, Mark, Sasic, Edelvik (b0120) 2018; 109
Rusev, Angelov, Angelov, Nikolov (b0135) 2017
Gambhir, Ge, Vermesh, Spitler, Gold (b0005) 2021; 13
Sobianin, Psoma, Tourlidakis (b0045) 2022; 15
Guo, Liu, Zhang, Gao, He, Shi, Lee (b0020) 2021; 31
Erturun, Eisape, Kang (b0050) 2021; 118
Zhang, Shiu, Li, Liu, Ren, Wang, Lou, Lin (b0060) 2021; 232
Kuiper, Hendriks (b0105) 2004; 85
Leenen, Leerentveld, Van Dijk, Van Westreenen, Schoonhoven, Patijn (b0010) 2020; 22
He, Guo, Lee (b0025) 2021; 24
Meninger, Mur-Miranda, Amirtharajah, Chandrakasan, Lang (b0115) 2001; 9
Hsu, Manakasettharn, Taylor, Krupenkin (b0095) 2015; 5
Blum (b0015) 2018; 36
Wu, Wang, Gao, Wang, Ma, Tang, Bao, Wu, Fan, Wu (b0070) 2019; 56
Song, Mukasa, Zhang, Gao (b0035) 2021; 2
Zhang, Yang, Zhang, Bowen, Yang (b0040) 2020; 23
Moghadam, Hasanzadeh, Simchi (b0065) 2020; 3
Surmenev, Chernozem, Pariy, Surmeneva (b0055) 2021; 79
Wu, Mendel, Van der Ham, Shui, Zhou, Mugele (b0100) 2020; 32
Ballo, Bottaro, Grasso (b0145) 2021; 11
Andersson, Beale, Lehnert (b0125) 2019; 1
Rong, Zheng, Sawan (b0030) 2021; 21
Boroujeni, Raissi, Jafarabadi-Ashtiani, Riahifar, Sahba-Yaghmaee (b0090) 2020; 2
Mahapatra, Mohapatra, Aria, Christie, Mishra, Hofmann, Thakur (b0080) 2021; 8
Yi, Huang, Liu, Liu, Yang (b0075) 2020; 41
Mugele, Baret (b0110) 2005; 17
Gong (b0140) 2022; 13
Krupenkin, Taylor (b0130) 2011; 2
Adhikari, Tasneem, Reid, Mahbub (b0085) 2021; 11
Gambhir (10.1016/j.matpr.2023.05.213_b0005) 2021; 13
Sobianin (10.1016/j.matpr.2023.05.213_b0045) 2022; 15
Ballo (10.1016/j.matpr.2023.05.213_b0145) 2021; 11
Göhl (10.1016/j.matpr.2023.05.213_b0120) 2018; 109
Hsu (10.1016/j.matpr.2023.05.213_b0095) 2015; 5
Meninger (10.1016/j.matpr.2023.05.213_b0115) 2001; 9
Surmenev (10.1016/j.matpr.2023.05.213_b0055) 2021; 79
Moghadam (10.1016/j.matpr.2023.05.213_b0065) 2020; 3
Blum (10.1016/j.matpr.2023.05.213_b0015) 2018; 36
Zhang (10.1016/j.matpr.2023.05.213_b0060) 2021; 232
Wu (10.1016/j.matpr.2023.05.213_b0070) 2019; 56
Mugele (10.1016/j.matpr.2023.05.213_b0110) 2005; 17
Song (10.1016/j.matpr.2023.05.213_b0035) 2021; 2
Yi (10.1016/j.matpr.2023.05.213_b0075) 2020; 41
Rong (10.1016/j.matpr.2023.05.213_b0030) 2021; 21
He (10.1016/j.matpr.2023.05.213_b0025) 2021; 24
Erturun (10.1016/j.matpr.2023.05.213_b0050) 2021; 118
Adhikari (10.1016/j.matpr.2023.05.213_b0085) 2021; 11
Zhang (10.1016/j.matpr.2023.05.213_b0040) 2020; 23
Guo (10.1016/j.matpr.2023.05.213_b0020) 2021; 31
Gong (10.1016/j.matpr.2023.05.213_b0140) 2022; 13
Leenen (10.1016/j.matpr.2023.05.213_b0010) 2020; 22
Mahapatra (10.1016/j.matpr.2023.05.213_b0080) 2021; 8
Kuiper (10.1016/j.matpr.2023.05.213_b0105) 2004; 85
Andersson (10.1016/j.matpr.2023.05.213_b0125) 2019; 1
Wu (10.1016/j.matpr.2023.05.213_b0100) 2020; 32
Rusev (10.1016/j.matpr.2023.05.213_b0135) 2017
Krupenkin (10.1016/j.matpr.2023.05.213_b0130) 2011; 2
Boroujeni (10.1016/j.matpr.2023.05.213_b0090) 2020; 2
References_xml – volume: 32
  start-page: 2001699
  year: 2020
  ident: b0100
  article-title: Charge Trapping-Based Electricity Generator (CTEG): An Ultrarobust and High Efficiency Nanogenerator for Energy Harvesting from Water Droplets
  publication-title: Adv. Mater.
  contributor:
    fullname: Mugele
– volume: 22
  year: 2020
  ident: b0010
  article-title: Current Evidence for Continuous Vital Signs Monitoring by Wearable Wireless Devices in Hospitalized Adults: Systematic Review
  publication-title: J. Med. Internet Res.
  contributor:
    fullname: Patijn
– volume: 2
  start-page: 045028
  year: 2020
  ident: b0090
  article-title: Droplet-based energy harvester considering electrowetting phenomena
  publication-title: Mater. Res. Express
  contributor:
    fullname: Sahba-Yaghmaee
– volume: 3
  start-page: 8742
  year: 2020
  end-page: 8752
  ident: b0065
  article-title: Self-Powered Wearable Piezoelectric Sensors Based on Polymer Nanofiber–Metal–Organic Framework Nanoparticle Composites for Arterial Pulse Monitoring
  publication-title: ACS Appl. Nano Mater.
  contributor:
    fullname: Simchi
– volume: 23
  start-page: 101689
  year: 2020
  ident: b0040
  publication-title: Recent Progress in Hybridized Nanogenerators for Energy Scavenging, iScience
  contributor:
    fullname: Yang
– volume: 15
  start-page: 7959
  year: 2022
  ident: b0045
  article-title: Recent advances of energy harvesting from the human body for biomedical applications
  publication-title: Energies
  contributor:
    fullname: Tourlidakis
– volume: 36
  start-page: 203
  year: 2018
  end-page: 204
  ident: b0015
  article-title: Freestyle Libre Glucose Monitoring System
  publication-title: Clin. Diabetes
  contributor:
    fullname: Blum
– volume: 9
  start-page: 64
  year: 2001
  end-page: 76
  ident: b0115
  article-title: Vibration-to-electric energy conversion
  publication-title: IEEE Trans. VLSI Syst.
  contributor:
    fullname: Lang
– volume: 13
  start-page: 411
  year: 2022
  ident: b0140
  article-title: IC-Based Rectification Circuit Techniques for Biomedical Energy-Harvesting Applications
  publication-title: Micromachines
  contributor:
    fullname: Gong
– volume: 11
  start-page: 2487
  year: 2021
  ident: b0145
  article-title: A Review of Power Management Integrated Circuits for Ultrasound-Based Energy Harvesting in Implantable Medical Devices
  publication-title: Appl. Sci.
  contributor:
    fullname: Grasso
– volume: 21
  start-page: 1
  year: 2021
  end-page: 23
  ident: b0030
  article-title: Energy Solutions for Wearable Sensors: A Review
  publication-title: Sensors
  contributor:
    fullname: Sawan
– volume: 79
  start-page: 105442
  year: 2021
  ident: b0055
  article-title: A review on piezo- and pyroelectric responses of flexible nano- and micropatterned polymer surfaces for biomedical sensing and energy harvesting applications
  publication-title: Nano Energy
  contributor:
    fullname: Surmeneva
– volume: 232
  start-page: 111353
  year: 2021
  ident: b0060
  article-title: Photo-thermoelectric nanofiber film based on the synergy of conjugated polymer and light traps for the solar-energy harvesting of textile solar panel
  publication-title: Sol. Energy Mater. Sol. Cells
  contributor:
    fullname: Lin
– volume: 8
  start-page: 2100864
  year: 2021
  ident: b0080
  article-title: Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials
  publication-title: Adv. Sci.
  contributor:
    fullname: Thakur
– volume: 1
  year: 2019
  ident: b0125
  article-title: Dynamic contact angle modeling of droplet reattachment at the gas channel wall in polymer electrolyte fuel cells
  publication-title: eTransportation
  contributor:
    fullname: Lehnert
– volume: 2
  start-page: 448
  year: 2011
  ident: b0130
  article-title: Reverse electrowetting as a new approach to high-power energy harvesting
  publication-title: Nat. Commun.
  contributor:
    fullname: Taylor
– year: 2017
  ident: b0135
  article-title: A model for reverse electrowetting with cost-effective materials
  publication-title: IEEE: 2017 XXVI International Scientific Conference Electronics (ET)
  contributor:
    fullname: Nikolov
– volume: 2
  start-page: 184
  year: 2021
  end-page: 197
  ident: b0035
  article-title: Self-Powered Wearable Biosensors
  publication-title: Acc. Chem. Res.
  contributor:
    fullname: Gao
– volume: 109
  start-page: 164
  year: 2018
  end-page: 177
  ident: b0120
  article-title: An immersed boundary based dynamic contact angle framework for handling complex surfaces of mixed wettabilities
  publication-title: Int. J. Multiph Flow
  contributor:
    fullname: Edelvik
– volume: 17
  year: 2005
  ident: b0110
  article-title: Electrowetting: from basics to applications
  publication-title: J. Phys.: Condens. Matter.
  contributor:
    fullname: Baret
– volume: 5
  start-page: 16537
  year: 2015
  ident: b0095
  article-title: Bubbler: A Novel Ultra-High Power Density Energy Harvesting Method Based on Reverse Electrowetting
  publication-title: Sci. Rep.
  contributor:
    fullname: Krupenkin
– volume: 13
  year: 2021
  ident: b0005
  article-title: Continuous health monitoring: An opportunity for precision health
  publication-title: Sci. Transl. Med.
  contributor:
    fullname: Gold
– volume: 118
  start-page: 063902
  year: 2021
  ident: b0050
  article-title: West JE Energy harvester using piezoelectric nanogenerator and electrostatic generator
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Kang
– volume: 56
  start-page: 693
  year: 2019
  end-page: 699
  ident: b0070
  article-title: Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring
  publication-title: Nano Energy
  contributor:
    fullname: Wu
– volume: 11
  start-page: 5030
  year: 2021
  ident: b0085
  article-title: Electrode and electrolyte configurations for low frequency motion energy harvesting based on reverse electrowetting
  publication-title: Sci. Rep.
  contributor:
    fullname: Mahbub
– volume: 24
  start-page: 101934
  year: 2021
  ident: b0025
  article-title: Flourishing energy harvesters for future body sensor network: from single to multiple energy sources
  publication-title: iScience
  contributor:
    fullname: Lee
– volume: 85
  start-page: 1128
  year: 2004
  end-page: 1130
  ident: b0105
  article-title: Variable-focus liquid lens for miniature cameras
  publication-title: Appl. Phys. Lett.
  contributor:
    fullname: Hendriks
– volume: 41
  start-page: 183
  year: 2020
  end-page: 186
  ident: b0075
  article-title: Portable, Wireless Wearable Piezoelectric Arterial Pulse Monitoring System Based on Near-Field Communication Approach
  publication-title: IEEE Electron. Device Lett.
  contributor:
    fullname: Yang
– volume: 31
  start-page: 093002
  year: 2021
  ident: b0020
  article-title: Technology evolution from micro-scale energy harvesters to nanogenerators
  publication-title: J Micromech. Microeng.
  contributor:
    fullname: Lee
– volume: 31
  start-page: 093002
  issue: 9
  year: 2021
  ident: 10.1016/j.matpr.2023.05.213_b0020
  article-title: Technology evolution from micro-scale energy harvesters to nanogenerators
  publication-title: J Micromech. Microeng.
  doi: 10.1088/1361-6439/ac168e
  contributor:
    fullname: Guo
– volume: 109
  start-page: 164
  year: 2018
  ident: 10.1016/j.matpr.2023.05.213_b0120
  article-title: An immersed boundary based dynamic contact angle framework for handling complex surfaces of mixed wettabilities
  publication-title: Int. J. Multiph Flow
  doi: 10.1016/j.ijmultiphaseflow.2018.08.001
  contributor:
    fullname: Göhl
– volume: 21
  start-page: 1
  issue: 11
  year: 2021
  ident: 10.1016/j.matpr.2023.05.213_b0030
  article-title: Energy Solutions for Wearable Sensors: A Review
  publication-title: Sensors
  doi: 10.3390/s21113806
  contributor:
    fullname: Rong
– volume: 8
  start-page: 2100864
  issue: 17
  year: 2021
  ident: 10.1016/j.matpr.2023.05.213_b0080
  article-title: Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202100864
  contributor:
    fullname: Mahapatra
– volume: 2
  start-page: 184
  issue: 3
  year: 2021
  ident: 10.1016/j.matpr.2023.05.213_b0035
  article-title: Self-Powered Wearable Biosensors
  publication-title: Acc. Chem. Res.
  contributor:
    fullname: Song
– volume: 11
  start-page: 5030
  issue: 1
  year: 2021
  ident: 10.1016/j.matpr.2023.05.213_b0085
  article-title: Electrode and electrolyte configurations for low frequency motion energy harvesting based on reverse electrowetting
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-84414-3
  contributor:
    fullname: Adhikari
– volume: 23
  start-page: 101689
  issue: 11
  year: 2020
  ident: 10.1016/j.matpr.2023.05.213_b0040
  publication-title: Recent Progress in Hybridized Nanogenerators for Energy Scavenging, iScience
  contributor:
    fullname: Zhang
– volume: 36
  start-page: 203
  issue: 2
  year: 2018
  ident: 10.1016/j.matpr.2023.05.213_b0015
  article-title: Freestyle Libre Glucose Monitoring System
  publication-title: Clin. Diabetes
  doi: 10.2337/cd17-0130
  contributor:
    fullname: Blum
– volume: 15
  start-page: 7959
  year: 2022
  ident: 10.1016/j.matpr.2023.05.213_b0045
  article-title: Recent advances of energy harvesting from the human body for biomedical applications
  publication-title: Energies
  doi: 10.3390/en15217959
  contributor:
    fullname: Sobianin
– volume: 11
  start-page: 2487
  issue: 6
  year: 2021
  ident: 10.1016/j.matpr.2023.05.213_b0145
  article-title: A Review of Power Management Integrated Circuits for Ultrasound-Based Energy Harvesting in Implantable Medical Devices
  publication-title: Appl. Sci.
  doi: 10.3390/app11062487
  contributor:
    fullname: Ballo
– volume: 13
  issue: 597
  year: 2021
  ident: 10.1016/j.matpr.2023.05.213_b0005
  article-title: Continuous health monitoring: An opportunity for precision health
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.abe5383
  contributor:
    fullname: Gambhir
– volume: 3
  start-page: 8742
  issue: 9
  year: 2020
  ident: 10.1016/j.matpr.2023.05.213_b0065
  article-title: Self-Powered Wearable Piezoelectric Sensors Based on Polymer Nanofiber–Metal–Organic Framework Nanoparticle Composites for Arterial Pulse Monitoring
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c01551
  contributor:
    fullname: Moghadam
– volume: 32
  start-page: 2001699
  issue: 33
  year: 2020
  ident: 10.1016/j.matpr.2023.05.213_b0100
  article-title: Charge Trapping-Based Electricity Generator (CTEG): An Ultrarobust and High Efficiency Nanogenerator for Energy Harvesting from Water Droplets
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001699
  contributor:
    fullname: Wu
– volume: 13
  start-page: 411
  issue: 3
  year: 2022
  ident: 10.1016/j.matpr.2023.05.213_b0140
  article-title: IC-Based Rectification Circuit Techniques for Biomedical Energy-Harvesting Applications
  publication-title: Micromachines
  doi: 10.3390/mi13030411
  contributor:
    fullname: Gong
– volume: 2
  start-page: 045028
  issue: 4
  year: 2020
  ident: 10.1016/j.matpr.2023.05.213_b0090
  article-title: Droplet-based energy harvester considering electrowetting phenomena
  publication-title: Mater. Res. Express
  contributor:
    fullname: Boroujeni
– volume: 56
  start-page: 693
  year: 2019
  ident: 10.1016/j.matpr.2023.05.213_b0070
  article-title: Solution-synthesized chiral piezoelectric selenium nanowires for wearable self-powered human-integrated monitoring
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.003
  contributor:
    fullname: Wu
– volume: 2
  start-page: 448
  issue: 1
  year: 2011
  ident: 10.1016/j.matpr.2023.05.213_b0130
  article-title: Reverse electrowetting as a new approach to high-power energy harvesting
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1454
  contributor:
    fullname: Krupenkin
– volume: 5
  start-page: 16537
  issue: 1
  year: 2015
  ident: 10.1016/j.matpr.2023.05.213_b0095
  article-title: Bubbler: A Novel Ultra-High Power Density Energy Harvesting Method Based on Reverse Electrowetting
  publication-title: Sci. Rep.
  doi: 10.1038/srep16537
  contributor:
    fullname: Hsu
– year: 2017
  ident: 10.1016/j.matpr.2023.05.213_b0135
  article-title: A model for reverse electrowetting with cost-effective materials
  contributor:
    fullname: Rusev
– volume: 24
  start-page: 101934
  issue: 1
  year: 2021
  ident: 10.1016/j.matpr.2023.05.213_b0025
  article-title: Flourishing energy harvesters for future body sensor network: from single to multiple energy sources
  publication-title: iScience
  doi: 10.1016/j.isci.2020.101934
  contributor:
    fullname: He
– volume: 22
  issue: 6
  year: 2020
  ident: 10.1016/j.matpr.2023.05.213_b0010
  article-title: Current Evidence for Continuous Vital Signs Monitoring by Wearable Wireless Devices in Hospitalized Adults: Systematic Review
  publication-title: J. Med. Internet Res.
  doi: 10.2196/18636
  contributor:
    fullname: Leenen
– volume: 85
  start-page: 1128
  issue: 7
  year: 2004
  ident: 10.1016/j.matpr.2023.05.213_b0105
  article-title: Variable-focus liquid lens for miniature cameras
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1779954
  contributor:
    fullname: Kuiper
– volume: 17
  issue: 28
  year: 2005
  ident: 10.1016/j.matpr.2023.05.213_b0110
  article-title: Electrowetting: from basics to applications
  publication-title: J. Phys.: Condens. Matter.
  contributor:
    fullname: Mugele
– volume: 41
  start-page: 183
  issue: 1
  year: 2020
  ident: 10.1016/j.matpr.2023.05.213_b0075
  article-title: Portable, Wireless Wearable Piezoelectric Arterial Pulse Monitoring System Based on Near-Field Communication Approach
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2019.2954878
  contributor:
    fullname: Yi
– volume: 9
  start-page: 64
  year: 2001
  ident: 10.1016/j.matpr.2023.05.213_b0115
  article-title: Vibration-to-electric energy conversion
  publication-title: IEEE Trans. VLSI Syst.
  doi: 10.1109/92.920820
  contributor:
    fullname: Meninger
– volume: 118
  start-page: 063902
  issue: 6
  year: 2021
  ident: 10.1016/j.matpr.2023.05.213_b0050
  article-title: West JE Energy harvester using piezoelectric nanogenerator and electrostatic generator
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0030302
  contributor:
    fullname: Erturun
– volume: 232
  start-page: 111353
  year: 2021
  ident: 10.1016/j.matpr.2023.05.213_b0060
  article-title: Photo-thermoelectric nanofiber film based on the synergy of conjugated polymer and light traps for the solar-energy harvesting of textile solar panel
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2021.111353
  contributor:
    fullname: Zhang
– volume: 79
  start-page: 105442
  year: 2021
  ident: 10.1016/j.matpr.2023.05.213_b0055
  article-title: A review on piezo- and pyroelectric responses of flexible nano- and micropatterned polymer surfaces for biomedical sensing and energy harvesting applications
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105442
  contributor:
    fullname: Surmenev
– volume: 1
  issue: 100003
  year: 2019
  ident: 10.1016/j.matpr.2023.05.213_b0125
  article-title: Dynamic contact angle modeling of droplet reattachment at the gas channel wall in polymer electrolyte fuel cells
  publication-title: eTransportation
  contributor:
    fullname: Andersson
SSID ssj0001560816
Score 2.288648
Snippet Implantable and wearable biomedical devices suffer from a limited lifespan of on-board batteries which require change causing physical discomfort. In order to...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 16
SubjectTerms Computational fluid dynamics (CFD)
Human energy harvesting
Hybrid harvester
Piezoelectric nanogenerator
Reverse electrowetting on dielectric (REWOD) phenomenon
Wearable biosensors
Title A hybrid piezoelectric and electrostatic energy harvester for scavenging arterial pulsations
URI https://dx.doi.org/10.1016/j.matpr.2023.05.213
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5zu3gRRcX5Y-Tg0bo1TZP0OIZjKu6igx2EkKYJq0hX5ibowb_dlzZFBfHgsYEH4SW873vpe-9D6Nz9ZaRC8YAYlQSUD1SQWOYS11jpFBCEKffecTdlkxm9mcfzFho1vTCurNLH_jqmV9Har_S9N_tlnvfviZPYAbQBEg0YmUDe3gE4orSNOsPr28n066kFUF1UIqjOJHA2zfyhqtILqGHpRoOSyA3xJGH0O0Z9w53xLtrxhBEP6z3toZYp9tHjEC_eXK8VLnPzvqy1bHKNVZFhL2zjOoVgxVS9fXihVq_VTAQMJBW_aCci7-SJcFXSCXcQl5tnX9hzgGbjq4fRJPA6CYGOqFgHacYE8DrNhWY2VIIrDjRNhDazQigtMhVazq0ilNHMOEnxUJOUMMVSSyyg2CFqF8vCHCFMuAUzrayOLNVRIuCouIW0hw9iZUTURReNZ2RZj8OQTZ3Yk6wcKZ0j5SCW4MguYo335I9TlRCw_zI8_q_hCdp2X_UjySlqr1cbcwa0YZ320NblR9jzl-MT-dDDWw
link.rule.ids 315,786,790,4043,4521,24144,27954,27955,27956,45618,45712
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5DD3oRRcX5MweP1q1pm6THMRxTt13cYAchpGnDJtKVuQl68G_3vbRFBfHgNeVBeAnv-1763vsIucS_jKHUwmOZjr1QtLUXW46Ja6RNAgjCNb53DEe8PwnvptG0Qbp1LwyWVVaxv4zpLlpXK63Km61iPm89MJTYAbQBEg0YGUPevolsAOu6rj_8r4cWwHTpJFDRwEOLevqQq_MCYljgYFAW4AhP5ge_I9Q31Ontkp2KLtJOuaM90sjyffLYobM37LSixTx7X5RKNnNDdZ7SStYG-4RgJXOdfXSml69uIgIFikpfDErIozgRdQWdcANpsX6uynoOyKR3M-72vUolwTNBKFdeknIJrM4Iabj1tRRaAEmTvk2tlNrIVPtWCKtZyMM0Q0Fx37CEcc0Tyyxg2CHZyBd5dkQoExbMjLYmsKEJYgkHJSwkPaId6UwGTXJVe0YV5TAMVVeJPSnnSIWOVO1IgSObhNfeUz_OVEG4_svw-L-GF2SrPx4O1OB2dH9CtvFL-VxySjZWy3V2BgRilZy7C_IJtD3EMA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+piezoelectric+and+electrostatic+energy+harvester+for+scavenging+arterial+pulsations&rft.jtitle=Materials+today+%3A+proceedings&rft.au=Sobianin%2C+Ihor&rft.au=Psoma%2C+Sotiria+D.&rft.au=Tourlidakis%2C+Antonios&rft.date=2023&rft.pub=Elsevier+Ltd&rft.issn=2214-7853&rft.eissn=2214-7853&rft.volume=93&rft.spage=16&rft.epage=23&rft_id=info:doi/10.1016%2Fj.matpr.2023.05.213&rft.externalDocID=S2214785323028390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2214-7853&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2214-7853&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2214-7853&client=summon