Anisotropic Scale-Invariant Ellipse Detection

Detecting ellipses poses a challenging low-level task indispensable to many image analysis applications. Existing ellipse detection methods commonly encounter two fundamental issues. First, inferior detection accuracy could be incurred on a small ellipse than that on a large one; this introduces the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 33; p. 1
Main Authors Wang, Zikai, Zhong, Baojiang, Ma, Kai-Kuang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Detecting ellipses poses a challenging low-level task indispensable to many image analysis applications. Existing ellipse detection methods commonly encounter two fundamental issues. First, inferior detection accuracy could be incurred on a small ellipse than that on a large one; this introduces the scale issue. Second, inferior detection accuracy could be yielded along the minor axis than along the major one of the same ellipse; this leads to the anisotropy issue. To address these issues simultaneously, a novel anisotropic scale-invariant (ASI) ellipse detection methodology is proposed. Our basic idea is to perform ellipse detection in a transformed image space referred to as the ellipse normalization (EN) space, in which the desired ellipse from the original image is 'normalized' to the unit circle. With the establishment of the EN-space, an analytical ellipse fitting scheme and a set of distance measures are developed. Theoretical justifications are then derived to prove that both our ellipse fitting scheme and distance measures are invariant to anisotropic scaling, and thus each ellipse can be detected with the same accuracy regardless of its size and ellipticity. By incorporating these components into two recent state-of-the-art algorithms, two ASI ellipse detectors are finally developed and exploited to verify the effectiveness of our proposed methodology.
AbstractList Detecting ellipses poses a challenging low-level task indispensable to many image analysis applications. Existing ellipse detection methods commonly encounter two fundamental issues. First, inferior detection accuracy could be incurred on a small ellipse than that on a large one; this introduces the scale issue. Second, inferior detection accuracy could be yielded along the minor axis than along the major one of the same ellipse; this leads to the anisotropy issue. To address these issues simultaneously, a novel anisotropic scale-invariant (ASI) ellipse detection methodology is proposed. Our basic idea is to perform ellipse detection in a transformed image space referred to as the ellipse normalization (EN) space, in which the desired ellipse from the original image is 'normalized' to the unit circle. With the establishment of the EN-space, an analytical ellipse fitting scheme and a set of distance measures are developed. Theoretical justifications are then derived to prove that both our ellipse fitting scheme and distance measures are invariant to anisotropic scaling, and thus each ellipse can be detected with the same accuracy regardless of its size and ellipticity. By incorporating these components into two recent state-of-the-art algorithms, two ASI ellipse detectors are finally developed and exploited to verify the effectiveness of our proposed methodology.
Detecting ellipses poses a challenging low-level task indispensable to many image analysis applications. Existing ellipse detection methods commonly encounter two fundamental issues. First, inferior detection accuracy could be incurred on a small ellipse than that on a large one; this introduces the scale issue. Second, inferior detection accuracy could be yielded along the minor axis than along the major one of the same ellipse; this leads to the anisotropy issue. To address these issues simultaneously, a novel anisotropic scale-invariant (ASI) ellipse detection methodology is proposed. Our basic idea is to perform ellipse detection in a transformed image space referred to as the ellipse normalization (EN) space, in which the desired ellipse from the original image is 'normalized' to the unit circle. With the establishment of the EN-space, an analytical ellipse fitting scheme and a set of distance measures are developed. Theoretical justifications are then derived to prove that both our ellipse fitting scheme and distance measures are invariant to anisotropic scaling, and thus each ellipse can be detected with the same accuracy regardless of its size and ellipticity. By incorporating these components into two recent state-of-the-art algorithms, two ASI ellipse detectors are finally developed and exploited to verify the effectiveness of our proposed methodology.Detecting ellipses poses a challenging low-level task indispensable to many image analysis applications. Existing ellipse detection methods commonly encounter two fundamental issues. First, inferior detection accuracy could be incurred on a small ellipse than that on a large one; this introduces the scale issue. Second, inferior detection accuracy could be yielded along the minor axis than along the major one of the same ellipse; this leads to the anisotropy issue. To address these issues simultaneously, a novel anisotropic scale-invariant (ASI) ellipse detection methodology is proposed. Our basic idea is to perform ellipse detection in a transformed image space referred to as the ellipse normalization (EN) space, in which the desired ellipse from the original image is 'normalized' to the unit circle. With the establishment of the EN-space, an analytical ellipse fitting scheme and a set of distance measures are developed. Theoretical justifications are then derived to prove that both our ellipse fitting scheme and distance measures are invariant to anisotropic scaling, and thus each ellipse can be detected with the same accuracy regardless of its size and ellipticity. By incorporating these components into two recent state-of-the-art algorithms, two ASI ellipse detectors are finally developed and exploited to verify the effectiveness of our proposed methodology.
Author Wang, Zikai
Ma, Kai-Kuang
Zhong, Baojiang
Author_xml – sequence: 1
  givenname: Zikai
  orcidid: 0000-0003-3193-5709
  surname: Wang
  fullname: Wang, Zikai
  organization: School of Computer Science and Technology, Soochow University, Suzhou, China
– sequence: 2
  givenname: Baojiang
  orcidid: 0000-0002-9899-524X
  surname: Zhong
  fullname: Zhong, Baojiang
  organization: School of Computer Science and Technology, Soochow University, Suzhou, China
– sequence: 3
  givenname: Kai-Kuang
  orcidid: 0000-0003-2932-5709
  surname: Ma
  fullname: Ma, Kai-Kuang
  organization: College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38683701$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1LAzEQhoNU7IfePYgUvHjZOvnaZI-lVi0UFKznJU2nkLLdXZOt4L83a6tIDx6GmcPzzgxPn3TKqkRCLimMKIXsbjF7GTFgYsR5xoSmJ6RHM0ETAME6cQapEkVF1iX9EDYAVEianpEu16nmCmiPJOPSharxVe3s8NWaApNZ-WG8M2UznBaFqwMO77FB27iqPCena1MEvDj0AXl7mC4mT8n8-XE2Gc8Ty4VukqWSBixjVhnUGU2XViiUiq3oygiGCBosKqolU2nK2ZpLpVEwayxlXCvGB-R2v7f21fsOQ5NvXbBYFKbEahdyDiKLmGQtenOEbqqdL-N3kZIQi39T1wdqt9ziKq-92xr_mf-IiADsAeurEDyufxEKees6j67z1nV-cB0j6VHEusa0mhpvXPFf8GofdIj4546kwKKAL-cYh9g
CODEN IIPRE4
CitedBy_id crossref_primary_10_1017_S0373463325000025
Cites_doi 10.1016/j.patcog.2012.02.014
10.1007/978-3-031-26313-2_14
10.1006/gmip.1998.0471
10.1109/TIM.2022.3169154
10.1007/978-3-031-33837-3_4
10.1007/s00138-022-01319-5
10.1109/34.765658
10.1109/TIP.2023.3268563
10.1109/TIP.2021.3065799
10.1016/j.gmod.2021.101110
10.1016/j.patcog.2023.109983
10.1007/s12555-014-0561-y
10.1109/TIP.2015.2440751
10.1007/s11263-019-01257-2
10.1109/TIP.2020.2967601
10.1016/S0893-6080(03)00119-9
10.1016/j.patcog.2005.11.018
10.1109/TAES.2018.2843578
10.3390/drones7030209
10.1109/LES.2023.3234871
10.1016/j.imavis.2024.104968
10.1109/ICIP49359.2023.10222081
10.1109/TIP.2019.2934352
10.1016/j.patcog.2007.09.006
10.1109/TPAMI.2010.223
10.1109/TIP.2010.2099127
10.1016/0167-8655(90)90042-Z
10.1109/TVCG.2021.3067765
10.1109/ACCESS.2023.3315848
10.1007/978-981-99-8552-4_40
10.1109/ICIP.2017.8296246
10.1109/ICIP.2011.6115603
10.1016/j.patcog.2012.11.007
10.1016/j.measurement.2024.114238
10.1016/j.patcog.2016.01.017
10.1007/978-3-642-33709-3_41
10.1109/WACV48630.2021.00394
10.1007/0-387-24579-0_5
10.1016/j.patcog.2016.06.031
10.1109/TIP.2017.2704660
10.1016/j.patcog.2014.05.012
10.1109/taes.2024.3373564
10.1016/j.eswa.2023.119853
10.2514/1.g007629
10.1109/TIP.2021.3050673
10.1109/TIP.2023.3270026
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
DOI 10.1109/TIP.2024.3392481
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1
ExternalDocumentID 38683701
10_1109_TIP_2024_3392481
10510212
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Natural Science Foundation of the Jiangsu Higher Education Institutions of China
  grantid: 21KJA520007
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
53G
5VS
AAYOK
AAYXX
ABFSI
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
E.L
EJD
H~9
ICLAB
IFJZH
RIG
VH1
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
ID FETCH-LOGICAL-c348t-b75a0c22c7ae8916bc47e572d1da42ee080ce7185276632f3578e42cac1238723
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Fri Jul 11 02:39:33 EDT 2025
Sun Jun 29 12:50:00 EDT 2025
Mon Jul 21 05:57:43 EDT 2025
Thu Apr 24 23:09:07 EDT 2025
Tue Jul 01 02:18:59 EDT 2025
Wed Aug 27 02:06:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-b75a0c22c7ae8916bc47e572d1da42ee080ce7185276632f3578e42cac1238723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9899-524X
0000-0003-2932-5709
0000-0003-3193-5709
PMID 38683701
PQID 3050305322
PQPubID 85429
PageCount 1
ParticipantIDs ieee_primary_10510212
proquest_journals_3050305322
pubmed_primary_38683701
crossref_primary_10_1109_TIP_2024_3392481
proquest_miscellaneous_3049723522
crossref_citationtrail_10_1109_TIP_2024_3392481
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Chatzikokolakis (ref44); 59
ref24
ref46
ref23
ref45
ref26
ref25
ref47
ref20
ref42
ref41
ref22
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref17
  doi: 10.1016/j.patcog.2012.02.014
– ident: ref30
  doi: 10.1007/978-3-031-26313-2_14
– ident: ref39
  doi: 10.1006/gmip.1998.0471
– ident: ref31
  doi: 10.1109/TIM.2022.3169154
– ident: ref40
  doi: 10.1007/978-3-031-33837-3_4
– ident: ref32
  doi: 10.1007/s00138-022-01319-5
– ident: ref35
  doi: 10.1109/34.765658
– ident: ref15
  doi: 10.1109/TIP.2023.3268563
– ident: ref37
  doi: 10.1109/TIP.2021.3065799
– ident: ref19
  doi: 10.1016/j.gmod.2021.101110
– ident: ref20
  doi: 10.1016/j.patcog.2023.109983
– ident: ref12
  doi: 10.1007/s12555-014-0561-y
– ident: ref47
  doi: 10.1109/TIP.2015.2440751
– ident: ref46
  doi: 10.1007/s11263-019-01257-2
– ident: ref18
  doi: 10.1109/TIP.2020.2967601
– ident: ref33
  doi: 10.1016/S0893-6080(03)00119-9
– ident: ref25
  doi: 10.1016/j.patcog.2005.11.018
– ident: ref6
  doi: 10.1109/TAES.2018.2843578
– ident: ref14
  doi: 10.3390/drones7030209
– ident: ref1
  doi: 10.1109/LES.2023.3234871
– ident: ref10
  doi: 10.1016/j.imavis.2024.104968
– ident: ref2
  doi: 10.1109/ICIP49359.2023.10222081
– ident: ref23
  doi: 10.1109/TIP.2019.2934352
– ident: ref8
  doi: 10.1016/j.patcog.2007.09.006
– ident: ref34
  doi: 10.1109/TPAMI.2010.223
– ident: ref16
  doi: 10.1109/TIP.2010.2099127
– volume: 59
  start-page: 1
  volume-title: Proc. Int. Conf. Concur. Theory
  ident: ref44
  article-title: Up-to techniques for generalized bisimulation metrics
– ident: ref7
  doi: 10.1016/0167-8655(90)90042-Z
– ident: ref29
  doi: 10.1109/TVCG.2021.3067765
– ident: ref21
  doi: 10.1109/ACCESS.2023.3315848
– ident: ref24
  doi: 10.1007/978-981-99-8552-4_40
– ident: ref45
  doi: 10.1109/ICIP.2017.8296246
– ident: ref9
  doi: 10.1109/ICIP.2011.6115603
– ident: ref36
  doi: 10.1016/j.patcog.2012.11.007
– ident: ref3
  doi: 10.1016/j.measurement.2024.114238
– ident: ref26
  doi: 10.1016/j.patcog.2016.01.017
– ident: ref22
  doi: 10.1007/978-3-642-33709-3_41
– ident: ref28
  doi: 10.1109/WACV48630.2021.00394
– ident: ref41
  doi: 10.1007/0-387-24579-0_5
– ident: ref42
  doi: 10.1016/j.patcog.2016.06.031
– ident: ref13
  doi: 10.1109/TIP.2017.2704660
– ident: ref11
  doi: 10.1016/j.patcog.2014.05.012
– ident: ref5
  doi: 10.1109/taes.2024.3373564
– ident: ref43
  doi: 10.1016/j.eswa.2023.119853
– ident: ref4
  doi: 10.2514/1.g007629
– ident: ref27
  doi: 10.1109/TIP.2021.3050673
– ident: ref38
  doi: 10.1109/TIP.2023.3270026
SSID ssj0014516
Score 2.4586437
Snippet Detecting ellipses poses a challenging low-level task indispensable to many image analysis applications. Existing ellipse detection methods commonly encounter...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Accuracy
Aerospace electronics
Algorithms
Anisotropic
Anisotropic magnetoresistance
Anisotropic scale-invariant
Anisotropy
Detectors
distance measure
ellipse fitting
Elliptic fitting
Ellipticity
Extraterrestrial measurements
Fitting
homologous similarity
Image analysis
Image edge detection
Invariants
least squares
Pharmacists
Title Anisotropic Scale-Invariant Ellipse Detection
URI https://ieeexplore.ieee.org/document/10510212
https://www.ncbi.nlm.nih.gov/pubmed/38683701
https://www.proquest.com/docview/3050305322
https://www.proquest.com/docview/3049723522
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI6AExwYjwGDgYrEhUO2NU2b9jgB0-Awcdik3aomdSUEaqet48Cvx067aSANIfVQKW6axnH9OY5txu4y5UmRuQGPRJpx0tBc-zriqNwIPntaa3tAdhQMJ_Jl6k_rYHUbCwMA9vAZdOjW-vLTwixpqwwl3KdK1PjH3UXLrQrWWrsMqOKsdW36iivE_SufZC_qjp9f0RIUsuMhGpCh-0MH2aIq2_Gl1TODBhutRlgdL3nvLEvdMV-_kjf--xOO2GGNOJ1-tUSO2Q7kJ6xRo0-nlu3FCTvYSE14yng_f1sU5byYvRkkQjXCn_NPNKyRE86TdSCA8wilPcmVN9lk8DR-GPK6tAI3ngxLrpWf9IwQRiUQIkLURirwlUjdNJECAHGkAUWB1Qq5JjLKiQNSmMSgpguV8M7YXl7kcMGcQIEIMhPiFVKmnyj1ZBC6icA-ZZaZFuuuJjs2dd5xKn_xEVv7oxfFyJ6Y2BPX7Gmx-_UTsyrnxh-0TZrkDbpqflusvWJoXEvlIvYo-Q2VwsDm23UzyhM5SZIciiXRSCrE5hPNebUQ1p17YUC5gtzLLS-9Yvs0tmqHps32yvkSrhGzlPrGrtVv_NjjIA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-swEB4hOAAH9qWPLU_iwsGlcZw4OSIWtSwVhyJxi2JnIiFQgmjKgV__Zpy04iGBkHKI5InjeDyZz54N4LjQgZKFH4lE5oVgDS1MaBJByo3hc2CMcQ6yw6j_oK4fw8c2WN3FwiCicz7DLt86W35e2QkflZGEh1yJmv64C6T4Q78J15oZDbjmrDNuhlpoQv5Tq2QvOR0N7mkvKFU3IDygYv8_LeTKqnyPMJ2muVqF4XSMjYPJc3dSm679-JK-8dcfsQYrLeb0zppFsg5zWG7Aaos_vVa6xxuw_Ck54SaIs_JpXNVv1euTJSJSJGJQvtPWmnjhXToTAnoXWDtfrnILHq4uR-d90RZXEDZQcS2MDrOeldLqDGPCiMYqjaGWuZ9nSiISkrSoObRaE99kwVlxUEmbWdJ1sZbBNsyXVYm74EUaZVTYmK6Yc_0keaCi2M8k9amKwnbgdDrZqW0zj3MBjJfU7UB6SUrsSZk9acueDpzMnnhtsm78QLvFk_yJrpnfDuxPGZq2cjlOA05_w8UwqPnvrJkkis0kWYnVhGkUl2ILmWanWQizzoM44mxB_p9vXnoEi_3R3W16Oxje7MESj7M5r9mH-fptggeEYGpz6NbtPwGj5mk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropic+Scale-Invariant+Ellipse+Detection&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Wang%2C+Zikai&rft.au=Zhong%2C+Baojiang&rft.au=Ma%2C+Kai-Kuang&rft.date=2024-01-01&rft.eissn=1941-0042&rft.volume=PP&rft_id=info:doi/10.1109%2FTIP.2024.3392481&rft_id=info%3Apmid%2F38683701&rft.externalDocID=38683701
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon