Anisotropic Scale-Invariant Ellipse Detection
Detecting ellipses poses a challenging low-level task indispensable to many image analysis applications. Existing ellipse detection methods commonly encounter two fundamental issues. First, inferior detection accuracy could be incurred on a small ellipse than that on a large one; this introduces the...
Saved in:
Published in | IEEE transactions on image processing Vol. 33; p. 1 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Detecting ellipses poses a challenging low-level task indispensable to many image analysis applications. Existing ellipse detection methods commonly encounter two fundamental issues. First, inferior detection accuracy could be incurred on a small ellipse than that on a large one; this introduces the scale issue. Second, inferior detection accuracy could be yielded along the minor axis than along the major one of the same ellipse; this leads to the anisotropy issue. To address these issues simultaneously, a novel anisotropic scale-invariant (ASI) ellipse detection methodology is proposed. Our basic idea is to perform ellipse detection in a transformed image space referred to as the ellipse normalization (EN) space, in which the desired ellipse from the original image is 'normalized' to the unit circle. With the establishment of the EN-space, an analytical ellipse fitting scheme and a set of distance measures are developed. Theoretical justifications are then derived to prove that both our ellipse fitting scheme and distance measures are invariant to anisotropic scaling, and thus each ellipse can be detected with the same accuracy regardless of its size and ellipticity. By incorporating these components into two recent state-of-the-art algorithms, two ASI ellipse detectors are finally developed and exploited to verify the effectiveness of our proposed methodology. |
---|---|
AbstractList | Detecting ellipses poses a challenging low-level task indispensable to many image analysis applications. Existing ellipse detection methods commonly encounter two fundamental issues. First, inferior detection accuracy could be incurred on a small ellipse than that on a large one; this introduces the scale issue. Second, inferior detection accuracy could be yielded along the minor axis than along the major one of the same ellipse; this leads to the anisotropy issue. To address these issues simultaneously, a novel anisotropic scale-invariant (ASI) ellipse detection methodology is proposed. Our basic idea is to perform ellipse detection in a transformed image space referred to as the ellipse normalization (EN) space, in which the desired ellipse from the original image is 'normalized' to the unit circle. With the establishment of the EN-space, an analytical ellipse fitting scheme and a set of distance measures are developed. Theoretical justifications are then derived to prove that both our ellipse fitting scheme and distance measures are invariant to anisotropic scaling, and thus each ellipse can be detected with the same accuracy regardless of its size and ellipticity. By incorporating these components into two recent state-of-the-art algorithms, two ASI ellipse detectors are finally developed and exploited to verify the effectiveness of our proposed methodology. Detecting ellipses poses a challenging low-level task indispensable to many image analysis applications. Existing ellipse detection methods commonly encounter two fundamental issues. First, inferior detection accuracy could be incurred on a small ellipse than that on a large one; this introduces the scale issue. Second, inferior detection accuracy could be yielded along the minor axis than along the major one of the same ellipse; this leads to the anisotropy issue. To address these issues simultaneously, a novel anisotropic scale-invariant (ASI) ellipse detection methodology is proposed. Our basic idea is to perform ellipse detection in a transformed image space referred to as the ellipse normalization (EN) space, in which the desired ellipse from the original image is 'normalized' to the unit circle. With the establishment of the EN-space, an analytical ellipse fitting scheme and a set of distance measures are developed. Theoretical justifications are then derived to prove that both our ellipse fitting scheme and distance measures are invariant to anisotropic scaling, and thus each ellipse can be detected with the same accuracy regardless of its size and ellipticity. By incorporating these components into two recent state-of-the-art algorithms, two ASI ellipse detectors are finally developed and exploited to verify the effectiveness of our proposed methodology.Detecting ellipses poses a challenging low-level task indispensable to many image analysis applications. Existing ellipse detection methods commonly encounter two fundamental issues. First, inferior detection accuracy could be incurred on a small ellipse than that on a large one; this introduces the scale issue. Second, inferior detection accuracy could be yielded along the minor axis than along the major one of the same ellipse; this leads to the anisotropy issue. To address these issues simultaneously, a novel anisotropic scale-invariant (ASI) ellipse detection methodology is proposed. Our basic idea is to perform ellipse detection in a transformed image space referred to as the ellipse normalization (EN) space, in which the desired ellipse from the original image is 'normalized' to the unit circle. With the establishment of the EN-space, an analytical ellipse fitting scheme and a set of distance measures are developed. Theoretical justifications are then derived to prove that both our ellipse fitting scheme and distance measures are invariant to anisotropic scaling, and thus each ellipse can be detected with the same accuracy regardless of its size and ellipticity. By incorporating these components into two recent state-of-the-art algorithms, two ASI ellipse detectors are finally developed and exploited to verify the effectiveness of our proposed methodology. |
Author | Wang, Zikai Ma, Kai-Kuang Zhong, Baojiang |
Author_xml | – sequence: 1 givenname: Zikai orcidid: 0000-0003-3193-5709 surname: Wang fullname: Wang, Zikai organization: School of Computer Science and Technology, Soochow University, Suzhou, China – sequence: 2 givenname: Baojiang orcidid: 0000-0002-9899-524X surname: Zhong fullname: Zhong, Baojiang organization: School of Computer Science and Technology, Soochow University, Suzhou, China – sequence: 3 givenname: Kai-Kuang orcidid: 0000-0003-2932-5709 surname: Ma fullname: Ma, Kai-Kuang organization: College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38683701$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kE1LAzEQhoNU7IfePYgUvHjZOvnaZI-lVi0UFKznJU2nkLLdXZOt4L83a6tIDx6GmcPzzgxPn3TKqkRCLimMKIXsbjF7GTFgYsR5xoSmJ6RHM0ETAME6cQapEkVF1iX9EDYAVEianpEu16nmCmiPJOPSharxVe3s8NWaApNZ-WG8M2UznBaFqwMO77FB27iqPCena1MEvDj0AXl7mC4mT8n8-XE2Gc8Ty4VukqWSBixjVhnUGU2XViiUiq3oygiGCBosKqolU2nK2ZpLpVEwayxlXCvGB-R2v7f21fsOQ5NvXbBYFKbEahdyDiKLmGQtenOEbqqdL-N3kZIQi39T1wdqt9ziKq-92xr_mf-IiADsAeurEDyufxEKees6j67z1nV-cB0j6VHEusa0mhpvXPFf8GofdIj4546kwKKAL-cYh9g |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1017_S0373463325000025 |
Cites_doi | 10.1016/j.patcog.2012.02.014 10.1007/978-3-031-26313-2_14 10.1006/gmip.1998.0471 10.1109/TIM.2022.3169154 10.1007/978-3-031-33837-3_4 10.1007/s00138-022-01319-5 10.1109/34.765658 10.1109/TIP.2023.3268563 10.1109/TIP.2021.3065799 10.1016/j.gmod.2021.101110 10.1016/j.patcog.2023.109983 10.1007/s12555-014-0561-y 10.1109/TIP.2015.2440751 10.1007/s11263-019-01257-2 10.1109/TIP.2020.2967601 10.1016/S0893-6080(03)00119-9 10.1016/j.patcog.2005.11.018 10.1109/TAES.2018.2843578 10.3390/drones7030209 10.1109/LES.2023.3234871 10.1016/j.imavis.2024.104968 10.1109/ICIP49359.2023.10222081 10.1109/TIP.2019.2934352 10.1016/j.patcog.2007.09.006 10.1109/TPAMI.2010.223 10.1109/TIP.2010.2099127 10.1016/0167-8655(90)90042-Z 10.1109/TVCG.2021.3067765 10.1109/ACCESS.2023.3315848 10.1007/978-981-99-8552-4_40 10.1109/ICIP.2017.8296246 10.1109/ICIP.2011.6115603 10.1016/j.patcog.2012.11.007 10.1016/j.measurement.2024.114238 10.1016/j.patcog.2016.01.017 10.1007/978-3-642-33709-3_41 10.1109/WACV48630.2021.00394 10.1007/0-387-24579-0_5 10.1016/j.patcog.2016.06.031 10.1109/TIP.2017.2704660 10.1016/j.patcog.2014.05.012 10.1109/taes.2024.3373564 10.1016/j.eswa.2023.119853 10.2514/1.g007629 10.1109/TIP.2021.3050673 10.1109/TIP.2023.3270026 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
DOI | 10.1109/TIP.2024.3392481 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Technology Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 1 |
ExternalDocumentID | 38683701 10_1109_TIP_2024_3392481 10510212 |
Genre | orig-research Journal Article |
GrantInformation_xml | – fundername: Natural Science Foundation of the Jiangsu Higher Education Institutions of China grantid: 21KJA520007 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 53G 5VS AAYOK AAYXX ABFSI AETIX AGSQL AI. AIBXA ALLEH CITATION E.L EJD H~9 ICLAB IFJZH RIG VH1 NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c348t-b75a0c22c7ae8916bc47e572d1da42ee080ce7185276632f3578e42cac1238723 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Fri Jul 11 02:39:33 EDT 2025 Sun Jun 29 12:50:00 EDT 2025 Mon Jul 21 05:57:43 EDT 2025 Thu Apr 24 23:09:07 EDT 2025 Tue Jul 01 02:18:59 EDT 2025 Wed Aug 27 02:06:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-b75a0c22c7ae8916bc47e572d1da42ee080ce7185276632f3578e42cac1238723 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9899-524X 0000-0003-2932-5709 0000-0003-3193-5709 |
PMID | 38683701 |
PQID | 3050305322 |
PQPubID | 85429 |
PageCount | 1 |
ParticipantIDs | ieee_primary_10510212 proquest_journals_3050305322 pubmed_primary_38683701 crossref_primary_10_1109_TIP_2024_3392481 proquest_miscellaneous_3049723522 crossref_citationtrail_10_1109_TIP_2024_3392481 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Chatzikokolakis (ref44); 59 ref24 ref46 ref23 ref45 ref26 ref25 ref47 ref20 ref42 ref41 ref22 ref21 ref43 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref17 doi: 10.1016/j.patcog.2012.02.014 – ident: ref30 doi: 10.1007/978-3-031-26313-2_14 – ident: ref39 doi: 10.1006/gmip.1998.0471 – ident: ref31 doi: 10.1109/TIM.2022.3169154 – ident: ref40 doi: 10.1007/978-3-031-33837-3_4 – ident: ref32 doi: 10.1007/s00138-022-01319-5 – ident: ref35 doi: 10.1109/34.765658 – ident: ref15 doi: 10.1109/TIP.2023.3268563 – ident: ref37 doi: 10.1109/TIP.2021.3065799 – ident: ref19 doi: 10.1016/j.gmod.2021.101110 – ident: ref20 doi: 10.1016/j.patcog.2023.109983 – ident: ref12 doi: 10.1007/s12555-014-0561-y – ident: ref47 doi: 10.1109/TIP.2015.2440751 – ident: ref46 doi: 10.1007/s11263-019-01257-2 – ident: ref18 doi: 10.1109/TIP.2020.2967601 – ident: ref33 doi: 10.1016/S0893-6080(03)00119-9 – ident: ref25 doi: 10.1016/j.patcog.2005.11.018 – ident: ref6 doi: 10.1109/TAES.2018.2843578 – ident: ref14 doi: 10.3390/drones7030209 – ident: ref1 doi: 10.1109/LES.2023.3234871 – ident: ref10 doi: 10.1016/j.imavis.2024.104968 – ident: ref2 doi: 10.1109/ICIP49359.2023.10222081 – ident: ref23 doi: 10.1109/TIP.2019.2934352 – ident: ref8 doi: 10.1016/j.patcog.2007.09.006 – ident: ref34 doi: 10.1109/TPAMI.2010.223 – ident: ref16 doi: 10.1109/TIP.2010.2099127 – volume: 59 start-page: 1 volume-title: Proc. Int. Conf. Concur. Theory ident: ref44 article-title: Up-to techniques for generalized bisimulation metrics – ident: ref7 doi: 10.1016/0167-8655(90)90042-Z – ident: ref29 doi: 10.1109/TVCG.2021.3067765 – ident: ref21 doi: 10.1109/ACCESS.2023.3315848 – ident: ref24 doi: 10.1007/978-981-99-8552-4_40 – ident: ref45 doi: 10.1109/ICIP.2017.8296246 – ident: ref9 doi: 10.1109/ICIP.2011.6115603 – ident: ref36 doi: 10.1016/j.patcog.2012.11.007 – ident: ref3 doi: 10.1016/j.measurement.2024.114238 – ident: ref26 doi: 10.1016/j.patcog.2016.01.017 – ident: ref22 doi: 10.1007/978-3-642-33709-3_41 – ident: ref28 doi: 10.1109/WACV48630.2021.00394 – ident: ref41 doi: 10.1007/0-387-24579-0_5 – ident: ref42 doi: 10.1016/j.patcog.2016.06.031 – ident: ref13 doi: 10.1109/TIP.2017.2704660 – ident: ref11 doi: 10.1016/j.patcog.2014.05.012 – ident: ref5 doi: 10.1109/taes.2024.3373564 – ident: ref43 doi: 10.1016/j.eswa.2023.119853 – ident: ref4 doi: 10.2514/1.g007629 – ident: ref27 doi: 10.1109/TIP.2021.3050673 – ident: ref38 doi: 10.1109/TIP.2023.3270026 |
SSID | ssj0014516 |
Score | 2.4586437 |
Snippet | Detecting ellipses poses a challenging low-level task indispensable to many image analysis applications. Existing ellipse detection methods commonly encounter... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Accuracy Aerospace electronics Algorithms Anisotropic Anisotropic magnetoresistance Anisotropic scale-invariant Anisotropy Detectors distance measure ellipse fitting Elliptic fitting Ellipticity Extraterrestrial measurements Fitting homologous similarity Image analysis Image edge detection Invariants least squares Pharmacists |
Title | Anisotropic Scale-Invariant Ellipse Detection |
URI | https://ieeexplore.ieee.org/document/10510212 https://www.ncbi.nlm.nih.gov/pubmed/38683701 https://www.proquest.com/docview/3050305322 https://www.proquest.com/docview/3049723522 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI6AExwYjwGDgYrEhUO2NU2b9jgB0-Awcdik3aomdSUEaqet48Cvx067aSANIfVQKW6axnH9OY5txu4y5UmRuQGPRJpx0tBc-zriqNwIPntaa3tAdhQMJ_Jl6k_rYHUbCwMA9vAZdOjW-vLTwixpqwwl3KdK1PjH3UXLrQrWWrsMqOKsdW36iivE_SufZC_qjp9f0RIUsuMhGpCh-0MH2aIq2_Gl1TODBhutRlgdL3nvLEvdMV-_kjf--xOO2GGNOJ1-tUSO2Q7kJ6xRo0-nlu3FCTvYSE14yng_f1sU5byYvRkkQjXCn_NPNKyRE86TdSCA8wilPcmVN9lk8DR-GPK6tAI3ngxLrpWf9IwQRiUQIkLURirwlUjdNJECAHGkAUWB1Qq5JjLKiQNSmMSgpguV8M7YXl7kcMGcQIEIMhPiFVKmnyj1ZBC6icA-ZZaZFuuuJjs2dd5xKn_xEVv7oxfFyJ6Y2BPX7Gmx-_UTsyrnxh-0TZrkDbpqflusvWJoXEvlIvYo-Q2VwsDm23UzyhM5SZIciiXRSCrE5hPNebUQ1p17YUC5gtzLLS-9Yvs0tmqHps32yvkSrhGzlPrGrtVv_NjjIA |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT-swEB4hOAAH9qWPLU_iwsGlcZw4OSIWtSwVhyJxi2JnIiFQgmjKgV__Zpy04iGBkHKI5InjeDyZz54N4LjQgZKFH4lE5oVgDS1MaBJByo3hc2CMcQ6yw6j_oK4fw8c2WN3FwiCicz7DLt86W35e2QkflZGEh1yJmv64C6T4Q78J15oZDbjmrDNuhlpoQv5Tq2QvOR0N7mkvKFU3IDygYv8_LeTKqnyPMJ2muVqF4XSMjYPJc3dSm679-JK-8dcfsQYrLeb0zppFsg5zWG7Aaos_vVa6xxuw_Ck54SaIs_JpXNVv1euTJSJSJGJQvtPWmnjhXToTAnoXWDtfrnILHq4uR-d90RZXEDZQcS2MDrOeldLqDGPCiMYqjaGWuZ9nSiISkrSoObRaE99kwVlxUEmbWdJ1sZbBNsyXVYm74EUaZVTYmK6Yc_0keaCi2M8k9amKwnbgdDrZqW0zj3MBjJfU7UB6SUrsSZk9acueDpzMnnhtsm78QLvFk_yJrpnfDuxPGZq2cjlOA05_w8UwqPnvrJkkis0kWYnVhGkUl2ILmWanWQizzoM44mxB_p9vXnoEi_3R3W16Oxje7MESj7M5r9mH-fptggeEYGpz6NbtPwGj5mk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropic+Scale-Invariant+Ellipse+Detection&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Wang%2C+Zikai&rft.au=Zhong%2C+Baojiang&rft.au=Ma%2C+Kai-Kuang&rft.date=2024-01-01&rft.eissn=1941-0042&rft.volume=PP&rft_id=info:doi/10.1109%2FTIP.2024.3392481&rft_id=info%3Apmid%2F38683701&rft.externalDocID=38683701 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |