Nonparametric identification of population models via Gaussian processes

Population models are used to describe the dynamics of different subjects belonging to a population and play an important role in drug pharmacokinetics. A nonparametric identification scheme is proposed in which both the average impulse response of the population and the individual ones are modelled...

Full description

Saved in:
Bibliographic Details
Published inAutomatica (Oxford) Vol. 43; no. 7; pp. 1134 - 1144
Main Authors Neve, M., De Nicolao, G., Marchesi, L.
Format Journal Article Conference Proceeding
LanguageEnglish
Published Oxford Elsevier Ltd 01.07.2007
Elsevier
Subjects
Online AccessGet full text
ISSN0005-1098
1873-2836
DOI10.1016/j.automatica.2006.12.024

Cover

Loading…
Abstract Population models are used to describe the dynamics of different subjects belonging to a population and play an important role in drug pharmacokinetics. A nonparametric identification scheme is proposed in which both the average impulse response of the population and the individual ones are modelled as Gaussian stochastic processes. Assuming that the average curve is an integrated Wiener process, it is shown that its estimate is a cubic spline. An empirical Bayes algorithm for estimating both the average and the individual curves is worked out. The model is tested on simulated data sets as well as on xenobiotics pharmacokinetic data.
AbstractList Population models are used to describe the dynamics of different subjects belonging to a population and play an important role in drug pharmacokinetics. A nonparametric identification scheme is proposed in which both the average impulse response of the population and the individual ones are modelled as Gaussian stochastic processes. Assuming that the average curve is an integrated Wiener process, it is shown that its estimate is a cubic spline. An empirical Bayes algorithm for estimating both the average and the individual curves is worked out. The model is tested on simulated data sets as well as on xenobiotics pharmacokinetic data.
Author Marchesi, L.
De Nicolao, G.
Neve, M.
Author_xml – sequence: 1
  givenname: M.
  surname: Neve
  fullname: Neve, M.
  email: marta.neve@unipv.it
– sequence: 2
  givenname: G.
  surname: De Nicolao
  fullname: De Nicolao, G.
  email: giuseppe.denicolao@unipv.it
– sequence: 3
  givenname: L.
  surname: Marchesi
  fullname: Marchesi, L.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18833516$$DView record in Pascal Francis
BookMark eNqFkE1LAzEQhoNUsK3-h7143HVmsx_Zi6BFW6HoRc9hmk0gZbtZkrTgv3drRcFLT8ML8z7DPDM26V2vGUsQMgSs7rYZ7aPbUbSKshygyjDPIC8u2BRFzdNc8GrCpgBQpgiNuGKzELZjLFDkU7Z6df1AnnY6eqsS2-o-WjOyonV94kwyuGHfndLOtboLycFSsqR9CJb6ZPBO6RB0uGaXhrqgb37mnH08P70vVun6bfmyeFinihcippuqBW6oUYBCi9o0WkElzKbGGpVAEC1QAbppSFRlzpEI67ai2pRcgOHA5-z2xB0oKOqMp17ZIAdvd-Q_JQrBeYnVuHd_2lPeheC1kcrG7z-iJ9tJBHn0J7fyz588-pOYy9HfCBD_AL83zlcfT9VRlz5Y7WVQVvdKt9ZrFWXr7HnIF1tPlFs
CODEN ATCAA9
CitedBy_id crossref_primary_10_1109_TPAMI_2008_297
crossref_primary_10_1016_j_automatica_2010_11_004
crossref_primary_10_1016_j_arcontrol_2016_04_013
crossref_primary_10_1016_j_automatica_2008_01_021
crossref_primary_10_1016_j_automatica_2020_109032
crossref_primary_10_1109_TAC_2008_929876
crossref_primary_10_1002_acs_1002
crossref_primary_10_1016_j_automatica_2009_10_031
crossref_primary_10_1016_j_cmpb_2012_11_001
crossref_primary_10_1016_j_phpro_2012_05_126
crossref_primary_10_3182_20090706_3_FR_2004_00139
crossref_primary_10_1007_s10994_007_5040_8
crossref_primary_10_1016_j_automatica_2008_06_003
crossref_primary_10_1016_j_neucom_2013_02_024
crossref_primary_10_1007_s10928_014_9389_6
crossref_primary_10_1016_j_mbs_2014_11_007
crossref_primary_10_1109_TBME_2011_2164614
crossref_primary_10_1109_TBME_2007_902240
crossref_primary_10_1002_rnc_1265
crossref_primary_10_1109_TNN_2010_2095882
Cites_doi 10.1146/annurev.pharmtox.40.1.67
10.1007/BF02353464
10.1162/neco.1995.7.2.219
10.1023/A:1025769431364
10.1007/3-540-36434-X_3
10.2307/2986121
10.1109/TMI.2004.824243
10.1152/ajpendo.2001.280.1.E179
10.1162/neco.1992.4.3.415
10.1007/BF01061728
10.1109/CBMS.2001.941754
10.1109/ACC.2005.1470089
10.1109/CBMS.2001.941750
10.1096/fasebj.2.3.3350235
10.1111/j.2517-6161.1983.tb01239.x
10.2307/2533402
10.2165/00003088-199630020-00001
10.1016/S0005-1098(01)00055-3
10.2165/00003088-199936040-00001
10.1080/01621459.1996.10476961
10.1109/9.895563
10.1109/72.914520
10.1109/5.58326
10.3109/03602538409015063
10.1007/BF02353463
10.1023/A:1022920403166
ContentType Journal Article
Conference Proceeding
Copyright 2007 Elsevier Ltd
2007 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier Ltd
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.automatica.2006.12.024
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-2836
EndPage 1144
ExternalDocumentID 18833516
10_1016_j_automatica_2006_12_024
S0005109807001057
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
IQODW
ID FETCH-LOGICAL-c348t-b6d03fa9c018e87f9ec068fb7171c8108d0a40e99a865231aa17d6a7f5380f303
IEDL.DBID AIKHN
ISSN 0005-1098
IngestDate Tue Jul 02 07:15:51 EDT 2024
Tue Jul 01 00:42:51 EDT 2025
Thu Apr 24 23:07:35 EDT 2025
Fri Feb 23 02:14:11 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Splines
Neural networks
Regularization
Nonparametric identification
Estimation theory
Pharmacokinetic data
Drug
Non parametric estimation
Wiener process
Neural network
Stochastic process
Modeling
Spline approximation
Cubic spline
Gaussian process
Model matching
Pulse response
Population dynamics
System identification
Pharmacokinetics
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-b6d03fa9c018e87f9ec068fb7171c8108d0a40e99a865231aa17d6a7f5380f303
PageCount 11
ParticipantIDs pascalfrancis_primary_18833516
crossref_citationtrail_10_1016_j_automatica_2006_12_024
crossref_primary_10_1016_j_automatica_2006_12_024
elsevier_sciencedirect_doi_10_1016_j_automatica_2006_12_024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-07-01
PublicationDateYYYYMMDD 2007-07-01
PublicationDate_xml – month: 07
  year: 2007
  text: 2007-07-01
  day: 01
PublicationDecade 2000
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Automatica (Oxford)
PublicationYear 2007
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Wakefield, Bennett (bib34) 1996; 91
Girosi, Jones, Poggio (bib12) 1995; 7
Wahba (bib33) 1990
United States Department of Health and Human Services, Food and Drug Administration.
Poggio, Girosi (bib22) 1990; 78
Wakefield, Smith, Racine-Poon, Gelfand (bib35) 1994; 41
Vozeh, Steimer, Rowland, Morselli, Mentre, Balant (bib31) 1996; 30
Aarons (bib1) 1999; 36
Egerstedt, Martin (bib8) 2001; 37
Vicini, Cobelli (bib30) 2001; 280
Fattinger, Verotta (bib9) 1995; 23
Ferrazzi, F., Magni, P., & Bellazzi, R. (2003). Bayesian clustering of gene expression time series. In
Sheiner, Steimer (bib26) 2000; 40
,
.
Davidian, Giltinan (bib6) 1995
(pp. 991–996). Portland, OR, USA.
De Nicolao, Ferrari-Trecate (bib7) 2001; 12
Magni, Bellazzi, De Nicolao, Poggesi, Rocchetti (bib19) 2002; 29
Center for Drug Evaluation and Research. (1999).
:
(pp. 407–412). Bethesda, MD, USA.
MacKay (bib18) 1992; 4
Fattinger, Verotta (bib10) 1995; 23
Rocchetti, M., & Poggesi, I. (1997). Comparison of the Bailer and Yeh methods using real data. In L. Aarons, et al. (Ed.)
Sheiner (bib24) 1994; 15
(pp. 65–117). Berlin, Germany: Springer.
Williams (bib36) 1999
Leary, R., Jelliffe, R., Schumitzky, A., & Van Guilder, M. (2001). An adaptive grid non-parametric approach to pharmacokinetic and dynamic (PK/PD) population models. In
(pp. 53–55).
Beal, Sheiner (bib2) 1982; 8
(pp. 385–390). Brussels, Belgium: European Cooperation in the Field of Scientific and Technical Research, European Commission.
Shiryaev (bib27) 1996
Sun, Egerstedt, Martin (bib29) 2000; 45
(Vol. 8). Cambridge, MA, USA: MIT Press.
Williams, C. K. I., & Rasmussen, C.E. (1996). Gaussian processes for regression. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo, (Eds.)
Sheiner, Rosenberg, Marathe (bib25) 1977; 5
Bertoldo, Sparacino, Cobelli (bib4) 2004; 23
Park, Verotta, Blaschke, Sheiner (bib21) 1997; 25
Guardabasso, Munson, Rodbard (bib13) 1988; 2
(Vol. 168, pp. 133–166). NATO Asi Series, Series F, Computer and Systems Sciences. Dordrecht: Kluwer Academic Press.
Neve, M., De Nicolao, G., & Marchesi, L. (June 8–10, 2005). Nonparametric identification of population pharmacokinetic models: An MCMC approach. In
Beal, S. L., & Sheiner, L. B. (1998).
Jelliffe, R., Schumitzky, A., Van Guilder, M., Wang, X., & Leary, R. (2001). Population pharmacokinetic and dynamic models: Parametric (P) and nonparametric (NP) approaches. In
(pp. 389–394). Bethesda, MD, USA.
Wahba (bib32) 1983; 45
Yuh, Beal, Davidian, Harrison, Hester, Kowalski (bib38) 1994; 50
Smola, A. J., & Schölkopf, B. (2003). Bayesian kernel methods. In S. Mendelson, A. J. Smola, (Eds.)
MacKay, D. J. (1997). Gaussian processes: A replacement for supervised neural networks?. In
MacKay, D. J. (1998). Introduction to Gaussian processes. In C. M. Bishop (Ed.)
Girosi (10.1016/j.automatica.2006.12.024_bib12) 1995; 7
Vicini (10.1016/j.automatica.2006.12.024_bib30) 2001; 280
10.1016/j.automatica.2006.12.024_bib28
Poggio (10.1016/j.automatica.2006.12.024_bib22) 1990; 78
10.1016/j.automatica.2006.12.024_bib20
Beal (10.1016/j.automatica.2006.12.024_bib2) 1982; 8
10.1016/j.automatica.2006.12.024_bib23
Fattinger (10.1016/j.automatica.2006.12.024_bib9) 1995; 23
Park (10.1016/j.automatica.2006.12.024_bib21) 1997; 25
Sheiner (10.1016/j.automatica.2006.12.024_bib26) 2000; 40
Wahba (10.1016/j.automatica.2006.12.024_bib33) 1990
Williams (10.1016/j.automatica.2006.12.024_bib36) 1999
De Nicolao (10.1016/j.automatica.2006.12.024_bib7) 2001; 12
Bertoldo (10.1016/j.automatica.2006.12.024_bib4) 2004; 23
Guardabasso (10.1016/j.automatica.2006.12.024_bib13) 1988; 2
Sheiner (10.1016/j.automatica.2006.12.024_bib24) 1994; 15
Sheiner (10.1016/j.automatica.2006.12.024_bib25) 1977; 5
Aarons (10.1016/j.automatica.2006.12.024_bib1) 1999; 36
10.1016/j.automatica.2006.12.024_bib16
10.1016/j.automatica.2006.12.024_bib17
Egerstedt (10.1016/j.automatica.2006.12.024_bib8) 2001; 37
MacKay (10.1016/j.automatica.2006.12.024_bib18) 1992; 4
10.1016/j.automatica.2006.12.024_bib11
10.1016/j.automatica.2006.12.024_bib3
Yuh (10.1016/j.automatica.2006.12.024_bib38) 1994; 50
10.1016/j.automatica.2006.12.024_bib5
10.1016/j.automatica.2006.12.024_bib14
Wakefield (10.1016/j.automatica.2006.12.024_bib35) 1994; 41
10.1016/j.automatica.2006.12.024_bib15
Magni (10.1016/j.automatica.2006.12.024_bib19) 2002; 29
10.1016/j.automatica.2006.12.024_bib37
Wakefield (10.1016/j.automatica.2006.12.024_bib34) 1996; 91
Vozeh (10.1016/j.automatica.2006.12.024_bib31) 1996; 30
Shiryaev (10.1016/j.automatica.2006.12.024_bib27) 1996
Wahba (10.1016/j.automatica.2006.12.024_bib32) 1983; 45
Sun (10.1016/j.automatica.2006.12.024_bib29) 2000; 45
Davidian (10.1016/j.automatica.2006.12.024_bib6) 1995
Fattinger (10.1016/j.automatica.2006.12.024_bib10) 1995; 23
References_xml – volume: 15
  start-page: 153
  year: 1994
  end-page: 171
  ident: bib24
  article-title: The population approach to pharmacokinetic data analysis: Rationale and standard data analysis methods
  publication-title: Drug Metabolism Reviews
– volume: 23
  start-page: 581
  year: 1995
  end-page: 610
  ident: bib9
  article-title: A nonparametric subject-specific population method for deconvolution: I. Description, internal validation and real data examples
  publication-title: Journal of Pharmacokinetics and Biopharmaceutics
– volume: 12
  start-page: 228
  year: 2001
  end-page: 235
  ident: bib7
  article-title: Regularization networks: Fast weight calculation via Kalman filtering
  publication-title: IEEE Transactions on Neural Networks
– volume: 2
  start-page: 209
  year: 1988
  end-page: 215
  ident: bib13
  article-title: A versatile method for simultaneous analysis of families of curves
  publication-title: FASEB Journal
– reference: Jelliffe, R., Schumitzky, A., Van Guilder, M., Wang, X., & Leary, R. (2001). Population pharmacokinetic and dynamic models: Parametric (P) and nonparametric (NP) approaches. In
– reference: Williams, C. K. I., & Rasmussen, C.E. (1996). Gaussian processes for regression. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo, (Eds.),
– reference: (pp. 991–996). Portland, OR, USA.
– volume: 40
  start-page: 67
  year: 2000
  end-page: 95
  ident: bib26
  article-title: Pharmacokinetic/pharmacodynamic modeling in drug development
  publication-title: Annual Review of Pharmacology and Toxicology
– reference: Ferrazzi, F., Magni, P., & Bellazzi, R. (2003). Bayesian clustering of gene expression time series. In
– reference: (Vol. 168, pp. 133–166). NATO Asi Series, Series F, Computer and Systems Sciences. Dordrecht: Kluwer Academic Press.
– volume: 25
  start-page: 615
  year: 1997
  end-page: 642
  ident: bib21
  article-title: A semiparametric method for describing noisy population pharmacokinetic data
  publication-title: Journal of Pharmacokinetics and Biopharmaceutics
– reference: :
– volume: 50
  start-page: 566
  year: 1994
  end-page: 575
  ident: bib38
  article-title: Population pharmacokinetic/pharmacodynamic methodology and applications: A bibliography
  publication-title: Biometrics
– reference: (pp. 389–394). Bethesda, MD, USA.
– volume: 36
  start-page: 255
  year: 1999
  end-page: 264
  ident: bib1
  article-title: Software for population pharmacokinetics and pharmacodynamics
  publication-title: Clinical Pharmacokinetics
– volume: 78
  start-page: 1481
  year: 1990
  end-page: 1497
  ident: bib22
  article-title: Networks for approximation and learning
  publication-title: Proceedings of IEEE
– volume: 280
  start-page: 179
  year: 2001
  end-page: 186
  ident: bib30
  article-title: The iterative two-stage population approach to IVGTT minimal modeling: Improved precision with reduced sampling
  publication-title: American Journal of Physiology, Endocrinology and Metabolism
– volume: 91
  start-page: 917
  year: 1996
  end-page: 927
  ident: bib34
  article-title: The Bayesian modelling of covariates for population pharmacokinetic models
  publication-title: JASA
– reference: Neve, M., De Nicolao, G., & Marchesi, L. (June 8–10, 2005). Nonparametric identification of population pharmacokinetic models: An MCMC approach. In
– year: 1990
  ident: bib33
  article-title: Spline models for observational data
– reference: Smola, A. J., & Schölkopf, B. (2003). Bayesian kernel methods. In S. Mendelson, A. J. Smola, (Eds.),
– reference: .
– reference: ).
– reference: MacKay, D. J. (1998). Introduction to Gaussian processes. In C. M. Bishop (Ed.),
– volume: 30
  start-page: 81
  year: 1996
  end-page: 93
  ident: bib31
  article-title: The use of population pharmacokinetics in drug development
  publication-title: Clinical Pharmacokinetics
– reference: ,
– reference: Beal, S. L., & Sheiner, L. B. (1998).
– year: 1995
  ident: bib6
  article-title: Nonlinear models for repeated measurement data
– volume: 45
  start-page: 2271
  year: 2000
  end-page: 2279
  ident: bib29
  article-title: Control theoretic smoothing splines
  publication-title: IEEE Transactions on Automatic Control
– reference: (
– volume: 7
  start-page: 219
  year: 1995
  end-page: 269
  ident: bib12
  article-title: Regularization theory and neural networks architectures
  publication-title: Neural Computation
– year: 1996
  ident: bib27
  article-title: Probability
– volume: 5
  start-page: 445
  year: 1977
  end-page: 479
  ident: bib25
  article-title: Estimation of population characteristics of pharmacokinetic parameters from routine clinical data
  publication-title: Journal of Pharmacokinetics and Biopharmaceutics
– reference: ) (pp. 53–55).
– reference: (Vol. 8). Cambridge, MA, USA: MIT Press.
– reference: (pp. 407–412). Bethesda, MD, USA.
– volume: 4
  start-page: 415
  year: 1992
  end-page: 447
  ident: bib18
  article-title: Bayesian interpolation
  publication-title: Neural Computation.
– reference: Rocchetti, M., & Poggesi, I. (1997). Comparison of the Bailer and Yeh methods using real data. In L. Aarons, et al. (Ed.),
– start-page: 599
  year: 1999
  end-page: 621
  ident: bib36
  article-title: Prediction with Gaussian processes: From linear regression to linear prediction and beyond
  publication-title: Learning and inference in graphical models
– reference: (pp. 385–390). Brussels, Belgium: European Cooperation in the Field of Scientific and Technical Research, European Commission.
– volume: 41
  start-page: 201
  year: 1994
  end-page: 221
  ident: bib35
  article-title: Bayesian analysis of linear and nonlinear population models using the Gibbs sampler
  publication-title: Applied Statistics
– volume: 37
  start-page: 1057
  year: 2001
  end-page: 1064
  ident: bib8
  article-title: Optimal trajectory planning and smoothing splines
  publication-title: Automatica
– reference: (pp. 65–117). Berlin, Germany: Springer.
– volume: 45
  start-page: 133
  year: 1983
  end-page: 150
  ident: bib32
  article-title: Bayesian “confidence intervals” for the cross validated smoothing spline
  publication-title: Journal of Royal Statistical Society, Series B
– reference: Leary, R., Jelliffe, R., Schumitzky, A., & Van Guilder, M. (2001). An adaptive grid non-parametric approach to pharmacokinetic and dynamic (PK/PD) population models. In
– volume: 23
  start-page: 611
  year: 1995
  end-page: 634
  ident: bib10
  article-title: A nonparametric subject-specific population method for deconvolution: II. External validation
  publication-title: Journal of Pharmacokinetics and Biopharmaceutics
– volume: 8
  start-page: 195
  year: 1982
  end-page: 222
  ident: bib2
  article-title: Estimating population kinetics
  publication-title: Critical Review of Biomedical Engineering
– reference: MacKay, D. J. (1997). Gaussian processes: A replacement for supervised neural networks?. In
– volume: 23
  start-page: 297
  year: 2004
  end-page: 306
  ident: bib4
  article-title: “Population” approach improves parameter estimation of kinetic models from dynamic PET data
  publication-title: IEEE Transactions on Medical Imaging
– reference: Center for Drug Evaluation and Research. (1999).
– reference: . United States Department of Health and Human Services, Food and Drug Administration.
– volume: 29
  start-page: 445
  year: 2002
  end-page: 471
  ident: bib19
  article-title: Nonparametric AUC estimation in population studies with incomplete sampling: A Bayesian approach
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
– ident: 10.1016/j.automatica.2006.12.024_bib3
– volume: 40
  start-page: 67
  year: 2000
  ident: 10.1016/j.automatica.2006.12.024_bib26
  article-title: Pharmacokinetic/pharmacodynamic modeling in drug development
  publication-title: Annual Review of Pharmacology and Toxicology
  doi: 10.1146/annurev.pharmtox.40.1.67
– year: 1990
  ident: 10.1016/j.automatica.2006.12.024_bib33
– ident: 10.1016/j.automatica.2006.12.024_bib5
– volume: 23
  start-page: 611
  year: 1995
  ident: 10.1016/j.automatica.2006.12.024_bib10
  article-title: A nonparametric subject-specific population method for deconvolution: II. External validation
  publication-title: Journal of Pharmacokinetics and Biopharmaceutics
  doi: 10.1007/BF02353464
– volume: 7
  start-page: 219
  year: 1995
  ident: 10.1016/j.automatica.2006.12.024_bib12
  article-title: Regularization theory and neural networks architectures
  publication-title: Neural Computation
  doi: 10.1162/neco.1995.7.2.219
– ident: 10.1016/j.automatica.2006.12.024_bib16
– volume: 25
  start-page: 615
  year: 1997
  ident: 10.1016/j.automatica.2006.12.024_bib21
  article-title: A semiparametric method for describing noisy population pharmacokinetic data
  publication-title: Journal of Pharmacokinetics and Biopharmaceutics
  doi: 10.1023/A:1025769431364
– ident: 10.1016/j.automatica.2006.12.024_bib28
  doi: 10.1007/3-540-36434-X_3
– volume: 41
  start-page: 201
  year: 1994
  ident: 10.1016/j.automatica.2006.12.024_bib35
  article-title: Bayesian analysis of linear and nonlinear population models using the Gibbs sampler
  publication-title: Applied Statistics
  doi: 10.2307/2986121
– start-page: 599
  year: 1999
  ident: 10.1016/j.automatica.2006.12.024_bib36
  article-title: Prediction with Gaussian processes: From linear regression to linear prediction and beyond
– volume: 23
  start-page: 297
  issue: 3
  year: 2004
  ident: 10.1016/j.automatica.2006.12.024_bib4
  article-title: “Population” approach improves parameter estimation of kinetic models from dynamic PET data
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2004.824243
– volume: 280
  start-page: 179
  issue: 1
  year: 2001
  ident: 10.1016/j.automatica.2006.12.024_bib30
  article-title: The iterative two-stage population approach to IVGTT minimal modeling: Improved precision with reduced sampling
  publication-title: American Journal of Physiology, Endocrinology and Metabolism
  doi: 10.1152/ajpendo.2001.280.1.E179
– volume: 4
  start-page: 415
  year: 1992
  ident: 10.1016/j.automatica.2006.12.024_bib18
  article-title: Bayesian interpolation
  publication-title: Neural Computation.
  doi: 10.1162/neco.1992.4.3.415
– ident: 10.1016/j.automatica.2006.12.024_bib37
– volume: 5
  start-page: 445
  issue: 5
  year: 1977
  ident: 10.1016/j.automatica.2006.12.024_bib25
  article-title: Estimation of population characteristics of pharmacokinetic parameters from routine clinical data
  publication-title: Journal of Pharmacokinetics and Biopharmaceutics
  doi: 10.1007/BF01061728
– ident: 10.1016/j.automatica.2006.12.024_bib14
  doi: 10.1109/CBMS.2001.941754
– ident: 10.1016/j.automatica.2006.12.024_bib20
  doi: 10.1109/ACC.2005.1470089
– ident: 10.1016/j.automatica.2006.12.024_bib15
  doi: 10.1109/CBMS.2001.941750
– volume: 2
  start-page: 209
  year: 1988
  ident: 10.1016/j.automatica.2006.12.024_bib13
  article-title: A versatile method for simultaneous analysis of families of curves
  publication-title: FASEB Journal
  doi: 10.1096/fasebj.2.3.3350235
– volume: 45
  start-page: 133
  issue: 1
  year: 1983
  ident: 10.1016/j.automatica.2006.12.024_bib32
  article-title: Bayesian “confidence intervals” for the cross validated smoothing spline
  publication-title: Journal of Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1983.tb01239.x
– ident: 10.1016/j.automatica.2006.12.024_bib17
– ident: 10.1016/j.automatica.2006.12.024_bib23
– volume: 50
  start-page: 566
  year: 1994
  ident: 10.1016/j.automatica.2006.12.024_bib38
  article-title: Population pharmacokinetic/pharmacodynamic methodology and applications: A bibliography
  publication-title: Biometrics
  doi: 10.2307/2533402
– volume: 30
  start-page: 81
  issue: 2
  year: 1996
  ident: 10.1016/j.automatica.2006.12.024_bib31
  article-title: The use of population pharmacokinetics in drug development
  publication-title: Clinical Pharmacokinetics
  doi: 10.2165/00003088-199630020-00001
– volume: 37
  start-page: 1057
  year: 2001
  ident: 10.1016/j.automatica.2006.12.024_bib8
  article-title: Optimal trajectory planning and smoothing splines
  publication-title: Automatica
  doi: 10.1016/S0005-1098(01)00055-3
– volume: 36
  start-page: 255
  issue: 4
  year: 1999
  ident: 10.1016/j.automatica.2006.12.024_bib1
  article-title: Software for population pharmacokinetics and pharmacodynamics
  publication-title: Clinical Pharmacokinetics
  doi: 10.2165/00003088-199936040-00001
– volume: 91
  start-page: 917
  year: 1996
  ident: 10.1016/j.automatica.2006.12.024_bib34
  article-title: The Bayesian modelling of covariates for population pharmacokinetic models
  publication-title: JASA
  doi: 10.1080/01621459.1996.10476961
– year: 1995
  ident: 10.1016/j.automatica.2006.12.024_bib6
– volume: 45
  start-page: 2271
  issue: 12
  year: 2000
  ident: 10.1016/j.automatica.2006.12.024_bib29
  article-title: Control theoretic smoothing splines
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.895563
– volume: 12
  start-page: 228
  issue: 2
  year: 2001
  ident: 10.1016/j.automatica.2006.12.024_bib7
  article-title: Regularization networks: Fast weight calculation via Kalman filtering
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.914520
– ident: 10.1016/j.automatica.2006.12.024_bib11
– volume: 78
  start-page: 1481
  year: 1990
  ident: 10.1016/j.automatica.2006.12.024_bib22
  article-title: Networks for approximation and learning
  publication-title: Proceedings of IEEE
  doi: 10.1109/5.58326
– volume: 8
  start-page: 195
  issue: 3
  year: 1982
  ident: 10.1016/j.automatica.2006.12.024_bib2
  article-title: Estimating population kinetics
  publication-title: Critical Review of Biomedical Engineering
– volume: 15
  start-page: 153
  year: 1994
  ident: 10.1016/j.automatica.2006.12.024_bib24
  article-title: The population approach to pharmacokinetic data analysis: Rationale and standard data analysis methods
  publication-title: Drug Metabolism Reviews
  doi: 10.3109/03602538409015063
– volume: 23
  start-page: 581
  year: 1995
  ident: 10.1016/j.automatica.2006.12.024_bib9
  article-title: A nonparametric subject-specific population method for deconvolution: I. Description, internal validation and real data examples
  publication-title: Journal of Pharmacokinetics and Biopharmaceutics
  doi: 10.1007/BF02353463
– volume: 29
  start-page: 445
  issue: 5/6
  year: 2002
  ident: 10.1016/j.automatica.2006.12.024_bib19
  article-title: Nonparametric AUC estimation in population studies with incomplete sampling: A Bayesian approach
  publication-title: Journal of Pharmacokinetics and Pharmacodynamics
  doi: 10.1023/A:1022920403166
– year: 1996
  ident: 10.1016/j.automatica.2006.12.024_bib27
SSID ssj0004182
Score 2.001733
Snippet Population models are used to describe the dynamics of different subjects belonging to a population and play an important role in drug pharmacokinetics. A...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 1134
SubjectTerms Applied sciences
Biological and medical sciences
Computer science; control theory; systems
Control theory. Systems
Estimation theory
Exact sciences and technology
General pharmacology
Medical sciences
Modelling and identification
Neural networks
Nonparametric identification
Pharmacokinetic data
Pharmacokinetics. Pharmacogenetics. Drug-receptor interactions
Pharmacology. Drug treatments
Regularization
Splines
Title Nonparametric identification of population models via Gaussian processes
URI https://dx.doi.org/10.1016/j.automatica.2006.12.024
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA59XBQRn1gfJQeva5N9ZBM8lWKtij1Z6G1JsgmsaHexrUd_u8luto-DUPC6MLvLZJiZJPN9HwC3KPC1EEx4IVbSXjNiT2iJPIYCwYNUSxZbgPPrmIwm4fM0mjbAoMbC2LFKl_urnF5ma_ek57zZK7LMYnxtQDGK4lLmMW6Cth8wYkK73X96GY3X8EhMK9LwknSTUTfQU4158eUiL8lReXUzYc8G_fCvKnVQ8Lnxna5ELzYq0fAIHLoWEvarvzwGDTU7AfsbxIKnYDTOZ5bU-9PqZUmYpW4mqFwGmGtYrHS7YKmFM4ffGYePfDm3oEpYVPABNT8Dk-HD22DkOc0ETwYhXXiCpCjQnEmEqaKxZkoiQrUwuzYsKUY0RTxEijFOidmDYs5xnBIea5P4kDb17By0ZvlMXQCIIolNe8eIlCzkUSiCVHGGBdEmCwSSdkBc-yiRjlDc6lp8JPXk2Huy9q7VuyQJ9hPj3Q7AK8uiItXYwea-XoZkK0ASk_t3sO5urdz6s1ZsOcLk8l-vvwJ79ZkvwtegtfhaqhvTrCxEFzTvfnDXheQvAf_rzQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGQAhxFOUR_HAGmo3jmOLCVWUAm2nVuoW2Y4tBUEa0ZaR346dRx8DEhJrpEuiu_Pd2b77PgBukd82UnLpEayVu2bEnjQKeRz5UvixUTx0A86DIe2NycskmNRAp5qFcW2VZewvYnoercsnrVKbrSxJ3IyvcyjOUJjTPIZbYJvY5etW5933qs-DYFZAhueQm5yV7TxFk5dYzKc5NKoo7iXcyWCb_Jaj9jMxs5ozBeXFWh7qHoKDsoCED8U_HoGaTo_B3hqs4AnoDaepg_T-cGxZCiZx2RGUGwFODcyWrF0wZ8KZwa9EwCexmLmRSpgVwwN6dgrG3cdRp-eVjAme8gmbe5LGyDeCK4SZZqHhWiHKjLR7NqwYRixGgiDNuWDU7kCxEDiMqQiN1RsyNpudgXo6TfU5gChQ2BZ3nCrFiQiI9GMtOJbU2BjgK9YAYaWjSJVw4o7V4j2q-sbeopV2HdsljXA7stptALyUzApIjT_I3FdmiDbcI7KR_w_SzQ3LrT7rqJYDTC_-9fobsNMbDfpR_3n4egl2q9NfhK9Aff650Ne2bJnLZu6WP_DJ7JE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Automatica+%28Oxford%29&rft.atitle=Nonparametric+identification+of+population+models+via+Gaussian+processes&rft.au=NEVE%2C+M&rft.au=DE+NICOLAO%2C+G&rft.au=MARCHESI%2C+L&rft.date=2007-07-01&rft.pub=Elsevier&rft.issn=0005-1098&rft.eissn=1873-2836&rft.volume=43&rft.issue=7&rft.spage=1134&rft.epage=1144&rft_id=info:doi/10.1016%2Fj.automatica.2006.12.024&rft.externalDBID=n%2Fa&rft.externalDocID=18833516
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon