Nonparametric identification of population models via Gaussian processes
Population models are used to describe the dynamics of different subjects belonging to a population and play an important role in drug pharmacokinetics. A nonparametric identification scheme is proposed in which both the average impulse response of the population and the individual ones are modelled...
Saved in:
Published in | Automatica (Oxford) Vol. 43; no. 7; pp. 1134 - 1144 |
---|---|
Main Authors | , , |
Format | Journal Article Conference Proceeding |
Language | English |
Published |
Oxford
Elsevier Ltd
01.07.2007
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0005-1098 1873-2836 |
DOI | 10.1016/j.automatica.2006.12.024 |
Cover
Loading…
Abstract | Population models are used to describe the dynamics of different subjects belonging to a population and play an important role in drug pharmacokinetics. A nonparametric identification scheme is proposed in which both the average impulse response of the population and the individual ones are modelled as Gaussian stochastic processes. Assuming that the average curve is an integrated Wiener process, it is shown that its estimate is a cubic spline. An empirical Bayes algorithm for estimating both the average and the individual curves is worked out. The model is tested on simulated data sets as well as on xenobiotics pharmacokinetic data. |
---|---|
AbstractList | Population models are used to describe the dynamics of different subjects belonging to a population and play an important role in drug pharmacokinetics. A nonparametric identification scheme is proposed in which both the average impulse response of the population and the individual ones are modelled as Gaussian stochastic processes. Assuming that the average curve is an integrated Wiener process, it is shown that its estimate is a cubic spline. An empirical Bayes algorithm for estimating both the average and the individual curves is worked out. The model is tested on simulated data sets as well as on xenobiotics pharmacokinetic data. |
Author | Marchesi, L. De Nicolao, G. Neve, M. |
Author_xml | – sequence: 1 givenname: M. surname: Neve fullname: Neve, M. email: marta.neve@unipv.it – sequence: 2 givenname: G. surname: De Nicolao fullname: De Nicolao, G. email: giuseppe.denicolao@unipv.it – sequence: 3 givenname: L. surname: Marchesi fullname: Marchesi, L. |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18833516$$DView record in Pascal Francis |
BookMark | eNqFkE1LAzEQhoNUsK3-h7143HVmsx_Zi6BFW6HoRc9hmk0gZbtZkrTgv3drRcFLT8ML8z7DPDM26V2vGUsQMgSs7rYZ7aPbUbSKshygyjDPIC8u2BRFzdNc8GrCpgBQpgiNuGKzELZjLFDkU7Z6df1AnnY6eqsS2-o-WjOyonV94kwyuGHfndLOtboLycFSsqR9CJb6ZPBO6RB0uGaXhrqgb37mnH08P70vVun6bfmyeFinihcippuqBW6oUYBCi9o0WkElzKbGGpVAEC1QAbppSFRlzpEI67ai2pRcgOHA5-z2xB0oKOqMp17ZIAdvd-Q_JQrBeYnVuHd_2lPeheC1kcrG7z-iJ9tJBHn0J7fyz588-pOYy9HfCBD_AL83zlcfT9VRlz5Y7WVQVvdKt9ZrFWXr7HnIF1tPlFs |
CODEN | ATCAA9 |
CitedBy_id | crossref_primary_10_1109_TPAMI_2008_297 crossref_primary_10_1016_j_automatica_2010_11_004 crossref_primary_10_1016_j_arcontrol_2016_04_013 crossref_primary_10_1016_j_automatica_2008_01_021 crossref_primary_10_1016_j_automatica_2020_109032 crossref_primary_10_1109_TAC_2008_929876 crossref_primary_10_1002_acs_1002 crossref_primary_10_1016_j_automatica_2009_10_031 crossref_primary_10_1016_j_cmpb_2012_11_001 crossref_primary_10_1016_j_phpro_2012_05_126 crossref_primary_10_3182_20090706_3_FR_2004_00139 crossref_primary_10_1007_s10994_007_5040_8 crossref_primary_10_1016_j_automatica_2008_06_003 crossref_primary_10_1016_j_neucom_2013_02_024 crossref_primary_10_1007_s10928_014_9389_6 crossref_primary_10_1016_j_mbs_2014_11_007 crossref_primary_10_1109_TBME_2011_2164614 crossref_primary_10_1109_TBME_2007_902240 crossref_primary_10_1002_rnc_1265 crossref_primary_10_1109_TNN_2010_2095882 |
Cites_doi | 10.1146/annurev.pharmtox.40.1.67 10.1007/BF02353464 10.1162/neco.1995.7.2.219 10.1023/A:1025769431364 10.1007/3-540-36434-X_3 10.2307/2986121 10.1109/TMI.2004.824243 10.1152/ajpendo.2001.280.1.E179 10.1162/neco.1992.4.3.415 10.1007/BF01061728 10.1109/CBMS.2001.941754 10.1109/ACC.2005.1470089 10.1109/CBMS.2001.941750 10.1096/fasebj.2.3.3350235 10.1111/j.2517-6161.1983.tb01239.x 10.2307/2533402 10.2165/00003088-199630020-00001 10.1016/S0005-1098(01)00055-3 10.2165/00003088-199936040-00001 10.1080/01621459.1996.10476961 10.1109/9.895563 10.1109/72.914520 10.1109/5.58326 10.3109/03602538409015063 10.1007/BF02353463 10.1023/A:1022920403166 |
ContentType | Journal Article Conference Proceeding |
Copyright | 2007 Elsevier Ltd 2007 INIST-CNRS |
Copyright_xml | – notice: 2007 Elsevier Ltd – notice: 2007 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.automatica.2006.12.024 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Applied Sciences |
EISSN | 1873-2836 |
EndPage | 1144 |
ExternalDocumentID | 18833516 10_1016_j_automatica_2006_12_024 S0005109807001057 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 3R3 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K T9H TAE TN5 VH1 WH7 WUQ X6Y XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH IQODW |
ID | FETCH-LOGICAL-c348t-b6d03fa9c018e87f9ec068fb7171c8108d0a40e99a865231aa17d6a7f5380f303 |
IEDL.DBID | AIKHN |
ISSN | 0005-1098 |
IngestDate | Tue Jul 02 07:15:51 EDT 2024 Tue Jul 01 00:42:51 EDT 2025 Thu Apr 24 23:07:35 EDT 2025 Fri Feb 23 02:14:11 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Splines Neural networks Regularization Nonparametric identification Estimation theory Pharmacokinetic data Drug Non parametric estimation Wiener process Neural network Stochastic process Modeling Spline approximation Cubic spline Gaussian process Model matching Pulse response Population dynamics System identification Pharmacokinetics |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-b6d03fa9c018e87f9ec068fb7171c8108d0a40e99a865231aa17d6a7f5380f303 |
PageCount | 11 |
ParticipantIDs | pascalfrancis_primary_18833516 crossref_citationtrail_10_1016_j_automatica_2006_12_024 crossref_primary_10_1016_j_automatica_2006_12_024 elsevier_sciencedirect_doi_10_1016_j_automatica_2006_12_024 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-07-01 |
PublicationDateYYYYMMDD | 2007-07-01 |
PublicationDate_xml | – month: 07 year: 2007 text: 2007-07-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Automatica (Oxford) |
PublicationYear | 2007 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Wakefield, Bennett (bib34) 1996; 91 Girosi, Jones, Poggio (bib12) 1995; 7 Wahba (bib33) 1990 United States Department of Health and Human Services, Food and Drug Administration. Poggio, Girosi (bib22) 1990; 78 Wakefield, Smith, Racine-Poon, Gelfand (bib35) 1994; 41 Vozeh, Steimer, Rowland, Morselli, Mentre, Balant (bib31) 1996; 30 Aarons (bib1) 1999; 36 Egerstedt, Martin (bib8) 2001; 37 Vicini, Cobelli (bib30) 2001; 280 Fattinger, Verotta (bib9) 1995; 23 Ferrazzi, F., Magni, P., & Bellazzi, R. (2003). Bayesian clustering of gene expression time series. In Sheiner, Steimer (bib26) 2000; 40 , . Davidian, Giltinan (bib6) 1995 (pp. 991–996). Portland, OR, USA. De Nicolao, Ferrari-Trecate (bib7) 2001; 12 Magni, Bellazzi, De Nicolao, Poggesi, Rocchetti (bib19) 2002; 29 Center for Drug Evaluation and Research. (1999). : (pp. 407–412). Bethesda, MD, USA. MacKay (bib18) 1992; 4 Fattinger, Verotta (bib10) 1995; 23 Rocchetti, M., & Poggesi, I. (1997). Comparison of the Bailer and Yeh methods using real data. In L. Aarons, et al. (Ed.) Sheiner (bib24) 1994; 15 (pp. 65–117). Berlin, Germany: Springer. Williams (bib36) 1999 Leary, R., Jelliffe, R., Schumitzky, A., & Van Guilder, M. (2001). An adaptive grid non-parametric approach to pharmacokinetic and dynamic (PK/PD) population models. In (pp. 53–55). Beal, Sheiner (bib2) 1982; 8 (pp. 385–390). Brussels, Belgium: European Cooperation in the Field of Scientific and Technical Research, European Commission. Shiryaev (bib27) 1996 Sun, Egerstedt, Martin (bib29) 2000; 45 (Vol. 8). Cambridge, MA, USA: MIT Press. Williams, C. K. I., & Rasmussen, C.E. (1996). Gaussian processes for regression. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo, (Eds.) Sheiner, Rosenberg, Marathe (bib25) 1977; 5 Bertoldo, Sparacino, Cobelli (bib4) 2004; 23 Park, Verotta, Blaschke, Sheiner (bib21) 1997; 25 Guardabasso, Munson, Rodbard (bib13) 1988; 2 (Vol. 168, pp. 133–166). NATO Asi Series, Series F, Computer and Systems Sciences. Dordrecht: Kluwer Academic Press. Neve, M., De Nicolao, G., & Marchesi, L. (June 8–10, 2005). Nonparametric identification of population pharmacokinetic models: An MCMC approach. In Beal, S. L., & Sheiner, L. B. (1998). Jelliffe, R., Schumitzky, A., Van Guilder, M., Wang, X., & Leary, R. (2001). Population pharmacokinetic and dynamic models: Parametric (P) and nonparametric (NP) approaches. In (pp. 389–394). Bethesda, MD, USA. Wahba (bib32) 1983; 45 Yuh, Beal, Davidian, Harrison, Hester, Kowalski (bib38) 1994; 50 Smola, A. J., & Schölkopf, B. (2003). Bayesian kernel methods. In S. Mendelson, A. J. Smola, (Eds.) MacKay, D. J. (1997). Gaussian processes: A replacement for supervised neural networks?. In MacKay, D. J. (1998). Introduction to Gaussian processes. In C. M. Bishop (Ed.) Girosi (10.1016/j.automatica.2006.12.024_bib12) 1995; 7 Vicini (10.1016/j.automatica.2006.12.024_bib30) 2001; 280 10.1016/j.automatica.2006.12.024_bib28 Poggio (10.1016/j.automatica.2006.12.024_bib22) 1990; 78 10.1016/j.automatica.2006.12.024_bib20 Beal (10.1016/j.automatica.2006.12.024_bib2) 1982; 8 10.1016/j.automatica.2006.12.024_bib23 Fattinger (10.1016/j.automatica.2006.12.024_bib9) 1995; 23 Park (10.1016/j.automatica.2006.12.024_bib21) 1997; 25 Sheiner (10.1016/j.automatica.2006.12.024_bib26) 2000; 40 Wahba (10.1016/j.automatica.2006.12.024_bib33) 1990 Williams (10.1016/j.automatica.2006.12.024_bib36) 1999 De Nicolao (10.1016/j.automatica.2006.12.024_bib7) 2001; 12 Bertoldo (10.1016/j.automatica.2006.12.024_bib4) 2004; 23 Guardabasso (10.1016/j.automatica.2006.12.024_bib13) 1988; 2 Sheiner (10.1016/j.automatica.2006.12.024_bib24) 1994; 15 Sheiner (10.1016/j.automatica.2006.12.024_bib25) 1977; 5 Aarons (10.1016/j.automatica.2006.12.024_bib1) 1999; 36 10.1016/j.automatica.2006.12.024_bib16 10.1016/j.automatica.2006.12.024_bib17 Egerstedt (10.1016/j.automatica.2006.12.024_bib8) 2001; 37 MacKay (10.1016/j.automatica.2006.12.024_bib18) 1992; 4 10.1016/j.automatica.2006.12.024_bib11 10.1016/j.automatica.2006.12.024_bib3 Yuh (10.1016/j.automatica.2006.12.024_bib38) 1994; 50 10.1016/j.automatica.2006.12.024_bib5 10.1016/j.automatica.2006.12.024_bib14 Wakefield (10.1016/j.automatica.2006.12.024_bib35) 1994; 41 10.1016/j.automatica.2006.12.024_bib15 Magni (10.1016/j.automatica.2006.12.024_bib19) 2002; 29 10.1016/j.automatica.2006.12.024_bib37 Wakefield (10.1016/j.automatica.2006.12.024_bib34) 1996; 91 Vozeh (10.1016/j.automatica.2006.12.024_bib31) 1996; 30 Shiryaev (10.1016/j.automatica.2006.12.024_bib27) 1996 Wahba (10.1016/j.automatica.2006.12.024_bib32) 1983; 45 Sun (10.1016/j.automatica.2006.12.024_bib29) 2000; 45 Davidian (10.1016/j.automatica.2006.12.024_bib6) 1995 Fattinger (10.1016/j.automatica.2006.12.024_bib10) 1995; 23 |
References_xml | – volume: 15 start-page: 153 year: 1994 end-page: 171 ident: bib24 article-title: The population approach to pharmacokinetic data analysis: Rationale and standard data analysis methods publication-title: Drug Metabolism Reviews – volume: 23 start-page: 581 year: 1995 end-page: 610 ident: bib9 article-title: A nonparametric subject-specific population method for deconvolution: I. Description, internal validation and real data examples publication-title: Journal of Pharmacokinetics and Biopharmaceutics – volume: 12 start-page: 228 year: 2001 end-page: 235 ident: bib7 article-title: Regularization networks: Fast weight calculation via Kalman filtering publication-title: IEEE Transactions on Neural Networks – volume: 2 start-page: 209 year: 1988 end-page: 215 ident: bib13 article-title: A versatile method for simultaneous analysis of families of curves publication-title: FASEB Journal – reference: Jelliffe, R., Schumitzky, A., Van Guilder, M., Wang, X., & Leary, R. (2001). Population pharmacokinetic and dynamic models: Parametric (P) and nonparametric (NP) approaches. In – reference: Williams, C. K. I., & Rasmussen, C.E. (1996). Gaussian processes for regression. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo, (Eds.), – reference: (pp. 991–996). Portland, OR, USA. – volume: 40 start-page: 67 year: 2000 end-page: 95 ident: bib26 article-title: Pharmacokinetic/pharmacodynamic modeling in drug development publication-title: Annual Review of Pharmacology and Toxicology – reference: Ferrazzi, F., Magni, P., & Bellazzi, R. (2003). Bayesian clustering of gene expression time series. In – reference: (Vol. 168, pp. 133–166). NATO Asi Series, Series F, Computer and Systems Sciences. Dordrecht: Kluwer Academic Press. – volume: 25 start-page: 615 year: 1997 end-page: 642 ident: bib21 article-title: A semiparametric method for describing noisy population pharmacokinetic data publication-title: Journal of Pharmacokinetics and Biopharmaceutics – reference: : – volume: 50 start-page: 566 year: 1994 end-page: 575 ident: bib38 article-title: Population pharmacokinetic/pharmacodynamic methodology and applications: A bibliography publication-title: Biometrics – reference: (pp. 389–394). Bethesda, MD, USA. – volume: 36 start-page: 255 year: 1999 end-page: 264 ident: bib1 article-title: Software for population pharmacokinetics and pharmacodynamics publication-title: Clinical Pharmacokinetics – volume: 78 start-page: 1481 year: 1990 end-page: 1497 ident: bib22 article-title: Networks for approximation and learning publication-title: Proceedings of IEEE – volume: 280 start-page: 179 year: 2001 end-page: 186 ident: bib30 article-title: The iterative two-stage population approach to IVGTT minimal modeling: Improved precision with reduced sampling publication-title: American Journal of Physiology, Endocrinology and Metabolism – volume: 91 start-page: 917 year: 1996 end-page: 927 ident: bib34 article-title: The Bayesian modelling of covariates for population pharmacokinetic models publication-title: JASA – reference: Neve, M., De Nicolao, G., & Marchesi, L. (June 8–10, 2005). Nonparametric identification of population pharmacokinetic models: An MCMC approach. In – year: 1990 ident: bib33 article-title: Spline models for observational data – reference: Smola, A. J., & Schölkopf, B. (2003). Bayesian kernel methods. In S. Mendelson, A. J. Smola, (Eds.), – reference: . – reference: ). – reference: MacKay, D. J. (1998). Introduction to Gaussian processes. In C. M. Bishop (Ed.), – volume: 30 start-page: 81 year: 1996 end-page: 93 ident: bib31 article-title: The use of population pharmacokinetics in drug development publication-title: Clinical Pharmacokinetics – reference: , – reference: Beal, S. L., & Sheiner, L. B. (1998). – year: 1995 ident: bib6 article-title: Nonlinear models for repeated measurement data – volume: 45 start-page: 2271 year: 2000 end-page: 2279 ident: bib29 article-title: Control theoretic smoothing splines publication-title: IEEE Transactions on Automatic Control – reference: ( – volume: 7 start-page: 219 year: 1995 end-page: 269 ident: bib12 article-title: Regularization theory and neural networks architectures publication-title: Neural Computation – year: 1996 ident: bib27 article-title: Probability – volume: 5 start-page: 445 year: 1977 end-page: 479 ident: bib25 article-title: Estimation of population characteristics of pharmacokinetic parameters from routine clinical data publication-title: Journal of Pharmacokinetics and Biopharmaceutics – reference: ) (pp. 53–55). – reference: (Vol. 8). Cambridge, MA, USA: MIT Press. – reference: (pp. 407–412). Bethesda, MD, USA. – volume: 4 start-page: 415 year: 1992 end-page: 447 ident: bib18 article-title: Bayesian interpolation publication-title: Neural Computation. – reference: Rocchetti, M., & Poggesi, I. (1997). Comparison of the Bailer and Yeh methods using real data. In L. Aarons, et al. (Ed.), – start-page: 599 year: 1999 end-page: 621 ident: bib36 article-title: Prediction with Gaussian processes: From linear regression to linear prediction and beyond publication-title: Learning and inference in graphical models – reference: (pp. 385–390). Brussels, Belgium: European Cooperation in the Field of Scientific and Technical Research, European Commission. – volume: 41 start-page: 201 year: 1994 end-page: 221 ident: bib35 article-title: Bayesian analysis of linear and nonlinear population models using the Gibbs sampler publication-title: Applied Statistics – volume: 37 start-page: 1057 year: 2001 end-page: 1064 ident: bib8 article-title: Optimal trajectory planning and smoothing splines publication-title: Automatica – reference: (pp. 65–117). Berlin, Germany: Springer. – volume: 45 start-page: 133 year: 1983 end-page: 150 ident: bib32 article-title: Bayesian “confidence intervals” for the cross validated smoothing spline publication-title: Journal of Royal Statistical Society, Series B – reference: Leary, R., Jelliffe, R., Schumitzky, A., & Van Guilder, M. (2001). An adaptive grid non-parametric approach to pharmacokinetic and dynamic (PK/PD) population models. In – volume: 23 start-page: 611 year: 1995 end-page: 634 ident: bib10 article-title: A nonparametric subject-specific population method for deconvolution: II. External validation publication-title: Journal of Pharmacokinetics and Biopharmaceutics – volume: 8 start-page: 195 year: 1982 end-page: 222 ident: bib2 article-title: Estimating population kinetics publication-title: Critical Review of Biomedical Engineering – reference: MacKay, D. J. (1997). Gaussian processes: A replacement for supervised neural networks?. In – volume: 23 start-page: 297 year: 2004 end-page: 306 ident: bib4 article-title: “Population” approach improves parameter estimation of kinetic models from dynamic PET data publication-title: IEEE Transactions on Medical Imaging – reference: Center for Drug Evaluation and Research. (1999). – reference: . United States Department of Health and Human Services, Food and Drug Administration. – volume: 29 start-page: 445 year: 2002 end-page: 471 ident: bib19 article-title: Nonparametric AUC estimation in population studies with incomplete sampling: A Bayesian approach publication-title: Journal of Pharmacokinetics and Pharmacodynamics – ident: 10.1016/j.automatica.2006.12.024_bib3 – volume: 40 start-page: 67 year: 2000 ident: 10.1016/j.automatica.2006.12.024_bib26 article-title: Pharmacokinetic/pharmacodynamic modeling in drug development publication-title: Annual Review of Pharmacology and Toxicology doi: 10.1146/annurev.pharmtox.40.1.67 – year: 1990 ident: 10.1016/j.automatica.2006.12.024_bib33 – ident: 10.1016/j.automatica.2006.12.024_bib5 – volume: 23 start-page: 611 year: 1995 ident: 10.1016/j.automatica.2006.12.024_bib10 article-title: A nonparametric subject-specific population method for deconvolution: II. External validation publication-title: Journal of Pharmacokinetics and Biopharmaceutics doi: 10.1007/BF02353464 – volume: 7 start-page: 219 year: 1995 ident: 10.1016/j.automatica.2006.12.024_bib12 article-title: Regularization theory and neural networks architectures publication-title: Neural Computation doi: 10.1162/neco.1995.7.2.219 – ident: 10.1016/j.automatica.2006.12.024_bib16 – volume: 25 start-page: 615 year: 1997 ident: 10.1016/j.automatica.2006.12.024_bib21 article-title: A semiparametric method for describing noisy population pharmacokinetic data publication-title: Journal of Pharmacokinetics and Biopharmaceutics doi: 10.1023/A:1025769431364 – ident: 10.1016/j.automatica.2006.12.024_bib28 doi: 10.1007/3-540-36434-X_3 – volume: 41 start-page: 201 year: 1994 ident: 10.1016/j.automatica.2006.12.024_bib35 article-title: Bayesian analysis of linear and nonlinear population models using the Gibbs sampler publication-title: Applied Statistics doi: 10.2307/2986121 – start-page: 599 year: 1999 ident: 10.1016/j.automatica.2006.12.024_bib36 article-title: Prediction with Gaussian processes: From linear regression to linear prediction and beyond – volume: 23 start-page: 297 issue: 3 year: 2004 ident: 10.1016/j.automatica.2006.12.024_bib4 article-title: “Population” approach improves parameter estimation of kinetic models from dynamic PET data publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2004.824243 – volume: 280 start-page: 179 issue: 1 year: 2001 ident: 10.1016/j.automatica.2006.12.024_bib30 article-title: The iterative two-stage population approach to IVGTT minimal modeling: Improved precision with reduced sampling publication-title: American Journal of Physiology, Endocrinology and Metabolism doi: 10.1152/ajpendo.2001.280.1.E179 – volume: 4 start-page: 415 year: 1992 ident: 10.1016/j.automatica.2006.12.024_bib18 article-title: Bayesian interpolation publication-title: Neural Computation. doi: 10.1162/neco.1992.4.3.415 – ident: 10.1016/j.automatica.2006.12.024_bib37 – volume: 5 start-page: 445 issue: 5 year: 1977 ident: 10.1016/j.automatica.2006.12.024_bib25 article-title: Estimation of population characteristics of pharmacokinetic parameters from routine clinical data publication-title: Journal of Pharmacokinetics and Biopharmaceutics doi: 10.1007/BF01061728 – ident: 10.1016/j.automatica.2006.12.024_bib14 doi: 10.1109/CBMS.2001.941754 – ident: 10.1016/j.automatica.2006.12.024_bib20 doi: 10.1109/ACC.2005.1470089 – ident: 10.1016/j.automatica.2006.12.024_bib15 doi: 10.1109/CBMS.2001.941750 – volume: 2 start-page: 209 year: 1988 ident: 10.1016/j.automatica.2006.12.024_bib13 article-title: A versatile method for simultaneous analysis of families of curves publication-title: FASEB Journal doi: 10.1096/fasebj.2.3.3350235 – volume: 45 start-page: 133 issue: 1 year: 1983 ident: 10.1016/j.automatica.2006.12.024_bib32 article-title: Bayesian “confidence intervals” for the cross validated smoothing spline publication-title: Journal of Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1983.tb01239.x – ident: 10.1016/j.automatica.2006.12.024_bib17 – ident: 10.1016/j.automatica.2006.12.024_bib23 – volume: 50 start-page: 566 year: 1994 ident: 10.1016/j.automatica.2006.12.024_bib38 article-title: Population pharmacokinetic/pharmacodynamic methodology and applications: A bibliography publication-title: Biometrics doi: 10.2307/2533402 – volume: 30 start-page: 81 issue: 2 year: 1996 ident: 10.1016/j.automatica.2006.12.024_bib31 article-title: The use of population pharmacokinetics in drug development publication-title: Clinical Pharmacokinetics doi: 10.2165/00003088-199630020-00001 – volume: 37 start-page: 1057 year: 2001 ident: 10.1016/j.automatica.2006.12.024_bib8 article-title: Optimal trajectory planning and smoothing splines publication-title: Automatica doi: 10.1016/S0005-1098(01)00055-3 – volume: 36 start-page: 255 issue: 4 year: 1999 ident: 10.1016/j.automatica.2006.12.024_bib1 article-title: Software for population pharmacokinetics and pharmacodynamics publication-title: Clinical Pharmacokinetics doi: 10.2165/00003088-199936040-00001 – volume: 91 start-page: 917 year: 1996 ident: 10.1016/j.automatica.2006.12.024_bib34 article-title: The Bayesian modelling of covariates for population pharmacokinetic models publication-title: JASA doi: 10.1080/01621459.1996.10476961 – year: 1995 ident: 10.1016/j.automatica.2006.12.024_bib6 – volume: 45 start-page: 2271 issue: 12 year: 2000 ident: 10.1016/j.automatica.2006.12.024_bib29 article-title: Control theoretic smoothing splines publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.895563 – volume: 12 start-page: 228 issue: 2 year: 2001 ident: 10.1016/j.automatica.2006.12.024_bib7 article-title: Regularization networks: Fast weight calculation via Kalman filtering publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.914520 – ident: 10.1016/j.automatica.2006.12.024_bib11 – volume: 78 start-page: 1481 year: 1990 ident: 10.1016/j.automatica.2006.12.024_bib22 article-title: Networks for approximation and learning publication-title: Proceedings of IEEE doi: 10.1109/5.58326 – volume: 8 start-page: 195 issue: 3 year: 1982 ident: 10.1016/j.automatica.2006.12.024_bib2 article-title: Estimating population kinetics publication-title: Critical Review of Biomedical Engineering – volume: 15 start-page: 153 year: 1994 ident: 10.1016/j.automatica.2006.12.024_bib24 article-title: The population approach to pharmacokinetic data analysis: Rationale and standard data analysis methods publication-title: Drug Metabolism Reviews doi: 10.3109/03602538409015063 – volume: 23 start-page: 581 year: 1995 ident: 10.1016/j.automatica.2006.12.024_bib9 article-title: A nonparametric subject-specific population method for deconvolution: I. Description, internal validation and real data examples publication-title: Journal of Pharmacokinetics and Biopharmaceutics doi: 10.1007/BF02353463 – volume: 29 start-page: 445 issue: 5/6 year: 2002 ident: 10.1016/j.automatica.2006.12.024_bib19 article-title: Nonparametric AUC estimation in population studies with incomplete sampling: A Bayesian approach publication-title: Journal of Pharmacokinetics and Pharmacodynamics doi: 10.1023/A:1022920403166 – year: 1996 ident: 10.1016/j.automatica.2006.12.024_bib27 |
SSID | ssj0004182 |
Score | 2.001733 |
Snippet | Population models are used to describe the dynamics of different subjects belonging to a population and play an important role in drug pharmacokinetics. A... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 1134 |
SubjectTerms | Applied sciences Biological and medical sciences Computer science; control theory; systems Control theory. Systems Estimation theory Exact sciences and technology General pharmacology Medical sciences Modelling and identification Neural networks Nonparametric identification Pharmacokinetic data Pharmacokinetics. Pharmacogenetics. Drug-receptor interactions Pharmacology. Drug treatments Regularization Splines |
Title | Nonparametric identification of population models via Gaussian processes |
URI | https://dx.doi.org/10.1016/j.automatica.2006.12.024 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA59XBQRn1gfJQeva5N9ZBM8lWKtij1Z6G1JsgmsaHexrUd_u8luto-DUPC6MLvLZJiZJPN9HwC3KPC1EEx4IVbSXjNiT2iJPIYCwYNUSxZbgPPrmIwm4fM0mjbAoMbC2LFKl_urnF5ma_ek57zZK7LMYnxtQDGK4lLmMW6Cth8wYkK73X96GY3X8EhMK9LwknSTUTfQU4158eUiL8lReXUzYc8G_fCvKnVQ8Lnxna5ELzYq0fAIHLoWEvarvzwGDTU7AfsbxIKnYDTOZ5bU-9PqZUmYpW4mqFwGmGtYrHS7YKmFM4ffGYePfDm3oEpYVPABNT8Dk-HD22DkOc0ETwYhXXiCpCjQnEmEqaKxZkoiQrUwuzYsKUY0RTxEijFOidmDYs5xnBIea5P4kDb17By0ZvlMXQCIIolNe8eIlCzkUSiCVHGGBdEmCwSSdkBc-yiRjlDc6lp8JPXk2Huy9q7VuyQJ9hPj3Q7AK8uiItXYwea-XoZkK0ASk_t3sO5urdz6s1ZsOcLk8l-vvwJ79ZkvwtegtfhaqhvTrCxEFzTvfnDXheQvAf_rzQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZKGQAhxFOUR_HAGmo3jmOLCVWUAm2nVuoW2Y4tBUEa0ZaR346dRx8DEhJrpEuiu_Pd2b77PgBukd82UnLpEayVu2bEnjQKeRz5UvixUTx0A86DIe2NycskmNRAp5qFcW2VZewvYnoercsnrVKbrSxJ3IyvcyjOUJjTPIZbYJvY5etW5933qs-DYFZAhueQm5yV7TxFk5dYzKc5NKoo7iXcyWCb_Jaj9jMxs5ozBeXFWh7qHoKDsoCED8U_HoGaTo_B3hqs4AnoDaepg_T-cGxZCiZx2RGUGwFODcyWrF0wZ8KZwa9EwCexmLmRSpgVwwN6dgrG3cdRp-eVjAme8gmbe5LGyDeCK4SZZqHhWiHKjLR7NqwYRixGgiDNuWDU7kCxEDiMqQiN1RsyNpudgXo6TfU5gChQ2BZ3nCrFiQiI9GMtOJbU2BjgK9YAYaWjSJVw4o7V4j2q-sbeopV2HdsljXA7stptALyUzApIjT_I3FdmiDbcI7KR_w_SzQ3LrT7rqJYDTC_-9fobsNMbDfpR_3n4egl2q9NfhK9Aff650Ne2bJnLZu6WP_DJ7JE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Automatica+%28Oxford%29&rft.atitle=Nonparametric+identification+of+population+models+via+Gaussian+processes&rft.au=NEVE%2C+M&rft.au=DE+NICOLAO%2C+G&rft.au=MARCHESI%2C+L&rft.date=2007-07-01&rft.pub=Elsevier&rft.issn=0005-1098&rft.eissn=1873-2836&rft.volume=43&rft.issue=7&rft.spage=1134&rft.epage=1144&rft_id=info:doi/10.1016%2Fj.automatica.2006.12.024&rft.externalDBID=n%2Fa&rft.externalDocID=18833516 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon |