Connectivity Profile for Subthalamic Nucleus Deep Brain Stimulation in Early Stage Parkinson Disease

This study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial. To determine anatomical and network correlates associated with motor outco...

Full description

Saved in:
Bibliographic Details
Published inAnnals of neurology Vol. 94; no. 2; pp. 271 - 284
Main Authors Hacker, Mallory L., Rajamani, Nanditha, Neudorfer, Clemens, Hollunder, Barbara, Oxenford, Simon, Li, Ningfei, Sternberg, Alice L., Davis, Thomas L., Konrad, Peter E., Horn, Andreas, Charles, David
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial. To determine anatomical and network correlates associated with motor outcomes for subjects randomized to early DBS (n = 14), voxelwise sweet spot mapping and structural connectivity analyses were carried out using outcomes of motor progression (Unified Parkinson Disease Rating Scale Part III [UPDRS-III] 7-day OFF scores [∆baseline➔24 months, MedOFF/StimOFF]) and symptomatic motor improvement (UPDRS-III ON scores [%∆baseline➔24 months, MedON/StimON]). Sweet spot mapping revealed a location associated with slower motor progression in the dorsolateral STN (anterior/posterior commissure coordinates: 11.07 ± 0.82mm lateral, 1.83 ± 0.61mm posterior, 3.53 ± 0.38mm inferior to the midcommissural point; Montreal Neurological Institute coordinates: +11.25, -13.56, -7.44mm). Modulating fiber tracts from supplementary motor area (SMA) and primary motor cortex (M1) to the STN correlated with slower motor progression across STN DBS subjects, whereas fiber tracts originating from pre-SMA and cerebellum were negatively associated with motor progression. Robustness of the fiber tract model was demonstrated in leave-one-patient-out (R = 0.56, p = 0.02), 5-fold (R = 0.50, p = 0.03), and 10-fold (R = 0.53, p = 0.03) cross-validation paradigms. The sweet spot and fiber tracts associated with motor progression revealed strong similarities to symptomatic motor improvement sweet spot and connectivity in this early stage PD cohort. These results suggest that stimulating the dorsolateral region of the STN receiving input from M1 and SMA (but not pre-SMA) is associated with slower motor progression across subjects receiving STN DBS in early stage PD. This finding is hypothesis-generating and must be prospectively tested in a larger study. ANN NEUROL 2023;94:271-284.
AbstractList ObjectiveThis study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial.MethodsTo determine anatomical and network correlates associated with motor outcomes for subjects randomized to early DBS (n = 14), voxelwise sweet spot mapping and structural connectivity analyses were carried out using outcomes of motor progression (Unified Parkinson Disease Rating Scale Part III [UPDRS‐III] 7‐day OFF scores [∆baseline➔24 months, MedOFF/StimOFF]) and symptomatic motor improvement (UPDRS‐III ON scores [%∆baseline➔24 months, MedON/StimON]).ResultsSweet spot mapping revealed a location associated with slower motor progression in the dorsolateral STN (anterior/posterior commissure coordinates: 11.07 ± 0.82mm lateral, 1.83 ± 0.61mm posterior, 3.53 ± 0.38mm inferior to the midcommissural point; Montreal Neurological Institute coordinates: +11.25, −13.56, −7.44mm). Modulating fiber tracts from supplementary motor area (SMA) and primary motor cortex (M1) to the STN correlated with slower motor progression across STN DBS subjects, whereas fiber tracts originating from pre‐SMA and cerebellum were negatively associated with motor progression. Robustness of the fiber tract model was demonstrated in leave‐one‐patient‐out (R = 0.56, p = 0.02), 5‐fold (R = 0.50, p = 0.03), and 10‐fold (R = 0.53, p = 0.03) cross‐validation paradigms. The sweet spot and fiber tracts associated with motor progression revealed strong similarities to symptomatic motor improvement sweet spot and connectivity in this early stage PD cohort.InterpretationThese results suggest that stimulating the dorsolateral region of the STN receiving input from M1 and SMA (but not pre‐SMA) is associated with slower motor progression across subjects receiving STN DBS in early stage PD. This finding is hypothesis‐generating and must be prospectively tested in a larger study. ANN NEUROL 2023;94:271–284
This study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial. To determine anatomical and network correlates associated with motor outcomes for subjects randomized to early DBS (n = 14), voxelwise sweet spot mapping and structural connectivity analyses were carried out using outcomes of motor progression (Unified Parkinson Disease Rating Scale Part III [UPDRS-III] 7-day OFF scores [∆baseline➔24 months, MedOFF/StimOFF]) and symptomatic motor improvement (UPDRS-III ON scores [%∆baseline➔24 months, MedON/StimON]). Sweet spot mapping revealed a location associated with slower motor progression in the dorsolateral STN (anterior/posterior commissure coordinates: 11.07 ± 0.82mm lateral, 1.83 ± 0.61mm posterior, 3.53 ± 0.38mm inferior to the midcommissural point; Montreal Neurological Institute coordinates: +11.25, -13.56, -7.44mm). Modulating fiber tracts from supplementary motor area (SMA) and primary motor cortex (M1) to the STN correlated with slower motor progression across STN DBS subjects, whereas fiber tracts originating from pre-SMA and cerebellum were negatively associated with motor progression. Robustness of the fiber tract model was demonstrated in leave-one-patient-out (R = 0.56, p = 0.02), 5-fold (R = 0.50, p = 0.03), and 10-fold (R = 0.53, p = 0.03) cross-validation paradigms. The sweet spot and fiber tracts associated with motor progression revealed strong similarities to symptomatic motor improvement sweet spot and connectivity in this early stage PD cohort. These results suggest that stimulating the dorsolateral region of the STN receiving input from M1 and SMA (but not pre-SMA) is associated with slower motor progression across subjects receiving STN DBS in early stage PD. This finding is hypothesis-generating and must be prospectively tested in a larger study. ANN NEUROL 2023;94:271-284.
This study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial.OBJECTIVEThis study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial.To determine anatomical and network correlates associated with motor outcomes for subjects randomized to early DBS (n = 14), voxelwise sweet spot mapping and structural connectivity analyses were carried out using outcomes of motor progression (Unified Parkinson Disease Rating Scale Part III [UPDRS-III] 7-day OFF scores [∆baseline➔24 months, MedOFF/StimOFF]) and symptomatic motor improvement (UPDRS-III ON scores [%∆baseline➔24 months, MedON/StimON]).METHODSTo determine anatomical and network correlates associated with motor outcomes for subjects randomized to early DBS (n = 14), voxelwise sweet spot mapping and structural connectivity analyses were carried out using outcomes of motor progression (Unified Parkinson Disease Rating Scale Part III [UPDRS-III] 7-day OFF scores [∆baseline➔24 months, MedOFF/StimOFF]) and symptomatic motor improvement (UPDRS-III ON scores [%∆baseline➔24 months, MedON/StimON]).Sweet spot mapping revealed a location associated with slower motor progression in the dorsolateral STN (anterior/posterior commissure coordinates: 11.07 ± 0.82mm lateral, 1.83 ± 0.61mm posterior, 3.53 ± 0.38mm inferior to the midcommissural point; Montreal Neurological Institute coordinates: +11.25, -13.56, -7.44mm). Modulating fiber tracts from supplementary motor area (SMA) and primary motor cortex (M1) to the STN correlated with slower motor progression across STN DBS subjects, whereas fiber tracts originating from pre-SMA and cerebellum were negatively associated with motor progression. Robustness of the fiber tract model was demonstrated in leave-one-patient-out (R = 0.56, p = 0.02), 5-fold (R = 0.50, p = 0.03), and 10-fold (R = 0.53, p = 0.03) cross-validation paradigms. The sweet spot and fiber tracts associated with motor progression revealed strong similarities to symptomatic motor improvement sweet spot and connectivity in this early stage PD cohort.RESULTSSweet spot mapping revealed a location associated with slower motor progression in the dorsolateral STN (anterior/posterior commissure coordinates: 11.07 ± 0.82mm lateral, 1.83 ± 0.61mm posterior, 3.53 ± 0.38mm inferior to the midcommissural point; Montreal Neurological Institute coordinates: +11.25, -13.56, -7.44mm). Modulating fiber tracts from supplementary motor area (SMA) and primary motor cortex (M1) to the STN correlated with slower motor progression across STN DBS subjects, whereas fiber tracts originating from pre-SMA and cerebellum were negatively associated with motor progression. Robustness of the fiber tract model was demonstrated in leave-one-patient-out (R = 0.56, p = 0.02), 5-fold (R = 0.50, p = 0.03), and 10-fold (R = 0.53, p = 0.03) cross-validation paradigms. The sweet spot and fiber tracts associated with motor progression revealed strong similarities to symptomatic motor improvement sweet spot and connectivity in this early stage PD cohort.These results suggest that stimulating the dorsolateral region of the STN receiving input from M1 and SMA (but not pre-SMA) is associated with slower motor progression across subjects receiving STN DBS in early stage PD. This finding is hypothesis-generating and must be prospectively tested in a larger study. ANN NEUROL 2023;94:271-284.INTERPRETATIONThese results suggest that stimulating the dorsolateral region of the STN receiving input from M1 and SMA (but not pre-SMA) is associated with slower motor progression across subjects receiving STN DBS in early stage PD. This finding is hypothesis-generating and must be prospectively tested in a larger study. ANN NEUROL 2023;94:271-284.
Author Rajamani, Nanditha
Neudorfer, Clemens
Sternberg, Alice L.
Davis, Thomas L.
Horn, Andreas
Charles, David
Hollunder, Barbara
Hacker, Mallory L.
Li, Ningfei
Oxenford, Simon
Konrad, Peter E.
Author_xml – sequence: 1
  givenname: Mallory L.
  orcidid: 0000-0003-1498-4509
  surname: Hacker
  fullname: Hacker, Mallory L.
  organization: Department of Neurology Vanderbilt University Medical Center Nashville TN USA
– sequence: 2
  givenname: Nanditha
  surname: Rajamani
  fullname: Rajamani, Nanditha
  organization: Movement Disorder and Neuromodulation Unit, Department of Neurology Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin Berlin Germany
– sequence: 3
  givenname: Clemens
  surname: Neudorfer
  fullname: Neudorfer, Clemens
  organization: Center for Brain Circuit Therapeutics, Department of Neurology Brigham and Women's Hospital, Harvard Medical School Boston MA USA
– sequence: 4
  givenname: Barbara
  surname: Hollunder
  fullname: Hollunder, Barbara
  organization: Movement Disorder and Neuromodulation Unit, Department of Neurology Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin Berlin Germany, Einstein Center for Neurosciences Berlin, Charité–Universitätsmedizin Berlin Berlin Germany, Berlin School of Mind and Brain, Humboldt University of Berlin Berlin Germany
– sequence: 5
  givenname: Simon
  surname: Oxenford
  fullname: Oxenford, Simon
  organization: Movement Disorder and Neuromodulation Unit, Department of Neurology Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin Berlin Germany
– sequence: 6
  givenname: Ningfei
  orcidid: 0000-0003-3315-3591
  surname: Li
  fullname: Li, Ningfei
  organization: Movement Disorder and Neuromodulation Unit, Department of Neurology Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin Berlin Germany
– sequence: 7
  givenname: Alice L.
  surname: Sternberg
  fullname: Sternberg, Alice L.
  organization: Department of Epidemiology Johns Hopkins University Baltimore MD USA
– sequence: 8
  givenname: Thomas L.
  surname: Davis
  fullname: Davis, Thomas L.
  organization: Department of Neurology Vanderbilt University Medical Center Nashville TN USA
– sequence: 9
  givenname: Peter E.
  surname: Konrad
  fullname: Konrad, Peter E.
  organization: Department of Neurosurgery West Virginia University Morgantown WV USA
– sequence: 10
  givenname: Andreas
  surname: Horn
  fullname: Horn, Andreas
  organization: Movement Disorder and Neuromodulation Unit, Department of Neurology Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin Berlin Germany, Center for Brain Circuit Therapeutics, Department of Neurology Brigham and Women's Hospital, Harvard Medical School Boston MA USA, Department of Neurosurgery and Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School Boston MA USA
– sequence: 11
  givenname: David
  orcidid: 0000-0003-1205-6661
  surname: Charles
  fullname: Charles, David
  organization: Department of Neurology Vanderbilt University Medical Center Nashville TN USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37177857$$D View this record in MEDLINE/PubMed
BookMark eNplkctuFTEMhiNURE8LC14AjcQGFtPmOpNZwukFpAoqFdaRJ-OBlExySDJI5-0JvWzKyrL92bL__4gchBiQkNeMnjBK-SkEOOFd18tnZMOUYK3mcjggGyo62Som5CE5yvmWUjp0jL4gh6Jnfa9VvyHTNoaAtrg_ruyb6xRn57GZY2pu1rH8BA-Ls82X1Xpcc3OGuGs-JnChuSluWT0UF0NT03NIfl-L8AOba0i_XMi1ceYyQsaX5PkMPuOrh3hMvl-cf9t-aq--Xn7efrhqrZC6tKPqJ4Fi4JKOnDGK9RfJx8EOo6K2Y1yDoCOoDgAsst4OExcUNOdTZ_UM4pi8u9-7S_H3irmYxWWL3kPAuGbDNRNKdZqzir59gt7GNYV6XaUk01QrOVTqzQO1jgtOZpfcAmlvHvWrwOk9YFPMOeFsrCt3opSqkjeMmn8OmeqQuXOoTrx_MvG49H_2L2yFkAc
CitedBy_id crossref_primary_10_1016_j_brs_2025_03_008
crossref_primary_10_1002_jnr_70029
crossref_primary_10_1007_s00415_024_12703_8
crossref_primary_10_1038_s41467_024_47555_3
crossref_primary_10_3390_medicina60091384
crossref_primary_10_1073_pnas_2316149121
crossref_primary_10_1016_j_nicl_2024_103591
crossref_primary_10_1523_JNEUROSCI_1427_23_2023
crossref_primary_10_1002_ana_26961
crossref_primary_10_3174_ajnr_A8245
Cites_doi 10.1038/s41467-021-25366-0
10.1097/WCO.0000000000000679
10.15252/emmm.201809575
10.1056/nejmoa060281
10.1016/j.neuroimage.2020.117307
10.3233/JPD-2012-012095
10.1002/mds.25006
10.1016/j.neuroimage.2020.117018
10.1002/ana.26326
10.1016/j.neurom.2022.10.051
10.1523/JNEUROSCI.3134-07.2007
10.1093/brain/awab258
10.1002/mds.23429
10.1056/nejmoa1205158
10.1002/mds.27535
10.1016/j.parkreldis.2014.03.019
10.1093/brain/awf050
10.1016/j.brs.2020.09.027
10.1212/WNL.0000000000009946
10.1002/mds.28862
10.1002/ana.24974
10.1212/WNL.0000000000007252
10.1007/s00701-013-1782-1
10.3171/2016.4.JNS1624
10.1093/neuros/nyz544
10.1016/j.neuroimage.2017.05.015
10.1212/WNL.59.6.932
10.3389/fneur.2014.00025
10.1109/TBME.2014.2363494
10.1016/j.neuroimage.2023.119862
10.1016/j.neuroimage.2018.09.061
10.1016/J.NEURON.2013.01.020
10.1016/j.neuroimage.2017.02.004
10.1136/jnnp-2011-300008
10.1016/j.neuroimage.2017.07.012
10.1073/pnas.2114985119
10.1212/WNL.60.1.78
10.1016/j.neuroimage.2022.119552
10.1086/JCE201223302
10.1016/j.media.2007.06.004
10.1002/mds.10226
10.1016/J.CLINPH.2005.10.007
10.3389/fnins.2022.1010253
10.1212/WNL.0b013e31825dcdc1
10.1038/s41597-019-0254-8
10.3171/jns.2000.92.4.0615
10.3389/fnana.2016.00076
10.1016/j.nbd.2016.08.003
10.1016/j.nicl.2017.10.004
10.1016/j.neuroimage.2010.09.025
10.1016/j.neuroimage.2018.08.068
ContentType Journal Article
Copyright 2023 American Neurological Association.
2023 American Neurological Association
Copyright_xml – notice: 2023 American Neurological Association.
– notice: 2023 American Neurological Association
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
K9.
7X8
DOI 10.1002/ana.26674
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Environmental Sciences and Pollution Management
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Toxicology Abstracts
Neurosciences Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8249
EndPage 284
ExternalDocumentID 37177857
10_1002_ana_26674
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCATS NIH HHS
  grantid: UL1 TR002243
– fundername: NCATS NIH HHS
  grantid: UL1 TR000445
– fundername: NIBIB NIH HHS
  grantid: R01 EB006136
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1CY
1L6
1OB
1OC
1ZS
23M
2QL
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAEJM
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AAQQT
AASGY
AAWTL
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABIVO
ABJNI
ABLJU
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBMB
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AEYWJ
AFAZI
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHMBA
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJJEV
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CITATION
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
EBS
EJD
EMOBN
F00
F01
F04
F5P
F8P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
GOZPB
GRPMH
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
J5H
JPC
KBYEO
KD1
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LXL
LXN
LXY
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N4W
N9A
NF~
NNB
O66
O9-
OHT
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.-
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SJN
SUPJJ
TEORI
UB1
V2E
V8K
V9Y
VH1
W8V
W99
WBKPD
WH7
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XJT
XPP
XSW
XV2
YOC
YQJ
ZGI
ZRF
ZRR
ZXP
ZZTAW
~IA
~WT
~X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
C1K
K9.
7X8
ID FETCH-LOGICAL-c348t-b57d3e39240b2110e15342b9c9b50c6128a30ba56aaace17c9d230a822d6c8fa3
ISSN 0364-5134
1531-8249
IngestDate Fri Jul 11 09:43:58 EDT 2025
Fri Jul 25 10:48:09 EDT 2025
Mon Jul 21 06:04:14 EDT 2025
Tue Jul 01 02:24:16 EDT 2025
Thu Apr 24 23:06:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 2023 American Neurological Association.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-b57d3e39240b2110e15342b9c9b50c6128a30ba56aaace17c9d230a822d6c8fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
ORCID 0000-0003-3315-3591
0000-0003-1498-4509
0000-0003-1205-6661
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/10846105
PMID 37177857
PQID 2841808549
PQPubID 946345
PageCount 14
ParticipantIDs proquest_miscellaneous_2813556821
proquest_journals_2841808549
pubmed_primary_37177857
crossref_citationtrail_10_1002_ana_26674
crossref_primary_10_1002_ana_26674
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-00
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Minneapolis
PublicationTitle Annals of neurology
PublicationTitleAlternate Ann Neurol
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_8_28_1
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_32_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
Rajamani N (e_1_2_8_30_1)
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – ident: e_1_2_8_41_1
  doi: 10.1038/s41467-021-25366-0
– ident: e_1_2_8_46_1
  doi: 10.1097/WCO.0000000000000679
– ident: e_1_2_8_15_1
  doi: 10.15252/emmm.201809575
– ident: e_1_2_8_3_1
  doi: 10.1056/nejmoa060281
– volume-title: Symptom specific tractography correlates with, and can be used to suggest optimal parameters for DBS programming and surgery. Abstract presented atI DBS expert summit
  ident: e_1_2_8_30_1
– ident: e_1_2_8_49_1
  doi: 10.1016/j.neuroimage.2020.117307
– ident: e_1_2_8_18_1
  doi: 10.3233/JPD-2012-012095
– ident: e_1_2_8_37_1
  doi: 10.1002/mds.25006
– ident: e_1_2_8_28_1
  doi: 10.1016/j.neuroimage.2020.117018
– ident: e_1_2_8_9_1
  doi: 10.1002/ana.26326
– ident: e_1_2_8_22_1
  doi: 10.1016/j.neurom.2022.10.051
– ident: e_1_2_8_45_1
  doi: 10.1523/JNEUROSCI.3134-07.2007
– ident: e_1_2_8_14_1
  doi: 10.1093/brain/awab258
– ident: e_1_2_8_23_1
  doi: 10.1002/mds.23429
– ident: e_1_2_8_2_1
  doi: 10.1056/nejmoa1205158
– ident: e_1_2_8_43_1
  doi: 10.1002/mds.27535
– ident: e_1_2_8_17_1
  doi: 10.1016/j.parkreldis.2014.03.019
– ident: e_1_2_8_6_1
  doi: 10.1093/brain/awf050
– ident: e_1_2_8_40_1
  doi: 10.1016/j.brs.2020.09.027
– ident: e_1_2_8_21_1
  doi: 10.1212/WNL.0000000000009946
– ident: e_1_2_8_44_1
  doi: 10.1002/mds.28862
– ident: e_1_2_8_13_1
  doi: 10.1002/ana.24974
– ident: e_1_2_8_42_1
  doi: 10.1212/WNL.0000000000007252
– ident: e_1_2_8_8_1
  doi: 10.1007/s00701-013-1782-1
– ident: e_1_2_8_47_1
  doi: 10.3171/2016.4.JNS1624
– ident: e_1_2_8_16_1
  doi: 10.1093/neuros/nyz544
– ident: e_1_2_8_26_1
  doi: 10.1016/j.neuroimage.2017.05.015
– ident: e_1_2_8_5_1
  doi: 10.1212/WNL.59.6.932
– ident: e_1_2_8_20_1
  doi: 10.3389/fneur.2014.00025
– ident: e_1_2_8_29_1
  doi: 10.1109/TBME.2014.2363494
– ident: e_1_2_8_38_1
  doi: 10.1016/j.neuroimage.2023.119862
– ident: e_1_2_8_50_1
  doi: 10.1016/j.neuroimage.2018.09.061
– ident: e_1_2_8_12_1
  doi: 10.1016/J.NEURON.2013.01.020
– ident: e_1_2_8_32_1
  doi: 10.1016/j.neuroimage.2017.02.004
– ident: e_1_2_8_19_1
  doi: 10.1136/jnnp-2011-300008
– ident: e_1_2_8_11_1
  doi: 10.1016/j.neuroimage.2017.07.012
– ident: e_1_2_8_31_1
  doi: 10.1073/pnas.2114985119
– ident: e_1_2_8_34_1
  doi: 10.1212/WNL.60.1.78
– ident: e_1_2_8_51_1
  doi: 10.1016/j.neuroimage.2022.119552
– ident: e_1_2_8_52_1
  doi: 10.1086/JCE201223302
– ident: e_1_2_8_25_1
  doi: 10.1016/j.media.2007.06.004
– ident: e_1_2_8_35_1
  doi: 10.1002/mds.10226
– ident: e_1_2_8_10_1
  doi: 10.1016/J.CLINPH.2005.10.007
– ident: e_1_2_8_36_1
  doi: 10.3389/fnins.2022.1010253
– ident: e_1_2_8_4_1
  doi: 10.1212/WNL.0b013e31825dcdc1
– ident: e_1_2_8_53_1
  doi: 10.1038/s41597-019-0254-8
– ident: e_1_2_8_33_1
  doi: 10.3171/jns.2000.92.4.0615
– ident: e_1_2_8_48_1
  doi: 10.3389/fnana.2016.00076
– ident: e_1_2_8_39_1
  doi: 10.1016/j.nbd.2016.08.003
– ident: e_1_2_8_27_1
  doi: 10.1016/j.nicl.2017.10.004
– ident: e_1_2_8_24_1
  doi: 10.1016/j.neuroimage.2010.09.025
– ident: e_1_2_8_7_1
  doi: 10.1016/j.neuroimage.2018.08.068
SSID ssj0009610
Score 2.5176227
Snippet This study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation...
ObjectiveThis study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 271
SubjectTerms Brain
Cerebellum
Connectivity
Cortex (motor)
Deep brain stimulation
Deep Brain Stimulation - methods
Electrical stimuli
Humans
Localization
Mapping
Movement disorders
Neural networks
Neurodegenerative diseases
Parkinson Disease - diagnostic imaging
Parkinson Disease - therapy
Parkinson's disease
Solitary tract nucleus
Stimulation
Subthalamic nucleus
Subthalamic Nucleus - physiology
Supplementary motor area
Treatment Outcome
White Matter
Title Connectivity Profile for Subthalamic Nucleus Deep Brain Stimulation in Early Stage Parkinson Disease
URI https://www.ncbi.nlm.nih.gov/pubmed/37177857
https://www.proquest.com/docview/2841808549
https://www.proquest.com/docview/2813556821
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZZB2MvY7-XrRva2MOgOLP1w7Yex9oSRpONkkDejGwrtNA5JY0f2r9-d5KsuDSDbi8mkRUn0X0-30mn7yPks2CGmXQJd1pqskhwZiIlNI-4LDOZxSZTKW5wnkzT8Vz8WMjFYLDsVS21m3JU3ezcV_I_VoU2sCvukv0Hy4aLQgO8BvvCESwMx3vZ2FapVF7_4ZdT37Z1g-AONmf6ArXmD6bIWNxegWcxl2BKfY6avee_vWwXznc4kmMIO7F8R-PkOcoSHvaWbu6wLVsazP6E_Fh39RkTXMpfXx-EWeVTjeRLVjoKnTnuAgnPgqlp69V66Xcj2lL2EOSPUYW5qd05vy7Sn6RgPJTIbf1qEuXMsZOOzI4274yd4rEHHet7VqfUcsfjOwZZ3egRhBpO8Oc2q_b0Z3E8PzkpZkeL2QPykEE6gUoXh6dbmjGVOtaK7gd1DFQx-xoufDtu-UsyYoOS2VPyxGcT9JuDxjMyMM1z8mji6yVekLqPEOoRQgEhtIcQ6hFCESHUIoT2EELhrUUItQihASHUI-QlmR8fzb6PI6-rEVVc5JuolFnNDQTGIi4x_zfwxwUrVaVKGVcQ8uaax6WWqda6MklWqRoSVQ2hZJ1W-VLzV2SvWTXmDaFK1yaWJdcQ9otcS5WrWgkRG8UrbaQZki_dqBWVJ51H7ZOLwtFlswIGuLADPCSfQtdLx7Syq9N-N_SFvxGvCoiwkhxSB6GG5GM4DW4S1750Y1Yt9kk4ku2xZEheO5OFb-FZkmW5zN7e49PvyOMtvvfJ3mbdmvcQlm7KDxZTfwAPhpEe
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connectivity+Profile+for+Subthalamic+Nucleus+Deep+Brain+Stimulation+in+Early+Stage+Parkinson+Disease&rft.jtitle=Annals+of+neurology&rft.au=Hacker%2C+Mallory+L&rft.au=Rajamani%2C+Nanditha&rft.au=Neudorfer%2C+Clemens&rft.au=Hollunder%2C+Barbara&rft.date=2023-08-01&rft.issn=1531-8249&rft.eissn=1531-8249&rft.volume=94&rft.issue=2&rft.spage=271&rft_id=info:doi/10.1002%2Fana.26674&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon