Connectivity Profile for Subthalamic Nucleus Deep Brain Stimulation in Early Stage Parkinson Disease
This study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial. To determine anatomical and network correlates associated with motor outco...
Saved in:
Published in | Annals of neurology Vol. 94; no. 2; pp. 271 - 284 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial.
To determine anatomical and network correlates associated with motor outcomes for subjects randomized to early DBS (n = 14), voxelwise sweet spot mapping and structural connectivity analyses were carried out using outcomes of motor progression (Unified Parkinson Disease Rating Scale Part III [UPDRS-III] 7-day OFF scores [∆baseline➔24 months, MedOFF/StimOFF]) and symptomatic motor improvement (UPDRS-III ON scores [%∆baseline➔24 months, MedON/StimON]).
Sweet spot mapping revealed a location associated with slower motor progression in the dorsolateral STN (anterior/posterior commissure coordinates: 11.07 ± 0.82mm lateral, 1.83 ± 0.61mm posterior, 3.53 ± 0.38mm inferior to the midcommissural point; Montreal Neurological Institute coordinates: +11.25, -13.56, -7.44mm). Modulating fiber tracts from supplementary motor area (SMA) and primary motor cortex (M1) to the STN correlated with slower motor progression across STN DBS subjects, whereas fiber tracts originating from pre-SMA and cerebellum were negatively associated with motor progression. Robustness of the fiber tract model was demonstrated in leave-one-patient-out (R = 0.56, p = 0.02), 5-fold (R = 0.50, p = 0.03), and 10-fold (R = 0.53, p = 0.03) cross-validation paradigms. The sweet spot and fiber tracts associated with motor progression revealed strong similarities to symptomatic motor improvement sweet spot and connectivity in this early stage PD cohort.
These results suggest that stimulating the dorsolateral region of the STN receiving input from M1 and SMA (but not pre-SMA) is associated with slower motor progression across subjects receiving STN DBS in early stage PD. This finding is hypothesis-generating and must be prospectively tested in a larger study. ANN NEUROL 2023;94:271-284. |
---|---|
AbstractList | ObjectiveThis study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial.MethodsTo determine anatomical and network correlates associated with motor outcomes for subjects randomized to early DBS (n = 14), voxelwise sweet spot mapping and structural connectivity analyses were carried out using outcomes of motor progression (Unified Parkinson Disease Rating Scale Part III [UPDRS‐III] 7‐day OFF scores [∆baseline➔24 months, MedOFF/StimOFF]) and symptomatic motor improvement (UPDRS‐III ON scores [%∆baseline➔24 months, MedON/StimON]).ResultsSweet spot mapping revealed a location associated with slower motor progression in the dorsolateral STN (anterior/posterior commissure coordinates: 11.07 ± 0.82mm lateral, 1.83 ± 0.61mm posterior, 3.53 ± 0.38mm inferior to the midcommissural point; Montreal Neurological Institute coordinates: +11.25, −13.56, −7.44mm). Modulating fiber tracts from supplementary motor area (SMA) and primary motor cortex (M1) to the STN correlated with slower motor progression across STN DBS subjects, whereas fiber tracts originating from pre‐SMA and cerebellum were negatively associated with motor progression. Robustness of the fiber tract model was demonstrated in leave‐one‐patient‐out (R = 0.56, p = 0.02), 5‐fold (R = 0.50, p = 0.03), and 10‐fold (R = 0.53, p = 0.03) cross‐validation paradigms. The sweet spot and fiber tracts associated with motor progression revealed strong similarities to symptomatic motor improvement sweet spot and connectivity in this early stage PD cohort.InterpretationThese results suggest that stimulating the dorsolateral region of the STN receiving input from M1 and SMA (but not pre‐SMA) is associated with slower motor progression across subjects receiving STN DBS in early stage PD. This finding is hypothesis‐generating and must be prospectively tested in a larger study. ANN NEUROL 2023;94:271–284 This study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial. To determine anatomical and network correlates associated with motor outcomes for subjects randomized to early DBS (n = 14), voxelwise sweet spot mapping and structural connectivity analyses were carried out using outcomes of motor progression (Unified Parkinson Disease Rating Scale Part III [UPDRS-III] 7-day OFF scores [∆baseline➔24 months, MedOFF/StimOFF]) and symptomatic motor improvement (UPDRS-III ON scores [%∆baseline➔24 months, MedON/StimON]). Sweet spot mapping revealed a location associated with slower motor progression in the dorsolateral STN (anterior/posterior commissure coordinates: 11.07 ± 0.82mm lateral, 1.83 ± 0.61mm posterior, 3.53 ± 0.38mm inferior to the midcommissural point; Montreal Neurological Institute coordinates: +11.25, -13.56, -7.44mm). Modulating fiber tracts from supplementary motor area (SMA) and primary motor cortex (M1) to the STN correlated with slower motor progression across STN DBS subjects, whereas fiber tracts originating from pre-SMA and cerebellum were negatively associated with motor progression. Robustness of the fiber tract model was demonstrated in leave-one-patient-out (R = 0.56, p = 0.02), 5-fold (R = 0.50, p = 0.03), and 10-fold (R = 0.53, p = 0.03) cross-validation paradigms. The sweet spot and fiber tracts associated with motor progression revealed strong similarities to symptomatic motor improvement sweet spot and connectivity in this early stage PD cohort. These results suggest that stimulating the dorsolateral region of the STN receiving input from M1 and SMA (but not pre-SMA) is associated with slower motor progression across subjects receiving STN DBS in early stage PD. This finding is hypothesis-generating and must be prospectively tested in a larger study. ANN NEUROL 2023;94:271-284. This study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial.OBJECTIVEThis study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation (DBS) in early stage Parkinson disease (PD) pilot clinical trial.To determine anatomical and network correlates associated with motor outcomes for subjects randomized to early DBS (n = 14), voxelwise sweet spot mapping and structural connectivity analyses were carried out using outcomes of motor progression (Unified Parkinson Disease Rating Scale Part III [UPDRS-III] 7-day OFF scores [∆baseline➔24 months, MedOFF/StimOFF]) and symptomatic motor improvement (UPDRS-III ON scores [%∆baseline➔24 months, MedON/StimON]).METHODSTo determine anatomical and network correlates associated with motor outcomes for subjects randomized to early DBS (n = 14), voxelwise sweet spot mapping and structural connectivity analyses were carried out using outcomes of motor progression (Unified Parkinson Disease Rating Scale Part III [UPDRS-III] 7-day OFF scores [∆baseline➔24 months, MedOFF/StimOFF]) and symptomatic motor improvement (UPDRS-III ON scores [%∆baseline➔24 months, MedON/StimON]).Sweet spot mapping revealed a location associated with slower motor progression in the dorsolateral STN (anterior/posterior commissure coordinates: 11.07 ± 0.82mm lateral, 1.83 ± 0.61mm posterior, 3.53 ± 0.38mm inferior to the midcommissural point; Montreal Neurological Institute coordinates: +11.25, -13.56, -7.44mm). Modulating fiber tracts from supplementary motor area (SMA) and primary motor cortex (M1) to the STN correlated with slower motor progression across STN DBS subjects, whereas fiber tracts originating from pre-SMA and cerebellum were negatively associated with motor progression. Robustness of the fiber tract model was demonstrated in leave-one-patient-out (R = 0.56, p = 0.02), 5-fold (R = 0.50, p = 0.03), and 10-fold (R = 0.53, p = 0.03) cross-validation paradigms. The sweet spot and fiber tracts associated with motor progression revealed strong similarities to symptomatic motor improvement sweet spot and connectivity in this early stage PD cohort.RESULTSSweet spot mapping revealed a location associated with slower motor progression in the dorsolateral STN (anterior/posterior commissure coordinates: 11.07 ± 0.82mm lateral, 1.83 ± 0.61mm posterior, 3.53 ± 0.38mm inferior to the midcommissural point; Montreal Neurological Institute coordinates: +11.25, -13.56, -7.44mm). Modulating fiber tracts from supplementary motor area (SMA) and primary motor cortex (M1) to the STN correlated with slower motor progression across STN DBS subjects, whereas fiber tracts originating from pre-SMA and cerebellum were negatively associated with motor progression. Robustness of the fiber tract model was demonstrated in leave-one-patient-out (R = 0.56, p = 0.02), 5-fold (R = 0.50, p = 0.03), and 10-fold (R = 0.53, p = 0.03) cross-validation paradigms. The sweet spot and fiber tracts associated with motor progression revealed strong similarities to symptomatic motor improvement sweet spot and connectivity in this early stage PD cohort.These results suggest that stimulating the dorsolateral region of the STN receiving input from M1 and SMA (but not pre-SMA) is associated with slower motor progression across subjects receiving STN DBS in early stage PD. This finding is hypothesis-generating and must be prospectively tested in a larger study. ANN NEUROL 2023;94:271-284.INTERPRETATIONThese results suggest that stimulating the dorsolateral region of the STN receiving input from M1 and SMA (but not pre-SMA) is associated with slower motor progression across subjects receiving STN DBS in early stage PD. This finding is hypothesis-generating and must be prospectively tested in a larger study. ANN NEUROL 2023;94:271-284. |
Author | Rajamani, Nanditha Neudorfer, Clemens Sternberg, Alice L. Davis, Thomas L. Horn, Andreas Charles, David Hollunder, Barbara Hacker, Mallory L. Li, Ningfei Oxenford, Simon Konrad, Peter E. |
Author_xml | – sequence: 1 givenname: Mallory L. orcidid: 0000-0003-1498-4509 surname: Hacker fullname: Hacker, Mallory L. organization: Department of Neurology Vanderbilt University Medical Center Nashville TN USA – sequence: 2 givenname: Nanditha surname: Rajamani fullname: Rajamani, Nanditha organization: Movement Disorder and Neuromodulation Unit, Department of Neurology Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin Berlin Germany – sequence: 3 givenname: Clemens surname: Neudorfer fullname: Neudorfer, Clemens organization: Center for Brain Circuit Therapeutics, Department of Neurology Brigham and Women's Hospital, Harvard Medical School Boston MA USA – sequence: 4 givenname: Barbara surname: Hollunder fullname: Hollunder, Barbara organization: Movement Disorder and Neuromodulation Unit, Department of Neurology Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin Berlin Germany, Einstein Center for Neurosciences Berlin, Charité–Universitätsmedizin Berlin Berlin Germany, Berlin School of Mind and Brain, Humboldt University of Berlin Berlin Germany – sequence: 5 givenname: Simon surname: Oxenford fullname: Oxenford, Simon organization: Movement Disorder and Neuromodulation Unit, Department of Neurology Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin Berlin Germany – sequence: 6 givenname: Ningfei orcidid: 0000-0003-3315-3591 surname: Li fullname: Li, Ningfei organization: Movement Disorder and Neuromodulation Unit, Department of Neurology Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin Berlin Germany – sequence: 7 givenname: Alice L. surname: Sternberg fullname: Sternberg, Alice L. organization: Department of Epidemiology Johns Hopkins University Baltimore MD USA – sequence: 8 givenname: Thomas L. surname: Davis fullname: Davis, Thomas L. organization: Department of Neurology Vanderbilt University Medical Center Nashville TN USA – sequence: 9 givenname: Peter E. surname: Konrad fullname: Konrad, Peter E. organization: Department of Neurosurgery West Virginia University Morgantown WV USA – sequence: 10 givenname: Andreas surname: Horn fullname: Horn, Andreas organization: Movement Disorder and Neuromodulation Unit, Department of Neurology Department of Neurology, Charité–Universitätsmedizin Berlin, corporate member of Free University of Berlin and Humboldt University of Berlin Berlin Germany, Center for Brain Circuit Therapeutics, Department of Neurology Brigham and Women's Hospital, Harvard Medical School Boston MA USA, Department of Neurosurgery and Center for Neurotechnology and Neurorecovery, Massachusetts General Hospital, Harvard Medical School Boston MA USA – sequence: 11 givenname: David orcidid: 0000-0003-1205-6661 surname: Charles fullname: Charles, David organization: Department of Neurology Vanderbilt University Medical Center Nashville TN USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37177857$$D View this record in MEDLINE/PubMed |
BookMark | eNplkctuFTEMhiNURE8LC14AjcQGFtPmOpNZwukFpAoqFdaRJ-OBlExySDJI5-0JvWzKyrL92bL__4gchBiQkNeMnjBK-SkEOOFd18tnZMOUYK3mcjggGyo62Som5CE5yvmWUjp0jL4gh6Jnfa9VvyHTNoaAtrg_ruyb6xRn57GZY2pu1rH8BA-Ls82X1Xpcc3OGuGs-JnChuSluWT0UF0NT03NIfl-L8AOba0i_XMi1ceYyQsaX5PkMPuOrh3hMvl-cf9t-aq--Xn7efrhqrZC6tKPqJ4Fi4JKOnDGK9RfJx8EOo6K2Y1yDoCOoDgAsst4OExcUNOdTZ_UM4pi8u9-7S_H3irmYxWWL3kPAuGbDNRNKdZqzir59gt7GNYV6XaUk01QrOVTqzQO1jgtOZpfcAmlvHvWrwOk9YFPMOeFsrCt3opSqkjeMmn8OmeqQuXOoTrx_MvG49H_2L2yFkAc |
CitedBy_id | crossref_primary_10_1016_j_brs_2025_03_008 crossref_primary_10_1002_jnr_70029 crossref_primary_10_1007_s00415_024_12703_8 crossref_primary_10_1038_s41467_024_47555_3 crossref_primary_10_3390_medicina60091384 crossref_primary_10_1073_pnas_2316149121 crossref_primary_10_1016_j_nicl_2024_103591 crossref_primary_10_1523_JNEUROSCI_1427_23_2023 crossref_primary_10_1002_ana_26961 crossref_primary_10_3174_ajnr_A8245 |
Cites_doi | 10.1038/s41467-021-25366-0 10.1097/WCO.0000000000000679 10.15252/emmm.201809575 10.1056/nejmoa060281 10.1016/j.neuroimage.2020.117307 10.3233/JPD-2012-012095 10.1002/mds.25006 10.1016/j.neuroimage.2020.117018 10.1002/ana.26326 10.1016/j.neurom.2022.10.051 10.1523/JNEUROSCI.3134-07.2007 10.1093/brain/awab258 10.1002/mds.23429 10.1056/nejmoa1205158 10.1002/mds.27535 10.1016/j.parkreldis.2014.03.019 10.1093/brain/awf050 10.1016/j.brs.2020.09.027 10.1212/WNL.0000000000009946 10.1002/mds.28862 10.1002/ana.24974 10.1212/WNL.0000000000007252 10.1007/s00701-013-1782-1 10.3171/2016.4.JNS1624 10.1093/neuros/nyz544 10.1016/j.neuroimage.2017.05.015 10.1212/WNL.59.6.932 10.3389/fneur.2014.00025 10.1109/TBME.2014.2363494 10.1016/j.neuroimage.2023.119862 10.1016/j.neuroimage.2018.09.061 10.1016/J.NEURON.2013.01.020 10.1016/j.neuroimage.2017.02.004 10.1136/jnnp-2011-300008 10.1016/j.neuroimage.2017.07.012 10.1073/pnas.2114985119 10.1212/WNL.60.1.78 10.1016/j.neuroimage.2022.119552 10.1086/JCE201223302 10.1016/j.media.2007.06.004 10.1002/mds.10226 10.1016/J.CLINPH.2005.10.007 10.3389/fnins.2022.1010253 10.1212/WNL.0b013e31825dcdc1 10.1038/s41597-019-0254-8 10.3171/jns.2000.92.4.0615 10.3389/fnana.2016.00076 10.1016/j.nbd.2016.08.003 10.1016/j.nicl.2017.10.004 10.1016/j.neuroimage.2010.09.025 10.1016/j.neuroimage.2018.08.068 |
ContentType | Journal Article |
Copyright | 2023 American Neurological Association. 2023 American Neurological Association |
Copyright_xml | – notice: 2023 American Neurological Association. – notice: 2023 American Neurological Association |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 C1K K9. 7X8 |
DOI | 10.1002/ana.26674 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Environmental Sciences and Pollution Management ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Toxicology Abstracts Neurosciences Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1531-8249 |
EndPage | 284 |
ExternalDocumentID | 37177857 10_1002_ana_26674 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCATS NIH HHS grantid: UL1 TR002243 – fundername: NCATS NIH HHS grantid: UL1 TR000445 – fundername: NIBIB NIH HHS grantid: R01 EB006136 |
GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1CY 1L6 1OB 1OC 1ZS 23M 2QL 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5VS 66C 6J9 6P2 6PF 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAEJM AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AAQQT AASGY AAWTL AAXRX AAYCA AAYXX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABLJU ABOCM ABPVW ABQWH ABXGK ACAHQ ACBMB ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AEYWJ AFAZI AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHMBA AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE AJJEV ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CITATION CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRMAN DRSTM EBS EJD EMOBN F00 F01 F04 F5P F8P FEDTE FUBAC FYBCS G-S G.N GNP GODZA GOZPB GRPMH H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M J5H JPC KBYEO KD1 KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LXL LXN LXY LYRES M6M MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N4W N9A NF~ NNB O66 O9- OHT OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.- Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SJN SUPJJ TEORI UB1 V2E V8K V9Y VH1 W8V W99 WBKPD WH7 WHWMO WIB WIH WIJ WIK WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XJT XPP XSW XV2 YOC YQJ ZGI ZRF ZRR ZXP ZZTAW ~IA ~WT ~X8 AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 7TK 7U7 C1K K9. 7X8 |
ID | FETCH-LOGICAL-c348t-b57d3e39240b2110e15342b9c9b50c6128a30ba56aaace17c9d230a822d6c8fa3 |
ISSN | 0364-5134 1531-8249 |
IngestDate | Fri Jul 11 09:43:58 EDT 2025 Fri Jul 25 10:48:09 EDT 2025 Mon Jul 21 06:04:14 EDT 2025 Tue Jul 01 02:24:16 EDT 2025 Thu Apr 24 23:06:29 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 2023 American Neurological Association. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c348t-b57d3e39240b2110e15342b9c9b50c6128a30ba56aaace17c9d230a822d6c8fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
ORCID | 0000-0003-3315-3591 0000-0003-1498-4509 0000-0003-1205-6661 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/10846105 |
PMID | 37177857 |
PQID | 2841808549 |
PQPubID | 946345 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_2813556821 proquest_journals_2841808549 pubmed_primary_37177857 crossref_citationtrail_10_1002_ana_26674 crossref_primary_10_1002_ana_26674 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-00 20230801 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-00 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Minneapolis |
PublicationTitle | Annals of neurology |
PublicationTitleAlternate | Ann Neurol |
PublicationYear | 2023 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 Rajamani N (e_1_2_8_30_1) e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – ident: e_1_2_8_41_1 doi: 10.1038/s41467-021-25366-0 – ident: e_1_2_8_46_1 doi: 10.1097/WCO.0000000000000679 – ident: e_1_2_8_15_1 doi: 10.15252/emmm.201809575 – ident: e_1_2_8_3_1 doi: 10.1056/nejmoa060281 – volume-title: Symptom specific tractography correlates with, and can be used to suggest optimal parameters for DBS programming and surgery. Abstract presented atI DBS expert summit ident: e_1_2_8_30_1 – ident: e_1_2_8_49_1 doi: 10.1016/j.neuroimage.2020.117307 – ident: e_1_2_8_18_1 doi: 10.3233/JPD-2012-012095 – ident: e_1_2_8_37_1 doi: 10.1002/mds.25006 – ident: e_1_2_8_28_1 doi: 10.1016/j.neuroimage.2020.117018 – ident: e_1_2_8_9_1 doi: 10.1002/ana.26326 – ident: e_1_2_8_22_1 doi: 10.1016/j.neurom.2022.10.051 – ident: e_1_2_8_45_1 doi: 10.1523/JNEUROSCI.3134-07.2007 – ident: e_1_2_8_14_1 doi: 10.1093/brain/awab258 – ident: e_1_2_8_23_1 doi: 10.1002/mds.23429 – ident: e_1_2_8_2_1 doi: 10.1056/nejmoa1205158 – ident: e_1_2_8_43_1 doi: 10.1002/mds.27535 – ident: e_1_2_8_17_1 doi: 10.1016/j.parkreldis.2014.03.019 – ident: e_1_2_8_6_1 doi: 10.1093/brain/awf050 – ident: e_1_2_8_40_1 doi: 10.1016/j.brs.2020.09.027 – ident: e_1_2_8_21_1 doi: 10.1212/WNL.0000000000009946 – ident: e_1_2_8_44_1 doi: 10.1002/mds.28862 – ident: e_1_2_8_13_1 doi: 10.1002/ana.24974 – ident: e_1_2_8_42_1 doi: 10.1212/WNL.0000000000007252 – ident: e_1_2_8_8_1 doi: 10.1007/s00701-013-1782-1 – ident: e_1_2_8_47_1 doi: 10.3171/2016.4.JNS1624 – ident: e_1_2_8_16_1 doi: 10.1093/neuros/nyz544 – ident: e_1_2_8_26_1 doi: 10.1016/j.neuroimage.2017.05.015 – ident: e_1_2_8_5_1 doi: 10.1212/WNL.59.6.932 – ident: e_1_2_8_20_1 doi: 10.3389/fneur.2014.00025 – ident: e_1_2_8_29_1 doi: 10.1109/TBME.2014.2363494 – ident: e_1_2_8_38_1 doi: 10.1016/j.neuroimage.2023.119862 – ident: e_1_2_8_50_1 doi: 10.1016/j.neuroimage.2018.09.061 – ident: e_1_2_8_12_1 doi: 10.1016/J.NEURON.2013.01.020 – ident: e_1_2_8_32_1 doi: 10.1016/j.neuroimage.2017.02.004 – ident: e_1_2_8_19_1 doi: 10.1136/jnnp-2011-300008 – ident: e_1_2_8_11_1 doi: 10.1016/j.neuroimage.2017.07.012 – ident: e_1_2_8_31_1 doi: 10.1073/pnas.2114985119 – ident: e_1_2_8_34_1 doi: 10.1212/WNL.60.1.78 – ident: e_1_2_8_51_1 doi: 10.1016/j.neuroimage.2022.119552 – ident: e_1_2_8_52_1 doi: 10.1086/JCE201223302 – ident: e_1_2_8_25_1 doi: 10.1016/j.media.2007.06.004 – ident: e_1_2_8_35_1 doi: 10.1002/mds.10226 – ident: e_1_2_8_10_1 doi: 10.1016/J.CLINPH.2005.10.007 – ident: e_1_2_8_36_1 doi: 10.3389/fnins.2022.1010253 – ident: e_1_2_8_4_1 doi: 10.1212/WNL.0b013e31825dcdc1 – ident: e_1_2_8_53_1 doi: 10.1038/s41597-019-0254-8 – ident: e_1_2_8_33_1 doi: 10.3171/jns.2000.92.4.0615 – ident: e_1_2_8_48_1 doi: 10.3389/fnana.2016.00076 – ident: e_1_2_8_39_1 doi: 10.1016/j.nbd.2016.08.003 – ident: e_1_2_8_27_1 doi: 10.1016/j.nicl.2017.10.004 – ident: e_1_2_8_24_1 doi: 10.1016/j.neuroimage.2010.09.025 – ident: e_1_2_8_7_1 doi: 10.1016/j.neuroimage.2018.08.068 |
SSID | ssj0009610 |
Score | 2.5176227 |
Snippet | This study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain stimulation... ObjectiveThis study was undertaken to describe relationships between electrode localization and motor outcomes from the subthalamic nucleus (STN) deep brain... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 271 |
SubjectTerms | Brain Cerebellum Connectivity Cortex (motor) Deep brain stimulation Deep Brain Stimulation - methods Electrical stimuli Humans Localization Mapping Movement disorders Neural networks Neurodegenerative diseases Parkinson Disease - diagnostic imaging Parkinson Disease - therapy Parkinson's disease Solitary tract nucleus Stimulation Subthalamic nucleus Subthalamic Nucleus - physiology Supplementary motor area Treatment Outcome White Matter |
Title | Connectivity Profile for Subthalamic Nucleus Deep Brain Stimulation in Early Stage Parkinson Disease |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37177857 https://www.proquest.com/docview/2841808549 https://www.proquest.com/docview/2813556821 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swEBZZB2MvY7-XrRva2MOgOLP1w7Yex9oSRpONkkDejGwrtNA5JY0f2r9-d5KsuDSDbi8mkRUn0X0-30mn7yPks2CGmXQJd1pqskhwZiIlNI-4LDOZxSZTKW5wnkzT8Vz8WMjFYLDsVS21m3JU3ezcV_I_VoU2sCvukv0Hy4aLQgO8BvvCESwMx3vZ2FapVF7_4ZdT37Z1g-AONmf6ArXmD6bIWNxegWcxl2BKfY6avee_vWwXznc4kmMIO7F8R-PkOcoSHvaWbu6wLVsazP6E_Fh39RkTXMpfXx-EWeVTjeRLVjoKnTnuAgnPgqlp69V66Xcj2lL2EOSPUYW5qd05vy7Sn6RgPJTIbf1qEuXMsZOOzI4274yd4rEHHet7VqfUcsfjOwZZ3egRhBpO8Oc2q_b0Z3E8PzkpZkeL2QPykEE6gUoXh6dbmjGVOtaK7gd1DFQx-xoufDtu-UsyYoOS2VPyxGcT9JuDxjMyMM1z8mji6yVekLqPEOoRQgEhtIcQ6hFCESHUIoT2EELhrUUItQihASHUI-QlmR8fzb6PI6-rEVVc5JuolFnNDQTGIi4x_zfwxwUrVaVKGVcQ8uaax6WWqda6MklWqRoSVQ2hZJ1W-VLzV2SvWTXmDaFK1yaWJdcQ9otcS5WrWgkRG8UrbaQZki_dqBWVJ51H7ZOLwtFlswIGuLADPCSfQtdLx7Syq9N-N_SFvxGvCoiwkhxSB6GG5GM4DW4S1750Y1Yt9kk4ku2xZEheO5OFb-FZkmW5zN7e49PvyOMtvvfJ3mbdmvcQlm7KDxZTfwAPhpEe |
linkProvider | Wiley-Blackwell |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connectivity+Profile+for+Subthalamic+Nucleus+Deep+Brain+Stimulation+in+Early+Stage+Parkinson+Disease&rft.jtitle=Annals+of+neurology&rft.au=Hacker%2C+Mallory+L&rft.au=Rajamani%2C+Nanditha&rft.au=Neudorfer%2C+Clemens&rft.au=Hollunder%2C+Barbara&rft.date=2023-08-01&rft.issn=1531-8249&rft.eissn=1531-8249&rft.volume=94&rft.issue=2&rft.spage=271&rft_id=info:doi/10.1002%2Fana.26674&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0364-5134&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0364-5134&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0364-5134&client=summon |