scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network

Abstract The advances in single-cell ribonucleic acid sequencing (scRNA-seq) allow researchers to explore cellular heterogeneity and human diseases at cell resolution. Cell clustering is a prerequisite in scRNA-seq analysis since it can recognize cell identities. However, the high dimensionality, no...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 24; no. 1
Main Authors Wang, Jing, Xia, Junfeng, Wang, Haiyun, Su, Yansen, Zheng, Chun-Hou
Format Journal Article
LanguageEnglish
Published England Oxford University Press 19.01.2023
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract The advances in single-cell ribonucleic acid sequencing (scRNA-seq) allow researchers to explore cellular heterogeneity and human diseases at cell resolution. Cell clustering is a prerequisite in scRNA-seq analysis since it can recognize cell identities. However, the high dimensionality, noises and significant sparsity of scRNA-seq data have made it a big challenge. Although many methods have emerged, they still fail to fully explore the intrinsic properties of cells and the relationship among cells, which seriously affects the downstream clustering performance. Here, we propose a new deep contrastive clustering algorithm called scDCCA. It integrates a denoising auto-encoder and a dual contrastive learning module into a deep clustering framework to extract valuable features and realize cell clustering. Specifically, to better characterize and learn data representations robustly, scDCCA utilizes a denoising Zero-Inflated Negative Binomial model-based auto-encoder to extract low-dimensional features. Meanwhile, scDCCA incorporates a dual contrastive learning module to capture the pairwise proximity of cells. By increasing the similarities between positive pairs and the differences between negative ones, the contrasts at both the instance and the cluster level help the model learn more discriminative features and achieve better cell segregation. Furthermore, scDCCA joins feature learning with clustering, which realizes representation learning and cell clustering in an end-to-end manner. Experimental results of 14 real datasets validate that scDCCA outperforms eight state-of-the-art methods in terms of accuracy, generalizability, scalability and efficiency. Cell visualization and biological analysis demonstrate that scDCCA significantly improves clustering and facilitates downstream analysis for scRNA-seq data. The code is available at https://github.com/WJ319/scDCCA.
AbstractList The advances in single-cell ribonucleic acid sequencing (scRNA-seq) allow researchers to explore cellular heterogeneity and human diseases at cell resolution. Cell clustering is a prerequisite in scRNA-seq analysis since it can recognize cell identities. However, the high dimensionality, noises and significant sparsity of scRNA-seq data have made it a big challenge. Although many methods have emerged, they still fail to fully explore the intrinsic properties of cells and the relationship among cells, which seriously affects the downstream clustering performance. Here, we propose a new deep contrastive clustering algorithm called scDCCA. It integrates a denoising auto-encoder and a dual contrastive learning module into a deep clustering framework to extract valuable features and realize cell clustering. Specifically, to better characterize and learn data representations robustly, scDCCA utilizes a denoising Zero-Inflated Negative Binomial model-based auto-encoder to extract low-dimensional features. Meanwhile, scDCCA incorporates a dual contrastive learning module to capture the pairwise proximity of cells. By increasing the similarities between positive pairs and the differences between negative ones, the contrasts at both the instance and the cluster level help the model learn more discriminative features and achieve better cell segregation. Furthermore, scDCCA joins feature learning with clustering, which realizes representation learning and cell clustering in an end-to-end manner. Experimental results of 14 real datasets validate that scDCCA outperforms eight state-of-the-art methods in terms of accuracy, generalizability, scalability and efficiency. Cell visualization and biological analysis demonstrate that scDCCA significantly improves clustering and facilitates downstream analysis for scRNA-seq data. The code is available at https://github.com/WJ319/scDCCA.
The advances in single-cell ribonucleic acid sequencing (scRNA-seq) allow researchers to explore cellular heterogeneity and human diseases at cell resolution. Cell clustering is a prerequisite in scRNA-seq analysis since it can recognize cell identities. However, the high dimensionality, noises and significant sparsity of scRNA-seq data have made it a big challenge. Although many methods have emerged, they still fail to fully explore the intrinsic properties of cells and the relationship among cells, which seriously affects the downstream clustering performance. Here, we propose a new deep contrastive clustering algorithm called scDCCA. It integrates a denoising auto-encoder and a dual contrastive learning module into a deep clustering framework to extract valuable features and realize cell clustering. Specifically, to better characterize and learn data representations robustly, scDCCA utilizes a denoising Zero-Inflated Negative Binomial model-based auto-encoder to extract low-dimensional features. Meanwhile, scDCCA incorporates a dual contrastive learning module to capture the pairwise proximity of cells. By increasing the similarities between positive pairs and the differences between negative ones, the contrasts at both the instance and the cluster level help the model learn more discriminative features and achieve better cell segregation. Furthermore, scDCCA joins feature learning with clustering, which realizes representation learning and cell clustering in an end-to-end manner. Experimental results of 14 real datasets validate that scDCCA outperforms eight state-of-the-art methods in terms of accuracy, generalizability, scalability and efficiency. Cell visualization and biological analysis demonstrate that scDCCA significantly improves clustering and facilitates downstream analysis for scRNA-seq data. The code is available at https://github.com/WJ319/scDCCA.The advances in single-cell ribonucleic acid sequencing (scRNA-seq) allow researchers to explore cellular heterogeneity and human diseases at cell resolution. Cell clustering is a prerequisite in scRNA-seq analysis since it can recognize cell identities. However, the high dimensionality, noises and significant sparsity of scRNA-seq data have made it a big challenge. Although many methods have emerged, they still fail to fully explore the intrinsic properties of cells and the relationship among cells, which seriously affects the downstream clustering performance. Here, we propose a new deep contrastive clustering algorithm called scDCCA. It integrates a denoising auto-encoder and a dual contrastive learning module into a deep clustering framework to extract valuable features and realize cell clustering. Specifically, to better characterize and learn data representations robustly, scDCCA utilizes a denoising Zero-Inflated Negative Binomial model-based auto-encoder to extract low-dimensional features. Meanwhile, scDCCA incorporates a dual contrastive learning module to capture the pairwise proximity of cells. By increasing the similarities between positive pairs and the differences between negative ones, the contrasts at both the instance and the cluster level help the model learn more discriminative features and achieve better cell segregation. Furthermore, scDCCA joins feature learning with clustering, which realizes representation learning and cell clustering in an end-to-end manner. Experimental results of 14 real datasets validate that scDCCA outperforms eight state-of-the-art methods in terms of accuracy, generalizability, scalability and efficiency. Cell visualization and biological analysis demonstrate that scDCCA significantly improves clustering and facilitates downstream analysis for scRNA-seq data. The code is available at https://github.com/WJ319/scDCCA.
Abstract The advances in single-cell ribonucleic acid sequencing (scRNA-seq) allow researchers to explore cellular heterogeneity and human diseases at cell resolution. Cell clustering is a prerequisite in scRNA-seq analysis since it can recognize cell identities. However, the high dimensionality, noises and significant sparsity of scRNA-seq data have made it a big challenge. Although many methods have emerged, they still fail to fully explore the intrinsic properties of cells and the relationship among cells, which seriously affects the downstream clustering performance. Here, we propose a new deep contrastive clustering algorithm called scDCCA. It integrates a denoising auto-encoder and a dual contrastive learning module into a deep clustering framework to extract valuable features and realize cell clustering. Specifically, to better characterize and learn data representations robustly, scDCCA utilizes a denoising Zero-Inflated Negative Binomial model-based auto-encoder to extract low-dimensional features. Meanwhile, scDCCA incorporates a dual contrastive learning module to capture the pairwise proximity of cells. By increasing the similarities between positive pairs and the differences between negative ones, the contrasts at both the instance and the cluster level help the model learn more discriminative features and achieve better cell segregation. Furthermore, scDCCA joins feature learning with clustering, which realizes representation learning and cell clustering in an end-to-end manner. Experimental results of 14 real datasets validate that scDCCA outperforms eight state-of-the-art methods in terms of accuracy, generalizability, scalability and efficiency. Cell visualization and biological analysis demonstrate that scDCCA significantly improves clustering and facilitates downstream analysis for scRNA-seq data. The code is available at https://github.com/WJ319/scDCCA.
Author Xia, Junfeng
Zheng, Chun-Hou
Wang, Jing
Wang, Haiyun
Su, Yansen
Author_xml – sequence: 1
  givenname: Jing
  orcidid: 0000-0002-1345-1092
  surname: Wang
  fullname: Wang, Jing
  email: jingwang319@126.com
– sequence: 2
  givenname: Junfeng
  orcidid: 0000-0003-3024-1705
  surname: Xia
  fullname: Xia, Junfeng
  email: jfxia@ahu.edu.cn
– sequence: 3
  givenname: Haiyun
  surname: Wang
  fullname: Wang, Haiyun
  email: haiyun_wang_xju@163.com
– sequence: 4
  givenname: Yansen
  orcidid: 0000-0002-3855-7133
  surname: Su
  fullname: Su, Yansen
  email: suyansen@ahu.edu.cn
– sequence: 5
  givenname: Chun-Hou
  surname: Zheng
  fullname: Zheng, Chun-Hou
  email: zhengch99@126.com
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36631401$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1LAzEUxINUtK2evEtAEEFWk012s_VW6icUBdGrIZu8ldVt0iZZxf_era2XIp7eHH4zPGYGqGedBYQOKDmjZMTOy7o8L0ul8zTbQn3KhUg4yXhvqXORZDxnu2gQwhshKREF3UG7LM8Z5YT20UvQl5PJ-AIbgDnWzkavQqw_AOumDRF8bV9x5TwOnWgg0dA0-PF-nARYYKOiwqUKYLCzWLXRJWC1M-Cxhfjp_Pse2q5UE2B_fYfo-frqaXKbTB9u7ibjaaIZL2KiyhHVIFjBBChBBDW5YkUhdElUVow4MYQB01SrVDOWcZ7qiqZVZlQGFTEFG6KTVe7cu0ULIcpZHZa_KguuDTIVedbF8q6LITraQN9c6233nWSUMp5TkS4DD9dUW87AyLmvZ8p_yd_mOoCuAO1dCB4qqeuoYv3TYN1ISuRyHdmtI9frdJ7TDc9v7N_08Yp27fxf8BtNpp1a
CitedBy_id crossref_primary_10_1021_acs_jcim_4c02114
crossref_primary_10_1016_j_fmre_2025_01_001
crossref_primary_10_1016_j_biopha_2023_115077
crossref_primary_10_1186_s12859_025_06047_x
crossref_primary_10_1093_bib_bbae477
crossref_primary_10_1109_JBHI_2023_3319551
crossref_primary_10_1093_bib_bbae511
crossref_primary_10_1093_bib_bbae555
crossref_primary_10_1093_bib_bbae204
crossref_primary_10_1093_bib_bbad335
crossref_primary_10_1016_j_future_2024_107590
crossref_primary_10_1093_bib_bbae371
crossref_primary_10_1186_s12864_024_10319_w
crossref_primary_10_1038_s41598_025_87672_7
crossref_primary_10_1016_j_neucom_2024_127761
crossref_primary_10_1093_bib_bbad426
crossref_primary_10_1093_bib_bbad525
crossref_primary_10_1093_bib_bbae558
crossref_primary_10_1038_s41598_024_64217_y
crossref_primary_10_1016_j_compbiomed_2023_107263
crossref_primary_10_1016_j_compbiolchem_2023_107924
crossref_primary_10_1016_j_eswa_2024_125340
crossref_primary_10_1016_j_ymeth_2024_09_018
Cites_doi 10.1093/bib/bbab588
10.1038/s41586-018-0393-7
10.1038/ejhg.2012.129
10.1038/nmeth.4207
10.1093/bib/bbac155
10.1126/science.aah4573
10.1093/bib/bbac478
10.1016/j.cels.2016.09.002
10.1016/j.cell.2018.02.001
10.1093/bib/bbac018
10.1073/pnas.1507125112
10.1016/j.immuni.2019.03.009
10.1038/s42256-019-0037-0
10.1093/bioinformatics/btx650
10.1016/j.cell.2015.04.044
10.1145/1390156.1390294
10.1016/j.cels.2016.08.011
10.1126/science.aaa1934
10.1038/nbt.4314
10.1038/s41467-017-01860-2
10.1016/j.cmet.2016.08.018
10.1038/550451a
10.1109/BIBM49941.2020.9313569
10.1093/bib/bbaa316
10.1016/j.celrep.2017.03.004
10.1186/s13059-017-1382-0
10.1038/nri.2017.76
10.1007/BF01908075
10.1093/nargab/lqaa039
10.1038/nature22796
10.1093/bioinformatics/btab787
10.1093/bib/bbab579
10.1038/s41586-018-0590-4
10.1038/s41467-018-07931-2
10.1186/s12859-021-04210-8
10.1016/j.cmet.2016.08.020
10.1016/j.cell.2018.05.057
10.1038/s41467-021-21312-2
10.1038/nbt.3192
10.1038/nature25981
10.7554/eLife.33105
10.1101/gr.254557.119
10.1016/j.molcel.2015.04.005
10.1007/s10115-016-0988-y
10.1038/nmeth.2930
ContentType Journal Article
Copyright The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023
The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023
– notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbac625
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Genetics Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 36631401
10_1093_bib_bbac625
10.1093/bib/bbac625
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62072003
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
AHGBF
CITATION
ADRIX
AFXEN
BCRHZ
CGR
CUY
CVF
ECM
EIF
NPM
ROX
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c348t-ab91ce73837ea7071d6a3887cb0a58940d03e3c1ca2c335442cf12f5da5ef0d83
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Fri Jul 11 09:10:48 EDT 2025
Mon Jun 30 11:02:57 EDT 2025
Wed Feb 19 02:25:08 EST 2025
Tue Jul 01 03:39:45 EDT 2025
Thu Apr 24 23:06:37 EDT 2025
Wed Apr 02 06:58:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords contrastive learning
scRNA-seq data
deep clustering
denoising auto-encoder
ZINB model
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-ab91ce73837ea7071d6a3887cb0a58940d03e3c1ca2c335442cf12f5da5ef0d83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3024-1705
0000-0002-3855-7133
0000-0002-1345-1092
PMID 36631401
PQID 3113461728
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2765071446
proquest_journals_3113461728
pubmed_primary_36631401
crossref_citationtrail_10_1093_bib_bbac625
crossref_primary_10_1093_bib_bbac625
oup_primary_10_1093_bib_bbac625
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-19
PublicationDateYYYYMMDD 2023-01-19
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-19
  day: 19
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2023
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Tian (2023011917093404900_ref24) 2019; 1
Davie (2023011917093404900_ref7) 2018; 174
Becht (2023011917093404900_ref53) 2019; 37
Sun (2023011917093404900_ref11) 2017; 8
Reid (2023011917093404900_ref6) 2018; 7
Ciortan (2023011917093404900_ref29) 2021; 22
Xie (2023011917093404900_ref25) 2016
Ren (2023011917093404900_ref17) 2017; 51
Wolf (2023011917093404900_ref41) 2018; 19
Chen (2023011917093404900_ref22) 2018; 34
Satija (2023011917093404900_ref15) 2015; 33
Dosovitskiy (2023011917093404900_ref44) 2014; 27
Camp (2023011917093404900_ref31) 2017; 546
Chen (2023011917093404900_ref39) 2017; 18
Wang (2023011917093404900_ref14) 2017; 14
Rozenblatt-Rosen (2023011917093404900_ref4) 2017; 550
Peng (2023011917093404900_ref10) 2022; 23
Zeng (2023011917093404900_ref26) 2020
Peng (2023011917093404900_ref9) 2022; 23
Zeiler (2023011917093404900_ref49) 2012
Dai (2023011917093404900_ref54) 2022; 23
Muraro (2023011917093404900_ref34) 2016; 3
Xin (2023011917093404900_ref32) 2016; 24
Costa (2023011917093404900_ref3) 2013; 21
Wan (2023011917093404900_ref16) 2020; 30
Villani (2023011917093404900_ref13) 2017; 356
Klein (2023011917093404900_ref36) 2015; 161
Chowdhury (2023011917093404900_ref2) 2021
Gan (2023011917093404900_ref27) 2022; 23
Hu (2023011917093404900_ref47) 2017
Zilionis (2023011917093404900_ref56) 2019; 50
Yau (2023011917093404900_ref19) 2016; 17
Wang (2023011917093404900_ref28) 2021; 12
Ciortan (2023011917093404900_ref43) 2022; 38
Yu (2023011917093404900_ref21) 2021; 22
Hubert (2023011917093404900_ref51) 1985; 2
Cusanovich (2023011917093404900_ref8) 2018; 555
Baron (2023011917093404900_ref33) 2016; 3
Oliveira (2023011917093404900_ref55) 2020; 67
Papalexi (2023011917093404900_ref12) 2018; 18
Grün (2023011917093404900_ref20) 2014; 11
Wang (2023011917093404900_ref18) 2022; 23
Loshchilov (2023011917093404900_ref48) 2017
Pedregosa (2023011917093404900_ref52) 2011; 12
Darmanis (2023011917093404900_ref30) 2015; 112
Vincent (2023011917093404900_ref45) 2008
Li (2023011917093404900_ref46) 2021; 35
Montoro (2023011917093404900_ref38) 2018; 560
Chen (2023011917093404900_ref42) 2020; 2
Tran (2023011917093404900_ref40) 2021; 12
Segerstolpe (2023011917093404900_ref35) 2016; 24
Consortium TM (2023011917093404900_ref57) 2018; 562
Strehl (2023011917093404900_ref50) 2002; 3
Kolodziejczyk (2023011917093404900_ref1) 2015; 58
Eraslan (2023011917093404900_ref23) 2019; 10
Han (2023011917093404900_ref5) 2018; 172
Zeisel (2023011917093404900_ref37) 2015; 347
References_xml – volume: 23
  start-page: bbab588
  year: 2022
  ident: 2023011917093404900_ref18
  article-title: scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab588
– volume: 17
  start-page: 1
  year: 2016
  ident: 2023011917093404900_ref19
  article-title: pcaReduce: hierarchical clustering of single cell transcriptional profiles
  publication-title: BMC Bioinformatics
– year: 2012
  ident: 2023011917093404900_ref49
  article-title: Adadelta: an adaptive learning rate method
– volume: 67
  start-page: 137
  year: 2020
  ident: 2023011917093404900_ref55
  article-title: Maturity-onset diabetes of the young: from a molecular basis perspective toward the clinical phenotype and proper management
  publication-title: Endocrinol Diab Nutr
– volume: 560
  start-page: 319
  year: 2018
  ident: 2023011917093404900_ref38
  article-title: A revised airway epithelial hierarchy includes CFTR-expressing ionocytes
  publication-title: Nature
  doi: 10.1038/s41586-018-0393-7
– volume: 21
  start-page: 134
  year: 2013
  ident: 2023011917093404900_ref3
  article-title: RNA-Seq and human complex diseases: recent accomplishments and future perspectives
  publication-title: Eur J Hum Genet
  doi: 10.1038/ejhg.2012.129
– volume: 14
  start-page: 414
  year: 2017
  ident: 2023011917093404900_ref14
  article-title: Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning
  publication-title: Nat Methods
  doi: 10.1038/nmeth.4207
– start-page: 478
  volume-title: International Conference on Machine Learning
  year: 2016
  ident: 2023011917093404900_ref25
– volume: 3
  start-page: 583
  year: 2002
  ident: 2023011917093404900_ref50
  article-title: Cluster ensembles – a knowledge reuse framework for combining multiple partitions
  publication-title: J Mach Learn Res
– volume: 23
  year: 2022
  ident: 2023011917093404900_ref10
  article-title: RNMFLP: predicting circRNA–disease associations based on robust nonnegative matrix factorization and label propagation
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac155
– volume: 356
  start-page: eaah4573
  year: 2017
  ident: 2023011917093404900_ref13
  article-title: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors
  publication-title: Science
  doi: 10.1126/science.aah4573
– volume: 23
  start-page: bbac478
  year: 2022
  ident: 2023011917093404900_ref9
  article-title: DAESTB: inferring associations of small molecule–miRNA via a scalable tree boosting model based on deep autoencoder
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac478
– volume: 3
  start-page: 385
  year: 2016
  ident: 2023011917093404900_ref34
  article-title: A single-cell transcriptome atlas of the human pancreas
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.09.002
– volume: 172
  start-page: 1091
  year: 2018
  ident: 2023011917093404900_ref5
  article-title: Mapping the mouse cell atlas by microwell-seq
  publication-title: Cell
  doi: 10.1016/j.cell.2018.02.001
– volume: 23
  start-page: bbac018
  year: 2022
  ident: 2023011917093404900_ref27
  article-title: Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbac018
– volume: 112
  start-page: 7285
  year: 2015
  ident: 2023011917093404900_ref30
  article-title: A survey of human brain transcriptome diversity at the single cell level
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1507125112
– volume: 50
  start-page: 1317
  year: 2019
  ident: 2023011917093404900_ref56
  article-title: Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.03.009
– volume: 1
  start-page: 191
  year: 2019
  ident: 2023011917093404900_ref24
  article-title: Clustering single-cell RNA-seq data with a model-based deep learning approach
  publication-title: Nat Mach Intell
  doi: 10.1038/s42256-019-0037-0
– volume: 34
  start-page: 643
  year: 2018
  ident: 2023011917093404900_ref22
  article-title: An omnibus test for differential distribution analysis of microbiome sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx650
– volume: 161
  start-page: 1187
  year: 2015
  ident: 2023011917093404900_ref36
  article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells
  publication-title: Cell
  doi: 10.1016/j.cell.2015.04.044
– start-page: 1096
  volume-title: Proceedings of the 25th International Conference on Machine Learning
  year: 2008
  ident: 2023011917093404900_ref45
  doi: 10.1145/1390156.1390294
– volume: 35
  start-page: 8547
  year: 2021
  ident: 2023011917093404900_ref46
  article-title: Contrastive clustering
  publication-title: Proc AAAI Conf Artif Intell
– volume: 12
  start-page: 2825
  year: 2011
  ident: 2023011917093404900_ref52
  article-title: Scikit-learn: machine learning in python
  publication-title: J Mach Learn Res
– volume: 3
  start-page: 346
  year: 2016
  ident: 2023011917093404900_ref33
  article-title: A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure
  publication-title: Cell Syst
  doi: 10.1016/j.cels.2016.08.011
– volume: 347
  start-page: 1138
  year: 2015
  ident: 2023011917093404900_ref37
  article-title: Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq
  publication-title: Science
  doi: 10.1126/science.aaa1934
– volume: 37
  start-page: 38
  year: 2019
  ident: 2023011917093404900_ref53
  article-title: Dimensionality reduction for visualizing single-cell data using UMAP
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.4314
– start-page: 1558
  volume-title: International Conference on Machine Learning
  year: 2017
  ident: 2023011917093404900_ref47
– volume-title: Proceedings of the AAAI Conference on Artificial Intelligence
  year: 2021
  ident: 2023011917093404900_ref2
– volume: 8
  start-page: 1
  year: 2017
  ident: 2023011917093404900_ref11
  article-title: Inference of differentiation time for single cell transcriptomes using cell population reference data
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-01860-2
– volume: 24
  start-page: 608
  year: 2016
  ident: 2023011917093404900_ref32
  article-title: RNA sequencing of single human islet cells reveals type 2 diabetes genes
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.08.018
– volume: 550
  start-page: 451
  year: 2017
  ident: 2023011917093404900_ref4
  article-title: The Human Cell Atlas: from vision to reality
  publication-title: Nature
  doi: 10.1038/550451a
– start-page: 519
  volume-title: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
  year: 2020
  ident: 2023011917093404900_ref26
  doi: 10.1109/BIBM49941.2020.9313569
– volume: 22
  start-page: bbaa316
  year: 2021
  ident: 2023011917093404900_ref21
  article-title: scGMAI: a Gaussian mixture model for clustering single-cell RNA-Seq data based on deep autoencoder
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa316
– volume: 18
  start-page: 3227
  year: 2017
  ident: 2023011917093404900_ref39
  article-title: Single-cell RNA-seq reveals hypothalamic cell diversity
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2017.03.004
– volume: 19
  start-page: 1
  year: 2018
  ident: 2023011917093404900_ref41
  article-title: SCANPY: large-scale single-cell gene expression data analysis
  publication-title: Genome Biol
  doi: 10.1186/s13059-017-1382-0
– volume: 18
  start-page: 35
  year: 2018
  ident: 2023011917093404900_ref12
  article-title: Single-cell RNA sequencing to explore immune cell heterogeneity
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri.2017.76
– volume: 2
  start-page: 193
  year: 1985
  ident: 2023011917093404900_ref51
  article-title: Comparing partitions
  publication-title: J Classif
  doi: 10.1007/BF01908075
– volume: 2
  start-page: lqaa039
  year: 2020
  ident: 2023011917093404900_ref42
  article-title: Deep soft K-means clustering with self-training for single-cell RNA sequence data
  publication-title: NAR Genomics Bioinform
  doi: 10.1093/nargab/lqaa039
– volume: 546
  start-page: 533
  year: 2017
  ident: 2023011917093404900_ref31
  article-title: Multilineage communication regulates human liver bud development from pluripotency
  publication-title: Nature
  doi: 10.1038/nature22796
– volume: 38
  start-page: 1037
  year: 2022
  ident: 2023011917093404900_ref43
  article-title: GNN-based embedding for clustering scRNA-seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btab787
– volume: 23
  start-page: bbab579
  year: 2022
  ident: 2023011917093404900_ref54
  article-title: Accurate and fast cell marker gene identification with COSG
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbab579
– volume: 562
  start-page: 367
  year: 2018
  ident: 2023011917093404900_ref57
  article-title: Single-cell transcriptomics of 20 mouse organs creates a tabula Muris
  publication-title: Nature
  doi: 10.1038/s41586-018-0590-4
– volume: 10
  start-page: 1
  year: 2019
  ident: 2023011917093404900_ref23
  article-title: Single-cell RNA-seq denoising using a deep count autoencoder
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07931-2
– volume: 22
  start-page: 1
  year: 2021
  ident: 2023011917093404900_ref29
  article-title: Contrastive self-supervised clustering of scRNA-seq data
  publication-title: BMC Bioinformatics
  doi: 10.1186/s12859-021-04210-8
– volume: 24
  start-page: 593
  year: 2016
  ident: 2023011917093404900_ref35
  article-title: Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes
  publication-title: Cell Metab
  doi: 10.1016/j.cmet.2016.08.020
– volume: 12
  start-page: 1
  year: 2021
  ident: 2023011917093404900_ref28
  article-title: scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses
  publication-title: Nat Commun
– volume: 27
  year: 2014
  ident: 2023011917093404900_ref44
  article-title: Discriminative unsupervised feature learning with convolutional neural networks
  publication-title: Adv Neural Inform Processing Syst
– volume: 174
  start-page: 982
  year: 2018
  ident: 2023011917093404900_ref7
  article-title: A single-cell transcriptome atlas of the aging drosophila brain
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.057
– volume: 12
  start-page: 1
  year: 2021
  ident: 2023011917093404900_ref40
  article-title: Fast and precise single-cell data analysis using a hierarchical autoencoder
  publication-title: Nat Commun
  doi: 10.1038/s41467-021-21312-2
– volume: 33
  start-page: 495
  year: 2015
  ident: 2023011917093404900_ref15
  article-title: Spatial reconstruction of single-cell gene expression data
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3192
– volume: 555
  start-page: 538
  year: 2018
  ident: 2023011917093404900_ref8
  article-title: The cis-regulatory dynamics of embryonic development at single-cell resolution
  publication-title: Nature
  doi: 10.1038/nature25981
– volume: 7
  year: 2018
  ident: 2023011917093404900_ref6
  article-title: Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites
  publication-title: Elife
  doi: 10.7554/eLife.33105
– volume: 30
  start-page: 205
  year: 2020
  ident: 2023011917093404900_ref16
  article-title: SHARP: hyperfast and accurate processing of single-cell RNA-seq data via ensemble random projection
  publication-title: Genome Res
  doi: 10.1101/gr.254557.119
– volume: 58
  start-page: 610
  year: 2015
  ident: 2023011917093404900_ref1
  article-title: The technology and biology of single-cell RNA sequencing
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.04.005
– volume: 51
  start-page: 661
  year: 2017
  ident: 2023011917093404900_ref17
  article-title: Weighted-object ensemble clustering: methods and analysis
  publication-title: Knowl Inform Syst
  doi: 10.1007/s10115-016-0988-y
– volume: 11
  start-page: 637
  year: 2014
  ident: 2023011917093404900_ref20
  article-title: Validation of noise models for single-cell transcriptomics
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2930
– volume-title: Decoupled weight decay regularization
  year: 2017
  ident: 2023011917093404900_ref48
SSID ssj0020781
Score 2.4850004
Snippet Abstract The advances in single-cell ribonucleic acid sequencing (scRNA-seq) allow researchers to explore cellular heterogeneity and human diseases at cell...
The advances in single-cell ribonucleic acid sequencing (scRNA-seq) allow researchers to explore cellular heterogeneity and human diseases at cell resolution....
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Algorithms
Biological analysis
Cluster Analysis
Clustering
Coders
Gene Expression Profiling - methods
Gene sequencing
Heterogeneity
Humans
Learning
Machine learning
Modules
Noise reduction
Representations
Sequence Analysis, RNA - methods
Single-Cell Analysis - methods
Single-Cell Gene Expression Analysis
Title scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network
URI https://www.ncbi.nlm.nih.gov/pubmed/36631401
https://www.proquest.com/docview/3113461728
https://www.proquest.com/docview/2765071446
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFA4iCL6Id6tTI-xJCGub9ObbmI4hOEE22JMlt4Iw2rluD_57z1m7wnToc1MC5yT5vi85F0LasYmMH_KMAdxoJmxmWSwDcIjgWaQVIKjF5OSXYTgYi-dJMKkDZMstT_gJ76gP1VFKamDqcNQC_GKJ_NHrpNFVWK-mSiKKGFZ3r9Pwfvy7ATwbyWy_OOUKW_qH5KAmhbRbefGI7Nj8mOxVbSK_Tsh7qR97ve4DNdbO6Cq4XJZ4TFE9XWKhA4AfCuSTou6fWoaX8fRt2GWl_aQYAkoRqwwtciqXi4Jh7Upj5zSvQsBPybj_NOoNWN0XgWku4gWTKvG0jVBbWhkBRzCh5HBYaOWCmRPhGpdbrj0tfc15IISvM8_PAiMDm7km5mdkNy9ye0EoiBXQS9KNTRgLLkHuSQWcSgKQg69C45D7tdFSXRcNx94V07R6vOYpWDitLeyQdjN4VtXK2D7sFqz_94jW2jNpvaXKlHseF8i3YofcNZ9hM6BRZW6LZZn6UYj8FiSuQ84rjzbzcOBWqCYv_53-iuxjU3m8aPGSFtldzJf2GqjHQt2sFt43bX_U1Q
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=scDCCA%3A+deep+contrastive+clustering+for+single-cell+RNA-seq+data+based+on+auto-encoder+network&rft.jtitle=Briefings+in+bioinformatics&rft.au=Wang%2C+Jing&rft.au=Xia%2C+Junfeng&rft.au=Wang%2C+Haiyun&rft.au=Su%2C+Yansen&rft.date=2023-01-19&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1093%2Fbib%2Fbbac625&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbac625
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon