scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network
Abstract The advances in single-cell ribonucleic acid sequencing (scRNA-seq) allow researchers to explore cellular heterogeneity and human diseases at cell resolution. Cell clustering is a prerequisite in scRNA-seq analysis since it can recognize cell identities. However, the high dimensionality, no...
Saved in:
Published in | Briefings in bioinformatics Vol. 24; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
19.01.2023
Oxford Publishing Limited (England) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
The advances in single-cell ribonucleic acid sequencing (scRNA-seq) allow researchers to explore cellular heterogeneity and human diseases at cell resolution. Cell clustering is a prerequisite in scRNA-seq analysis since it can recognize cell identities. However, the high dimensionality, noises and significant sparsity of scRNA-seq data have made it a big challenge. Although many methods have emerged, they still fail to fully explore the intrinsic properties of cells and the relationship among cells, which seriously affects the downstream clustering performance. Here, we propose a new deep contrastive clustering algorithm called scDCCA. It integrates a denoising auto-encoder and a dual contrastive learning module into a deep clustering framework to extract valuable features and realize cell clustering. Specifically, to better characterize and learn data representations robustly, scDCCA utilizes a denoising Zero-Inflated Negative Binomial model-based auto-encoder to extract low-dimensional features. Meanwhile, scDCCA incorporates a dual contrastive learning module to capture the pairwise proximity of cells. By increasing the similarities between positive pairs and the differences between negative ones, the contrasts at both the instance and the cluster level help the model learn more discriminative features and achieve better cell segregation. Furthermore, scDCCA joins feature learning with clustering, which realizes representation learning and cell clustering in an end-to-end manner. Experimental results of 14 real datasets validate that scDCCA outperforms eight state-of-the-art methods in terms of accuracy, generalizability, scalability and efficiency. Cell visualization and biological analysis demonstrate that scDCCA significantly improves clustering and facilitates downstream analysis for scRNA-seq data. The code is available at https://github.com/WJ319/scDCCA. |
---|---|
AbstractList | The advances in single-cell ribonucleic acid sequencing (scRNA-seq) allow researchers to explore cellular heterogeneity and human diseases at cell resolution. Cell clustering is a prerequisite in scRNA-seq analysis since it can recognize cell identities. However, the high dimensionality, noises and significant sparsity of scRNA-seq data have made it a big challenge. Although many methods have emerged, they still fail to fully explore the intrinsic properties of cells and the relationship among cells, which seriously affects the downstream clustering performance. Here, we propose a new deep contrastive clustering algorithm called scDCCA. It integrates a denoising auto-encoder and a dual contrastive learning module into a deep clustering framework to extract valuable features and realize cell clustering. Specifically, to better characterize and learn data representations robustly, scDCCA utilizes a denoising Zero-Inflated Negative Binomial model-based auto-encoder to extract low-dimensional features. Meanwhile, scDCCA incorporates a dual contrastive learning module to capture the pairwise proximity of cells. By increasing the similarities between positive pairs and the differences between negative ones, the contrasts at both the instance and the cluster level help the model learn more discriminative features and achieve better cell segregation. Furthermore, scDCCA joins feature learning with clustering, which realizes representation learning and cell clustering in an end-to-end manner. Experimental results of 14 real datasets validate that scDCCA outperforms eight state-of-the-art methods in terms of accuracy, generalizability, scalability and efficiency. Cell visualization and biological analysis demonstrate that scDCCA significantly improves clustering and facilitates downstream analysis for scRNA-seq data. The code is available at https://github.com/WJ319/scDCCA. The advances in single-cell ribonucleic acid sequencing (scRNA-seq) allow researchers to explore cellular heterogeneity and human diseases at cell resolution. Cell clustering is a prerequisite in scRNA-seq analysis since it can recognize cell identities. However, the high dimensionality, noises and significant sparsity of scRNA-seq data have made it a big challenge. Although many methods have emerged, they still fail to fully explore the intrinsic properties of cells and the relationship among cells, which seriously affects the downstream clustering performance. Here, we propose a new deep contrastive clustering algorithm called scDCCA. It integrates a denoising auto-encoder and a dual contrastive learning module into a deep clustering framework to extract valuable features and realize cell clustering. Specifically, to better characterize and learn data representations robustly, scDCCA utilizes a denoising Zero-Inflated Negative Binomial model-based auto-encoder to extract low-dimensional features. Meanwhile, scDCCA incorporates a dual contrastive learning module to capture the pairwise proximity of cells. By increasing the similarities between positive pairs and the differences between negative ones, the contrasts at both the instance and the cluster level help the model learn more discriminative features and achieve better cell segregation. Furthermore, scDCCA joins feature learning with clustering, which realizes representation learning and cell clustering in an end-to-end manner. Experimental results of 14 real datasets validate that scDCCA outperforms eight state-of-the-art methods in terms of accuracy, generalizability, scalability and efficiency. Cell visualization and biological analysis demonstrate that scDCCA significantly improves clustering and facilitates downstream analysis for scRNA-seq data. The code is available at https://github.com/WJ319/scDCCA.The advances in single-cell ribonucleic acid sequencing (scRNA-seq) allow researchers to explore cellular heterogeneity and human diseases at cell resolution. Cell clustering is a prerequisite in scRNA-seq analysis since it can recognize cell identities. However, the high dimensionality, noises and significant sparsity of scRNA-seq data have made it a big challenge. Although many methods have emerged, they still fail to fully explore the intrinsic properties of cells and the relationship among cells, which seriously affects the downstream clustering performance. Here, we propose a new deep contrastive clustering algorithm called scDCCA. It integrates a denoising auto-encoder and a dual contrastive learning module into a deep clustering framework to extract valuable features and realize cell clustering. Specifically, to better characterize and learn data representations robustly, scDCCA utilizes a denoising Zero-Inflated Negative Binomial model-based auto-encoder to extract low-dimensional features. Meanwhile, scDCCA incorporates a dual contrastive learning module to capture the pairwise proximity of cells. By increasing the similarities between positive pairs and the differences between negative ones, the contrasts at both the instance and the cluster level help the model learn more discriminative features and achieve better cell segregation. Furthermore, scDCCA joins feature learning with clustering, which realizes representation learning and cell clustering in an end-to-end manner. Experimental results of 14 real datasets validate that scDCCA outperforms eight state-of-the-art methods in terms of accuracy, generalizability, scalability and efficiency. Cell visualization and biological analysis demonstrate that scDCCA significantly improves clustering and facilitates downstream analysis for scRNA-seq data. The code is available at https://github.com/WJ319/scDCCA. Abstract The advances in single-cell ribonucleic acid sequencing (scRNA-seq) allow researchers to explore cellular heterogeneity and human diseases at cell resolution. Cell clustering is a prerequisite in scRNA-seq analysis since it can recognize cell identities. However, the high dimensionality, noises and significant sparsity of scRNA-seq data have made it a big challenge. Although many methods have emerged, they still fail to fully explore the intrinsic properties of cells and the relationship among cells, which seriously affects the downstream clustering performance. Here, we propose a new deep contrastive clustering algorithm called scDCCA. It integrates a denoising auto-encoder and a dual contrastive learning module into a deep clustering framework to extract valuable features and realize cell clustering. Specifically, to better characterize and learn data representations robustly, scDCCA utilizes a denoising Zero-Inflated Negative Binomial model-based auto-encoder to extract low-dimensional features. Meanwhile, scDCCA incorporates a dual contrastive learning module to capture the pairwise proximity of cells. By increasing the similarities between positive pairs and the differences between negative ones, the contrasts at both the instance and the cluster level help the model learn more discriminative features and achieve better cell segregation. Furthermore, scDCCA joins feature learning with clustering, which realizes representation learning and cell clustering in an end-to-end manner. Experimental results of 14 real datasets validate that scDCCA outperforms eight state-of-the-art methods in terms of accuracy, generalizability, scalability and efficiency. Cell visualization and biological analysis demonstrate that scDCCA significantly improves clustering and facilitates downstream analysis for scRNA-seq data. The code is available at https://github.com/WJ319/scDCCA. |
Author | Xia, Junfeng Zheng, Chun-Hou Wang, Jing Wang, Haiyun Su, Yansen |
Author_xml | – sequence: 1 givenname: Jing orcidid: 0000-0002-1345-1092 surname: Wang fullname: Wang, Jing email: jingwang319@126.com – sequence: 2 givenname: Junfeng orcidid: 0000-0003-3024-1705 surname: Xia fullname: Xia, Junfeng email: jfxia@ahu.edu.cn – sequence: 3 givenname: Haiyun surname: Wang fullname: Wang, Haiyun email: haiyun_wang_xju@163.com – sequence: 4 givenname: Yansen orcidid: 0000-0002-3855-7133 surname: Su fullname: Su, Yansen email: suyansen@ahu.edu.cn – sequence: 5 givenname: Chun-Hou surname: Zheng fullname: Zheng, Chun-Hou email: zhengch99@126.com |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36631401$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1LAzEUxINUtK2evEtAEEFWk012s_VW6icUBdGrIZu8ldVt0iZZxf_era2XIp7eHH4zPGYGqGedBYQOKDmjZMTOy7o8L0ul8zTbQn3KhUg4yXhvqXORZDxnu2gQwhshKREF3UG7LM8Z5YT20UvQl5PJ-AIbgDnWzkavQqw_AOumDRF8bV9x5TwOnWgg0dA0-PF-nARYYKOiwqUKYLCzWLXRJWC1M-Cxhfjp_Pse2q5UE2B_fYfo-frqaXKbTB9u7ibjaaIZL2KiyhHVIFjBBChBBDW5YkUhdElUVow4MYQB01SrVDOWcZ7qiqZVZlQGFTEFG6KTVe7cu0ULIcpZHZa_KguuDTIVedbF8q6LITraQN9c6233nWSUMp5TkS4DD9dUW87AyLmvZ8p_yd_mOoCuAO1dCB4qqeuoYv3TYN1ISuRyHdmtI9frdJ7TDc9v7N_08Yp27fxf8BtNpp1a |
CitedBy_id | crossref_primary_10_1021_acs_jcim_4c02114 crossref_primary_10_1016_j_fmre_2025_01_001 crossref_primary_10_1016_j_biopha_2023_115077 crossref_primary_10_1186_s12859_025_06047_x crossref_primary_10_1093_bib_bbae477 crossref_primary_10_1109_JBHI_2023_3319551 crossref_primary_10_1093_bib_bbae511 crossref_primary_10_1093_bib_bbae555 crossref_primary_10_1093_bib_bbae204 crossref_primary_10_1093_bib_bbad335 crossref_primary_10_1016_j_future_2024_107590 crossref_primary_10_1093_bib_bbae371 crossref_primary_10_1186_s12864_024_10319_w crossref_primary_10_1038_s41598_025_87672_7 crossref_primary_10_1016_j_neucom_2024_127761 crossref_primary_10_1093_bib_bbad426 crossref_primary_10_1093_bib_bbad525 crossref_primary_10_1093_bib_bbae558 crossref_primary_10_1038_s41598_024_64217_y crossref_primary_10_1016_j_compbiomed_2023_107263 crossref_primary_10_1016_j_compbiolchem_2023_107924 crossref_primary_10_1016_j_eswa_2024_125340 crossref_primary_10_1016_j_ymeth_2024_09_018 |
Cites_doi | 10.1093/bib/bbab588 10.1038/s41586-018-0393-7 10.1038/ejhg.2012.129 10.1038/nmeth.4207 10.1093/bib/bbac155 10.1126/science.aah4573 10.1093/bib/bbac478 10.1016/j.cels.2016.09.002 10.1016/j.cell.2018.02.001 10.1093/bib/bbac018 10.1073/pnas.1507125112 10.1016/j.immuni.2019.03.009 10.1038/s42256-019-0037-0 10.1093/bioinformatics/btx650 10.1016/j.cell.2015.04.044 10.1145/1390156.1390294 10.1016/j.cels.2016.08.011 10.1126/science.aaa1934 10.1038/nbt.4314 10.1038/s41467-017-01860-2 10.1016/j.cmet.2016.08.018 10.1038/550451a 10.1109/BIBM49941.2020.9313569 10.1093/bib/bbaa316 10.1016/j.celrep.2017.03.004 10.1186/s13059-017-1382-0 10.1038/nri.2017.76 10.1007/BF01908075 10.1093/nargab/lqaa039 10.1038/nature22796 10.1093/bioinformatics/btab787 10.1093/bib/bbab579 10.1038/s41586-018-0590-4 10.1038/s41467-018-07931-2 10.1186/s12859-021-04210-8 10.1016/j.cmet.2016.08.020 10.1016/j.cell.2018.05.057 10.1038/s41467-021-21312-2 10.1038/nbt.3192 10.1038/nature25981 10.7554/eLife.33105 10.1101/gr.254557.119 10.1016/j.molcel.2015.04.005 10.1007/s10115-016-0988-y 10.1038/nmeth.2930 |
ContentType | Journal Article |
Copyright | The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023 The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
Copyright_xml | – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2023 – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. – notice: The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
DOI | 10.1093/bib/bbac625 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1477-4054 |
ExternalDocumentID | 36631401 10_1093_bib_bbac625 10.1093/bib/bbac625 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62072003 |
GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 AAYXX AHGBF CITATION ADRIX AFXEN BCRHZ CGR CUY CVF ECM EIF NPM ROX 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
ID | FETCH-LOGICAL-c348t-ab91ce73837ea7071d6a3887cb0a58940d03e3c1ca2c335442cf12f5da5ef0d83 |
IEDL.DBID | TOX |
ISSN | 1467-5463 1477-4054 |
IngestDate | Fri Jul 11 09:10:48 EDT 2025 Mon Jun 30 11:02:57 EDT 2025 Wed Feb 19 02:25:08 EST 2025 Tue Jul 01 03:39:45 EDT 2025 Thu Apr 24 23:06:37 EDT 2025 Wed Apr 02 06:58:29 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | contrastive learning scRNA-seq data deep clustering denoising auto-encoder ZINB model |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model The Author(s) 2023. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-ab91ce73837ea7071d6a3887cb0a58940d03e3c1ca2c335442cf12f5da5ef0d83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-3024-1705 0000-0002-3855-7133 0000-0002-1345-1092 |
PMID | 36631401 |
PQID | 3113461728 |
PQPubID | 26846 |
ParticipantIDs | proquest_miscellaneous_2765071446 proquest_journals_3113461728 pubmed_primary_36631401 crossref_citationtrail_10_1093_bib_bbac625 crossref_primary_10_1093_bib_bbac625 oup_primary_10_1093_bib_bbac625 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-19 |
PublicationDateYYYYMMDD | 2023-01-19 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Briefings in bioinformatics |
PublicationTitleAlternate | Brief Bioinform |
PublicationYear | 2023 |
Publisher | Oxford University Press Oxford Publishing Limited (England) |
Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
References | Tian (2023011917093404900_ref24) 2019; 1 Davie (2023011917093404900_ref7) 2018; 174 Becht (2023011917093404900_ref53) 2019; 37 Sun (2023011917093404900_ref11) 2017; 8 Reid (2023011917093404900_ref6) 2018; 7 Ciortan (2023011917093404900_ref29) 2021; 22 Xie (2023011917093404900_ref25) 2016 Ren (2023011917093404900_ref17) 2017; 51 Wolf (2023011917093404900_ref41) 2018; 19 Chen (2023011917093404900_ref22) 2018; 34 Satija (2023011917093404900_ref15) 2015; 33 Dosovitskiy (2023011917093404900_ref44) 2014; 27 Camp (2023011917093404900_ref31) 2017; 546 Chen (2023011917093404900_ref39) 2017; 18 Wang (2023011917093404900_ref14) 2017; 14 Rozenblatt-Rosen (2023011917093404900_ref4) 2017; 550 Peng (2023011917093404900_ref10) 2022; 23 Zeng (2023011917093404900_ref26) 2020 Peng (2023011917093404900_ref9) 2022; 23 Zeiler (2023011917093404900_ref49) 2012 Dai (2023011917093404900_ref54) 2022; 23 Muraro (2023011917093404900_ref34) 2016; 3 Xin (2023011917093404900_ref32) 2016; 24 Costa (2023011917093404900_ref3) 2013; 21 Wan (2023011917093404900_ref16) 2020; 30 Villani (2023011917093404900_ref13) 2017; 356 Klein (2023011917093404900_ref36) 2015; 161 Chowdhury (2023011917093404900_ref2) 2021 Gan (2023011917093404900_ref27) 2022; 23 Hu (2023011917093404900_ref47) 2017 Zilionis (2023011917093404900_ref56) 2019; 50 Yau (2023011917093404900_ref19) 2016; 17 Wang (2023011917093404900_ref28) 2021; 12 Ciortan (2023011917093404900_ref43) 2022; 38 Yu (2023011917093404900_ref21) 2021; 22 Hubert (2023011917093404900_ref51) 1985; 2 Cusanovich (2023011917093404900_ref8) 2018; 555 Baron (2023011917093404900_ref33) 2016; 3 Oliveira (2023011917093404900_ref55) 2020; 67 Papalexi (2023011917093404900_ref12) 2018; 18 Grün (2023011917093404900_ref20) 2014; 11 Wang (2023011917093404900_ref18) 2022; 23 Loshchilov (2023011917093404900_ref48) 2017 Pedregosa (2023011917093404900_ref52) 2011; 12 Darmanis (2023011917093404900_ref30) 2015; 112 Vincent (2023011917093404900_ref45) 2008 Li (2023011917093404900_ref46) 2021; 35 Montoro (2023011917093404900_ref38) 2018; 560 Chen (2023011917093404900_ref42) 2020; 2 Tran (2023011917093404900_ref40) 2021; 12 Segerstolpe (2023011917093404900_ref35) 2016; 24 Consortium TM (2023011917093404900_ref57) 2018; 562 Strehl (2023011917093404900_ref50) 2002; 3 Kolodziejczyk (2023011917093404900_ref1) 2015; 58 Eraslan (2023011917093404900_ref23) 2019; 10 Han (2023011917093404900_ref5) 2018; 172 Zeisel (2023011917093404900_ref37) 2015; 347 |
References_xml | – volume: 23 start-page: bbab588 year: 2022 ident: 2023011917093404900_ref18 article-title: scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation publication-title: Brief Bioinform doi: 10.1093/bib/bbab588 – volume: 17 start-page: 1 year: 2016 ident: 2023011917093404900_ref19 article-title: pcaReduce: hierarchical clustering of single cell transcriptional profiles publication-title: BMC Bioinformatics – year: 2012 ident: 2023011917093404900_ref49 article-title: Adadelta: an adaptive learning rate method – volume: 67 start-page: 137 year: 2020 ident: 2023011917093404900_ref55 article-title: Maturity-onset diabetes of the young: from a molecular basis perspective toward the clinical phenotype and proper management publication-title: Endocrinol Diab Nutr – volume: 560 start-page: 319 year: 2018 ident: 2023011917093404900_ref38 article-title: A revised airway epithelial hierarchy includes CFTR-expressing ionocytes publication-title: Nature doi: 10.1038/s41586-018-0393-7 – volume: 21 start-page: 134 year: 2013 ident: 2023011917093404900_ref3 article-title: RNA-Seq and human complex diseases: recent accomplishments and future perspectives publication-title: Eur J Hum Genet doi: 10.1038/ejhg.2012.129 – volume: 14 start-page: 414 year: 2017 ident: 2023011917093404900_ref14 article-title: Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning publication-title: Nat Methods doi: 10.1038/nmeth.4207 – start-page: 478 volume-title: International Conference on Machine Learning year: 2016 ident: 2023011917093404900_ref25 – volume: 3 start-page: 583 year: 2002 ident: 2023011917093404900_ref50 article-title: Cluster ensembles – a knowledge reuse framework for combining multiple partitions publication-title: J Mach Learn Res – volume: 23 year: 2022 ident: 2023011917093404900_ref10 article-title: RNMFLP: predicting circRNA–disease associations based on robust nonnegative matrix factorization and label propagation publication-title: Brief Bioinform doi: 10.1093/bib/bbac155 – volume: 356 start-page: eaah4573 year: 2017 ident: 2023011917093404900_ref13 article-title: Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors publication-title: Science doi: 10.1126/science.aah4573 – volume: 23 start-page: bbac478 year: 2022 ident: 2023011917093404900_ref9 article-title: DAESTB: inferring associations of small molecule–miRNA via a scalable tree boosting model based on deep autoencoder publication-title: Brief Bioinform doi: 10.1093/bib/bbac478 – volume: 3 start-page: 385 year: 2016 ident: 2023011917093404900_ref34 article-title: A single-cell transcriptome atlas of the human pancreas publication-title: Cell Syst doi: 10.1016/j.cels.2016.09.002 – volume: 172 start-page: 1091 year: 2018 ident: 2023011917093404900_ref5 article-title: Mapping the mouse cell atlas by microwell-seq publication-title: Cell doi: 10.1016/j.cell.2018.02.001 – volume: 23 start-page: bbac018 year: 2022 ident: 2023011917093404900_ref27 article-title: Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network publication-title: Brief Bioinform doi: 10.1093/bib/bbac018 – volume: 112 start-page: 7285 year: 2015 ident: 2023011917093404900_ref30 article-title: A survey of human brain transcriptome diversity at the single cell level publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1507125112 – volume: 50 start-page: 1317 year: 2019 ident: 2023011917093404900_ref56 article-title: Single-cell transcriptomics of human and mouse lung cancers reveals conserved myeloid populations across individuals and species publication-title: Immunity doi: 10.1016/j.immuni.2019.03.009 – volume: 1 start-page: 191 year: 2019 ident: 2023011917093404900_ref24 article-title: Clustering single-cell RNA-seq data with a model-based deep learning approach publication-title: Nat Mach Intell doi: 10.1038/s42256-019-0037-0 – volume: 34 start-page: 643 year: 2018 ident: 2023011917093404900_ref22 article-title: An omnibus test for differential distribution analysis of microbiome sequencing data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx650 – volume: 161 start-page: 1187 year: 2015 ident: 2023011917093404900_ref36 article-title: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells publication-title: Cell doi: 10.1016/j.cell.2015.04.044 – start-page: 1096 volume-title: Proceedings of the 25th International Conference on Machine Learning year: 2008 ident: 2023011917093404900_ref45 doi: 10.1145/1390156.1390294 – volume: 35 start-page: 8547 year: 2021 ident: 2023011917093404900_ref46 article-title: Contrastive clustering publication-title: Proc AAAI Conf Artif Intell – volume: 12 start-page: 2825 year: 2011 ident: 2023011917093404900_ref52 article-title: Scikit-learn: machine learning in python publication-title: J Mach Learn Res – volume: 3 start-page: 346 year: 2016 ident: 2023011917093404900_ref33 article-title: A single-cell transcriptomic map of the human and mouse pancreas reveals inter-and intra-cell population structure publication-title: Cell Syst doi: 10.1016/j.cels.2016.08.011 – volume: 347 start-page: 1138 year: 2015 ident: 2023011917093404900_ref37 article-title: Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq publication-title: Science doi: 10.1126/science.aaa1934 – volume: 37 start-page: 38 year: 2019 ident: 2023011917093404900_ref53 article-title: Dimensionality reduction for visualizing single-cell data using UMAP publication-title: Nat Biotechnol doi: 10.1038/nbt.4314 – start-page: 1558 volume-title: International Conference on Machine Learning year: 2017 ident: 2023011917093404900_ref47 – volume-title: Proceedings of the AAAI Conference on Artificial Intelligence year: 2021 ident: 2023011917093404900_ref2 – volume: 8 start-page: 1 year: 2017 ident: 2023011917093404900_ref11 article-title: Inference of differentiation time for single cell transcriptomes using cell population reference data publication-title: Nat Commun doi: 10.1038/s41467-017-01860-2 – volume: 24 start-page: 608 year: 2016 ident: 2023011917093404900_ref32 article-title: RNA sequencing of single human islet cells reveals type 2 diabetes genes publication-title: Cell Metab doi: 10.1016/j.cmet.2016.08.018 – volume: 550 start-page: 451 year: 2017 ident: 2023011917093404900_ref4 article-title: The Human Cell Atlas: from vision to reality publication-title: Nature doi: 10.1038/550451a – start-page: 519 volume-title: 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) year: 2020 ident: 2023011917093404900_ref26 doi: 10.1109/BIBM49941.2020.9313569 – volume: 22 start-page: bbaa316 year: 2021 ident: 2023011917093404900_ref21 article-title: scGMAI: a Gaussian mixture model for clustering single-cell RNA-Seq data based on deep autoencoder publication-title: Brief Bioinform doi: 10.1093/bib/bbaa316 – volume: 18 start-page: 3227 year: 2017 ident: 2023011917093404900_ref39 article-title: Single-cell RNA-seq reveals hypothalamic cell diversity publication-title: Cell Rep doi: 10.1016/j.celrep.2017.03.004 – volume: 19 start-page: 1 year: 2018 ident: 2023011917093404900_ref41 article-title: SCANPY: large-scale single-cell gene expression data analysis publication-title: Genome Biol doi: 10.1186/s13059-017-1382-0 – volume: 18 start-page: 35 year: 2018 ident: 2023011917093404900_ref12 article-title: Single-cell RNA sequencing to explore immune cell heterogeneity publication-title: Nat Rev Immunol doi: 10.1038/nri.2017.76 – volume: 2 start-page: 193 year: 1985 ident: 2023011917093404900_ref51 article-title: Comparing partitions publication-title: J Classif doi: 10.1007/BF01908075 – volume: 2 start-page: lqaa039 year: 2020 ident: 2023011917093404900_ref42 article-title: Deep soft K-means clustering with self-training for single-cell RNA sequence data publication-title: NAR Genomics Bioinform doi: 10.1093/nargab/lqaa039 – volume: 546 start-page: 533 year: 2017 ident: 2023011917093404900_ref31 article-title: Multilineage communication regulates human liver bud development from pluripotency publication-title: Nature doi: 10.1038/nature22796 – volume: 38 start-page: 1037 year: 2022 ident: 2023011917093404900_ref43 article-title: GNN-based embedding for clustering scRNA-seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab787 – volume: 23 start-page: bbab579 year: 2022 ident: 2023011917093404900_ref54 article-title: Accurate and fast cell marker gene identification with COSG publication-title: Brief Bioinform doi: 10.1093/bib/bbab579 – volume: 562 start-page: 367 year: 2018 ident: 2023011917093404900_ref57 article-title: Single-cell transcriptomics of 20 mouse organs creates a tabula Muris publication-title: Nature doi: 10.1038/s41586-018-0590-4 – volume: 10 start-page: 1 year: 2019 ident: 2023011917093404900_ref23 article-title: Single-cell RNA-seq denoising using a deep count autoencoder publication-title: Nat Commun doi: 10.1038/s41467-018-07931-2 – volume: 22 start-page: 1 year: 2021 ident: 2023011917093404900_ref29 article-title: Contrastive self-supervised clustering of scRNA-seq data publication-title: BMC Bioinformatics doi: 10.1186/s12859-021-04210-8 – volume: 24 start-page: 593 year: 2016 ident: 2023011917093404900_ref35 article-title: Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes publication-title: Cell Metab doi: 10.1016/j.cmet.2016.08.020 – volume: 12 start-page: 1 year: 2021 ident: 2023011917093404900_ref28 article-title: scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses publication-title: Nat Commun – volume: 27 year: 2014 ident: 2023011917093404900_ref44 article-title: Discriminative unsupervised feature learning with convolutional neural networks publication-title: Adv Neural Inform Processing Syst – volume: 174 start-page: 982 year: 2018 ident: 2023011917093404900_ref7 article-title: A single-cell transcriptome atlas of the aging drosophila brain publication-title: Cell doi: 10.1016/j.cell.2018.05.057 – volume: 12 start-page: 1 year: 2021 ident: 2023011917093404900_ref40 article-title: Fast and precise single-cell data analysis using a hierarchical autoencoder publication-title: Nat Commun doi: 10.1038/s41467-021-21312-2 – volume: 33 start-page: 495 year: 2015 ident: 2023011917093404900_ref15 article-title: Spatial reconstruction of single-cell gene expression data publication-title: Nat Biotechnol doi: 10.1038/nbt.3192 – volume: 555 start-page: 538 year: 2018 ident: 2023011917093404900_ref8 article-title: The cis-regulatory dynamics of embryonic development at single-cell resolution publication-title: Nature doi: 10.1038/nature25981 – volume: 7 year: 2018 ident: 2023011917093404900_ref6 article-title: Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites publication-title: Elife doi: 10.7554/eLife.33105 – volume: 30 start-page: 205 year: 2020 ident: 2023011917093404900_ref16 article-title: SHARP: hyperfast and accurate processing of single-cell RNA-seq data via ensemble random projection publication-title: Genome Res doi: 10.1101/gr.254557.119 – volume: 58 start-page: 610 year: 2015 ident: 2023011917093404900_ref1 article-title: The technology and biology of single-cell RNA sequencing publication-title: Mol Cell doi: 10.1016/j.molcel.2015.04.005 – volume: 51 start-page: 661 year: 2017 ident: 2023011917093404900_ref17 article-title: Weighted-object ensemble clustering: methods and analysis publication-title: Knowl Inform Syst doi: 10.1007/s10115-016-0988-y – volume: 11 start-page: 637 year: 2014 ident: 2023011917093404900_ref20 article-title: Validation of noise models for single-cell transcriptomics publication-title: Nat Methods doi: 10.1038/nmeth.2930 – volume-title: Decoupled weight decay regularization year: 2017 ident: 2023011917093404900_ref48 |
SSID | ssj0020781 |
Score | 2.4850004 |
Snippet | Abstract
The advances in single-cell ribonucleic acid sequencing (scRNA-seq) allow researchers to explore cellular heterogeneity and human diseases at cell... The advances in single-cell ribonucleic acid sequencing (scRNA-seq) allow researchers to explore cellular heterogeneity and human diseases at cell resolution.... |
SourceID | proquest pubmed crossref oup |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Algorithms Biological analysis Cluster Analysis Clustering Coders Gene Expression Profiling - methods Gene sequencing Heterogeneity Humans Learning Machine learning Modules Noise reduction Representations Sequence Analysis, RNA - methods Single-Cell Analysis - methods Single-Cell Gene Expression Analysis |
Title | scDCCA: deep contrastive clustering for single-cell RNA-seq data based on auto-encoder network |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36631401 https://www.proquest.com/docview/3113461728 https://www.proquest.com/docview/2765071446 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFA4iCL6Id6tTI-xJCGub9ObbmI4hOEE22JMlt4Iw2rluD_57z1m7wnToc1MC5yT5vi85F0LasYmMH_KMAdxoJmxmWSwDcIjgWaQVIKjF5OSXYTgYi-dJMKkDZMstT_gJ76gP1VFKamDqcNQC_GKJ_NHrpNFVWK-mSiKKGFZ3r9Pwfvy7ATwbyWy_OOUKW_qH5KAmhbRbefGI7Nj8mOxVbSK_Tsh7qR97ve4DNdbO6Cq4XJZ4TFE9XWKhA4AfCuSTou6fWoaX8fRt2GWl_aQYAkoRqwwtciqXi4Jh7Upj5zSvQsBPybj_NOoNWN0XgWku4gWTKvG0jVBbWhkBRzCh5HBYaOWCmRPhGpdbrj0tfc15IISvM8_PAiMDm7km5mdkNy9ye0EoiBXQS9KNTRgLLkHuSQWcSgKQg69C45D7tdFSXRcNx94V07R6vOYpWDitLeyQdjN4VtXK2D7sFqz_94jW2jNpvaXKlHseF8i3YofcNZ9hM6BRZW6LZZn6UYj8FiSuQ84rjzbzcOBWqCYv_53-iuxjU3m8aPGSFtldzJf2GqjHQt2sFt43bX_U1Q |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=scDCCA%3A+deep+contrastive+clustering+for+single-cell+RNA-seq+data+based+on+auto-encoder+network&rft.jtitle=Briefings+in+bioinformatics&rft.au=Wang%2C+Jing&rft.au=Xia%2C+Junfeng&rft.au=Wang%2C+Haiyun&rft.au=Su%2C+Yansen&rft.date=2023-01-19&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=24&rft.issue=1&rft_id=info:doi/10.1093%2Fbib%2Fbbac625&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_bib_bbac625 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |