DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug combinations

Abstract Motivation Drug combination therapy has become an increasingly promising method in the treatment of cancer. However, the number of possible drug combinations is so huge that it is hard to screen synergistic drug combinations through wet-lab experiments. Therefore, computational screening ha...

Full description

Saved in:
Bibliographic Details
Published inBriefings in bioinformatics Vol. 23; no. 1
Main Authors Wang, Jinxian, Liu, Xuejun, Shen, Siyuan, Deng, Lei, Liu, Hui
Format Journal Article
LanguageEnglish
Published England Oxford University Press 17.01.2022
Oxford Publishing Limited (England)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Motivation Drug combination therapy has become an increasingly promising method in the treatment of cancer. However, the number of possible drug combinations is so huge that it is hard to screen synergistic drug combinations through wet-lab experiments. Therefore, computational screening has become an important way to prioritize drug combinations. Graph neural network has recently shown remarkable performance in the prediction of compound–protein interactions, but it has not been applied to the screening of drug combinations. Results In this paper, we proposed a deep learning model based on graph neural network and attention mechanism to identify drug combinations that can effectively inhibit the viability of specific cancer cells. The feature embeddings of drug molecule structure and gene expression profiles were taken as input to multilayer feedforward neural network to identify the synergistic drug combinations. We compared DeepDDS (Deep Learning for Drug–Drug Synergy prediction) with classical machine learning methods and other deep learning-based methods on benchmark data set, and the leave-one-out experimental results showed that DeepDDS achieved better performance than competitive methods. Also, on an independent test set released by well-known pharmaceutical enterprise AstraZeneca, DeepDDS was superior to competitive methods by more than 16% predictive precision. Furthermore, we explored the interpretability of the graph attention network and found the correlation matrix of atomic features revealed important chemical substructures of drugs. We believed that DeepDDS is an effective tool that prioritized synergistic drug combinations for further wet-lab experiment validation. Availability and implementation Source code and data are available at https://github.com/Sinwang404/DeepDDS/tree/master
AbstractList Abstract Motivation Drug combination therapy has become an increasingly promising method in the treatment of cancer. However, the number of possible drug combinations is so huge that it is hard to screen synergistic drug combinations through wet-lab experiments. Therefore, computational screening has become an important way to prioritize drug combinations. Graph neural network has recently shown remarkable performance in the prediction of compound–protein interactions, but it has not been applied to the screening of drug combinations. Results In this paper, we proposed a deep learning model based on graph neural network and attention mechanism to identify drug combinations that can effectively inhibit the viability of specific cancer cells. The feature embeddings of drug molecule structure and gene expression profiles were taken as input to multilayer feedforward neural network to identify the synergistic drug combinations. We compared DeepDDS (Deep Learning for Drug–Drug Synergy prediction) with classical machine learning methods and other deep learning-based methods on benchmark data set, and the leave-one-out experimental results showed that DeepDDS achieved better performance than competitive methods. Also, on an independent test set released by well-known pharmaceutical enterprise AstraZeneca, DeepDDS was superior to competitive methods by more than 16% predictive precision. Furthermore, we explored the interpretability of the graph attention network and found the correlation matrix of atomic features revealed important chemical substructures of drugs. We believed that DeepDDS is an effective tool that prioritized synergistic drug combinations for further wet-lab experiment validation. Availability and implementation Source code and data are available at https://github.com/Sinwang404/DeepDDS/tree/master
Drug combination therapy has become an increasingly promising method in the treatment of cancer. However, the number of possible drug combinations is so huge that it is hard to screen synergistic drug combinations through wet-lab experiments. Therefore, computational screening has become an important way to prioritize drug combinations. Graph neural network has recently shown remarkable performance in the prediction of compound-protein interactions, but it has not been applied to the screening of drug combinations.MOTIVATIONDrug combination therapy has become an increasingly promising method in the treatment of cancer. However, the number of possible drug combinations is so huge that it is hard to screen synergistic drug combinations through wet-lab experiments. Therefore, computational screening has become an important way to prioritize drug combinations. Graph neural network has recently shown remarkable performance in the prediction of compound-protein interactions, but it has not been applied to the screening of drug combinations.In this paper, we proposed a deep learning model based on graph neural network and attention mechanism to identify drug combinations that can effectively inhibit the viability of specific cancer cells. The feature embeddings of drug molecule structure and gene expression profiles were taken as input to multilayer feedforward neural network to identify the synergistic drug combinations. We compared DeepDDS (Deep Learning for Drug-Drug Synergy prediction) with classical machine learning methods and other deep learning-based methods on benchmark data set, and the leave-one-out experimental results showed that DeepDDS achieved better performance than competitive methods. Also, on an independent test set released by well-known pharmaceutical enterprise AstraZeneca, DeepDDS was superior to competitive methods by more than 16% predictive precision. Furthermore, we explored the interpretability of the graph attention network and found the correlation matrix of atomic features revealed important chemical substructures of drugs. We believed that DeepDDS is an effective tool that prioritized synergistic drug combinations for further wet-lab experiment validation.RESULTSIn this paper, we proposed a deep learning model based on graph neural network and attention mechanism to identify drug combinations that can effectively inhibit the viability of specific cancer cells. The feature embeddings of drug molecule structure and gene expression profiles were taken as input to multilayer feedforward neural network to identify the synergistic drug combinations. We compared DeepDDS (Deep Learning for Drug-Drug Synergy prediction) with classical machine learning methods and other deep learning-based methods on benchmark data set, and the leave-one-out experimental results showed that DeepDDS achieved better performance than competitive methods. Also, on an independent test set released by well-known pharmaceutical enterprise AstraZeneca, DeepDDS was superior to competitive methods by more than 16% predictive precision. Furthermore, we explored the interpretability of the graph attention network and found the correlation matrix of atomic features revealed important chemical substructures of drugs. We believed that DeepDDS is an effective tool that prioritized synergistic drug combinations for further wet-lab experiment validation.Source code and data are available at https://github.com/Sinwang404/DeepDDS/tree/master.AVAILABILITY AND IMPLEMENTATIONSource code and data are available at https://github.com/Sinwang404/DeepDDS/tree/master.
Drug combination therapy has become an increasingly promising method in the treatment of cancer. However, the number of possible drug combinations is so huge that it is hard to screen synergistic drug combinations through wet-lab experiments. Therefore, computational screening has become an important way to prioritize drug combinations. Graph neural network has recently shown remarkable performance in the prediction of compound-protein interactions, but it has not been applied to the screening of drug combinations. In this paper, we proposed a deep learning model based on graph neural network and attention mechanism to identify drug combinations that can effectively inhibit the viability of specific cancer cells. The feature embeddings of drug molecule structure and gene expression profiles were taken as input to multilayer feedforward neural network to identify the synergistic drug combinations. We compared DeepDDS (Deep Learning for Drug-Drug Synergy prediction) with classical machine learning methods and other deep learning-based methods on benchmark data set, and the leave-one-out experimental results showed that DeepDDS achieved better performance than competitive methods. Also, on an independent test set released by well-known pharmaceutical enterprise AstraZeneca, DeepDDS was superior to competitive methods by more than 16% predictive precision. Furthermore, we explored the interpretability of the graph attention network and found the correlation matrix of atomic features revealed important chemical substructures of drugs. We believed that DeepDDS is an effective tool that prioritized synergistic drug combinations for further wet-lab experiment validation. Source code and data are available at https://github.com/Sinwang404/DeepDDS/tree/master.
Motivation Drug combination therapy has become an increasingly promising method in the treatment of cancer. However, the number of possible drug combinations is so huge that it is hard to screen synergistic drug combinations through wet-lab experiments. Therefore, computational screening has become an important way to prioritize drug combinations. Graph neural network has recently shown remarkable performance in the prediction of compound–protein interactions, but it has not been applied to the screening of drug combinations. Results In this paper, we proposed a deep learning model based on graph neural network and attention mechanism to identify drug combinations that can effectively inhibit the viability of specific cancer cells. The feature embeddings of drug molecule structure and gene expression profiles were taken as input to multilayer feedforward neural network to identify the synergistic drug combinations. We compared DeepDDS (Deep Learning for Drug–Drug Synergy prediction) with classical machine learning methods and other deep learning-based methods on benchmark data set, and the leave-one-out experimental results showed that DeepDDS achieved better performance than competitive methods. Also, on an independent test set released by well-known pharmaceutical enterprise AstraZeneca, DeepDDS was superior to competitive methods by more than 16% predictive precision. Furthermore, we explored the interpretability of the graph attention network and found the correlation matrix of atomic features revealed important chemical substructures of drugs. We believed that DeepDDS is an effective tool that prioritized synergistic drug combinations for further wet-lab experiment validation. Availability and implementation Source code and data are available at https://github.com/Sinwang404/DeepDDS/tree/master
Author Shen, Siyuan
Deng, Lei
Liu, Hui
Liu, Xuejun
Wang, Jinxian
Author_xml – sequence: 1
  givenname: Jinxian
  surname: Wang
  fullname: Wang, Jinxian
– sequence: 2
  givenname: Xuejun
  surname: Liu
  fullname: Liu, Xuejun
  email: hliu@njtech.edu.cn
– sequence: 3
  givenname: Siyuan
  surname: Shen
  fullname: Shen, Siyuan
– sequence: 4
  givenname: Lei
  surname: Deng
  fullname: Deng, Lei
  email: leideng@csu.edu.cn
– sequence: 5
  givenname: Hui
  surname: Liu
  fullname: Liu, Hui
  email: hliu@njtech.edu.cn
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34571537$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1r3DAQxUVJaT5PvRdBoASKE8mWLDu3kk2aQiCHJmcz-vCuUltyJZkl_3203W0PgYQ5vDn83jC8d4j2nHcGoc-UnFPSVhfSygspQVYt-YAOKBOiYISzvc1ei4KzutpHhzE-EVIS0dBPaL9iXFBeiQOkF8ZMi8WvS6zzgpcBphV2Zg4wZElrH37jtU0rDCkZl6x3eDRqBc7GESePp2C0VQnHZ2fC0sZkFdZhXmLlR2kdbBzxGH3sYYjmZKdH6PHm-uHqtri7__Hz6vtdoSrWpALavmaSt61Sdak5ByWhkVK3DZE9VFoCVTUrW01ID1I3ShvdcOhBlQ1hsq2O0Nn27hT8n9nE1I02KjMM4IyfY1dyIVhNG0IyevoKffJzcPm7rqzz5KxEmakvO2qWo9HdFOwI4bn7l18Gvm0BFXyMwfT_EUq6TTtdbqfbtZNp-opWNv2NKAWwwxuer1uPn6d3j78AmtuitQ
CitedBy_id crossref_primary_10_1371_journal_pone_0304798
crossref_primary_10_1093_bioinformatics_btac579
crossref_primary_10_3389_fgene_2021_827161
crossref_primary_10_1016_j_eswa_2025_126408
crossref_primary_10_1016_j_prmcm_2024_100566
crossref_primary_10_26599_BDMA_2024_9020054
crossref_primary_10_3389_fmed_2022_1015278
crossref_primary_10_1093_bioinformatics_btae596
crossref_primary_10_1093_bioinformatics_btae750
crossref_primary_10_3390_cancers15245858
crossref_primary_10_1016_j_future_2025_107784
crossref_primary_10_1021_acs_cgd_4c01327
crossref_primary_10_1186_s12859_024_05873_9
crossref_primary_10_1109_JBHI_2024_3500789
crossref_primary_10_1007_s11042_023_15723_0
crossref_primary_10_7759_cureus_68764
crossref_primary_10_1186_s13321_024_00903_3
crossref_primary_10_7759_cureus_68082
crossref_primary_10_3390_molecules28020844
crossref_primary_10_1093_bib_bbae717
crossref_primary_10_3389_fcell_2021_803608
crossref_primary_10_1093_bib_bbad184
crossref_primary_10_1093_bioinformatics_btad438
crossref_primary_10_1093_bioinformatics_btae604
crossref_primary_10_1186_s12859_024_05925_0
crossref_primary_10_1007_s10462_023_10669_z
crossref_primary_10_3390_life13091878
crossref_primary_10_1109_JBHI_2024_3453956
crossref_primary_10_1186_s13321_023_00690_3
crossref_primary_10_3389_fphar_2024_1393415
crossref_primary_10_1016_j_ymeth_2023_02_003
crossref_primary_10_1016_j_crmeth_2023_100411
crossref_primary_10_3390_make6030087
crossref_primary_10_2196_54748
crossref_primary_10_1093_gigascience_giac087
crossref_primary_10_1007_s12539_023_00596_6
crossref_primary_10_2174_0929867330666230403100008
crossref_primary_10_1109_TKDE_2023_3298490
crossref_primary_10_1016_j_eswa_2024_125065
crossref_primary_10_1186_s13321_024_00839_8
crossref_primary_10_1016_j_procs_2024_04_242
crossref_primary_10_1109_JBHI_2024_3421916
crossref_primary_10_1021_acs_jcim_4c00165
crossref_primary_10_3390_math11183990
crossref_primary_10_1016_j_patcog_2023_109687
crossref_primary_10_1038_s41540_024_00421_w
crossref_primary_10_1093_bioinformatics_btad607
crossref_primary_10_3390_app131910750
crossref_primary_10_1002_ctd2_317
crossref_primary_10_3389_fcell_2021_795883
crossref_primary_10_1093_bioinformatics_btae134
crossref_primary_10_3390_pharmaceutics14102198
crossref_primary_10_1093_bib_bbac564
crossref_primary_10_1016_j_compbiomed_2024_108007
crossref_primary_10_1016_j_jbi_2025_104772
crossref_primary_10_1016_j_compbiolchem_2024_108273
crossref_primary_10_1016_j_crmeth_2023_100621
crossref_primary_10_1021_acs_jcim_4c00003
crossref_primary_10_1038_s41598_025_85600_3
crossref_primary_10_1007_s12539_025_00695_6
crossref_primary_10_1371_journal_pcbi_1010951
crossref_primary_10_1021_acs_jcim_3c00709
crossref_primary_10_1155_2022_8693746
crossref_primary_10_3390_biology12071033
crossref_primary_10_1002_wcms_1681
crossref_primary_10_1016_j_ymeth_2023_06_006
crossref_primary_10_1371_journal_pone_0268007
crossref_primary_10_3390_biom14081039
crossref_primary_10_1093_bib_bbae015
crossref_primary_10_1093_bib_bbad324
crossref_primary_10_1093_nargab_lqaf004
crossref_primary_10_1093_bib_bbac597
crossref_primary_10_1093_bib_bbad167
crossref_primary_10_1021_acs_jcim_4c00058
crossref_primary_10_1093_bib_bbad285
crossref_primary_10_1021_acs_jcim_4c00177
crossref_primary_10_1021_acs_jcim_4c01101
crossref_primary_10_1016_j_drudis_2023_103625
crossref_primary_10_3390_cancers15174210
crossref_primary_10_1109_TCBBIO_2024_3522512
crossref_primary_10_3389_fgene_2023_1157021
crossref_primary_10_1093_bib_bbac302
crossref_primary_10_1109_ACCESS_2022_3206449
crossref_primary_10_1186_s13321_024_00859_4
crossref_primary_10_1007_s44196_024_00602_9
crossref_primary_10_1111_age_13259
crossref_primary_10_1007_s12539_023_00558_y
Cites_doi 10.1016/j.canlet.2016.11.011
10.1016/j.pharmthera.2013.01.016
10.3390/cancers13020178
10.1007/978-1-4419-9326-7_11
10.1093/bioinformatics/btab308
10.1126/scitranslmed.3006548
10.1016/j.ccell.2016.02.006
10.1007/s00280-015-2751-6
10.1371/journal.pone.0158395
10.1093/bib/bbaa344
10.1093/bioinformatics/btw230
10.1371/journal.pgen.1003390
10.21037/tcr.2020.01.62
10.1093/nar/gkx1037
10.1101/2021.04.16.439299
10.1007/s00210-014-0967-3
10.1093/bioinformatics/btv080
10.1155/2016/6918381
10.1093/bioinformatics/btx806
10.1007/978-1-0716-0849-4_12
10.1158/1535-7163.MCT-15-0843
10.1016/S1367-5931(00)00110-1
10.1016/S0140-6736(20)30164-1
10.1016/S0140-6736(14)60614-0
10.1016/j.cmpb.2013.04.018
10.1109/TCBB.2021.3086702
10.1089/adt.2012.503
10.1038/nrd941
10.1038/s41420-019-0165-7
10.3390/ijms22010148
10.18632/oncotarget.18395
10.1038/s41467-019-09799-2
10.1021/acs.jmedchem.9b00959
10.1186/s12859-019-3288-1
10.1039/C7SC02664A
10.1093/femspd/ftab001
10.1093/bioinformatics/btaa287
10.1021/acs.jcim.0c00331
10.1021/ci00057a005
10.1158/1535-7163.MCT-10-0925
10.1371/journal.pcbi.1008653
10.1186/s13046-020-01811-8
10.1038/nature11003
10.1093/bioinformatics/btt105
10.1093/nar/gks1111
10.1101/gr.132159.111
10.1111/bph.13895
10.1038/nrd3368
10.1371/journal.pone.0244673
10.1093/jac/dkaa543
10.1002/psp4.12107
10.1093/jamia/ocaa212
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2021
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2021
– notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
– notice: The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
DOI 10.1093/bib/bbab390
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Biotechnology Research Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1477-4054
ExternalDocumentID 34571537
10_1093_bib_bbab390
10.1093/bib/bbab390
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-E4
.2P
.I3
0R~
1TH
23N
2WC
36B
4.4
48X
53G
5GY
5VS
6J9
70D
8VB
AAGQS
AAHBH
AAIJN
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
AAVLN
ABDBF
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABPTD
ABQLI
ABWST
ABXVV
ABXZS
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACPRK
ACUFI
ACUHS
ACUXJ
ACYTK
ADBBV
ADEYI
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADOCK
ADPDF
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AEMOZ
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHGBF
AHMBA
AHQJS
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AKHUL
AKVCP
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APWMN
ARIXL
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BEYMZ
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EAD
EAP
EAS
EBA
EBC
EBD
EBR
EBS
EBU
EE~
EJD
EMB
EMK
EMOBN
EST
ESX
F5P
F9B
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
JXSIZ
K1G
KBUDW
KOP
KSI
KSN
M-Z
M49
MK~
ML0
N9A
NGC
NLBLG
NMDNZ
NOMLY
NU-
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
QWB
RD5
RPM
RUSNO
RW1
RXO
SV3
TEORI
TH9
TJP
TLC
TOX
TR2
TUS
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
ZL0
~91
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
7SC
8FD
FR3
JQ2
K9.
L7M
L~C
L~D
P64
RC3
7X8
ID FETCH-LOGICAL-c348t-a9f64b599cc62d55acba8bbd980bfa3dba1c6429d00fabd8cded85afac2804b93
IEDL.DBID TOX
ISSN 1467-5463
1477-4054
IngestDate Fri Jul 11 10:56:14 EDT 2025
Mon Jun 30 11:05:20 EDT 2025
Mon Jul 21 05:59:06 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Tue Jul 01 03:39:36 EDT 2025
Fri May 23 09:42:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords deep learning
chemical structure
graph neural network
attention mechanism
drug combination
synergistic effect
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
The Author(s) 2021. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-a9f64b599cc62d55acba8bbd980bfa3dba1c6429d00fabd8cded85afac2804b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 34571537
PQID 2626200272
PQPubID 26846
ParticipantIDs proquest_miscellaneous_2577461800
proquest_journals_2626200272
pubmed_primary_34571537
crossref_primary_10_1093_bib_bbab390
crossref_citationtrail_10_1093_bib_bbab390
oup_primary_10_1093_bib_bbab390
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-17
PublicationDateYYYYMMDD 2022-01-17
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-17
  day: 17
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Briefings in bioinformatics
PublicationTitleAlternate Brief Bioinform
PublicationYear 2022
Publisher Oxford University Press
Oxford Publishing Limited (England)
Publisher_xml – name: Oxford University Press
– name: Oxford Publishing Limited (England)
References Sun (2022011921023751300_ref36) 2020; 36
Ontong (2022011921023751300_ref63) 2021; 16
Zhang (2022011921023751300_ref56) 2017; 386
Menden (2022011921023751300_ref21) 2019; 10
Kragh (2022011921023751300_ref17) 2021
Tang (2022011921023751300_ref55) 2020; 9
Lin (2022011921023751300_ref57) 2020
Xiong (2022011921023751300_ref35) 2019; 63
Cao (2022011921023751300_ref29) 2013; 29
Vitiello (2022011921023751300_ref8) 2021; 40
Bedard (2022011921023751300_ref51) 2020; 395
Zagidullin (2022011921023751300_ref60) 2021
Sałat (2022011921023751300_ref23) 2013; 111
Zheng (2022011921023751300_ref6) 2018; 175
Goel (2022011921023751300_ref52) 2016; 29
O’Neil (2022011921023751300_ref20) 2016; 15
Giles (2022011921023751300_ref5) 2014; 383
Potekhina (2022011921023751300_ref18) 2021; 22
Azam (2022011921023751300_ref10) 2021; 13
Hill (2022011921023751300_ref3) 2013; 9
Wang (2022011921023751300_ref31) 2021
Pereira (2022011921023751300_ref62) 2021
Weininger (2022011921023751300_ref38) 1988; 28
Ramsundar (2022011921023751300_ref43) 2019
Di Veroli (2022011921023751300_ref42) 2016; 32
Landrum (2022011921023751300_ref40) 2006
Zhang (2022011921023751300_ref37) 2021
Kuru (2022011921023751300_ref28) 2021
Liu (2022011921023751300_ref33) 2016; 2016
Macarron (2022011921023751300_ref14) 2011; 10
Liu (2022011921023751300_ref9) 2011; 10
Ferreira (2022011921023751300_ref16) 2013
Kipf (2022011921023751300_ref44) 2016
Zheng (2022011921023751300_ref58) 2021; 22
Liu (2022011921023751300_ref25) 2019; 20
Zhao (2022011921023751300_ref2) 2013; 5
Akhtar (2022011921023751300_ref61) 2020; 101
Derrien (2022011921023751300_ref46) 2012; 22
Verderosa (2022011921023751300_ref4); 11
Hung (2022011921023751300_ref50) 2016; 11
Bajorath (2022011921023751300_ref13) 2002; 1
Liu (2022011921023751300_ref27) 2021; 17
Li (2022011921023751300_ref11) 2015; 31
Liu (2022011921023751300_ref22) 2020; 48
Loewe (2022011921023751300_ref41) 1953; 3
Kim (2022011921023751300_ref7) 2021; 28
Wu (2022011921023751300_ref34) 2018; 9
Cheng (2022011921023751300_ref45) 2016; 5
Csermely (2022011921023751300_ref1) 2013; 138
Hertzberg (2022011921023751300_ref12) 2000; 4
Silva-Oliveira (2022011921023751300_ref49) 2017; 8
D’Alessandro (2022011921023751300_ref54) 2015; 75
Thafar (2022011921023751300_ref59) 2020; 12
Preuer (2022011921023751300_ref26) 2018; 34
Modjtahedi (2022011921023751300_ref48) 2014; 387
Qi (2022011921023751300_ref24) 2012
Yang (2022011921023751300_ref30) 2012; 41
Deng (2022011921023751300_ref32) 2020; 60
Barretina (2022011921023751300_ref19) 2012; 483
Torres (2022011921023751300_ref15) 2013; 11
Tomczak (2022011921023751300_ref47) 2015; 19
Wishart (2022011921023751300_ref39) 2018; 46
Ye (2022011921023751300_ref53) 2019; 5
References_xml – volume: 386
  start-page: 100
  year: 2017
  ident: 2022011921023751300_ref56
  article-title: Synergistic antitumor activity of regorafenib and lapatinib in preclinical models of human colorectal cancer
  publication-title: Cancer Lett
  doi: 10.1016/j.canlet.2016.11.011
– volume: 138
  start-page: 333
  issue: 3
  year: 2013
  ident: 2022011921023751300_ref1
  article-title: Structure and dynamics of molecular networks: a novel paradigm of drug discovery: a comprehensive review
  publication-title: Pharmacol Ther
  doi: 10.1016/j.pharmthera.2013.01.016
– volume: 13
  start-page: 178
  issue: 2
  year: 2021
  ident: 2022011921023751300_ref10
  article-title: Trends in phase ii trials for cancer therapies
  publication-title: Cancer
  doi: 10.3390/cancers13020178
– start-page: 307
  volume-title: Ensemble machine learning
  year: 2012
  ident: 2022011921023751300_ref24
  article-title: Random forest for bioinformatics
  doi: 10.1007/978-1-4419-9326-7_11
– year: 2021
  ident: 2022011921023751300_ref31
  article-title: Modeling drug combination effects via latent tensor reconstruction
  doi: 10.1093/bioinformatics/btab308
– start-page: 2739
  volume-title: IJCAI
  year: 2020
  ident: 2022011921023751300_ref57
  article-title: Kgnn: Knowledge graph neural network for drug-drug interaction prediction
– volume: 5
  start-page: 206ra140
  issue: 206
  year: 2013
  ident: 2022011921023751300_ref2
  article-title: Systems pharmacology of adverse event mitigation by drug combinations
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3006548
– volume: 29
  start-page: 255
  issue: 3
  year: 2016
  ident: 2022011921023751300_ref52
  article-title: Overcoming therapeutic resistance in her2-positive breast cancers with cdk4/6 inhibitors
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.02.006
– volume: 75
  start-page: 1237
  issue: 6
  year: 2015
  ident: 2022011921023751300_ref54
  article-title: Modulation of regorafenib effects on hcc cell lines by epidermal growth factor
  publication-title: Cancer Chemother Pharmacol
  doi: 10.1007/s00280-015-2751-6
– volume: 101
  year: 2020
  ident: 2022011921023751300_ref61
  article-title: Covid19 inhibitors: a prospective therapeutics
  publication-title: Bioorg Chem
– volume: 11
  issue: 6
  year: 2016
  ident: 2022011921023751300_ref50
  article-title: Epidermal growth factor receptor mutation enhances expression of cadherin-5 in lung cancer cells
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0158395
– volume: 22
  issue: 4
  year: 2021
  ident: 2022011921023751300_ref58
  article-title: Pharmkg: a dedicated knowledge graph benchmark for bomedical data mining
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbaa344
– volume: 32
  start-page: 2866
  issue: 18
  year: 2016
  ident: 2022011921023751300_ref42
  article-title: Combenefit: an interactive platform for the analysis and visualization of drug combinations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw230
– volume: 3
  start-page: 285
  year: 1953
  ident: 2022011921023751300_ref41
  article-title: The problem of synergism and antagonism of combined drugs
  publication-title: Arzneimittelforschung
– volume: 9
  issue: 4
  year: 2013
  ident: 2022011921023751300_ref3
  article-title: Genetic and genomic architecture of the evolution of resistance to antifungal drug combinations
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1003390
– volume: 9
  start-page: 1584
  issue: 3
  year: 2020
  ident: 2022011921023751300_ref55
  article-title: Sorafenib sensitizes melanoma cells to vemurafenib through ferroptosis
  publication-title: Transl Cancer Res
  doi: 10.21037/tcr.2020.01.62
– volume: 46
  start-page: D1074
  issue: D1
  year: 2018
  ident: 2022011921023751300_ref39
  article-title: Drugbank 5.0: a major update to the drugbank database for 2018
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkx1037
– year: 2021
  ident: 2022011921023751300_ref60
  article-title: Comparative analysis of molecular representations in prediction of drug combination effects
  doi: 10.1101/2021.04.16.439299
– volume: 387
  start-page: 505
  issue: 6
  year: 2014
  ident: 2022011921023751300_ref48
  article-title: A comprehensive review of the preclinical efficacy profile of the erbb family blocker afatinib in cancer
  publication-title: Naunyn Schmiedebergs Arch Pharmacol
  doi: 10.1007/s00210-014-0967-3
– volume: 31
  start-page: 2007
  issue: 12
  year: 2015
  ident: 2022011921023751300_ref11
  article-title: Large-scale exploration and analysis of drug combinations
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv080
– volume: 2016
  year: 2016
  ident: 2022011921023751300_ref33
  article-title: Drug-drug interaction extraction via convolutional neural networks
  publication-title: Comput Math Methods Med
  doi: 10.1155/2016/6918381
– volume: 34
  start-page: 1538
  issue: 9
  year: 2018
  ident: 2022011921023751300_ref26
  article-title: Deepsynergy: predicting anti-cancer drug synergy with deep learning
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx806
– start-page: 223
  volume-title: Translational Bioinformatics for Therapeutic Development
  year: 2021
  ident: 2022011921023751300_ref37
  article-title: Synergistic drug combination prediction by integrating multiomics data in deep learning models
  doi: 10.1007/978-1-0716-0849-4_12
– volume: 11
  start-page: 1
  issue: 1
  ident: 2022011921023751300_ref4
  article-title: A high-throughput cell-based assay pipeline for the preclinical development of bacterial dsba inhibitors as antivirulence therapeutics
  publication-title: Sci Rep
– start-page: 139
  year: 2013
  ident: 2022011921023751300_ref16
  article-title: The importance of cancer cell lines as in vitro models in cancer methylome analysis and anticancer drugs testing
  publication-title: Oncogenomics and cancer proteomics-novel approaches in biomarkers discovery and therapeutic targets in cancer
– volume: 15
  start-page: 1155
  issue: 6
  year: 2016
  ident: 2022011921023751300_ref20
  article-title: An unbiased oncology compound screen to identify novel combination strategies
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-15-0843
– year: 2016
  ident: 2022011921023751300_ref44
  article-title: Semi-supervised classification with graph convolutional networks
– volume: 4
  start-page: 445
  issue: 4
  year: 2000
  ident: 2022011921023751300_ref12
  article-title: High-throughput screening: new technology for the 21st century
  publication-title: Curr Opin Chem Biol
  doi: 10.1016/S1367-5931(00)00110-1
– volume: 395
  start-page: 1078
  issue: 10229
  year: 2020
  ident: 2022011921023751300_ref51
  article-title: Small molecules, big impact: 20 years of targeted therapy in oncology
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(20)30164-1
– volume: 383
  start-page: 1889
  issue: 9932
  year: 2014
  ident: 2022011921023751300_ref5
  article-title: NAC-MD-01 Study Investigators, et al. Efficacy and safety of nebivolol and valsartan as fixed-dose combination in hypertension: a randomised, multicentre study
  publication-title: The Lancet
  doi: 10.1016/S0140-6736(14)60614-0
– volume-title: Rdkit: Open-source cheminformatics
  year: 2006
  ident: 2022011921023751300_ref40
– volume: 111
  start-page: 330
  issue: 2
  year: 2013
  ident: 2022011921023751300_ref23
  article-title: The application of support vector regression for prediction of the antiallodynic effect of drug combinations in the mouse model of streptozocin-induced diabetic neuropathy
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2013.04.018
– year: 2021
  ident: 2022011921023751300_ref28
  article-title: Matchmaker: A deep learning framework for drug synergy prediction
  publication-title: IEEE/ACM Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2021.3086702
– volume: 11
  start-page: 299
  issue: 5
  year: 2013
  ident: 2022011921023751300_ref15
  article-title: A high-throughput yeast assay identifies synergistic drug combinations
  publication-title: Assay Drug Dev Technol
  doi: 10.1089/adt.2012.503
– volume: 1
  start-page: 882
  issue: 11
  year: 2002
  ident: 2022011921023751300_ref13
  article-title: Integration of virtual and high-throughput screening
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd941
– volume: 5
  start-page: 1
  issue: 1
  year: 2019
  ident: 2022011921023751300_ref53
  article-title: The pi3k inhibitor copanlisib synergizes with sorafenib to induce cell death in hepatocellular carcinoma
  publication-title: Cell death discovery
  doi: 10.1038/s41420-019-0165-7
– volume: 22
  start-page: 148
  issue: 1
  year: 2021
  ident: 2022011921023751300_ref18
  article-title: Drug screening with genetically encoded fluorescent sensors: Today and tomorrow
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms22010148
– volume: 8
  issue: 32
  year: 2017
  ident: 2022011921023751300_ref49
  article-title: Akt can modulate the in vitro response of hnscc cells to irreversible egfr inhibitors
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.18395
– volume: 48
  start-page: D871
  issue: D1
  year: 2020
  ident: 2022011921023751300_ref22
  article-title: Drugcombdb: a comprehensive database of drug combinations toward the discovery of combinatorial therapy
  publication-title: Nucleic Acids Res
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  ident: 2022011921023751300_ref21
  article-title: Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen
  publication-title: Nat Commun
  doi: 10.1038/s41467-019-09799-2
– volume: 63
  start-page: 8749
  issue: 16
  year: 2019
  ident: 2022011921023751300_ref35
  article-title: Pushing the boundaries of molecular representation for drug discovery with the graph attention mechanism
  publication-title: J Med Chem
  doi: 10.1021/acs.jmedchem.9b00959
– volume: 20
  start-page: 1
  issue: 1
  year: 2019
  ident: 2022011921023751300_ref25
  article-title: Predicting effective drug combinations using gradient tree boosting based on features extracted from drug-protein heterogeneous network
  publication-title: BMC bioinformatics
  doi: 10.1186/s12859-019-3288-1
– volume: 9
  start-page: 513
  issue: 2
  year: 2018
  ident: 2022011921023751300_ref34
  article-title: Moleculenet: a benchmark for molecular machine learning
  publication-title: Chem Sci
  doi: 10.1039/C7SC02664A
– year: 2021
  ident: 2022011921023751300_ref62
  article-title: In vitro synergistic effects of fluoxetine and paroxetine in combination with amphotericin b against cryptococcus neoformans
  publication-title: Pathogens and Disease
  doi: 10.1093/femspd/ftab001
– volume: 36
  start-page: 4483
  issue: 16
  year: 2020
  ident: 2022011921023751300_ref36
  article-title: Dtf: Deep tensor factorization for predicting anticancer drug synergy
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa287
– volume: 60
  start-page: 4497
  issue: 10
  year: 2020
  ident: 2022011921023751300_ref32
  article-title: Pathway-guided deep neural network toward interpretable and predictive modeling of drug sensitivity
  publication-title: J Chem Inf Model
  doi: 10.1021/acs.jcim.0c00331
– volume: 28
  start-page: 31
  issue: 1
  year: 1988
  ident: 2022011921023751300_ref38
  article-title: Smiles, a chemical language and information system. 1. introduction to methodology and encoding rules
  publication-title: J Chem Inf Comput Sci
  doi: 10.1021/ci00057a005
– volume: 10
  start-page: 1460
  issue: 8
  year: 2011
  ident: 2022011921023751300_ref9
  article-title: Combinatorial effects of lapatinib and rapamycin in triple-negative breast cancer cells
  publication-title: Mol Cancer Ther
  doi: 10.1158/1535-7163.MCT-10-0925
– volume: 19
  start-page: A68
  issue: 1A
  year: 2015
  ident: 2022011921023751300_ref47
  article-title: The cancer genome atlas (tcga): an immeasurable source of knowledge
  publication-title: Contemporary oncology
– volume: 17
  issue: 2
  year: 2021
  ident: 2022011921023751300_ref27
  article-title: Transynergy: Mechanism-driven interpretable deep neural network for the synergistic prediction and pathway deconvolution of drug combinations
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1008653
– volume: 40
  start-page: 1
  issue: 1
  year: 2021
  ident: 2022011921023751300_ref8
  article-title: Vulnerability to low-dose combination of irinotecan and niraparib in atm-mutated colorectal cancer
  publication-title: J Exp Clin Cancer Res
  doi: 10.1186/s13046-020-01811-8
– volume: 483
  start-page: 603
  issue: 7391
  year: 2012
  ident: 2022011921023751300_ref19
  article-title: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity
  publication-title: Nature
  doi: 10.1038/nature11003
– volume: 29
  start-page: 1092
  issue: 8
  year: 2013
  ident: 2022011921023751300_ref29
  article-title: Chemopy: freely available python package for computational biology and chemoinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt105
– volume: 41
  start-page: D955
  issue: D1
  year: 2012
  ident: 2022011921023751300_ref30
  article-title: Genomics of drug sensitivity in cancer (gdsc): a resource for therapeutic biomarker discovery in cancer cells
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gks1111
– volume: 22
  start-page: 1775
  issue: 9
  year: 2012
  ident: 2022011921023751300_ref46
  article-title: The gencode v7 catalog of human long noncoding rnas: analysis of their gene structure, evolution, and expression
  publication-title: Genome Res
  doi: 10.1101/gr.132159.111
– volume: 175
  start-page: 181
  issue: 2
  year: 2018
  ident: 2022011921023751300_ref6
  article-title: Drug repurposing screens and synergistic drug-combinations for infectious diseases
  publication-title: Br J Pharmacol
  doi: 10.1111/bph.13895
– volume: 10
  start-page: 188
  issue: 3
  year: 2011
  ident: 2022011921023751300_ref14
  article-title: Impact of high-throughput screening in biomedical research
  publication-title: Nat Rev Drug Discov
  doi: 10.1038/nrd3368
– volume: 16
  issue: 1
  year: 2021
  ident: 2022011921023751300_ref63
  article-title: Synergistic antibacterial effects of colistin in combination with aminoglycoside, carbapenems, cephalosporins, fluoroquinolones, tetracyclines, fosfomycin, and piperacillin on multidrug resistant klebsiella pneumoniae isolates
  publication-title: Plos one
  doi: 10.1371/journal.pone.0244673
– year: 2021
  ident: 2022011921023751300_ref17
  article-title: Effective antimicrobial combination in vivo treatment predicted with microcalorimetry screening
  publication-title: Journal of Antimicrobial Chemotherapy
  doi: 10.1093/jac/dkaa543
– volume-title: Deep learning for the life sciences: applying deep learning to genomics, microscopy, drug discovery, and more
  year: 2019
  ident: 2022011921023751300_ref43
– volume: 5
  start-page: 588
  issue: 11
  year: 2016
  ident: 2022011921023751300_ref45
  article-title: Systematic quality control analysis of lincs data
  publication-title: CPT Pharmacometrics Syst Pharmacol
  doi: 10.1002/psp4.12107
– volume: 12
  start-page: 1
  issue: 1
  year: 2020
  ident: 2022011921023751300_ref59
  article-title: Dtigems+: drug–target interaction prediction using graph embedding, graph mining, and similarity-based techniques
  publication-title: J Chem
– volume: 28
  start-page: 42
  issue: 1
  year: 2021
  ident: 2022011921023751300_ref7
  article-title: Anticancer drug synergy prediction in understudied tissues using transfer learning
  publication-title: J Am Med Inform Assoc
  doi: 10.1093/jamia/ocaa212
SSID ssj0020781
Score 2.6153526
Snippet Abstract Motivation Drug combination therapy has become an increasingly promising method in the treatment of cancer. However, the number of possible drug...
Drug combination therapy has become an increasingly promising method in the treatment of cancer. However, the number of possible drug combinations is so huge...
Motivation Drug combination therapy has become an increasingly promising method in the treatment of cancer. However, the number of possible drug combinations...
SourceID proquest
pubmed
crossref
oup
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Artificial neural networks
Cancer
Computer applications
Correlation analysis
Deep learning
Drug Combinations
Gene expression
Graph neural networks
Humans
Learning algorithms
Machine Learning
Molecular structure
Multilayers
Neoplasms - drug therapy
Neural networks
Neural Networks, Computer
Protein interaction
Screening
Software
Source code
Title DeepDDS: deep graph neural network with attention mechanism to predict synergistic drug combinations
URI https://www.ncbi.nlm.nih.gov/pubmed/34571537
https://www.proquest.com/docview/2626200272
https://www.proquest.com/docview/2577461800
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bS8MwFA4yEHwR706nRtiTUNZLmja-iXMMQX1wg72VnCSVgXZj7R727z1pu8J06FuhJ6Tk5PKdnnzfIaTLmUm1KwNHIzhwGMelKJX2HZ4yiLhhJhKWKPzyyodj9jwJJ_UF2XxLCl8EPZhCD0ACRue41eLxayXyR2-TJq6yejUViShyrLp7TcP70Xbj4Nkgs_3ClOXZMjgg-zUopA-VFw_JjsmOyG5VJnJ1THTfmHm__35PNT7QUmOaWiFKbJNV17ip_Z9KrVZmeXuRfhnL6J3mX7SY0fnCZmMKmq8s0a9UZqZ6sfygONswMK7-2Z2Q8eBp9Dh06uoIjgpYXDhSpJxBKIRS3NdhKBXIGECL2IVUBhqkpzC4ENp1Uwm2SJHRcShTqfzYZSCCU9LKZpk5JzQFEXPJteC-YiHTCJlw8zHCeKBNDH6b3K2HLlG1dLitYPGZVCnsIMFxTupxbpNuYzyvFDO2m92gD_626Kz9k9QLK098bhX0MZbGj7ptXuOSsHkOmZnZEm1CxLTcQyjcJmeVX5t-AhZGuMlHF_92f0n2fEt1cD3HizqkVSyW5goBSAHX5fT7Bu0_2v8
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DeepDDS%3A+deep+graph+neural+network+with+attention+mechanism+to+predict+synergistic+drug+combinations&rft.jtitle=Briefings+in+bioinformatics&rft.au=Wang%2C+Jinxian&rft.au=Liu%2C+Xuejun&rft.au=Shen%2C+Siyuan&rft.au=Deng%2C+Lei&rft.date=2022-01-17&rft.pub=Oxford+University+Press&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=1&rft_id=info:doi/10.1093%2Fbib%2Fbbab390&rft.externalDocID=10.1093%2Fbib%2Fbbab390
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon