Soft 3D reconstruction for view synthesis

We present a novel algorithm for view synthesis that utilizes a soft 3D reconstruction to improve quality, continuity and robustness. Our main contribution is the formulation of a soft 3D representation that preserves depth uncertainty through each stage of 3D reconstruction and rendering. We show t...

Full description

Saved in:
Bibliographic Details
Published inACM transactions on graphics Vol. 36; no. 6; pp. 1 - 11
Main Authors Penner, Eric, Zhang, Li
Format Journal Article
LanguageEnglish
Published 20.11.2017
Online AccessGet full text

Cover

Loading…
Abstract We present a novel algorithm for view synthesis that utilizes a soft 3D reconstruction to improve quality, continuity and robustness. Our main contribution is the formulation of a soft 3D representation that preserves depth uncertainty through each stage of 3D reconstruction and rendering. We show that this representation is beneficial throughout the view synthesis pipeline. During view synthesis, it provides a soft model of scene geometry that provides continuity across synthesized views and robustness to depth uncertainty. During 3D reconstruction, the same robust estimates of scene visibility can be applied iteratively to improve depth estimation around object edges. Our algorithm is based entirely on O(1) filters, making it conducive to acceleration and it works with structured or unstructured sets of input views. We compare with recent classical and learning-based algorithms on plenoptic lightfields, wide baseline captures, and lightfield videos produced from camera arrays.
AbstractList We present a novel algorithm for view synthesis that utilizes a soft 3D reconstruction to improve quality, continuity and robustness. Our main contribution is the formulation of a soft 3D representation that preserves depth uncertainty through each stage of 3D reconstruction and rendering. We show that this representation is beneficial throughout the view synthesis pipeline. During view synthesis, it provides a soft model of scene geometry that provides continuity across synthesized views and robustness to depth uncertainty. During 3D reconstruction, the same robust estimates of scene visibility can be applied iteratively to improve depth estimation around object edges. Our algorithm is based entirely on O(1) filters, making it conducive to acceleration and it works with structured or unstructured sets of input views. We compare with recent classical and learning-based algorithms on plenoptic lightfields, wide baseline captures, and lightfield videos produced from camera arrays.
Author Penner, Eric
Zhang, Li
Author_xml – sequence: 1
  givenname: Eric
  surname: Penner
  fullname: Penner, Eric
  organization: Google Inc
– sequence: 2
  givenname: Li
  surname: Zhang
  fullname: Zhang, Li
  organization: Google Inc
BookMark eNp1j7FOwzAURS1UJNLCzJqVIe1znl8cj6hAQarEAMyR49jCqMTINqD-PRQyITGd6VzdM2ezMYyWsXMOS84FrZAjtADLHxIdsYITyUpi085YARKhAgR-wuYpvQBAI0RTsIuH4HKJV2W0Jowpx3eTfRhLF2L54e1nmfZjfrbJp1N27PQu2bOJC_Z0c_24vq2295u79eW2MijaXGll6kH2yhjDBTgFg0NNlgzXrSFHve2HRmPvwBInKQUqEr2qpZLKiBpxweh318SQUrSuMz7rw6kctd91HLpDbzf1dlPvt7f6471F_6rj_l_jC9L8V6k
CitedBy_id crossref_primary_10_1080_01431161_2023_2214275
crossref_primary_10_1145_3355089_3356555
crossref_primary_10_1111_cgf_13480
crossref_primary_10_1109_ACCESS_2020_2989453
crossref_primary_10_1016_j_vrih_2019_12_001
crossref_primary_10_1109_TVCG_2023_3320248
crossref_primary_10_1111_cgf_14339
crossref_primary_10_1109_TIP_2022_3154242
crossref_primary_10_1364_BOE_521612
crossref_primary_10_1109_TPAMI_2023_3242709
crossref_primary_10_1007_s11265_023_01874_8
crossref_primary_10_1007_s10044_021_00956_2
crossref_primary_10_1109_TETCI_2023_3272003
crossref_primary_10_1109_TPAMI_2020_2986777
crossref_primary_10_1007_s40747_024_01696_6
crossref_primary_10_1109_TVCG_2019_2898757
crossref_primary_10_1111_cgf_14342
crossref_primary_10_1016_j_image_2021_116366
crossref_primary_10_1145_3197517_3201323
crossref_primary_10_1007_s11548_024_03080_8
crossref_primary_10_1016_j_cag_2024_103913
crossref_primary_10_1016_j_cviu_2024_104031
crossref_primary_10_1109_TPAMI_2023_3245815
crossref_primary_10_1145_3306346_3323007
crossref_primary_10_1109_TPAMI_2019_2960689
crossref_primary_10_1007_s10559_023_00626_7
crossref_primary_10_1145_3450626_3459756
crossref_primary_10_1007_s00371_023_02863_5
crossref_primary_10_1007_s00371_022_02651_7
crossref_primary_10_1007_s11042_021_10615_7
crossref_primary_10_1016_j_image_2022_116852
crossref_primary_10_1109_TVCG_2022_3150512
crossref_primary_10_1111_cgf_13860
crossref_primary_10_1111_cgf_13862
crossref_primary_10_3788_IRLA20240347
crossref_primary_10_1109_TVCG_2023_3320220
crossref_primary_10_1109_TIP_2023_3321458
crossref_primary_10_1145_3386569_3392485
crossref_primary_10_1016_j_vrih_2020_04_004
crossref_primary_10_1126_scirobotics_aaw0863
crossref_primary_10_1145_3469842
crossref_primary_10_1007_s11042_023_16250_8
crossref_primary_10_1109_ACCESS_2020_3023505
crossref_primary_10_1111_cgf_15012
crossref_primary_10_1088_1742_6596_1880_1_012034
crossref_primary_10_3390_app11020671
crossref_primary_10_1109_ACCESS_2020_3004431
crossref_primary_10_11834_jig_221188
crossref_primary_10_1111_cgf_13479
crossref_primary_10_1364_OE_26_034894
crossref_primary_10_3390_electronics10010082
crossref_primary_10_1007_s44267_024_00039_w
crossref_primary_10_1016_j_neucom_2020_09_048
crossref_primary_10_1145_3528223_3530107
crossref_primary_10_1145_3272127_3275084
crossref_primary_10_1145_3450626_3459849
crossref_primary_10_1155_2022_4570755
crossref_primary_10_1109_ACCESS_2022_3230949
crossref_primary_10_1007_s41870_023_01470_w
crossref_primary_10_1109_TVCG_2023_3290543
crossref_primary_10_1109_TIP_2020_2980130
crossref_primary_10_1007_s41095_022_0323_3
crossref_primary_10_1016_j_engappai_2024_107930
crossref_primary_10_1109_TPAMI_2020_3026039
crossref_primary_10_1109_MMUL_2022_3232771
crossref_primary_10_1145_3550454_3555524
crossref_primary_10_1145_3528223_3530153
crossref_primary_10_1111_cgf_13849
crossref_primary_10_3390_app13042447
crossref_primary_10_1109_TVCG_2022_3204608
crossref_primary_10_1109_TIP_2019_2922099
crossref_primary_10_1007_s41095_021_0225_9
crossref_primary_10_1016_j_optlaseng_2021_106726
crossref_primary_10_1145_3476576_3476609
crossref_primary_10_1145_3476576_3476729
crossref_primary_10_1016_j_inffus_2023_01_011
crossref_primary_10_1109_TIM_2022_3222501
crossref_primary_10_1109_TVCG_2022_3176832
crossref_primary_10_1109_TVCG_2019_2898799
crossref_primary_10_1109_TPAMI_2023_3335311
crossref_primary_10_1145_3592433
crossref_primary_10_1364_OE_419069
crossref_primary_10_1155_2022_7181445
crossref_primary_10_1145_3414685_3417767
crossref_primary_10_4218_etrij_2021_0205
crossref_primary_10_1002_cav_1894
crossref_primary_10_1145_3233311
crossref_primary_10_1109_TIP_2021_3122089
crossref_primary_10_1109_TVCG_2021_3067768
crossref_primary_10_1109_TCI_2022_3160671
crossref_primary_10_1111_cgf_14474
crossref_primary_10_1145_3306346_3322980
crossref_primary_10_1145_3306346_3323035
crossref_primary_10_1109_TIP_2021_3066293
crossref_primary_10_1109_TVCG_2019_2957761
crossref_primary_10_1109_ACCESS_2023_3314340
crossref_primary_10_3390_app142210557
crossref_primary_10_1016_j_displa_2025_102996
crossref_primary_10_1109_TIP_2021_3051761
crossref_primary_10_1109_TPAMI_2022_3217957
crossref_primary_10_1145_3355089_3356528
crossref_primary_10_1145_3272127_3275031
crossref_primary_10_1109_TIM_2021_3100326
crossref_primary_10_3390_s21196680
crossref_primary_10_1109_TPAMI_2023_3289333
crossref_primary_10_1109_TVCG_2024_3372152
crossref_primary_10_1117_1_JEI_28_1_013049
crossref_primary_10_1109_TIP_2019_2923323
crossref_primary_10_1145_3306346_3323020
crossref_primary_10_1016_j_image_2022_116763
crossref_primary_10_1016_j_cag_2022_07_019
crossref_primary_10_1109_TPAMI_2023_3337516
crossref_primary_10_1111_cgf_14646
crossref_primary_10_1145_3414685_3417785
crossref_primary_10_3724_SP_J_2096_5796_2018_0004
crossref_primary_10_1007_s11263_023_01829_3
crossref_primary_10_1109_TPAMI_2021_3073739
crossref_primary_10_1109_TIP_2023_3290523
crossref_primary_10_1007_s11263_023_01803_z
crossref_primary_10_1145_3384535
crossref_primary_10_1016_j_cag_2019_07_010
crossref_primary_10_1109_LSP_2024_3358098
crossref_primary_10_3788_AOS230549
Cites_doi 10.1145/2185520.2185596
10.1145/1179352.1141964
10.1109/ICCV.2015.398
10.1561/0600000052
10.1109/CVPR.2015.7298762
10.1109/ICME.2011.6012131
10.1109/ICCV.2009.5459417
10.1109/CVPR.2014.196
10.1145/2980179.2980251
10.1109/CVPR.2013.242
10.1111/j.1467-8659.2011.01981.x
10.1016/j.cviu.2006.02.005
10.1109/TVCG.2016.2532329
10.1145/2980179.2980257
10.1145/218380.218398
10.1109/ICCV.2001.937668
10.1145/344779.344958
10.1145/166117.166153
10.1145/383259.383309
10.1109/ICCV.2013.89
10.1109/TPAMI.2013.147
10.1007/s11263-006-7899-4
10.1145/1964921.1964965
10.1109/TPAMI.2003.1206509
10.1109/TIP.2003.819861
10.1145/2487228.2487238
10.1145/37401.37435
10.1109/ICCV.2013.13
10.5555/1886063.1886065
10.1145/2508363.2508369
10.1023/A:1008192912624
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1145/3130800.3130855
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-7368
EndPage 11
ExternalDocumentID 10_1145_3130800_3130855
GroupedDBID --Z
-DZ
-~X
.DC
23M
2FS
4.4
5GY
5VS
6J9
85S
8US
AAKMM
AALFJ
AAYFX
AAYXX
ABPPZ
ACGFO
ACGOD
ACM
ADBCU
ADL
ADMLS
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETEA
AFWIH
AFWXC
AIKLT
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
BDXCO
CCLIF
CITATION
CS3
EBS
EJD
F5P
FEDTE
GUFHI
HGAVV
I07
LHSKQ
P1C
P2P
PQQKQ
RNS
ROL
TWZ
UHB
UPT
WH7
XSW
ZCA
~02
ID FETCH-LOGICAL-c348t-a9c2d7b9ccc140f90df3a5e5c1a8c5f5bebd6a3bf0e5157743954b927979c4233
ISSN 0730-0301
IngestDate Thu Jul 03 08:25:12 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c348t-a9c2d7b9ccc140f90df3a5e5c1a8c5f5bebd6a3bf0e5157743954b927979c4233
OpenAccessLink https://dl.acm.org/doi/pdf/10.1145/3130800.3130855?download=true
PageCount 11
ParticipantIDs crossref_citationtrail_10_1145_3130800_3130855
crossref_primary_10_1145_3130800_3130855
PublicationCentury 2000
PublicationDate 2017-11-20
PublicationDateYYYYMMDD 2017-11-20
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-20
  day: 20
PublicationDecade 2010
PublicationTitle ACM transactions on graphics
PublicationYear 2017
References Strecha C. (e_1_2_1_28_1); 1
e_1_2_1_20_1
Kang Sing Bing (e_1_2_1_17_1)
e_1_2_1_23_1
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_22_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_26_1
e_1_2_1_29_1
e_1_2_1_7_1
e_1_2_1_31_1
e_1_2_1_8_1
e_1_2_1_30_1
e_1_2_1_5_1
e_1_2_1_6_1
Flynn John (e_1_2_1_9_1) 2016
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_35_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_1_1
e_1_2_1_10_1
e_1_2_1_33_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_14_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – ident: e_1_2_1_26_1
  doi: 10.1145/2185520.2185596
– ident: e_1_2_1_7_1
– volume: 1
  volume-title: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004.
  ident: e_1_2_1_28_1
– ident: e_1_2_1_27_1
  doi: 10.1145/1179352.1141964
– ident: e_1_2_1_32_1
  doi: 10.1109/ICCV.2015.398
– ident: e_1_2_1_10_1
  doi: 10.1561/0600000052
– ident: e_1_2_1_15_1
  doi: 10.1109/CVPR.2015.7298762
– ident: e_1_2_1_14_1
  doi: 10.1109/ICME.2011.6012131
– ident: e_1_2_1_25_1
  doi: 10.1109/ICCV.2009.5459417
– ident: e_1_2_1_36_1
  doi: 10.1109/CVPR.2014.196
– ident: e_1_2_1_16_1
  doi: 10.1145/2980179.2980251
– ident: e_1_2_1_21_1
  doi: 10.1109/CVPR.2013.242
– ident: e_1_2_1_5_1
  doi: 10.1111/j.1467-8659.2011.01981.x
– volume-title: CVPR (1)
  ident: e_1_2_1_17_1
– ident: e_1_2_1_12_1
  doi: 10.1016/j.cviu.2006.02.005
– ident: e_1_2_1_35_1
  doi: 10.1109/TVCG.2016.2532329
– ident: e_1_2_1_1_1
  doi: 10.1145/2980179.2980257
– ident: e_1_2_1_23_1
  doi: 10.1145/218380.218398
– ident: e_1_2_1_18_1
  doi: 10.1109/ICCV.2001.937668
– ident: e_1_2_1_20_1
  doi: 10.1145/344779.344958
– ident: e_1_2_1_6_1
  doi: 10.1145/166117.166153
– ident: e_1_2_1_2_1
  doi: 10.1145/383259.383309
– ident: e_1_2_1_3_1
– ident: e_1_2_1_31_1
  doi: 10.1109/ICCV.2013.89
– ident: e_1_2_1_34_1
  doi: 10.1109/TPAMI.2013.147
– ident: e_1_2_1_8_1
  doi: 10.1007/s11263-006-7899-4
– ident: e_1_2_1_11_1
  doi: 10.1145/1964921.1964965
– ident: e_1_2_1_29_1
  doi: 10.1109/TPAMI.2003.1206509
– ident: e_1_2_1_33_1
  doi: 10.1109/TIP.2003.819861
– ident: e_1_2_1_4_1
  doi: 10.1145/2487228.2487238
– ident: e_1_2_1_24_1
  doi: 10.1145/37401.37435
– ident: e_1_2_1_22_1
  doi: 10.1109/ICCV.2013.13
– volume-title: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
  year: 2016
  ident: e_1_2_1_9_1
– ident: e_1_2_1_13_1
  doi: 10.5555/1886063.1886065
– ident: e_1_2_1_19_1
  doi: 10.1145/2508363.2508369
– ident: e_1_2_1_30_1
  doi: 10.1023/A:1008192912624
SSID ssj0006446
Score 2.6613092
Snippet We present a novel algorithm for view synthesis that utilizes a soft 3D reconstruction to improve quality, continuity and robustness. Our main contribution is...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 1
Title Soft 3D reconstruction for view synthesis
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pa8IwFA6bXrbD2E_mftHDDhsS1zaNbY-iGzJ0DFTwVpI0BWF0A71sf_1e0rTGOcHt0kqooe2n3_tem_c9hG5p6ou2n7k4IpGLIR4HmAkZYB6mIE5FqEyv1GqLl3Z_EjxP6XTZdU1Xlyx4S3z9WlfyH1RhDHBVVbJ_QLaaFAbgM-ALW0AYtlthPAIObZJeU2e1lROsXjmoC1Lmnznou_lsbkvQTneoGkOUXcL16wJtW22te3-VZUcuxZNrD5cHM_thAQQgz8O-a3EK_KGxyoIK-jecR0MckqK7TUmKhSuJAd9mOM8KlQVNrpNwoPwqCERHUKMtvS-seFftrn-EoWpxYFEqTRMzQWIm2EV1H1IB4LJ6pzccjKp4C4pOv5EuL80YOMEUDz_OwdIelogYH6IDo_6dTgHlEdqR-THatzwhT9C9AtUhPWcVVAdAdRSoTgXqKZo8PY67fWz6WWBBgmiBWSz8NOSxEALS2ix204wwKqnwWCRoRrnkaZsRnrkSVGaoUkUa8NgP4zAWIHvJGarl77k8Rw5lrvQYSDcWA-tKGaWxMraMssDnNGOigVrllSbCmL2rniNvyYa720B31Rc-Cp-TTYdebH_oJdpb_gqvUA3umbwGEbfgNwbFb5NsPpE
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soft+3D+reconstruction+for+view+synthesis&rft.jtitle=ACM+transactions+on+graphics&rft.au=Penner%2C+Eric&rft.au=Zhang%2C+Li&rft.date=2017-11-20&rft.issn=0730-0301&rft.eissn=1557-7368&rft.volume=36&rft.issue=6&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1145%2F3130800.3130855&rft.externalDBID=n%2Fa&rft.externalDocID=10_1145_3130800_3130855
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-0301&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-0301&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-0301&client=summon