EEG-based Subject Independent Affective Computing Models
Electroencephalography (EEG) based affective computing is a new research field that aims to find neural correlates between human emotions and the registered EEG signals. Typically, emo- tion recognition systems are personalized, i.e. the discrimination models are subject-dependent. Building subject-...
Saved in:
Published in | Procedia computer science Vol. 53; pp. 375 - 382 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalography (EEG) based affective computing is a new research field that aims to find neural correlates between human emotions and the registered EEG signals. Typically, emo- tion recognition systems are personalized, i.e. the discrimination models are subject-dependent. Building subject-independent models is a harder problem due to the high EEG variability be- tween individuals. In this paper we propose a unified system for efficient discrimination of positive and negative emotions in a group of 26 users. The users were exposed to high arousal affective images and the recorded brain signals differentiated according to their positive and negative valence. Major challenge in building subject independent affective models is to iden- tify the most discriminative features between subjects. The focus of the present study is to find a relevant feature selection approach that extracts features suitable for neurophysiological interpretation and validation. Spatial (channels) and temporal (brain waves peaks and their respective latencies) features are extracted from the EEG signals. The feature selection strate- gies explored (Independent spatial and temporal feature selection, Sequential Feature Selection, Feature Elimination based on data descriptive statistics) are consistent in selecting parietal and occipital channels and late waves (P200, P300) as better encoder of the emotion valence state and less variable across subjects. These results are in line with neurophysiological hypothesis of visually elicited human emotions - brain activity correlation. The relevance of the selected features was validated by five standard and one majority vote classifiers. |
---|---|
AbstractList | Electroencephalography (EEG) based affective computing is a new research field that aims to find neural correlates between human emotions and the registered EEG signals. Typically, emo- tion recognition systems are personalized, i.e. the discrimination models are subject-dependent. Building subject-independent models is a harder problem due to the high EEG variability be- tween individuals. In this paper we propose a unified system for efficient discrimination of positive and negative emotions in a group of 26 users. The users were exposed to high arousal affective images and the recorded brain signals differentiated according to their positive and negative valence. Major challenge in building subject independent affective models is to iden- tify the most discriminative features between subjects. The focus of the present study is to find a relevant feature selection approach that extracts features suitable for neurophysiological interpretation and validation. Spatial (channels) and temporal (brain waves peaks and their respective latencies) features are extracted from the EEG signals. The feature selection strate- gies explored (Independent spatial and temporal feature selection, Sequential Feature Selection, Feature Elimination based on data descriptive statistics) are consistent in selecting parietal and occipital channels and late waves (P200, P300) as better encoder of the emotion valence state and less variable across subjects. These results are in line with neurophysiological hypothesis of visually elicited human emotions - brain activity correlation. The relevance of the selected features was validated by five standard and one majority vote classifiers. |
Author | Georgieva, Petia Pereira, Ana Santos, Isabel Silva, Carlos Bozhkov, Lachezar |
Author_xml | – sequence: 1 givenname: Lachezar surname: Bozhkov fullname: Bozhkov, Lachezar email: lachezar.bozhkov@gmail.com organization: Technical University of Sofia, Bulgaria – sequence: 2 givenname: Petia surname: Georgieva fullname: Georgieva, Petia email: petia@ua.pt organization: University of Aveiro, Portugal – sequence: 3 givenname: Isabel surname: Santos fullname: Santos, Isabel organization: University of Aveiro, Portugal – sequence: 4 givenname: Ana surname: Pereira fullname: Pereira, Ana organization: University of Aveiro, Portugal – sequence: 5 givenname: Carlos surname: Silva fullname: Silva, Carlos organization: University of Aveiro, Portugal |
BookMark | eNqFkMFOwzAMQCM0JMbYF3DpD7QkTbOkBw7TVMakIQ7AOUoTB6XamirpJvH3ZIwD4gA-2JblZ-n5Gk163wNCtwQXBJPFXVcMwetYlJiwAvOCkuoCTYngPMcM15Mf_RWax9jhFFSImvApEk2zzlsVwWQvh7YDPWab3sAAKfVjtrQ2jdwRspXfD4fR9e_Zkzewizfo0qpdhPl3naG3h-Z19Zhvn9eb1XKba1qJMVfcCCpKpipDoC2VNVVVMsuUoq0mTDEmdKVbSygolVbLWgjM8YILQbi2JZ0her6rg48xgJVDcHsVPiTB8uQvO_nlL0_-EnOZ_BNV_6K0G9XofD8G5Xb_sPdnNlnC0UGQUTvoNRgX0jOk8e5P_hNZqHlg |
CitedBy_id | crossref_primary_10_1109_ACCESS_2017_2677950 crossref_primary_10_1007_s00521_016_2512_4 crossref_primary_10_1016_j_jksuci_2021_03_009 crossref_primary_10_1057_s41599_024_03691_1 crossref_primary_10_26599_BSA_2020_9050026 crossref_primary_10_3390_s19132999 crossref_primary_10_3390_s20164551 crossref_primary_10_1109_ACCESS_2020_2980893 crossref_primary_10_1155_2018_6740846 crossref_primary_10_1016_j_eswa_2019_112890 crossref_primary_10_3390_s19245516 crossref_primary_10_1016_j_ebr_2023_100600 crossref_primary_10_1016_j_eswa_2021_116101 crossref_primary_10_1007_s10472_019_09668_0 crossref_primary_10_3390_digital1030012 crossref_primary_10_1155_2021_9940148 crossref_primary_10_3390_bios12080555 crossref_primary_10_1016_j_neucom_2024_128354 crossref_primary_10_1155_2018_9795013 crossref_primary_10_1109_TAFFC_2017_2714671 |
Cites_doi | 10.1016/j.biopsycho.2007.11.006 10.1109/T-AFFC.2010.1 10.1109/TITB.2009.2038481 10.1093/cercor/bhj031 10.1007/s10548-007-0041-2 10.1177/1754073909338307 10.1155/2013/618649 10.1504/IJCIH.2010.034131 |
ContentType | Journal Article |
Copyright | 2015 The Authors |
Copyright_xml | – notice: 2015 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2015.07.314 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 382 |
ExternalDocumentID | 10_1016_j_procs_2015_07_314 S1877050915018177 |
GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c348t-a7d83825a4d1eb2afd4425f5aa3bc15a558c4cbf13eaad832988070678817cf23 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Tue Jul 01 01:27:10 EDT 2025 Thu Apr 24 23:04:04 EDT 2025 Wed May 17 01:33:45 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Event Related Po- tentials (ERPs) emotion valence recognition subject independent affective computing feature selection |
Language | English |
License | http://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-a7d83825a4d1eb2afd4425f5aa3bc15a558c4cbf13eaad832988070678817cf23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050915018177 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2015_07_314 crossref_citationtrail_10_1016_j_procs_2015_07_314 elsevier_sciencedirect_doi_10_1016_j_procs_2015_07_314 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015 2015-00-00 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – year: 2015 text: 2015 |
PublicationDecade | 2010 |
PublicationTitle | Procedia computer science |
PublicationYear | 2015 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Gianotti, Faber, Schuler, Pascual-Marqui, Kochi (bib0025) 2008; 20 Lin, Wang, Jung (bib0035) 2010; 57 T. Dalgleish, B. Dunn, and D. Mobbs. Affective neuroscience: Past, present, and future. Bhowmik, Das, Konar, Nandi, Chakraborty (bib0005) 2010; 1 16:876-887, 2006. 1(355-368), 2009. Olofsson, Nordin, Sequeira, Polich (bib0040) 2008; 77 Frantzidis, Ch. Bratsas, Klados, Konstantinidis, Lithari, Vivas, Papadelis, Kaldoudi, Bamidis (bib0020) 2010; 14 N. Jatupaiboon, S. Panngum, and P. Israsena. Real-time eeg-based happiness detection system. 2013. Calvo, DMello, S K. (bib0010) 2010; 1 Stolarova, M., Keil, A., Moratti, and S. Modulation of the c1 visual event-related component by conditioned stimuli: Evidence for sensory plasticity in early affective perception. A. M. Tome, A.R. Hidalgo-Munoz, M.L. Prez, A.R. Teixeira, I.M. Santos, A.T. Pereira, M. Vzquez-Marrufo, and Elmar W. Lang. Feature extraction and classification of biosignals emo- tion valence detection from eeg signals. page Article ID 618649, 2013. Calvo (10.1016/j.procs.2015.07.314_bib0010) 2010; 1 Bhowmik (10.1016/j.procs.2015.07.314_bib0005) 2010; 1 Olofsson (10.1016/j.procs.2015.07.314_bib0040) 2008; 77 10.1016/j.procs.2015.07.314_bib0015 10.1016/j.procs.2015.07.314_bib0045 Gianotti (10.1016/j.procs.2015.07.314_bib0025) 2008; 20 10.1016/j.procs.2015.07.314_bib0030 Lin (10.1016/j.procs.2015.07.314_bib0035) 2010; 57 10.1016/j.procs.2015.07.314_bib0050 Frantzidis (10.1016/j.procs.2015.07.314_bib0020) 2010; 14 |
References_xml | – reference: , 16:876-887, 2006. – volume: 20 start-page: 143 year: 2008 end-page: 156 ident: bib0025 article-title: Lehmann, and D First valence, then arousal: The temporal dynamics of brain electric activity evoked by emotional stimuli publication-title: Brain Topography – reference: Stolarova, M., Keil, A., Moratti, and S. Modulation of the c1 visual event-related component by conditioned stimuli: Evidence for sensory plasticity in early affective perception. – reference: N. Jatupaiboon, S. Panngum, and P. Israsena. Real-time eeg-based happiness detection system. – reference: , page Article ID 618649, 2013. – volume: 14 start-page: 309 year: 2010 ident: bib0020 article-title: On the classification of emotional biosignals evoked while viewing affective pictures:an integrated data-mining-based approach for healthcare applications publication-title: IEEE Transactions on Information Technology in Biomedicine – volume: 1 start-page: 66 year: 2010 end-page: 85 ident: bib0005 article-title: Emotion clustering from stimulated electroencephalographic signals using a duffing oscillator publication-title: Int. J. Computers in Healthcare – reference: T. Dalgleish, B. Dunn, and D. Mobbs. Affective neuroscience: Past, present, and future. – reference: , 1(355-368), 2009. – reference: A. M. Tome, A.R. Hidalgo-Munoz, M.L. Prez, A.R. Teixeira, I.M. Santos, A.T. Pereira, M. Vzquez-Marrufo, and Elmar W. Lang. Feature extraction and classification of biosignals emo- tion valence detection from eeg signals. – reference: , 2013. – volume: 77 start-page: 247 year: 2008 end-page: 265 ident: bib0040 article-title: Affective picture processing: An integrative review of erp findings publication-title: Biological Psychology – volume: 1 start-page: 18 year: 2010 end-page: 37 ident: bib0010 article-title: Affect detection: An interdisciplinary review of models, methods, and their applications publication-title: IEEE Transactions on Affective Computing – volume: 57 start-page: 17981806 year: 2010 ident: bib0035 article-title: Eeg-based emotion recognition in music listening publication-title: IEEE Transactions on Biomedical Engineering – volume: 57 start-page: 17981806 issue: 7 year: 2010 ident: 10.1016/j.procs.2015.07.314_bib0035 article-title: Eeg-based emotion recognition in music listening publication-title: IEEE Transactions on Biomedical Engineering – volume: 77 start-page: 247 year: 2008 ident: 10.1016/j.procs.2015.07.314_bib0040 article-title: Affective picture processing: An integrative review of erp findings publication-title: Biological Psychology doi: 10.1016/j.biopsycho.2007.11.006 – volume: 1 start-page: 18 year: 2010 ident: 10.1016/j.procs.2015.07.314_bib0010 article-title: Affect detection: An interdisciplinary review of models, methods, and their applications publication-title: IEEE Transactions on Affective Computing doi: 10.1109/T-AFFC.2010.1 – volume: 14 start-page: 309 issue: 2 year: 2010 ident: 10.1016/j.procs.2015.07.314_bib0020 article-title: On the classification of emotional biosignals evoked while viewing affective pictures:an integrated data-mining-based approach for healthcare applications publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2009.2038481 – ident: 10.1016/j.procs.2015.07.314_bib0045 doi: 10.1093/cercor/bhj031 – volume: 20 start-page: 143 year: 2008 ident: 10.1016/j.procs.2015.07.314_bib0025 article-title: Lehmann, and D First valence, then arousal: The temporal dynamics of brain electric activity evoked by emotional stimuli publication-title: Brain Topography doi: 10.1007/s10548-007-0041-2 – ident: 10.1016/j.procs.2015.07.314_bib0015 doi: 10.1177/1754073909338307 – ident: 10.1016/j.procs.2015.07.314_bib0030 doi: 10.1155/2013/618649 – ident: 10.1016/j.procs.2015.07.314_bib0050 – volume: 1 start-page: 66 issue: 1 year: 2010 ident: 10.1016/j.procs.2015.07.314_bib0005 article-title: Emotion clustering from stimulated electroencephalographic signals using a duffing oscillator publication-title: Int. J. Computers in Healthcare doi: 10.1504/IJCIH.2010.034131 |
SSID | ssj0000388917 |
Score | 2.1457534 |
Snippet | Electroencephalography (EEG) based affective computing is a new research field that aims to find neural correlates between human emotions and the registered... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 375 |
SubjectTerms | emotion valence recognition Event Related Po- tentials (ERPs) feature selection subject independent affective computing |
Title | EEG-based Subject Independent Affective Computing Models |
URI | https://dx.doi.org/10.1016/j.procs.2015.07.314 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5y_yMGjYU2TNNlxjs3p0IM63C0kaQOTMYfW_9-8tB0KsoP01JIH7Zfmfcnjve8hdGWpBVk5T7xLLOHGe2IL60mgRpfKPFwC6p0fHrPxlN_PxKyFBk0tDKRV1r6_8unRW9dPujWa3dV83n2mSkpQL6FRk05CRTnjKhbxzW7WcRZQO-nFxrswnoBBIz4U07yAJ0C2mwoQ8WSU_01QP0hntId26t0i7lcvtI9axfIA7TadGHC9MA-RGg5vCRBSjoMngNAKvlv3ty1xPyZtBL-GK9NAVxiaoC0-j9B0NHwZjEndE4G48HElMTJXLJzqDM9pOBQbn_Ow6rwwhllHhRFCOe6sp6wwJgxNe2GBSqCkAJHzKTtG7eX7sjhB2HufsdTwzKqcS54ozm0ivejZtBCOJR2UNkBoVwuGQ9-KhW4yw950RE8DejqROqDXQddro1Wll7F5eNYgrH9Nuw4efZPh6X8Nz9A23FVRlHPULj--iouwryjtJdrqT55eJ5fxB_oGa1jMwA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUQHODCjtjxAW5YzWLH6YFDgZYGaC-0Um_GdmIJhAqiQYjv4geZyVKBhHpAQrklHiV6Gb1nW-M3hBwb36CtnGPOeoZx7RwzmXEMpNEGMoVL4HnnXj_qDvn1SIzmyGd9FgbLKivuLzm9YOvqTqNCs_Hy8NC482Mp0b3ELzzppKwqK2-yj3dYt03Okkv4ySdB0GkPLrqsai3AbMjjnGmZxiEsjjRPfVhbapdySF4ntA6N9YUWIrbcGueHmdYwNGhCnktkdniTdeh2ALy_ALMPiWyQjM6nGztor9IsOv3iBzL8wtrtqKgrQ2FCn3BfoGto6PPfFfGbynVWyXI1PaWtEoE1MpeN18lK3fqBVkywQeJ2-4qhAqYUqAf3cmgybaib01ZRJQJESstQ0EeKXdeeJptk-C9IbZH58fM42ybUOReFgeaRiVMuuRdzbjzpRNMEmbCht0OCGghlK4dybJTxpOpStEdVoKcQPeVJBejtkNNp0Etp0DF7eFQjrH7kmQIJmRW4-9fAI7LYHfRu1W3Sv9kjS_ik3MLZJ_P561t2AJOa3BwWSUTJ_X9n7RcFugh- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-based+Subject+Independent+Affective+Computing+Models&rft.jtitle=Procedia+computer+science&rft.au=Bozhkov%2C+Lachezar&rft.au=Georgieva%2C+Petia&rft.au=Santos%2C+Isabel&rft.au=Pereira%2C+Ana&rft.date=2015&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=53&rft.spage=375&rft.epage=382&rft_id=info:doi/10.1016%2Fj.procs.2015.07.314&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2015_07_314 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |