EEG-based Subject Independent Affective Computing Models

Electroencephalography (EEG) based affective computing is a new research field that aims to find neural correlates between human emotions and the registered EEG signals. Typically, emo- tion recognition systems are personalized, i.e. the discrimination models are subject-dependent. Building subject-...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 53; pp. 375 - 382
Main Authors Bozhkov, Lachezar, Georgieva, Petia, Santos, Isabel, Pereira, Ana, Silva, Carlos
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalography (EEG) based affective computing is a new research field that aims to find neural correlates between human emotions and the registered EEG signals. Typically, emo- tion recognition systems are personalized, i.e. the discrimination models are subject-dependent. Building subject-independent models is a harder problem due to the high EEG variability be- tween individuals. In this paper we propose a unified system for efficient discrimination of positive and negative emotions in a group of 26 users. The users were exposed to high arousal affective images and the recorded brain signals differentiated according to their positive and negative valence. Major challenge in building subject independent affective models is to iden- tify the most discriminative features between subjects. The focus of the present study is to find a relevant feature selection approach that extracts features suitable for neurophysiological interpretation and validation. Spatial (channels) and temporal (brain waves peaks and their respective latencies) features are extracted from the EEG signals. The feature selection strate- gies explored (Independent spatial and temporal feature selection, Sequential Feature Selection, Feature Elimination based on data descriptive statistics) are consistent in selecting parietal and occipital channels and late waves (P200, P300) as better encoder of the emotion valence state and less variable across subjects. These results are in line with neurophysiological hypothesis of visually elicited human emotions - brain activity correlation. The relevance of the selected features was validated by five standard and one majority vote classifiers.
AbstractList Electroencephalography (EEG) based affective computing is a new research field that aims to find neural correlates between human emotions and the registered EEG signals. Typically, emo- tion recognition systems are personalized, i.e. the discrimination models are subject-dependent. Building subject-independent models is a harder problem due to the high EEG variability be- tween individuals. In this paper we propose a unified system for efficient discrimination of positive and negative emotions in a group of 26 users. The users were exposed to high arousal affective images and the recorded brain signals differentiated according to their positive and negative valence. Major challenge in building subject independent affective models is to iden- tify the most discriminative features between subjects. The focus of the present study is to find a relevant feature selection approach that extracts features suitable for neurophysiological interpretation and validation. Spatial (channels) and temporal (brain waves peaks and their respective latencies) features are extracted from the EEG signals. The feature selection strate- gies explored (Independent spatial and temporal feature selection, Sequential Feature Selection, Feature Elimination based on data descriptive statistics) are consistent in selecting parietal and occipital channels and late waves (P200, P300) as better encoder of the emotion valence state and less variable across subjects. These results are in line with neurophysiological hypothesis of visually elicited human emotions - brain activity correlation. The relevance of the selected features was validated by five standard and one majority vote classifiers.
Author Georgieva, Petia
Pereira, Ana
Santos, Isabel
Silva, Carlos
Bozhkov, Lachezar
Author_xml – sequence: 1
  givenname: Lachezar
  surname: Bozhkov
  fullname: Bozhkov, Lachezar
  email: lachezar.bozhkov@gmail.com
  organization: Technical University of Sofia, Bulgaria
– sequence: 2
  givenname: Petia
  surname: Georgieva
  fullname: Georgieva, Petia
  email: petia@ua.pt
  organization: University of Aveiro, Portugal
– sequence: 3
  givenname: Isabel
  surname: Santos
  fullname: Santos, Isabel
  organization: University of Aveiro, Portugal
– sequence: 4
  givenname: Ana
  surname: Pereira
  fullname: Pereira, Ana
  organization: University of Aveiro, Portugal
– sequence: 5
  givenname: Carlos
  surname: Silva
  fullname: Silva, Carlos
  organization: University of Aveiro, Portugal
BookMark eNqFkMFOwzAMQCM0JMbYF3DpD7QkTbOkBw7TVMakIQ7AOUoTB6XamirpJvH3ZIwD4gA-2JblZ-n5Gk163wNCtwQXBJPFXVcMwetYlJiwAvOCkuoCTYngPMcM15Mf_RWax9jhFFSImvApEk2zzlsVwWQvh7YDPWab3sAAKfVjtrQ2jdwRspXfD4fR9e_Zkzewizfo0qpdhPl3naG3h-Z19Zhvn9eb1XKba1qJMVfcCCpKpipDoC2VNVVVMsuUoq0mTDEmdKVbSygolVbLWgjM8YILQbi2JZ0her6rg48xgJVDcHsVPiTB8uQvO_nlL0_-EnOZ_BNV_6K0G9XofD8G5Xb_sPdnNlnC0UGQUTvoNRgX0jOk8e5P_hNZqHlg
CitedBy_id crossref_primary_10_1109_ACCESS_2017_2677950
crossref_primary_10_1007_s00521_016_2512_4
crossref_primary_10_1016_j_jksuci_2021_03_009
crossref_primary_10_1057_s41599_024_03691_1
crossref_primary_10_26599_BSA_2020_9050026
crossref_primary_10_3390_s19132999
crossref_primary_10_3390_s20164551
crossref_primary_10_1109_ACCESS_2020_2980893
crossref_primary_10_1155_2018_6740846
crossref_primary_10_1016_j_eswa_2019_112890
crossref_primary_10_3390_s19245516
crossref_primary_10_1016_j_ebr_2023_100600
crossref_primary_10_1016_j_eswa_2021_116101
crossref_primary_10_1007_s10472_019_09668_0
crossref_primary_10_3390_digital1030012
crossref_primary_10_1155_2021_9940148
crossref_primary_10_3390_bios12080555
crossref_primary_10_1016_j_neucom_2024_128354
crossref_primary_10_1155_2018_9795013
crossref_primary_10_1109_TAFFC_2017_2714671
Cites_doi 10.1016/j.biopsycho.2007.11.006
10.1109/T-AFFC.2010.1
10.1109/TITB.2009.2038481
10.1093/cercor/bhj031
10.1007/s10548-007-0041-2
10.1177/1754073909338307
10.1155/2013/618649
10.1504/IJCIH.2010.034131
ContentType Journal Article
Copyright 2015 The Authors
Copyright_xml – notice: 2015 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2015.07.314
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 382
ExternalDocumentID 10_1016_j_procs_2015_07_314
S1877050915018177
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c348t-a7d83825a4d1eb2afd4425f5aa3bc15a558c4cbf13eaad832988070678817cf23
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Tue Jul 01 01:27:10 EDT 2025
Thu Apr 24 23:04:04 EDT 2025
Wed May 17 01:33:45 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Event Related Po- tentials (ERPs)
emotion valence recognition
subject independent affective computing
feature selection
Language English
License http://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-a7d83825a4d1eb2afd4425f5aa3bc15a558c4cbf13eaad832988070678817cf23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050915018177
PageCount 8
ParticipantIDs crossref_primary_10_1016_j_procs_2015_07_314
crossref_citationtrail_10_1016_j_procs_2015_07_314
elsevier_sciencedirect_doi_10_1016_j_procs_2015_07_314
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015
2015-00-00
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – year: 2015
  text: 2015
PublicationDecade 2010
PublicationTitle Procedia computer science
PublicationYear 2015
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Gianotti, Faber, Schuler, Pascual-Marqui, Kochi (bib0025) 2008; 20
Lin, Wang, Jung (bib0035) 2010; 57
T. Dalgleish, B. Dunn, and D. Mobbs. Affective neuroscience: Past, present, and future.
Bhowmik, Das, Konar, Nandi, Chakraborty (bib0005) 2010; 1
16:876-887, 2006.
1(355-368), 2009.
Olofsson, Nordin, Sequeira, Polich (bib0040) 2008; 77
Frantzidis, Ch. Bratsas, Klados, Konstantinidis, Lithari, Vivas, Papadelis, Kaldoudi, Bamidis (bib0020) 2010; 14
N. Jatupaiboon, S. Panngum, and P. Israsena. Real-time eeg-based happiness detection system.
2013.
Calvo, DMello, S K. (bib0010) 2010; 1
Stolarova, M., Keil, A., Moratti, and S. Modulation of the c1 visual event-related component by conditioned stimuli: Evidence for sensory plasticity in early affective perception.
A. M. Tome, A.R. Hidalgo-Munoz, M.L. Prez, A.R. Teixeira, I.M. Santos, A.T. Pereira, M. Vzquez-Marrufo, and Elmar W. Lang. Feature extraction and classification of biosignals emo- tion valence detection from eeg signals.
page Article ID 618649, 2013.
Calvo (10.1016/j.procs.2015.07.314_bib0010) 2010; 1
Bhowmik (10.1016/j.procs.2015.07.314_bib0005) 2010; 1
Olofsson (10.1016/j.procs.2015.07.314_bib0040) 2008; 77
10.1016/j.procs.2015.07.314_bib0015
10.1016/j.procs.2015.07.314_bib0045
Gianotti (10.1016/j.procs.2015.07.314_bib0025) 2008; 20
10.1016/j.procs.2015.07.314_bib0030
Lin (10.1016/j.procs.2015.07.314_bib0035) 2010; 57
10.1016/j.procs.2015.07.314_bib0050
Frantzidis (10.1016/j.procs.2015.07.314_bib0020) 2010; 14
References_xml – reference: , 16:876-887, 2006.
– volume: 20
  start-page: 143
  year: 2008
  end-page: 156
  ident: bib0025
  article-title: Lehmann, and D First valence, then arousal: The temporal dynamics of brain electric activity evoked by emotional stimuli
  publication-title: Brain Topography
– reference: Stolarova, M., Keil, A., Moratti, and S. Modulation of the c1 visual event-related component by conditioned stimuli: Evidence for sensory plasticity in early affective perception.
– reference: N. Jatupaiboon, S. Panngum, and P. Israsena. Real-time eeg-based happiness detection system.
– reference: , page Article ID 618649, 2013.
– volume: 14
  start-page: 309
  year: 2010
  ident: bib0020
  article-title: On the classification of emotional biosignals evoked while viewing affective pictures:an integrated data-mining-based approach for healthcare applications
  publication-title: IEEE Transactions on Information Technology in Biomedicine
– volume: 1
  start-page: 66
  year: 2010
  end-page: 85
  ident: bib0005
  article-title: Emotion clustering from stimulated electroencephalographic signals using a duffing oscillator
  publication-title: Int. J. Computers in Healthcare
– reference: T. Dalgleish, B. Dunn, and D. Mobbs. Affective neuroscience: Past, present, and future.
– reference: , 1(355-368), 2009.
– reference: A. M. Tome, A.R. Hidalgo-Munoz, M.L. Prez, A.R. Teixeira, I.M. Santos, A.T. Pereira, M. Vzquez-Marrufo, and Elmar W. Lang. Feature extraction and classification of biosignals emo- tion valence detection from eeg signals.
– reference: , 2013.
– volume: 77
  start-page: 247
  year: 2008
  end-page: 265
  ident: bib0040
  article-title: Affective picture processing: An integrative review of erp findings
  publication-title: Biological Psychology
– volume: 1
  start-page: 18
  year: 2010
  end-page: 37
  ident: bib0010
  article-title: Affect detection: An interdisciplinary review of models, methods, and their applications
  publication-title: IEEE Transactions on Affective Computing
– volume: 57
  start-page: 17981806
  year: 2010
  ident: bib0035
  article-title: Eeg-based emotion recognition in music listening
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 57
  start-page: 17981806
  issue: 7
  year: 2010
  ident: 10.1016/j.procs.2015.07.314_bib0035
  article-title: Eeg-based emotion recognition in music listening
  publication-title: IEEE Transactions on Biomedical Engineering
– volume: 77
  start-page: 247
  year: 2008
  ident: 10.1016/j.procs.2015.07.314_bib0040
  article-title: Affective picture processing: An integrative review of erp findings
  publication-title: Biological Psychology
  doi: 10.1016/j.biopsycho.2007.11.006
– volume: 1
  start-page: 18
  year: 2010
  ident: 10.1016/j.procs.2015.07.314_bib0010
  article-title: Affect detection: An interdisciplinary review of models, methods, and their applications
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/T-AFFC.2010.1
– volume: 14
  start-page: 309
  issue: 2
  year: 2010
  ident: 10.1016/j.procs.2015.07.314_bib0020
  article-title: On the classification of emotional biosignals evoked while viewing affective pictures:an integrated data-mining-based approach for healthcare applications
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2009.2038481
– ident: 10.1016/j.procs.2015.07.314_bib0045
  doi: 10.1093/cercor/bhj031
– volume: 20
  start-page: 143
  year: 2008
  ident: 10.1016/j.procs.2015.07.314_bib0025
  article-title: Lehmann, and D First valence, then arousal: The temporal dynamics of brain electric activity evoked by emotional stimuli
  publication-title: Brain Topography
  doi: 10.1007/s10548-007-0041-2
– ident: 10.1016/j.procs.2015.07.314_bib0015
  doi: 10.1177/1754073909338307
– ident: 10.1016/j.procs.2015.07.314_bib0030
  doi: 10.1155/2013/618649
– ident: 10.1016/j.procs.2015.07.314_bib0050
– volume: 1
  start-page: 66
  issue: 1
  year: 2010
  ident: 10.1016/j.procs.2015.07.314_bib0005
  article-title: Emotion clustering from stimulated electroencephalographic signals using a duffing oscillator
  publication-title: Int. J. Computers in Healthcare
  doi: 10.1504/IJCIH.2010.034131
SSID ssj0000388917
Score 2.1457534
Snippet Electroencephalography (EEG) based affective computing is a new research field that aims to find neural correlates between human emotions and the registered...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 375
SubjectTerms emotion valence recognition
Event Related Po- tentials (ERPs)
feature selection
subject independent affective computing
Title EEG-based Subject Independent Affective Computing Models
URI https://dx.doi.org/10.1016/j.procs.2015.07.314
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PS8MwFA5jXrz4W5y_yMGjYU2TNNlxjs3p0IM63C0kaQOTMYfW_9-8tB0KsoP01JIH7Zfmfcnjve8hdGWpBVk5T7xLLOHGe2IL60mgRpfKPFwC6p0fHrPxlN_PxKyFBk0tDKRV1r6_8unRW9dPujWa3dV83n2mSkpQL6FRk05CRTnjKhbxzW7WcRZQO-nFxrswnoBBIz4U07yAJ0C2mwoQ8WSU_01QP0hntId26t0i7lcvtI9axfIA7TadGHC9MA-RGg5vCRBSjoMngNAKvlv3ty1xPyZtBL-GK9NAVxiaoC0-j9B0NHwZjEndE4G48HElMTJXLJzqDM9pOBQbn_Ow6rwwhllHhRFCOe6sp6wwJgxNe2GBSqCkAJHzKTtG7eX7sjhB2HufsdTwzKqcS54ozm0ivejZtBCOJR2UNkBoVwuGQ9-KhW4yw950RE8DejqROqDXQddro1Wll7F5eNYgrH9Nuw4efZPh6X8Nz9A23FVRlHPULj--iouwryjtJdrqT55eJ5fxB_oGa1jMwA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwELUQHODCjtjxAW5YzWLH6YFDgZYGaC-0Um_GdmIJhAqiQYjv4geZyVKBhHpAQrklHiV6Gb1nW-M3hBwb36CtnGPOeoZx7RwzmXEMpNEGMoVL4HnnXj_qDvn1SIzmyGd9FgbLKivuLzm9YOvqTqNCs_Hy8NC482Mp0b3ELzzppKwqK2-yj3dYt03Okkv4ySdB0GkPLrqsai3AbMjjnGmZxiEsjjRPfVhbapdySF4ntA6N9YUWIrbcGueHmdYwNGhCnktkdniTdeh2ALy_ALMPiWyQjM6nGztor9IsOv3iBzL8wtrtqKgrQ2FCn3BfoGto6PPfFfGbynVWyXI1PaWtEoE1MpeN18lK3fqBVkywQeJ2-4qhAqYUqAf3cmgybaib01ZRJQJESstQ0EeKXdeeJptk-C9IbZH58fM42ybUOReFgeaRiVMuuRdzbjzpRNMEmbCht0OCGghlK4dybJTxpOpStEdVoKcQPeVJBejtkNNp0Etp0DF7eFQjrH7kmQIJmRW4-9fAI7LYHfRu1W3Sv9kjS_ik3MLZJ_P561t2AJOa3BwWSUTJ_X9n7RcFugh-
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-based+Subject+Independent+Affective+Computing+Models&rft.jtitle=Procedia+computer+science&rft.au=Bozhkov%2C+Lachezar&rft.au=Georgieva%2C+Petia&rft.au=Santos%2C+Isabel&rft.au=Pereira%2C+Ana&rft.date=2015&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=53&rft.spage=375&rft.epage=382&rft_id=info:doi/10.1016%2Fj.procs.2015.07.314&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2015_07_314
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon