Dual-palindrome-incorporated hand-in-hand self-linking bidirectional DNA amplifier within exogenous near-infrared light stimulation for high-performance imaging in living biosystems
Although the potency of DNA amplifiers-constructed biosensors for imaging disease biomarkers in living biosystems, they continue to face two challenges: (i) intricate multi-pathway amplification cascades in biosensing designs and (ii) suboptimal detection precision due to uncontrollable pre-activati...
Saved in:
Published in | Talanta (Oxford) Vol. 292; p. 128003 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.09.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although the potency of DNA amplifiers-constructed biosensors for imaging disease biomarkers in living biosystems, they continue to face two challenges: (i) intricate multi-pathway amplification cascades in biosensing designs and (ii) suboptimal detection precision due to uncontrollable pre-activation during bio-delivery. In this contribution, we have brought the following viable resolutions. First, a catalytic hairpin assembly (CHA) routine is incorporated with a dual-palindrome that works like two pairs of hands to self-link CHA-amplified intermediate nucleic acids units, enabling a streamlined two-round signal intensification to enhance sensitivity. Thereafter, one DNA component is conducted with the insertion of a photocleavage-coupler, by which the biosensor can be precisely stimulated via exogenous 808 nm near-infrared (NIR) light-converted upconversion luminescence to recognize the analysis subjects in a controllable action. With the aim of conceptual presentation, this dual-palindrome-incorporated hand-in-hand self-linking bidirectional DNA amplifier stimulated by exogenous NIR light exhibits ultra-sensitive solution detection of various cancers-associated microRNA-155. More deeply, the biosensing toolbox can serve for high-performance imaging of low-abundance biomarkers at the real-word context of living cells and in vivo, boosting the advancement of DNA amplifiers in medical diagnostics.
Dual-palindrome is incorporated to construct a hand-in-hand self-linking bidirectional DNA amplifier. Within exogenous near-infrared light stimulation, this biosensor is employed to conduct high-performance microRNA imaging in living biosystems. [Display omitted]
•A hand-in-hand self-linking bidirectional DNA amplifier is constructed.•Exogenous near-infrared light is used to stimulate the DNA amplifier.•The biosensor exhibits ultra-sensitive detection competence for microRNA-155.•High-performance imaging in living cells and in vivo is presented. |
---|---|
AbstractList | Although the potency of DNA amplifiers-constructed biosensors for imaging disease biomarkers in living biosystems, they continue to face two challenges: (i) intricate multi-pathway amplification cascades in biosensing designs and (ii) suboptimal detection precision due to uncontrollable pre-activation during bio-delivery. In this contribution, we have brought the following viable resolutions. First, a catalytic hairpin assembly (CHA) routine is incorporated with a dual-palindrome that works like two pairs of hands to self-link CHA-amplified intermediate nucleic acids units, enabling a streamlined two-round signal intensification to enhance sensitivity. Thereafter, one DNA component is conducted with the insertion of a photocleavage-coupler, by which the biosensor can be precisely stimulated via exogenous 808 nm near-infrared (NIR) light-converted upconversion luminescence to recognize the analysis subjects in a controllable action. With the aim of conceptual presentation, this dual-palindrome-incorporated hand-in-hand self-linking bidirectional DNA amplifier stimulated by exogenous NIR light exhibits ultra-sensitive solution detection of various cancers-associated microRNA-155. More deeply, the biosensing toolbox can serve for high-performance imaging of low-abundance biomarkers at the real-word context of living cells and in vivo, boosting the advancement of DNA amplifiers in medical diagnostics.
Dual-palindrome is incorporated to construct a hand-in-hand self-linking bidirectional DNA amplifier. Within exogenous near-infrared light stimulation, this biosensor is employed to conduct high-performance microRNA imaging in living biosystems. [Display omitted]
•A hand-in-hand self-linking bidirectional DNA amplifier is constructed.•Exogenous near-infrared light is used to stimulate the DNA amplifier.•The biosensor exhibits ultra-sensitive detection competence for microRNA-155.•High-performance imaging in living cells and in vivo is presented. Although the potency of DNA amplifiers-constructed biosensors for imaging disease biomarkers in living biosystems, they continue to face two challenges: (i) intricate multi-pathway amplification cascades in biosensing designs and (ii) suboptimal detection precision due to uncontrollable pre-activation during bio-delivery. In this contribution, we have brought the following viable resolutions. First, a catalytic hairpin assembly (CHA) routine is incorporated with a dual-palindrome that works like two pairs of hands to self-link CHA-amplified intermediate nucleic acids units, enabling a streamlined two-round signal intensification to enhance sensitivity. Thereafter, one DNA component is conducted with the insertion of a photocleavage-coupler, by which the biosensor can be precisely stimulated via exogenous 808 nm near-infrared (NIR) light-converted upconversion luminescence to recognize the analysis subjects in a controllable action. With the aim of conceptual presentation, this dual-palindrome-incorporated hand-in-hand self-linking bidirectional DNA amplifier stimulated by exogenous NIR light exhibits ultra-sensitive solution detection of various cancers-associated microRNA-155. More deeply, the biosensing toolbox can serve for high-performance imaging of low-abundance biomarkers at the real-word context of living cells and in vivo, boosting the advancement of DNA amplifiers in medical diagnostics. Although the potency of DNA amplifiers-constructed biosensors for imaging disease biomarkers in living biosystems, they continue to face two challenges: (i) intricate multi-pathway amplification cascades in biosensing designs and (ii) suboptimal detection precision due to uncontrollable pre-activation during bio-delivery. In this contribution, we have brought the following viable resolutions. First, a catalytic hairpin assembly (CHA) routine is incorporated with a dual-palindrome that works like two pairs of hands to self-link CHA-amplified intermediate nucleic acids units, enabling a streamlined two-round signal intensification to enhance sensitivity. Thereafter, one DNA component is conducted with the insertion of a photocleavage-coupler, by which the biosensor can be precisely stimulated via exogenous 808 nm near-infrared (NIR) light-converted upconversion luminescence to recognize the analysis subjects in a controllable action. With the aim of conceptual presentation, this dual-palindrome-incorporated hand-in-hand self-linking bidirectional DNA amplifier stimulated by exogenous NIR light exhibits ultra-sensitive solution detection of various cancers-associated microRNA-155. More deeply, the biosensing toolbox can serve for high-performance imaging of low-abundance biomarkers at the real-word context of living cells and in vivo, boosting the advancement of DNA amplifiers in medical diagnostics. Although the potency of DNA amplifiers-constructed biosensors for imaging disease biomarkers in living biosystems, they continue to face two challenges: (i) intricate multi-pathway amplification cascades in biosensing designs and (ii) suboptimal detection precision due to uncontrollable pre-activation during bio-delivery. In this contribution, we have brought the following viable resolutions. First, a catalytic hairpin assembly (CHA) routine is incorporated with a dual-palindrome that works like two pairs of hands to self-link CHA-amplified intermediate nucleic acids units, enabling a streamlined two-round signal intensification to enhance sensitivity. Thereafter, one DNA component is conducted with the insertion of a photocleavage-coupler, by which the biosensor can be precisely stimulated via exogenous 808 nm near-infrared (NIR) light-converted upconversion luminescence to recognize the analysis subjects in a controllable action. With the aim of conceptual presentation, this dual-palindrome-incorporated hand-in-hand self-linking bidirectional DNA amplifier stimulated by exogenous NIR light exhibits ultra-sensitive solution detection of various cancers-associated microRNA-155. More deeply, the biosensing toolbox can serve for high-performance imaging of low-abundance biomarkers at the real-word context of living cells and in vivo, boosting the advancement of DNA amplifiers in medical diagnostics.Although the potency of DNA amplifiers-constructed biosensors for imaging disease biomarkers in living biosystems, they continue to face two challenges: (i) intricate multi-pathway amplification cascades in biosensing designs and (ii) suboptimal detection precision due to uncontrollable pre-activation during bio-delivery. In this contribution, we have brought the following viable resolutions. First, a catalytic hairpin assembly (CHA) routine is incorporated with a dual-palindrome that works like two pairs of hands to self-link CHA-amplified intermediate nucleic acids units, enabling a streamlined two-round signal intensification to enhance sensitivity. Thereafter, one DNA component is conducted with the insertion of a photocleavage-coupler, by which the biosensor can be precisely stimulated via exogenous 808 nm near-infrared (NIR) light-converted upconversion luminescence to recognize the analysis subjects in a controllable action. With the aim of conceptual presentation, this dual-palindrome-incorporated hand-in-hand self-linking bidirectional DNA amplifier stimulated by exogenous NIR light exhibits ultra-sensitive solution detection of various cancers-associated microRNA-155. More deeply, the biosensing toolbox can serve for high-performance imaging of low-abundance biomarkers at the real-word context of living cells and in vivo, boosting the advancement of DNA amplifiers in medical diagnostics. |
ArticleNumber | 128003 |
Author | Chen, Xiao-Xue Sun, Xiao-Ming Chen, Wei-Lin Li, Cheng-Yu Zhang, Tian-Tian |
Author_xml | – sequence: 1 givenname: Tian-Tian surname: Zhang fullname: Zhang, Tian-Tian organization: School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, PR China – sequence: 2 givenname: Xiao-Ming surname: Sun fullname: Sun, Xiao-Ming organization: School of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, 442000, PR China – sequence: 3 givenname: Wei-Lin surname: Chen fullname: Chen, Wei-Lin organization: School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, PR China – sequence: 4 givenname: Xiao-Xue surname: Chen fullname: Chen, Xiao-Xue organization: School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, PR China – sequence: 5 givenname: Cheng-Yu orcidid: 0000-0003-4463-717X surname: Li fullname: Li, Cheng-Yu email: li-chengyu@wust.edu.cn organization: School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40139007$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkcFu1DAQhi1URLeFRwD5yCWLJ0428QlVLbRIFVzgbHmd8a4Xxw62t6UPxvvhKAvXnmyNvvlHM98FOfPBIyFvga2BwebDYZ2VUz6rdc3qdg11zxh_QVbQd7zibcfPyKpURCWgYefkIqUDY6zmjL8i5w0DLhjrVuTPzVG5alLO-iGGESvrdYhTiCrjQPfKD6VSzS9N6ExVuJ_W7-jWDjaizjZ45ejN1yuqxslZYzHSR5v31lP8HXbowzFRjyqWGBNVLKHO7vaZpmzHo1NzADUh0n2pVhPG8h-V10jtqHbzpJLk7MMyM6SnlHFMr8lLo1zCN6f3kvz4_On79V11_-32y_XVfaV50-dK1ZxDNwgDAo2CGjrR1w1uDWfQt6gBh5ZvGoCW61aA4bVuRDMY6IXq9KD4JXm_5E4x_DpiynK0SaMrh8eymOQ120DfiI14HoUyumsBmoK-O6HH7YiDnGLZNT7Jf1YK0C6AjiGliOY_AkzO9uVBnuzL2b5c7Je-j0sflps8FBUyaYvlmIsrOQT7TMJfiti-Ng |
Cites_doi | 10.1002/jcb.22693 10.1016/j.trac.2022.116582 10.1016/j.talanta.2023.124668 10.1021/acs.analchem.2c04713 10.1021/acs.analchem.4c00332 10.1038/mt.2016.39 10.1021/acs.analchem.1c02049 10.1002/anie.202406016 10.1021/acs.analchem.1c00470 10.1016/j.bios.2021.113739 10.1016/j.bios.2024.116619 10.1021/acs.analchem.3c00293 10.1016/j.trac.2022.116602 10.1016/j.ab.2024.115594 10.1016/j.bios.2023.115943 10.1021/acs.inorgchem.0c00170 10.1021/acs.analchem.3c04176 10.1016/j.snb.2022.133003 10.1021/jacs.5b01504 10.1021/acs.analchem.7b00369 10.1016/j.trac.2024.117641 10.1016/j.bios.2023.115841 10.1002/mabi.201900098 10.1016/j.matlet.2020.127874 10.1016/j.theriogenology.2022.02.019 10.1021/acs.accounts.3c00085 10.1039/D0NR00941E 10.1016/j.biopha.2016.06.006 10.1039/D3CC06265A 10.1021/acsnano.0c09986 10.1021/acs.analchem.3c02985 10.1021/acs.analchem.3c01091 10.1021/acs.analchem.2c03223 10.1021/jacs.2c13214 10.1021/acs.analchem.3c03843 10.1021/acs.analchem.4c02076 10.1021/acsami.2c00376 10.1007/s12282-021-01215-2 10.1016/j.bios.2023.115973 10.1021/acs.analchem.3c02071 10.1021/acs.analchem.2c00150 10.1039/D3TB01100C 10.1088/0957-4484/21/12/125602 |
ContentType | Journal Article |
Copyright | 2025 Elsevier B.V. Copyright © 2025 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2025 Elsevier B.V. – notice: Copyright © 2025 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.talanta.2025.128003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1873-3573 |
ExternalDocumentID | 40139007 10_1016_j_talanta_2025_128003 S003991402500493X |
Genre | Journal Article |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ACDAQ ACGFS ACNCT ACRLP ADBBV ADECG ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AFZHZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AIEXJ AIIUN AIKHN AITUG AJSZI AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W K-O KOM M36 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SCH SDF SDG SDP SES SEW SPC SPCBC SSH SSK SSZ T5K TN5 TWZ WH7 XPP YK3 YNT ZMT ~02 ~G- 29Q 3O- 53G AAQXK AAYJJ AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEUPX AFPUW AGQPQ AIGII AJQLL AKBMS AKYEP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB HMU HVGLF HZ~ R2- RIG SCB WUQ XOL AACTN CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c348t-a23317d9f19efa12179824ebf30185ec1ed53641153c591f32c494df189a7cda3 |
IEDL.DBID | .~1 |
ISSN | 0039-9140 1873-3573 |
IngestDate | Wed Jul 02 03:22:15 EDT 2025 Wed Jul 02 05:12:43 EDT 2025 Thu Apr 24 02:14:30 EDT 2025 Tue Jul 01 05:07:29 EDT 2025 Sat May 24 17:04:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | DNA amplifier In vivo Living cells Near-infrared light Biosensor Imaging |
Language | English |
License | Copyright © 2025 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-a23317d9f19efa12179824ebf30185ec1ed53641153c591f32c494df189a7cda3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4463-717X |
PMID | 40139007 |
PQID | 3182475114 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3206184969 proquest_miscellaneous_3182475114 pubmed_primary_40139007 crossref_primary_10_1016_j_talanta_2025_128003 elsevier_sciencedirect_doi_10_1016_j_talanta_2025_128003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-09-01 |
PublicationDateYYYYMMDD | 2025-09-01 |
PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Talanta (Oxford) |
PublicationTitleAlternate | Talanta |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Chi, Hu, Yi, Qu, Xiao (bib45) 2023; 262 Wang, Wang, Huang, Du, Zhang, Cui, Kong (bib1) 2022; 197 Shuai, Zhang, Zhai, Li, Chen, Long, Li, Huang, Li (bib5) 2023; 95 Zhang, Zhao, Li, Zhang, Tang, Luo, Ma, Zhang (bib13) 2022; 94 Zhang, Zhang, Zhang, Liu, Li, Yu, Yuan, Zhang (bib14) 2024; 96 Huang, Zhang, Cheng, Li, Song, Xue, Wu, Shen (bib16) 2023; 376 Xiang, Li, Liu, Yu, Jiang (bib25) 2020; 12 Bachmann, Behrmann, Klingenberg-Ernst, Rupnik, Hufert, Dame, Weidmann (bib8) 2024; 96 Duan, Tan, Duan, Chen, Xia, Huang (bib21) 2021; 93 Liu, Lao, Wong, Song, Lai, Wang, Ma, Li, Yang, Chen, Hao (bib34) 2024; 13 Lim, Klotz, Lindberg, Melchels, Hooper, Malda, Gawlitta, Woodfield (bib30) 2019; 19 Zuo, Duan, Li, Ge, Wang, Li, Liu (bib40) 2021; 93 Xu, Yuan, Wang, Peng (bib17) 2024; 693 Li, Lv, Wang, Chen, Liu (bib39) 2015; 137 Chen, Zhang, Dai, He, Ye, Wang (bib41) 2020; 273 Zhao, Yang, Tang, Feng, Ding, Chen, Luo, Deng, Sheng, Xie, Chang, Chen (bib6) 2024; 246 Huang, Li, Tong, Zhang, Shen, Chen, Huang, Shi, Wen, Liu, Guo, Zou, Dai (bib12) 2023; 95 Guo, Li, Qian, Hu, Muhammad (bib37) 2010; 21 Chen, Chen, Chen, Zhang, Tang, Li (bib15) 2024; 96 Yin, Chen, Li, Pang, Wang, Wang, Liu, Xu, Luo (bib24) 2024; 96 Di, Yi, Li (bib26) 2023; 145 Luo, Li, Zhang, He, Feng, Feng, Qian, Tian, Duan (bib11) 2022; 151 Shao, Liang, He, Luan, Yu, Zhao, Xu, Tian (bib27) 2017; 89 Chen, Song, Wang, Tang, Li (bib20) 2024; 247 Matsui, Prakash, Corey (bib43) 2016; 24 Zhou, Jiang, Zhao, Zhang (bib22) 2022; 14 Cai, Wu, Chen, Chen, Zhang, Wang, Zhou (bib42) 2023; 95 He, Wang, Cheng, Liu, You (bib33) 2024; 173 Stangherlin, Liu (bib4) 2023; 11 Li, Zheng, Li, Gao, Liu, Pang, Tang (bib38) 2021; 15 Zhao, He, Liu, Nie, Luo, Liu (bib28) 2024; 63 Liu, Chang, Wang, Qian, Jiang (bib36) 2021; 28 Xu, Zheng, Xie, Duan, Yu, Lin, Li, Jia (bib10) 2024; 248 Liu, Li, Li, Zhang, Xie, Xu, Xu, Zhang, Liu, Xue (bib19) 2024; 263 Wang, Zhou, Xue, Yang, Sui, Yuan, Xu (bib18) 2024; 60 Kimura, Lee, Hayashi, Yamauchi, Yamamoto, Tsuchiya, Tomita, Bouvet, Hoffman (bib29) 2010; 110 Fang, Shuang, Yi, Sheng, Liu (bib35) 2016; 83 Zhou, Xu, He, Wang, Zhang, Hu, Huang, Chen, Li, Yang, Huang (bib7) 2023; 95 Tanga, Fang, Bang, Seong, De Zoysa, Saadeldin, Lee, Cho (bib44) 2022; 183 Zhao, Sun, Chen, Li, Cao, Chen, Yin, Xu, Luo (bib23) 2022; 94 Neyra, Everson, Mathur (bib2) 2024; 96 Li, Li (bib3) 2023; 56 Yang, Shi, Zhang, He, Li, Huang, Yuan, Xu (bib9) 2023; 95 Gulzar, Wang, He, Yang, Zhang, Gai, Yang (bib31) 2020; 59 Zhang, Wang, Li (bib32) 2022; 151 Zhou (10.1016/j.talanta.2025.128003_bib7) 2023; 95 Liu (10.1016/j.talanta.2025.128003_bib19) 2024; 263 Zuo (10.1016/j.talanta.2025.128003_bib40) 2021; 93 Neyra (10.1016/j.talanta.2025.128003_bib2) 2024; 96 Xu (10.1016/j.talanta.2025.128003_bib17) 2024; 693 Gulzar (10.1016/j.talanta.2025.128003_bib31) 2020; 59 Zhao (10.1016/j.talanta.2025.128003_bib23) 2022; 94 Li (10.1016/j.talanta.2025.128003_bib3) 2023; 56 Zhang (10.1016/j.talanta.2025.128003_bib13) 2022; 94 Shuai (10.1016/j.talanta.2025.128003_bib5) 2023; 95 Duan (10.1016/j.talanta.2025.128003_bib21) 2021; 93 Wang (10.1016/j.talanta.2025.128003_bib18) 2024; 60 Huang (10.1016/j.talanta.2025.128003_bib16) 2023; 376 He (10.1016/j.talanta.2025.128003_bib33) 2024; 173 Guo (10.1016/j.talanta.2025.128003_bib37) 2010; 21 Zhang (10.1016/j.talanta.2025.128003_bib32) 2022; 151 Cai (10.1016/j.talanta.2025.128003_bib42) 2023; 95 Tanga (10.1016/j.talanta.2025.128003_bib44) 2022; 183 Bachmann (10.1016/j.talanta.2025.128003_bib8) 2024; 96 Chen (10.1016/j.talanta.2025.128003_bib20) 2024; 247 Di (10.1016/j.talanta.2025.128003_bib26) 2023; 145 Kimura (10.1016/j.talanta.2025.128003_bib29) 2010; 110 Liu (10.1016/j.talanta.2025.128003_bib36) 2021; 28 Lim (10.1016/j.talanta.2025.128003_bib30) 2019; 19 Xiang (10.1016/j.talanta.2025.128003_bib25) 2020; 12 Li (10.1016/j.talanta.2025.128003_bib38) 2021; 15 Chi (10.1016/j.talanta.2025.128003_bib45) 2023; 262 Zhao (10.1016/j.talanta.2025.128003_bib6) 2024; 246 Shao (10.1016/j.talanta.2025.128003_bib27) 2017; 89 Wang (10.1016/j.talanta.2025.128003_bib1) 2022; 197 Chen (10.1016/j.talanta.2025.128003_bib15) 2024; 96 Huang (10.1016/j.talanta.2025.128003_bib12) 2023; 95 Luo (10.1016/j.talanta.2025.128003_bib11) 2022; 151 Yin (10.1016/j.talanta.2025.128003_bib24) 2024; 96 Li (10.1016/j.talanta.2025.128003_bib39) 2015; 137 Zhao (10.1016/j.talanta.2025.128003_bib28) 2024; 63 Matsui (10.1016/j.talanta.2025.128003_bib43) 2016; 24 Yang (10.1016/j.talanta.2025.128003_bib9) 2023; 95 Stangherlin (10.1016/j.talanta.2025.128003_bib4) 2023; 11 Zhang (10.1016/j.talanta.2025.128003_bib14) 2024; 96 Xu (10.1016/j.talanta.2025.128003_bib10) 2024; 248 Liu (10.1016/j.talanta.2025.128003_bib34) 2024; 13 Zhou (10.1016/j.talanta.2025.128003_bib22) 2022; 14 Chen (10.1016/j.talanta.2025.128003_bib41) 2020; 273 Fang (10.1016/j.talanta.2025.128003_bib35) 2016; 83 |
References_xml | – volume: 247 year: 2024 ident: bib20 article-title: Genetically engineered virus-like particle-armoured and multibranched DNA scaffold-corbelled ultra-sensitive hierarchical hybridization chain reaction for targeting-enhanced imaging in living biosystems under spatiotemporal light powering publication-title: Biosens. Bioelectron. – volume: 11 start-page: 6994 year: 2023 end-page: 7003 ident: bib4 article-title: Nanomaterials enabled and enhanced DNA-based biosensors publication-title: J. Mater. Chem. B – volume: 19 year: 2019 ident: bib30 article-title: Visible light cross-linking of gelatin hydrogels offers an enhanced cell microenvironment with improved light penetration depth publication-title: Macromol. Biosci. – volume: 95 start-page: 11793 year: 2023 end-page: 11799 ident: bib12 article-title: DNAzyme-amplified cascade catalytic hairpin assembly nanosystem for sensitive MicroRNA imaging in living cells publication-title: Anal. Chem. – volume: 63 year: 2024 ident: bib28 article-title: Intrarenal pH-responsive self-assembly of luminescent gold nanoparticles for diagnosis of early kidney injury publication-title: Angew Chem Int Edit – volume: 21 year: 2010 ident: bib37 article-title: Seed-mediated synthesis of NaYF4:Yb, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity publication-title: Nanotechnology – volume: 95 start-page: 3379 year: 2023 end-page: 3389 ident: bib7 article-title: Coupling CRISPR/Cas12a and recombinase polymerase amplification on a stand-alone microfluidics platform for fast and parallel nucleic acid detection publication-title: Anal. Chem. – volume: 693 year: 2024 ident: bib17 article-title: Palindrome sequence mediated target recycling integrating with self-priming assisted signal reaction for sensitive miRNA detection publication-title: Anal. Biochem. – volume: 56 start-page: 1482 year: 2023 end-page: 1493 ident: bib3 article-title: Enzyme-Triggered DNA sensor technology for spatially-controlled, cell-selective molecular imaging publication-title: Accounts Chem. Res. – volume: 248 year: 2024 ident: bib10 article-title: Imaging mRNA in vitro and in vivo with nanofirecracker probes via intramolecular hybridization chain reaction publication-title: Biosens. Bioelectron. – volume: 89 start-page: 5445 year: 2017 end-page: 5452 ident: bib27 article-title: pH-responsive graphene oxide-DNA nanosystem for live cell imaging and detection publication-title: Anal. Chem. – volume: 145 start-page: 7931 year: 2023 end-page: 7940 ident: bib26 article-title: Protease-Triggered, spatially controlled DNA assembly in apoptotic cells for early evaluation of therapeutic efficacy publication-title: J. Am. Chem. Soc. – volume: 14 start-page: 13070 year: 2022 end-page: 13078 ident: bib22 article-title: Light-activated nanodevice for on-demand imaging of miRNA in living cells via logic assembly publication-title: ACS Appl Mater Inter – volume: 151 year: 2022 ident: bib32 article-title: Recent advances in chromophore-assembled upconversion nanoprobes for chemo/biosensing publication-title: Trac-Trend Anal Chem – volume: 15 start-page: 8142 year: 2021 end-page: 8154 ident: bib38 article-title: Holographic optical tweezers and boosting upconversion luminescent resonance energy transfer combined clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a biosensors publication-title: ACS Nano – volume: 95 start-page: 18199 year: 2023 end-page: 18206 ident: bib42 article-title: Nanosensor based on the dual-entropy-driven modulation strategy for intracellular detection of MicroRNA publication-title: Anal. Chem. – volume: 96 start-page: 3267 year: 2024 end-page: 3275 ident: bib8 article-title: Rapid isothermal detection of pathogenic using recombinase polymerase amplification publication-title: Anal. Chem. – volume: 95 start-page: 10337 year: 2023 end-page: 10345 ident: bib9 article-title: Modular DNA tetrahedron nanomachine-guided dual-responsive hybridization chain reactions for discernible bivariate assay and cell imaging publication-title: Anal. Chem. – volume: 137 start-page: 3421 year: 2015 end-page: 3427 ident: bib39 article-title: Construction of LRET-based nanoprobe using upconversion nanoparticles with confined emitters and bared surface as luminophore publication-title: J. Am. Chem. Soc. – volume: 96 start-page: 10084 year: 2024 end-page: 10091 ident: bib14 article-title: An enzymatically activated and catalytic hairpin assembly-driven intelligent AND-gated DNA network for tumor molecular imaging publication-title: Anal. Chem. – volume: 93 start-page: 5635 year: 2021 end-page: 5643 ident: bib40 article-title: A versatile strategy for constructing ratiometric upconversion luminescent probe with sensitized emission of energy acceptor publication-title: Anal. Chem. – volume: 96 start-page: 14020 year: 2024 end-page: 14027 ident: bib15 article-title: Endogenous messenger RNA-stimulative self-enhanced orthogonal catalytic DNA nanomachine under near-infrared light mediation for high-performance imaging in living biosamples publication-title: Anal. Chem. – volume: 197 year: 2022 ident: bib1 article-title: Development of the DNA-based biosensors for high performance in detection of molecular biomarkers: more rapid, sensitive, and universal publication-title: Biosens. Bioelectron. – volume: 94 start-page: 5399 year: 2022 end-page: 5405 ident: bib23 article-title: Optically programmable plasmon enhanced fluorescence-catalytic hairpin assembly signal amplification strategy for spatiotemporally precise imaging publication-title: Anal. Chem. – volume: 13 year: 2024 ident: bib34 article-title: Microfluidic chip-assisted upconversion luminescence biosensing platform for point-of-care virus diagnostics publication-title: Adv. Healthcare Mater. – volume: 273 year: 2020 ident: bib41 article-title: Facile fabrication of water-soluble polyacrylic acid encapsulated core@shell upconversion nanoparticles via metal-free light induced surface initiated atom transfer radical polymerization publication-title: Mater. Lett. – volume: 110 start-page: 1439 year: 2010 end-page: 1446 ident: bib29 article-title: UV light killing efficacy of fluorescent protein-expressing cancer cells in vitro and in vivo publication-title: J. Cell. Biochem. – volume: 24 start-page: 946 year: 2016 end-page: 955 ident: bib43 article-title: Argonaute 2-dependent regulation of gene expression by single-stranded miRNA mimics publication-title: Mol. Ther. – volume: 94 start-page: 13978 year: 2022 end-page: 13986 ident: bib13 article-title: Construction of an entropy-driven dumbbell-type DNAzyme assembly circuit for lighting up uracil-DNA glycosylase in living cells publication-title: Anal. Chem. – volume: 151 year: 2022 ident: bib11 article-title: Catalytic hairpin assembly as cascade nucleic acid circuits for fluorescent biosensor: design, evolution and application publication-title: Trac-Trend Anal Chem – volume: 28 start-page: 806 year: 2021 end-page: 821 ident: bib36 article-title: Discovery and function exploration of microRNA-155 as a molecular biomarker for early detection of breast cancer publication-title: Breast Cancer-Tokyo – volume: 183 start-page: 90 year: 2022 end-page: 97 ident: bib44 article-title: MiRNA-155 inhibition enhances porcine embryo preimplantation developmental competence by upregulating ZEB2 and downregulating ATF4 publication-title: Theriogenology – volume: 376 year: 2023 ident: bib16 article-title: Target-induced multiple palindrome-mediated strand displacement amplification of Scarecrow-shaped DNA nanoprobe for ultrasensitive detection of MicroRNA publication-title: Sensor Actuat B-Chem – volume: 173 year: 2024 ident: bib33 article-title: Recent advances of upconversion nanoparticles-based lateral flow assays for point-of-care testing publication-title: Trac-Trend Anal Chem – volume: 95 start-page: 6681 year: 2023 end-page: 6689 ident: bib5 article-title: MicroRNA imaging encounters rolling circle amplification: intracellular Na plus -fueled linear programmable DNAzyme nanostructure publication-title: Anal. Chem. – volume: 96 start-page: 3687 year: 2024 end-page: 3697 ident: bib2 article-title: Dominant analytical techniques in DNA nanotechnology for various applications publication-title: Anal. Chem. – volume: 246 year: 2024 ident: bib6 article-title: DNA four-way junction-driven dual-rolling circle amplification sandwich-type aptasensor for ultra-sensitive and specific detection of tumor-derived exosomes publication-title: Biosens. Bioelectron. – volume: 262 year: 2023 ident: bib45 article-title: A novel strategy to construct activatable silver chalcogenide quantum dots nanoprobe for NIR-Ⅱ fluorescence imaging of hypochlorous acid in vivo publication-title: Talanta – volume: 83 start-page: 64 year: 2016 end-page: 69 ident: bib35 article-title: Up-regulated microRNA-155 expression is associated with poor prognosis in cervical cancer patients publication-title: Biomed. Pharmacother. – volume: 59 start-page: 4909 year: 2020 end-page: 4923 ident: bib31 article-title: An 808 nm light-sensitized upconversion nanoplatform for multimodal imaging and efficient cancer therapy publication-title: Inorg. Chem. – volume: 60 start-page: 2910 year: 2024 end-page: 2913 ident: bib18 article-title: An allosteric palindromic hairpin probe based dual-mode interactive strand displacement amplification enables robust miRNA biosensing publication-title: Chem Commun – volume: 12 start-page: 8727 year: 2020 end-page: 8731 ident: bib25 article-title: A tumour mRNA-triggered nanoassembly for enhanced fluorescence imaging-guided photodynamic therapy publication-title: Nanoscale – volume: 93 start-page: 11547 year: 2021 end-page: 11556 ident: bib21 article-title: Photoactivated biosensing process for dictated ATP detection in single living cells publication-title: Anal. Chem. – volume: 263 year: 2024 ident: bib19 article-title: An advanced 3D DNA nanoplatform for spatiotemporally confined enhanced dual-mode biosensing MicroRNA in cancer cell publication-title: Biosens. Bioelectron. – volume: 96 start-page: 7550 year: 2024 end-page: 7557 ident: bib24 article-title: Exogenous and endogenous dual-activated nanoladder for precise imaging of mitochondrial ferroptosis-related inhibition miRNA with tumor cell specificity publication-title: Anal. Chem. – volume: 110 start-page: 1439 issue: 6 year: 2010 ident: 10.1016/j.talanta.2025.128003_bib29 article-title: UV light killing efficacy of fluorescent protein-expressing cancer cells in vitro and in vivo publication-title: J. Cell. Biochem. doi: 10.1002/jcb.22693 – volume: 151 year: 2022 ident: 10.1016/j.talanta.2025.128003_bib11 article-title: Catalytic hairpin assembly as cascade nucleic acid circuits for fluorescent biosensor: design, evolution and application publication-title: Trac-Trend Anal Chem doi: 10.1016/j.trac.2022.116582 – volume: 262 year: 2023 ident: 10.1016/j.talanta.2025.128003_bib45 article-title: A novel strategy to construct activatable silver chalcogenide quantum dots nanoprobe for NIR-Ⅱ fluorescence imaging of hypochlorous acid in vivo publication-title: Talanta doi: 10.1016/j.talanta.2023.124668 – volume: 95 start-page: 3379 issue: 6 year: 2023 ident: 10.1016/j.talanta.2025.128003_bib7 article-title: Coupling CRISPR/Cas12a and recombinase polymerase amplification on a stand-alone microfluidics platform for fast and parallel nucleic acid detection publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c04713 – volume: 96 start-page: 7550 issue: 19 year: 2024 ident: 10.1016/j.talanta.2025.128003_bib24 article-title: Exogenous and endogenous dual-activated nanoladder for precise imaging of mitochondrial ferroptosis-related inhibition miRNA with tumor cell specificity publication-title: Anal. Chem. doi: 10.1021/acs.analchem.4c00332 – volume: 24 start-page: 946 issue: 5 year: 2016 ident: 10.1016/j.talanta.2025.128003_bib43 article-title: Argonaute 2-dependent regulation of gene expression by single-stranded miRNA mimics publication-title: Mol. Ther. doi: 10.1038/mt.2016.39 – volume: 93 start-page: 11547 issue: 33 year: 2021 ident: 10.1016/j.talanta.2025.128003_bib21 article-title: Photoactivated biosensing process for dictated ATP detection in single living cells publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c02049 – volume: 63 issue: 29 year: 2024 ident: 10.1016/j.talanta.2025.128003_bib28 article-title: Intrarenal pH-responsive self-assembly of luminescent gold nanoparticles for diagnosis of early kidney injury publication-title: Angew Chem Int Edit doi: 10.1002/anie.202406016 – volume: 93 start-page: 5635 issue: 13 year: 2021 ident: 10.1016/j.talanta.2025.128003_bib40 article-title: A versatile strategy for constructing ratiometric upconversion luminescent probe with sensitized emission of energy acceptor publication-title: Anal. Chem. doi: 10.1021/acs.analchem.1c00470 – volume: 197 year: 2022 ident: 10.1016/j.talanta.2025.128003_bib1 article-title: Development of the DNA-based biosensors for high performance in detection of molecular biomarkers: more rapid, sensitive, and universal publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2021.113739 – volume: 263 year: 2024 ident: 10.1016/j.talanta.2025.128003_bib19 article-title: An advanced 3D DNA nanoplatform for spatiotemporally confined enhanced dual-mode biosensing MicroRNA in cancer cell publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2024.116619 – volume: 95 start-page: 6681 issue: 16 year: 2023 ident: 10.1016/j.talanta.2025.128003_bib5 article-title: MicroRNA imaging encounters rolling circle amplification: intracellular Na plus -fueled linear programmable DNAzyme nanostructure publication-title: Anal. Chem. doi: 10.1021/acs.analchem.3c00293 – volume: 151 year: 2022 ident: 10.1016/j.talanta.2025.128003_bib32 article-title: Recent advances in chromophore-assembled upconversion nanoprobes for chemo/biosensing publication-title: Trac-Trend Anal Chem doi: 10.1016/j.trac.2022.116602 – volume: 693 year: 2024 ident: 10.1016/j.talanta.2025.128003_bib17 article-title: Palindrome sequence mediated target recycling integrating with self-priming assisted signal reaction for sensitive miRNA detection publication-title: Anal. Biochem. doi: 10.1016/j.ab.2024.115594 – volume: 247 year: 2024 ident: 10.1016/j.talanta.2025.128003_bib20 article-title: Genetically engineered virus-like particle-armoured and multibranched DNA scaffold-corbelled ultra-sensitive hierarchical hybridization chain reaction for targeting-enhanced imaging in living biosystems under spatiotemporal light powering publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2023.115943 – volume: 59 start-page: 4909 issue: 7 year: 2020 ident: 10.1016/j.talanta.2025.128003_bib31 article-title: An 808 nm light-sensitized upconversion nanoplatform for multimodal imaging and efficient cancer therapy publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.0c00170 – volume: 96 start-page: 3687 issue: 9 year: 2024 ident: 10.1016/j.talanta.2025.128003_bib2 article-title: Dominant analytical techniques in DNA nanotechnology for various applications publication-title: Anal. Chem. doi: 10.1021/acs.analchem.3c04176 – volume: 376 year: 2023 ident: 10.1016/j.talanta.2025.128003_bib16 article-title: Target-induced multiple palindrome-mediated strand displacement amplification of Scarecrow-shaped DNA nanoprobe for ultrasensitive detection of MicroRNA publication-title: Sensor Actuat B-Chem doi: 10.1016/j.snb.2022.133003 – volume: 137 start-page: 3421 issue: 9 year: 2015 ident: 10.1016/j.talanta.2025.128003_bib39 article-title: Construction of LRET-based nanoprobe using upconversion nanoparticles with confined emitters and bared surface as luminophore publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b01504 – volume: 89 start-page: 5445 issue: 10 year: 2017 ident: 10.1016/j.talanta.2025.128003_bib27 article-title: pH-responsive graphene oxide-DNA nanosystem for live cell imaging and detection publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b00369 – volume: 173 year: 2024 ident: 10.1016/j.talanta.2025.128003_bib33 article-title: Recent advances of upconversion nanoparticles-based lateral flow assays for point-of-care testing publication-title: Trac-Trend Anal Chem doi: 10.1016/j.trac.2024.117641 – volume: 246 year: 2024 ident: 10.1016/j.talanta.2025.128003_bib6 article-title: DNA four-way junction-driven dual-rolling circle amplification sandwich-type aptasensor for ultra-sensitive and specific detection of tumor-derived exosomes publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2023.115841 – volume: 96 start-page: 14020 issue: 34 year: 2024 ident: 10.1016/j.talanta.2025.128003_bib15 article-title: Endogenous messenger RNA-stimulative self-enhanced orthogonal catalytic DNA nanomachine under near-infrared light mediation for high-performance imaging in living biosamples publication-title: Anal. Chem. – volume: 19 issue: 6 year: 2019 ident: 10.1016/j.talanta.2025.128003_bib30 article-title: Visible light cross-linking of gelatin hydrogels offers an enhanced cell microenvironment with improved light penetration depth publication-title: Macromol. Biosci. doi: 10.1002/mabi.201900098 – volume: 273 year: 2020 ident: 10.1016/j.talanta.2025.128003_bib41 article-title: Facile fabrication of water-soluble polyacrylic acid encapsulated core@shell upconversion nanoparticles via metal-free light induced surface initiated atom transfer radical polymerization publication-title: Mater. Lett. doi: 10.1016/j.matlet.2020.127874 – volume: 183 start-page: 90 year: 2022 ident: 10.1016/j.talanta.2025.128003_bib44 article-title: MiRNA-155 inhibition enhances porcine embryo preimplantation developmental competence by upregulating ZEB2 and downregulating ATF4 publication-title: Theriogenology doi: 10.1016/j.theriogenology.2022.02.019 – volume: 56 start-page: 1482 issue: 12 year: 2023 ident: 10.1016/j.talanta.2025.128003_bib3 article-title: Enzyme-Triggered DNA sensor technology for spatially-controlled, cell-selective molecular imaging publication-title: Accounts Chem. Res. doi: 10.1021/acs.accounts.3c00085 – volume: 12 start-page: 8727 issue: 16 year: 2020 ident: 10.1016/j.talanta.2025.128003_bib25 article-title: A tumour mRNA-triggered nanoassembly for enhanced fluorescence imaging-guided photodynamic therapy publication-title: Nanoscale doi: 10.1039/D0NR00941E – volume: 83 start-page: 64 year: 2016 ident: 10.1016/j.talanta.2025.128003_bib35 article-title: Up-regulated microRNA-155 expression is associated with poor prognosis in cervical cancer patients publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2016.06.006 – volume: 60 start-page: 2910 issue: 21 year: 2024 ident: 10.1016/j.talanta.2025.128003_bib18 article-title: An allosteric palindromic hairpin probe based dual-mode interactive strand displacement amplification enables robust miRNA biosensing publication-title: Chem Commun doi: 10.1039/D3CC06265A – volume: 15 start-page: 8142 issue: 5 year: 2021 ident: 10.1016/j.talanta.2025.128003_bib38 article-title: Holographic optical tweezers and boosting upconversion luminescent resonance energy transfer combined clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a biosensors publication-title: ACS Nano doi: 10.1021/acsnano.0c09986 – volume: 13 issue: 16 year: 2024 ident: 10.1016/j.talanta.2025.128003_bib34 article-title: Microfluidic chip-assisted upconversion luminescence biosensing platform for point-of-care virus diagnostics publication-title: Adv. Healthcare Mater. – volume: 96 start-page: 3267 issue: 8 year: 2024 ident: 10.1016/j.talanta.2025.128003_bib8 article-title: Rapid isothermal detection of pathogenic using recombinase polymerase amplification publication-title: Anal. Chem. doi: 10.1021/acs.analchem.3c02985 – volume: 95 start-page: 10337 issue: 27 year: 2023 ident: 10.1016/j.talanta.2025.128003_bib9 article-title: Modular DNA tetrahedron nanomachine-guided dual-responsive hybridization chain reactions for discernible bivariate assay and cell imaging publication-title: Anal. Chem. doi: 10.1021/acs.analchem.3c01091 – volume: 94 start-page: 13978 issue: 40 year: 2022 ident: 10.1016/j.talanta.2025.128003_bib13 article-title: Construction of an entropy-driven dumbbell-type DNAzyme assembly circuit for lighting up uracil-DNA glycosylase in living cells publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c03223 – volume: 145 start-page: 7931 issue: 14 year: 2023 ident: 10.1016/j.talanta.2025.128003_bib26 article-title: Protease-Triggered, spatially controlled DNA assembly in apoptotic cells for early evaluation of therapeutic efficacy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c13214 – volume: 95 start-page: 18199 issue: 49 year: 2023 ident: 10.1016/j.talanta.2025.128003_bib42 article-title: Nanosensor based on the dual-entropy-driven modulation strategy for intracellular detection of MicroRNA publication-title: Anal. Chem. doi: 10.1021/acs.analchem.3c03843 – volume: 96 start-page: 10084 issue: 24 year: 2024 ident: 10.1016/j.talanta.2025.128003_bib14 article-title: An enzymatically activated and catalytic hairpin assembly-driven intelligent AND-gated DNA network for tumor molecular imaging publication-title: Anal. Chem. doi: 10.1021/acs.analchem.4c02076 – volume: 14 start-page: 13070 issue: 11 year: 2022 ident: 10.1016/j.talanta.2025.128003_bib22 article-title: Light-activated nanodevice for on-demand imaging of miRNA in living cells via logic assembly publication-title: ACS Appl Mater Inter doi: 10.1021/acsami.2c00376 – volume: 28 start-page: 806 issue: 4 year: 2021 ident: 10.1016/j.talanta.2025.128003_bib36 article-title: Discovery and function exploration of microRNA-155 as a molecular biomarker for early detection of breast cancer publication-title: Breast Cancer-Tokyo doi: 10.1007/s12282-021-01215-2 – volume: 248 year: 2024 ident: 10.1016/j.talanta.2025.128003_bib10 article-title: Imaging mRNA in vitro and in vivo with nanofirecracker probes via intramolecular hybridization chain reaction publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2023.115973 – volume: 95 start-page: 11793 issue: 31 year: 2023 ident: 10.1016/j.talanta.2025.128003_bib12 article-title: DNAzyme-amplified cascade catalytic hairpin assembly nanosystem for sensitive MicroRNA imaging in living cells publication-title: Anal. Chem. doi: 10.1021/acs.analchem.3c02071 – volume: 94 start-page: 5399 issue: 13 year: 2022 ident: 10.1016/j.talanta.2025.128003_bib23 article-title: Optically programmable plasmon enhanced fluorescence-catalytic hairpin assembly signal amplification strategy for spatiotemporally precise imaging publication-title: Anal. Chem. doi: 10.1021/acs.analchem.2c00150 – volume: 11 start-page: 6994 issue: 30 year: 2023 ident: 10.1016/j.talanta.2025.128003_bib4 article-title: Nanomaterials enabled and enhanced DNA-based biosensors publication-title: J. Mater. Chem. B doi: 10.1039/D3TB01100C – volume: 21 issue: 12 year: 2010 ident: 10.1016/j.talanta.2025.128003_bib37 article-title: Seed-mediated synthesis of NaYF4:Yb, Er/NaGdF4 nanocrystals with improved upconversion fluorescence and MR relaxivity publication-title: Nanotechnology doi: 10.1088/0957-4484/21/12/125602 |
SSID | ssj0002303 |
Score | 2.4701111 |
Snippet | Although the potency of DNA amplifiers-constructed biosensors for imaging disease biomarkers in living biosystems, they continue to face two challenges: (i)... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 128003 |
SubjectTerms | biomarkers Biosensing Techniques - methods Biosensor biosensors diagnostic techniques DNA DNA - chemistry DNA - genetics DNA amplifier Humans Imaging In vivo Infrared Rays Inverted Repeat Sequences Living cells luminescence MicroRNAs - analysis MicroRNAs - genetics Near-infrared light |
Title | Dual-palindrome-incorporated hand-in-hand self-linking bidirectional DNA amplifier within exogenous near-infrared light stimulation for high-performance imaging in living biosystems |
URI | https://dx.doi.org/10.1016/j.talanta.2025.128003 https://www.ncbi.nlm.nih.gov/pubmed/40139007 https://www.proquest.com/docview/3182475114 https://www.proquest.com/docview/3206184969 |
Volume | 292 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9swDBaK9tBdhnbPdF2hAbsqiSX5oWOQrsg2LKcWyE2Q9QBcpE6QpkVP-1f7fyMtuUFRbAN2MmzINiHS5CeZ_EjIZ27GpalkxUJZWSZzwZkS3jFuvc1cAQGmxNrhH_NidiW_LfLFHpn2tTCYVpl8f_TpnbdOV0ZpNkfrpsEaXwiusD6AIA4wVyywgl2WaOXDn7s0D4DYiXhXMRy9q-IZXSPJIMiP9EM8H4KnHve9s57Hpz_hzy4OXRyRlwlA0kmU8Zjs-fYVOZz2fdtek1_nd2bJ1oCvIxcBQ_6FSFfsHcWNcrjC8Ehv_TKw1D2B1k2cim5vkJ7PJ9RgtnkAuSju1jYt9Q-ryOlKW_hA4DFhg_nrdIkrfArO4iY1A6MAhSkyIbP1rjCBNjddSyQKT1o29_Gdq0glffuGXF18uZzOWGrOwKyQ1ZYZLgB6OBUy5YPJOBKfcenrAB6jykHR3uWikAA4hc1VFgS3UkkXskqZ0joj3pL9dtX694TKDiXawoZCgT-pa8fBRgxYi7PBCjcgw14leh05OHSfnHatkw416lBHHQ5I1StOPzEmDXHiX7d-6hWtQW_498S0HiZWg_PjsgR8Kv8yho-xgY4q1IC8i1byKDEuZBUgspP_F-4DeYFnMcXtlOxvN3f-I2CibX3WGf0ZOZh8_T6b_wZkJxBg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtswECXS5JBeinR30oUFeqVtkdTCY-A0cDafEsA3guICKHBkI3GKnvJX-b_MiFSNomgL9CSAoiiKQ848UjNvCPnKzbg0laxYKCvLZC44U8I7xq23mSvAwJQYO3wxK6ZX8nSez7fIpI-FQbfKpPujTu-0dSoZpdEcrZoGY3zBuML-AIw4wFwxf0Z24F0VpjEYPmz8PABjJ-ZdxbD6JoxndI0sg_AByD_E8yGo6nGfPOt3A_UnANoZouM98iIhSHoYO_mSbPn2Fdmd9InbXpPHo3uzYCsA2JGMgCEBQ-Qr9o7iSTmUMLzSO78ILKVPoHUTx6I7HKRHs0Nq0N08QL8oHtc2LfU_lpHUlbawQqCZcIsO7HSBW3wK2uImZQOjgIUpUiGz1SYygTY3XU4kCi0tmu_xncvIJX33hlwdf7ucTFnKzsCskNWaGS4AezgVMuWDyTgyn3Hp6wAqo8pB0t7lopCAOIXNVRYEt1JJF7JKmdI6I96S7XbZ-veEyg4m2sKGQoFCqWvHYZIYmC7OBivcgAx7kehVJOHQvXfatU4y1ChDHWU4IFUvOP3LbNJgKP716Jde0Brkhr9PTOthYDVoPy5LAKjyL3X4GDPoqEINyLs4S372GHeyCiDZ_v937jPZnV5enOvzk9nZAXmOd6K_2weyvb699x8BIK3rT90CeAJ2chHu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-palindrome-incorporated+hand-in-hand+self-linking+bidirectional+DNA+amplifier+within+exogenous+near-infrared+light+stimulation+for+high-performance+imaging+in+living+biosystems&rft.jtitle=Talanta+%28Oxford%29&rft.au=Zhang%2C+Tian-Tian&rft.au=Sun%2C+Xiao-Ming&rft.au=Chen%2C+Wei-Lin&rft.au=Chen%2C+Xiao-Xue&rft.date=2025-09-01&rft.issn=0039-9140&rft.volume=292&rft.spage=128003&rft_id=info:doi/10.1016%2Fj.talanta.2025.128003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_talanta_2025_128003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0039-9140&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0039-9140&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0039-9140&client=summon |