Classification of Alzheimer’s Disease from EEG Signal Using Robust-PCA Feature Extraction
The encephalographic (EEG) signal is an electrical signal that measures the brain activity. Due to its noninvasive acquisition process, it is often used to investigate the presence of Alzheimer’s disease (AD) or other common forms of neurodegerative disorders due to brain changes, that occur most fr...
Saved in:
Published in | Procedia computer science Vol. 192; pp. 3114 - 3122 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1877-0509 1877-0509 |
DOI | 10.1016/j.procs.2021.09.084 |
Cover
Abstract | The encephalographic (EEG) signal is an electrical signal that measures the brain activity. Due to its noninvasive acquisition process, it is often used to investigate the presence of Alzheimer’s disease (AD) or other common forms of neurodegerative disorders due to brain changes, that occur most frequently in older adults. Early detection of prodromal stages of AD, in which an individual has mild but measurable cognitive deficiencies with no significant effect on the functional activity of daily living, may help to reduce mortality and morbidity. This paper proposes an investigation of the classification of AD from EEG signal using robust-principal component analysis (R-PCA) feature extraction algorithm. Four widely used machine learning algorithms such as k-nearest neighbor (kNN), decision tree (DT), support vector machine (SVM), and naive Bayes have been implemented and compared by using a custom dataset composed of 13 subjects healthy or affected by AD in order to asses their classification performance. |
---|---|
AbstractList | The encephalographic (EEG) signal is an electrical signal that measures the brain activity. Due to its noninvasive acquisition process, it is often used to investigate the presence of Alzheimer’s disease (AD) or other common forms of neurodegerative disorders due to brain changes, that occur most frequently in older adults. Early detection of prodromal stages of AD, in which an individual has mild but measurable cognitive deficiencies with no significant effect on the functional activity of daily living, may help to reduce mortality and morbidity. This paper proposes an investigation of the classification of AD from EEG signal using robust-principal component analysis (R-PCA) feature extraction algorithm. Four widely used machine learning algorithms such as k-nearest neighbor (kNN), decision tree (DT), support vector machine (SVM), and naive Bayes have been implemented and compared by using a custom dataset composed of 13 subjects healthy or affected by AD in order to asses their classification performance. |
Author | Falaschetti, Laura Biagetti, Giorgio Luzzi, Simona Turchetti, Claudio Crippa, Paolo |
Author_xml | – sequence: 1 givenname: Giorgio surname: Biagetti fullname: Biagetti, Giorgio organization: DII - Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche, 12, I-60131 Ancona, Italy – sequence: 2 givenname: Paolo surname: Crippa fullname: Crippa, Paolo organization: DII - Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche, 12, I-60131 Ancona, Italy – sequence: 3 givenname: Laura surname: Falaschetti fullname: Falaschetti, Laura email: l.falaschetti@univpm.it organization: DII - Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche, 12, I-60131 Ancona, Italy – sequence: 4 givenname: Simona surname: Luzzi fullname: Luzzi, Simona organization: Clinica Neurologica - Dipartimento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, via Conca 71, I-60020 Ancona, Italy – sequence: 5 givenname: Claudio surname: Turchetti fullname: Turchetti, Claudio organization: DII - Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche, 12, I-60131 Ancona, Italy |
BookMark | eNqFkE1OwzAQRi1UJErpCdj4Agn-CYm9YFGFtCBVAgFdsbBcZ1xcpUllpwhYcQ2ux0lIWxaIBczmm837NPOOUa9uakDolJKYEpqeLeO1b0yIGWE0JjImIjlAfSqyLCLnRPZ-7EdoGMKSdMOFkDTro8e80iE464xuXVPjxuJR9fYEbgX-8_0j4EsXQAfA1jcrXBQTfO8Wta7wLLh6ge-a-Sa00W0-wmPQ7cYDLl5ar8227AQdWl0FGH7nAM3GxUN-FU1vJtf5aBoZnog2knbOuEmBgDaGpklKreC0FEApo5pYWUJSZlKaJDWGCyl4JudMEJokKWOC8QHi-17jmxA8WLX2bqX9q6JEbRWppdopUltFikjVKeoo-Ysyrt1J6O531T_sxZ6F7q1nB14F46A2UDoPplVl4_7kvwDMr4YR |
CitedBy_id | crossref_primary_10_3390_s23198039 crossref_primary_10_3390_s22103696 crossref_primary_10_1016_j_bspc_2024_107380 crossref_primary_10_1007_s10548_022_00927_8 crossref_primary_10_1002_ima_23047 crossref_primary_10_1155_2022_9554768 crossref_primary_10_56038_ejrnd_v3i3_273 crossref_primary_10_1016_j_jksuci_2023_101848 crossref_primary_10_1080_00051144_2023_2297481 crossref_primary_10_21597_jist_1122315 crossref_primary_10_3390_eng5030078 crossref_primary_10_53759_7669_jmc202404080 crossref_primary_10_1016_j_ins_2024_120447 crossref_primary_10_1016_j_jksuci_2024_101940 crossref_primary_10_1007_s10489_024_05635_3 crossref_primary_10_1016_j_bspc_2023_105491 crossref_primary_10_20473_jisebi_10_1_38_50 crossref_primary_10_3390_s22093595 crossref_primary_10_3390_s24206721 crossref_primary_10_3389_fneur_2023_1270405 crossref_primary_10_1016_j_bspc_2023_105298 crossref_primary_10_1016_j_bspc_2023_105751 crossref_primary_10_1007_s42979_024_03109_4 crossref_primary_10_1007_s00521_023_08350_1 crossref_primary_10_1016_j_measen_2023_100749 |
Cites_doi | 10.1371/journal.pone.0193607 10.1007/BF00116251 10.1109/ACCESS.2020.3031447 10.1109/ACCESS.2019.2927121 10.1002/gps.3946 10.1007/BF00994018 10.1186/2046-4053-2-17 10.1109/CIDM.2014.7008655 10.1093/bioinformatics/bth158 10.1016/j.jalz.2011.03.005 10.1109/ACCESS.2018.2876135 10.1109/TIT.2012.2212415 10.1016/j.jalz.2018.02.001 10.1098/rsta.2015.0202 10.1016/0013-4694(92)90009-7 10.1016/j.eswa.2010.06.065 10.1023/A:1007413511361 |
ContentType | Journal Article |
Copyright | 2021 |
Copyright_xml | – notice: 2021 |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.procs.2021.09.084 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1877-0509 |
EndPage | 3122 |
ExternalDocumentID | 10_1016_j_procs_2021_09_084 S1877050921018214 |
GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c348t-9fb23c6e0eacc16461f831d8e1121a0f9de4d799c46cc3898379b280144622823 |
IEDL.DBID | IXB |
ISSN | 1877-0509 |
IngestDate | Tue Jul 01 01:53:06 EDT 2025 Thu Apr 24 23:07:16 EDT 2025 Wed May 17 00:07:51 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | robust-PCA Alzheimer’s disease classification EEG Machine learning |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-9fb23c6e0eacc16461f831d8e1121a0f9de4d799c46cc3898379b280144622823 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050921018214 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1016_j_procs_2021_09_084 crossref_citationtrail_10_1016_j_procs_2021_09_084 elsevier_sciencedirect_doi_10_1016_j_procs_2021_09_084 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021 2021-00-00 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – year: 2021 text: 2021 |
PublicationDecade | 2020 |
PublicationTitle | Procedia computer science |
PublicationYear | 2021 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Peng, Xia, Wang, Zhu, Zhang, Sun, Li, Huo, Li (bib00018) 2019; 7 Biagetti, Crippa, Falaschetti, Luzzi, Santarelli, Turchetti (bib0002) 2019 Hubert, Engelen (bib00010) 2004; 20 Mitchell (bib00017) 1997 Kemp (bib00013) 2002 McKhann, Knopman, Chertkow, Hyman, Jack, Kawas, Klunk, Koroshetz, Manly, Mayeux, Mohs, Morris, Rossor, Scheltens, Carrillo, Thies, Weintraub, Phelps (bib00016) 2011; 7 Jiajie, Narasimhan, Elamaran, Arunkumar, Solarte, Ramirez-Gonzalez (bib00011) 2018; 6 United Nations,. World Population Prospects – Population Division. [Online]. Available Rabcan, Levashenko, Zaitseva, Kvassay (bib00020) 2020; 8 Accessed: 15-Nov-2020. Ye, Janardan, Li (bib00028) 2004; 17 Weinberger, Saul (bib00026) 2009; 10 Candès, Li, Ma, Wright (bib0004) 2011 Hazzan, Ploeg, Shannon, Raina, Oremus (bib0008) 2013; 2 Subasi, Ismail Gursoy (bib00023) 2010; 37 Quinlan (bib00019) 1986; 1 Breiman, Friedman, Olshen, Stone (bib0003) 1984 Fiscon, G., Weitschek, E., Felici, G., Bertolazzi, P., De Salvo, S., Bramanti, P., De Cola, M.C., 2014. Alzheimer’s disease patients classification through EEG signals processing, in: 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 105–112. Langley, P., Iba, W., Thompson, K., et al., 1992. An analysis of Bayesian classifiers, in: Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92), Citeseer. AAAI Press, San Jose, CA, USA. pp. 223–228. Todd, Barr, Roberts, Passmore (bib00024) 2013; 28 Zhang, Yang (bib00030) 2018; 19 Yi, X., Park, D., Chen, Y., Caramanis, C., 2016. Fast algorithms for robust pca via gradient descent, in: Proceedings of the 30th International Conference on Neural Information Processing Systems, Curran Associates Inc., Red Hook, NY, USA. p. 4159–4167. Jolliffe, Cadima (bib00012) 2016; 374 Alzheimer’s Association and others (bib0001) 2018; 14 Houmani, Vialatte, Gallego-Jutglà, Dreyfus, Nguyen-Michel, Mariani, Kinugawa (bib0009) 2018; 13 Rahmani, M., Li, P., 2019. Outlier detection and robust PCA using a convex measure of innovation., in: NeurIPS, pp. 14200–14210. Cortes, Vapnik (bib0005) 1995; 20 Domingos, Pazzani (bib0006) 1997; 29 Kemp, Värri, Rosa, Nielsen, Gade (bib00014) 1992; 82 Rish, I., et al., 2001. An empirical study of the naive bayes classifier, in: IJCAI 2001 workshop on empirical methods in artificial intelligence, pp. 41–46. Xu, Caramanis, Mannor (bib00027) 2013; 59 Jolliffe (10.1016/j.procs.2021.09.084_bib00012) 2016; 374 Alzheimer’s Association and others (10.1016/j.procs.2021.09.084_bib0001) 2018; 14 Kemp (10.1016/j.procs.2021.09.084_bib00014) 1992; 82 Todd (10.1016/j.procs.2021.09.084_bib00024) 2013; 28 Peng (10.1016/j.procs.2021.09.084_bib00018) 2019; 7 10.1016/j.procs.2021.09.084_bib00021 10.1016/j.procs.2021.09.084_bib00022 Cortes (10.1016/j.procs.2021.09.084_bib0005) 1995; 20 Hazzan (10.1016/j.procs.2021.09.084_bib0008) 2013; 2 Weinberger (10.1016/j.procs.2021.09.084_bib00026) 2009; 10 10.1016/j.procs.2021.09.084_bib00025 Mitchell (10.1016/j.procs.2021.09.084_bib00017) 1997 10.1016/j.procs.2021.09.084_bib00029 Houmani (10.1016/j.procs.2021.09.084_bib0009) 2018; 13 Kemp (10.1016/j.procs.2021.09.084_bib00013) 2002 McKhann (10.1016/j.procs.2021.09.084_bib00016) 2011; 7 Quinlan (10.1016/j.procs.2021.09.084_bib00019) 1986; 1 Breiman (10.1016/j.procs.2021.09.084_bib0003) 1984 Hubert (10.1016/j.procs.2021.09.084_bib00010) 2004; 20 Jiajie (10.1016/j.procs.2021.09.084_bib00011) 2018; 6 Biagetti (10.1016/j.procs.2021.09.084_bib0002) 2019 Domingos (10.1016/j.procs.2021.09.084_bib0006) 1997; 29 Zhang (10.1016/j.procs.2021.09.084_bib00030) 2018; 19 10.1016/j.procs.2021.09.084_bib0007 Ye (10.1016/j.procs.2021.09.084_bib00028) 2004; 17 10.1016/j.procs.2021.09.084_bib00015 Candès (10.1016/j.procs.2021.09.084_bib0004) 2011 Subasi (10.1016/j.procs.2021.09.084_bib00023) 2010; 37 Rabcan (10.1016/j.procs.2021.09.084_bib00020) 2020; 8 Xu (10.1016/j.procs.2021.09.084_bib00027) 2013; 59 |
References_xml | – volume: 10 start-page: 207 year: 2009 end-page: 244 ident: bib00026 article-title: Distance metric learning for large margin nearest neighbor classification publication-title: Journal of Machine Learning Research – volume: 374 start-page: 20150202 year: 2016 ident: bib00012 article-title: Principal component analysis: a review and recent developments publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences – reference: Yi, X., Park, D., Chen, Y., Caramanis, C., 2016. Fast algorithms for robust pca via gradient descent, in: Proceedings of the 30th International Conference on Neural Information Processing Systems, Curran Associates Inc., Red Hook, NY, USA. p. 4159–4167. – start-page: 49 year: 2019 end-page: 62 ident: bib0002 article-title: Classification of Alzheimer’s disease from structural magnetic resonance imaging using particle-Bernstein polynomials algorithm publication-title: Intelligent Decision Technologies – volume: 1 start-page: 81 year: 1986 end-page: 106 ident: bib00019 article-title: Induction of decision trees publication-title: Machine Learning – volume: 6 start-page: 61457 year: 2018 end-page: 61461 ident: bib00011 article-title: Clinical decision support system for alcoholism detection using the analysis of EEG signals publication-title: IEEE Access – start-page: 58 year: 2011 ident: bib0004 article-title: Robust principal component analysis? publication-title: J. ACM – volume: 13 start-page: e0193607 year: 2018 ident: bib0009 article-title: Diagnosis of Alzheimer’s disease with electroencephalography in a differential framework publication-title: PloS one – reference: Rish, I., et al., 2001. An empirical study of the naive bayes classifier, in: IJCAI 2001 workshop on empirical methods in artificial intelligence, pp. 41–46. – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0005 article-title: Support-vector networks publication-title: Machine Learning – year: 1984 ident: bib0003 publication-title: Classification and Regression Trees – volume: 7 start-page: 92630 year: 2019 end-page: 92641 ident: bib00018 article-title: Multivariate pattern analysis of EEG-based functional connectivity: A study on the identification of depression publication-title: IEEE Access – volume: 82 start-page: 391 year: 1992 end-page: 393 ident: bib00014 article-title: A simple format for exchange of digitized polygraphic recordings publication-title: Electroen-cephalography and clinical neurophysiology – reference: Rahmani, M., Li, P., 2019. Outlier detection and robust PCA using a convex measure of innovation., in: NeurIPS, pp. 14200–14210. – volume: 14 start-page: 367 year: 2018 end-page: 429 ident: bib0001 article-title: Alzheimer’s Association report, 2018 Alzheimer’s disease facts and figures publication-title: Alzheimer’s & Dementia – year: 1997 ident: bib00017 publication-title: Machine learning – volume: 17 start-page: 1569 year: 2004 end-page: 1576 ident: bib00028 article-title: Two-dimensional linear discriminant analysis publication-title: Advances in neural information processing systems – volume: 29 start-page: 103 year: 1997 end-page: 130 ident: bib0006 article-title: On the optimality of the simple Bayesian classifier under zero-one loss publication-title: Machine learning – volume: 28 start-page: 1109 year: 2013 end-page: 1124 ident: bib00024 article-title: Survival in dementia and predictors of mortality: A review publication-title: International journal of geriatric psychiatry – volume: 7 start-page: 263 year: 2011 end-page: 269 ident: bib00016 article-title: The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimer’s & Dementia – volume: 2 start-page: 17 year: 2013 ident: bib0008 article-title: Association between caregiver quality of life and the care provided to persons with Alzheimer’s disease: protocol for a systematic review publication-title: Systematic Reviews – volume: 19 start-page: 3101 year: 2018 end-page: 3139 ident: bib00030 article-title: Robust PCA by manifold optimization publication-title: The Journal of Machine Learning Research – year: 2002 ident: bib00013 article-title: European data format (EDF): current availability and additional applications publication-title: Journal of Sleep Research – reference: Fiscon, G., Weitschek, E., Felici, G., Bertolazzi, P., De Salvo, S., Bramanti, P., De Cola, M.C., 2014. Alzheimer’s disease patients classification through EEG signals processing, in: 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 105–112. – reference: Langley, P., Iba, W., Thompson, K., et al., 1992. An analysis of Bayesian classifiers, in: Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92), Citeseer. AAAI Press, San Jose, CA, USA. pp. 223–228. – reference: . Accessed: 15-Nov-2020. – volume: 37 start-page: 8659 year: 2010 end-page: 8666 ident: bib00023 article-title: EEG signal classification using PCA, ICA, LDA and support vector machines publication-title: Expert Systems with Applications – volume: 20 start-page: 1728 year: 2004 end-page: 1736 ident: bib00010 article-title: Robust PCA and classification in biosciences publication-title: Bioinformatics – volume: 59 start-page: 546 year: 2013 end-page: 572 ident: bib00027 article-title: Outlier-robust PCA: The high-dimensional case publication-title: IEEE Transactions on Information Theory – reference: United Nations,. World Population Prospects – Population Division. [Online]. Available: – volume: 8 start-page: 189720 year: 2020 end-page: 189734 ident: bib00020 article-title: Review of methods for EEG signal classification and development of new fuzzy classification-based approach publication-title: IEEE Access – volume: 13 start-page: e0193607 year: 2018 ident: 10.1016/j.procs.2021.09.084_bib0009 article-title: Diagnosis of Alzheimer’s disease with electroencephalography in a differential framework publication-title: PloS one doi: 10.1371/journal.pone.0193607 – volume: 1 start-page: 81 year: 1986 ident: 10.1016/j.procs.2021.09.084_bib00019 article-title: Induction of decision trees publication-title: Machine Learning doi: 10.1007/BF00116251 – year: 1997 ident: 10.1016/j.procs.2021.09.084_bib00017 – volume: 17 start-page: 1569 year: 2004 ident: 10.1016/j.procs.2021.09.084_bib00028 article-title: Two-dimensional linear discriminant analysis publication-title: Advances in neural information processing systems – volume: 8 start-page: 189720 year: 2020 ident: 10.1016/j.procs.2021.09.084_bib00020 article-title: Review of methods for EEG signal classification and development of new fuzzy classification-based approach publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3031447 – year: 1984 ident: 10.1016/j.procs.2021.09.084_bib0003 – volume: 7 start-page: 92630 year: 2019 ident: 10.1016/j.procs.2021.09.084_bib00018 article-title: Multivariate pattern analysis of EEG-based functional connectivity: A study on the identification of depression publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2927121 – volume: 28 start-page: 1109 year: 2013 ident: 10.1016/j.procs.2021.09.084_bib00024 article-title: Survival in dementia and predictors of mortality: A review publication-title: International journal of geriatric psychiatry doi: 10.1002/gps.3946 – start-page: 58 year: 2011 ident: 10.1016/j.procs.2021.09.084_bib0004 article-title: Robust principal component analysis? publication-title: J. ACM – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.procs.2021.09.084_bib0005 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1007/BF00994018 – volume: 2 start-page: 17 year: 2013 ident: 10.1016/j.procs.2021.09.084_bib0008 article-title: Association between caregiver quality of life and the care provided to persons with Alzheimer’s disease: protocol for a systematic review publication-title: Systematic Reviews doi: 10.1186/2046-4053-2-17 – ident: 10.1016/j.procs.2021.09.084_bib00021 – ident: 10.1016/j.procs.2021.09.084_bib00025 – ident: 10.1016/j.procs.2021.09.084_bib0007 doi: 10.1109/CIDM.2014.7008655 – volume: 20 start-page: 1728 year: 2004 ident: 10.1016/j.procs.2021.09.084_bib00010 article-title: Robust PCA and classification in biosciences publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth158 – volume: 7 start-page: 263 year: 2011 ident: 10.1016/j.procs.2021.09.084_bib00016 article-title: The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2011.03.005 – ident: 10.1016/j.procs.2021.09.084_bib00029 – volume: 10 start-page: 207 year: 2009 ident: 10.1016/j.procs.2021.09.084_bib00026 article-title: Distance metric learning for large margin nearest neighbor classification publication-title: Journal of Machine Learning Research – volume: 6 start-page: 61457 year: 2018 ident: 10.1016/j.procs.2021.09.084_bib00011 article-title: Clinical decision support system for alcoholism detection using the analysis of EEG signals publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2876135 – start-page: 49 year: 2019 ident: 10.1016/j.procs.2021.09.084_bib0002 article-title: Classification of Alzheimer’s disease from structural magnetic resonance imaging using particle-Bernstein polynomials algorithm – year: 2002 ident: 10.1016/j.procs.2021.09.084_bib00013 article-title: European data format (EDF): current availability and additional applications publication-title: Journal of Sleep Research – volume: 59 start-page: 546 year: 2013 ident: 10.1016/j.procs.2021.09.084_bib00027 article-title: Outlier-robust PCA: The high-dimensional case publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.2012.2212415 – volume: 14 start-page: 367 year: 2018 ident: 10.1016/j.procs.2021.09.084_bib0001 article-title: Alzheimer’s Association report, 2018 Alzheimer’s disease facts and figures publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2018.02.001 – ident: 10.1016/j.procs.2021.09.084_bib00015 – volume: 374 start-page: 20150202 year: 2016 ident: 10.1016/j.procs.2021.09.084_bib00012 article-title: Principal component analysis: a review and recent developments publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rsta.2015.0202 – volume: 82 start-page: 391 year: 1992 ident: 10.1016/j.procs.2021.09.084_bib00014 article-title: A simple format for exchange of digitized polygraphic recordings publication-title: Electroen-cephalography and clinical neurophysiology doi: 10.1016/0013-4694(92)90009-7 – volume: 37 start-page: 8659 year: 2010 ident: 10.1016/j.procs.2021.09.084_bib00023 article-title: EEG signal classification using PCA, ICA, LDA and support vector machines publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2010.06.065 – volume: 29 start-page: 103 year: 1997 ident: 10.1016/j.procs.2021.09.084_bib0006 article-title: On the optimality of the simple Bayesian classifier under zero-one loss publication-title: Machine learning doi: 10.1023/A:1007413511361 – ident: 10.1016/j.procs.2021.09.084_bib00022 – volume: 19 start-page: 3101 year: 2018 ident: 10.1016/j.procs.2021.09.084_bib00030 article-title: Robust PCA by manifold optimization publication-title: The Journal of Machine Learning Research |
SSID | ssj0000388917 |
Score | 2.4028997 |
Snippet | The encephalographic (EEG) signal is an electrical signal that measures the brain activity. Due to its noninvasive acquisition process, it is often used to... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 3114 |
SubjectTerms | Alzheimer’s disease classification EEG Machine learning robust-PCA |
Title | Classification of Alzheimer’s Disease from EEG Signal Using Robust-PCA Feature Extraction |
URI | https://dx.doi.org/10.1016/j.procs.2021.09.084 |
Volume | 192 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN40evHi21gfzR48SgoLBfaIldrYaExrYxMPBPahmNo2lCbGk3_Dv-cvcWeBRhPTg0fIDoGPZWZ2me8bhM6Ea5LY9hLl_bg0VP7PDD8m3JAydhzhqxBnAt_55tbtDp3rUWtUQ-2KCwNllaXvL3y69tblmWaJZnOWps2B5XseqJcQEJ0iupk1sEqBxDe6WO6zgNoJ1Y13YbwBBpX4kC7zgjgBst3E0nqnvvN3gPoRdDrbaLPMFnFQ3NAOqonJLtqqOjHg8sPcQ4-6tyVU_Wig8VTiYPz-LNJXkX19fM7xZfEfBgObBIfhFR6kT3BlXTGA-9NkMc-Nu3aAISVcZAKHb3lWcB720bAT3re7Rtk2wWDq-XODyoTYzBWm8qkM5MMs6dsW94VKrazYlJQLh3uUMsdlTOUraolKEwIqMo5L1ArMPkBrk-lEHCIsncTzeBy3uFq8JtSjknvEZzKJWwp2JuqIVFhFrNQUh9YW46gqHnuJNMARAByZNFIA19H50mhWSGqsHu5WLyH6NTMi5fRXGR791_AYbcBRsdFygtbybCFOVeqRJw20HvT6D72GnmPf7ZjZag |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0QPOjFb-O3e_BoQ7td2u4REQQFYgQSEg-bdrurGAUCJTGe_Bv-PX-JO9uWaGI4eG07TfO6nXmznXmD0Ln0bBK6fqS9X6wszf-FFYQktpQKKZWBDnE29Du3O16jT28G5UEBVfNeGCirzHx_6tONt86OlDI0S5PhsNR1At8H9RIColMEhlmvaDbggYB-c3C52GgBuRNmJu-CgQUWufqQqfOCQAG63cQxgqcB_TtC_Yg69U20ntFFXEmfaAsV5GgbbeSjGHD2Ze6gBzPcEsp-DNJ4rHDl5f1JDl_l9Ovjc4av0h8xGNpJcK12jbvDR7izKRnA9-NoPkusu2oFAyecTyWuvSXTtOlhF_XrtV61YWVzEyzh0iCxmIqIKzxpa6cqQD_MUYHrxIHU3MoJbcViSWOfMUE9ITRh0TkqiwjIyFCP6BTM3UPF0Xgk9xFWNPL9OAzLsc5eI-YzFfskECoKyxp3IQ8QybHiIhMVh9kWLzyvHnvmBmAOAHObcQ3wAbpYGE1STY3ll3v5S-C_lgbXXn-Z4eF_Dc_QaqPXbvFWs3N7hNbgTLrrcoyKyXQuTzQPSaJTs86-ARgm2us |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Alzheimer%E2%80%99s+Disease+from+EEG+Signal+Using+Robust-PCA+Feature+Extraction&rft.jtitle=Procedia+computer+science&rft.au=Biagetti%2C+Giorgio&rft.au=Crippa%2C+Paolo&rft.au=Falaschetti%2C+Laura&rft.au=Luzzi%2C+Simona&rft.date=2021&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=192&rft.spage=3114&rft.epage=3122&rft_id=info:doi/10.1016%2Fj.procs.2021.09.084&rft.externalDocID=S1877050921018214 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |