Classification of Alzheimer’s Disease from EEG Signal Using Robust-PCA Feature Extraction

The encephalographic (EEG) signal is an electrical signal that measures the brain activity. Due to its noninvasive acquisition process, it is often used to investigate the presence of Alzheimer’s disease (AD) or other common forms of neurodegerative disorders due to brain changes, that occur most fr...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 192; pp. 3114 - 3122
Main Authors Biagetti, Giorgio, Crippa, Paolo, Falaschetti, Laura, Luzzi, Simona, Turchetti, Claudio
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2021
Subjects
Online AccessGet full text
ISSN1877-0509
1877-0509
DOI10.1016/j.procs.2021.09.084

Cover

Abstract The encephalographic (EEG) signal is an electrical signal that measures the brain activity. Due to its noninvasive acquisition process, it is often used to investigate the presence of Alzheimer’s disease (AD) or other common forms of neurodegerative disorders due to brain changes, that occur most frequently in older adults. Early detection of prodromal stages of AD, in which an individual has mild but measurable cognitive deficiencies with no significant effect on the functional activity of daily living, may help to reduce mortality and morbidity. This paper proposes an investigation of the classification of AD from EEG signal using robust-principal component analysis (R-PCA) feature extraction algorithm. Four widely used machine learning algorithms such as k-nearest neighbor (kNN), decision tree (DT), support vector machine (SVM), and naive Bayes have been implemented and compared by using a custom dataset composed of 13 subjects healthy or affected by AD in order to asses their classification performance.
AbstractList The encephalographic (EEG) signal is an electrical signal that measures the brain activity. Due to its noninvasive acquisition process, it is often used to investigate the presence of Alzheimer’s disease (AD) or other common forms of neurodegerative disorders due to brain changes, that occur most frequently in older adults. Early detection of prodromal stages of AD, in which an individual has mild but measurable cognitive deficiencies with no significant effect on the functional activity of daily living, may help to reduce mortality and morbidity. This paper proposes an investigation of the classification of AD from EEG signal using robust-principal component analysis (R-PCA) feature extraction algorithm. Four widely used machine learning algorithms such as k-nearest neighbor (kNN), decision tree (DT), support vector machine (SVM), and naive Bayes have been implemented and compared by using a custom dataset composed of 13 subjects healthy or affected by AD in order to asses their classification performance.
Author Falaschetti, Laura
Biagetti, Giorgio
Luzzi, Simona
Turchetti, Claudio
Crippa, Paolo
Author_xml – sequence: 1
  givenname: Giorgio
  surname: Biagetti
  fullname: Biagetti, Giorgio
  organization: DII - Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche, 12, I-60131 Ancona, Italy
– sequence: 2
  givenname: Paolo
  surname: Crippa
  fullname: Crippa, Paolo
  organization: DII - Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche, 12, I-60131 Ancona, Italy
– sequence: 3
  givenname: Laura
  surname: Falaschetti
  fullname: Falaschetti, Laura
  email: l.falaschetti@univpm.it
  organization: DII - Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche, 12, I-60131 Ancona, Italy
– sequence: 4
  givenname: Simona
  surname: Luzzi
  fullname: Luzzi, Simona
  organization: Clinica Neurologica - Dipartimento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, via Conca 71, I-60020 Ancona, Italy
– sequence: 5
  givenname: Claudio
  surname: Turchetti
  fullname: Turchetti, Claudio
  organization: DII - Department of Information Engineering, Università Politecnica delle Marche, via Brecce Bianche, 12, I-60131 Ancona, Italy
BookMark eNqFkE1OwzAQRi1UJErpCdj4Agn-CYm9YFGFtCBVAgFdsbBcZ1xcpUllpwhYcQ2ux0lIWxaIBczmm837NPOOUa9uakDolJKYEpqeLeO1b0yIGWE0JjImIjlAfSqyLCLnRPZ-7EdoGMKSdMOFkDTro8e80iE464xuXVPjxuJR9fYEbgX-8_0j4EsXQAfA1jcrXBQTfO8Wta7wLLh6ge-a-Sa00W0-wmPQ7cYDLl5ar8227AQdWl0FGH7nAM3GxUN-FU1vJtf5aBoZnog2knbOuEmBgDaGpklKreC0FEApo5pYWUJSZlKaJDWGCyl4JudMEJokKWOC8QHi-17jmxA8WLX2bqX9q6JEbRWppdopUltFikjVKeoo-Ysyrt1J6O531T_sxZ6F7q1nB14F46A2UDoPplVl4_7kvwDMr4YR
CitedBy_id crossref_primary_10_3390_s23198039
crossref_primary_10_3390_s22103696
crossref_primary_10_1016_j_bspc_2024_107380
crossref_primary_10_1007_s10548_022_00927_8
crossref_primary_10_1002_ima_23047
crossref_primary_10_1155_2022_9554768
crossref_primary_10_56038_ejrnd_v3i3_273
crossref_primary_10_1016_j_jksuci_2023_101848
crossref_primary_10_1080_00051144_2023_2297481
crossref_primary_10_21597_jist_1122315
crossref_primary_10_3390_eng5030078
crossref_primary_10_53759_7669_jmc202404080
crossref_primary_10_1016_j_ins_2024_120447
crossref_primary_10_1016_j_jksuci_2024_101940
crossref_primary_10_1007_s10489_024_05635_3
crossref_primary_10_1016_j_bspc_2023_105491
crossref_primary_10_20473_jisebi_10_1_38_50
crossref_primary_10_3390_s22093595
crossref_primary_10_3390_s24206721
crossref_primary_10_3389_fneur_2023_1270405
crossref_primary_10_1016_j_bspc_2023_105298
crossref_primary_10_1016_j_bspc_2023_105751
crossref_primary_10_1007_s42979_024_03109_4
crossref_primary_10_1007_s00521_023_08350_1
crossref_primary_10_1016_j_measen_2023_100749
Cites_doi 10.1371/journal.pone.0193607
10.1007/BF00116251
10.1109/ACCESS.2020.3031447
10.1109/ACCESS.2019.2927121
10.1002/gps.3946
10.1007/BF00994018
10.1186/2046-4053-2-17
10.1109/CIDM.2014.7008655
10.1093/bioinformatics/bth158
10.1016/j.jalz.2011.03.005
10.1109/ACCESS.2018.2876135
10.1109/TIT.2012.2212415
10.1016/j.jalz.2018.02.001
10.1098/rsta.2015.0202
10.1016/0013-4694(92)90009-7
10.1016/j.eswa.2010.06.065
10.1023/A:1007413511361
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2021.09.084
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 3122
ExternalDocumentID 10_1016_j_procs_2021_09_084
S1877050921018214
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c348t-9fb23c6e0eacc16461f831d8e1121a0f9de4d799c46cc3898379b280144622823
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Tue Jul 01 01:53:06 EDT 2025
Thu Apr 24 23:07:16 EDT 2025
Wed May 17 00:07:51 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords robust-PCA
Alzheimer’s disease
classification
EEG
Machine learning
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-9fb23c6e0eacc16461f831d8e1121a0f9de4d799c46cc3898379b280144622823
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050921018214
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_procs_2021_09_084
crossref_citationtrail_10_1016_j_procs_2021_09_084
elsevier_sciencedirect_doi_10_1016_j_procs_2021_09_084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021
2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Peng, Xia, Wang, Zhu, Zhang, Sun, Li, Huo, Li (bib00018) 2019; 7
Biagetti, Crippa, Falaschetti, Luzzi, Santarelli, Turchetti (bib0002) 2019
Hubert, Engelen (bib00010) 2004; 20
Mitchell (bib00017) 1997
Kemp (bib00013) 2002
McKhann, Knopman, Chertkow, Hyman, Jack, Kawas, Klunk, Koroshetz, Manly, Mayeux, Mohs, Morris, Rossor, Scheltens, Carrillo, Thies, Weintraub, Phelps (bib00016) 2011; 7
Jiajie, Narasimhan, Elamaran, Arunkumar, Solarte, Ramirez-Gonzalez (bib00011) 2018; 6
United Nations,. World Population Prospects – Population Division. [Online]. Available
Rabcan, Levashenko, Zaitseva, Kvassay (bib00020) 2020; 8
Accessed: 15-Nov-2020.
Ye, Janardan, Li (bib00028) 2004; 17
Weinberger, Saul (bib00026) 2009; 10
Candès, Li, Ma, Wright (bib0004) 2011
Hazzan, Ploeg, Shannon, Raina, Oremus (bib0008) 2013; 2
Subasi, Ismail Gursoy (bib00023) 2010; 37
Quinlan (bib00019) 1986; 1
Breiman, Friedman, Olshen, Stone (bib0003) 1984
Fiscon, G., Weitschek, E., Felici, G., Bertolazzi, P., De Salvo, S., Bramanti, P., De Cola, M.C., 2014. Alzheimer’s disease patients classification through EEG signals processing, in: 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 105–112.
Langley, P., Iba, W., Thompson, K., et al., 1992. An analysis of Bayesian classifiers, in: Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92), Citeseer. AAAI Press, San Jose, CA, USA. pp. 223–228.
Todd, Barr, Roberts, Passmore (bib00024) 2013; 28
Zhang, Yang (bib00030) 2018; 19
Yi, X., Park, D., Chen, Y., Caramanis, C., 2016. Fast algorithms for robust pca via gradient descent, in: Proceedings of the 30th International Conference on Neural Information Processing Systems, Curran Associates Inc., Red Hook, NY, USA. p. 4159–4167.
Jolliffe, Cadima (bib00012) 2016; 374
Alzheimer’s Association and others (bib0001) 2018; 14
Houmani, Vialatte, Gallego-Jutglà, Dreyfus, Nguyen-Michel, Mariani, Kinugawa (bib0009) 2018; 13
Rahmani, M., Li, P., 2019. Outlier detection and robust PCA using a convex measure of innovation., in: NeurIPS, pp. 14200–14210.
Cortes, Vapnik (bib0005) 1995; 20
Domingos, Pazzani (bib0006) 1997; 29
Kemp, Värri, Rosa, Nielsen, Gade (bib00014) 1992; 82
Rish, I., et al., 2001. An empirical study of the naive bayes classifier, in: IJCAI 2001 workshop on empirical methods in artificial intelligence, pp. 41–46.
Xu, Caramanis, Mannor (bib00027) 2013; 59
Jolliffe (10.1016/j.procs.2021.09.084_bib00012) 2016; 374
Alzheimer’s Association and others (10.1016/j.procs.2021.09.084_bib0001) 2018; 14
Kemp (10.1016/j.procs.2021.09.084_bib00014) 1992; 82
Todd (10.1016/j.procs.2021.09.084_bib00024) 2013; 28
Peng (10.1016/j.procs.2021.09.084_bib00018) 2019; 7
10.1016/j.procs.2021.09.084_bib00021
10.1016/j.procs.2021.09.084_bib00022
Cortes (10.1016/j.procs.2021.09.084_bib0005) 1995; 20
Hazzan (10.1016/j.procs.2021.09.084_bib0008) 2013; 2
Weinberger (10.1016/j.procs.2021.09.084_bib00026) 2009; 10
10.1016/j.procs.2021.09.084_bib00025
Mitchell (10.1016/j.procs.2021.09.084_bib00017) 1997
10.1016/j.procs.2021.09.084_bib00029
Houmani (10.1016/j.procs.2021.09.084_bib0009) 2018; 13
Kemp (10.1016/j.procs.2021.09.084_bib00013) 2002
McKhann (10.1016/j.procs.2021.09.084_bib00016) 2011; 7
Quinlan (10.1016/j.procs.2021.09.084_bib00019) 1986; 1
Breiman (10.1016/j.procs.2021.09.084_bib0003) 1984
Hubert (10.1016/j.procs.2021.09.084_bib00010) 2004; 20
Jiajie (10.1016/j.procs.2021.09.084_bib00011) 2018; 6
Biagetti (10.1016/j.procs.2021.09.084_bib0002) 2019
Domingos (10.1016/j.procs.2021.09.084_bib0006) 1997; 29
Zhang (10.1016/j.procs.2021.09.084_bib00030) 2018; 19
10.1016/j.procs.2021.09.084_bib0007
Ye (10.1016/j.procs.2021.09.084_bib00028) 2004; 17
10.1016/j.procs.2021.09.084_bib00015
Candès (10.1016/j.procs.2021.09.084_bib0004) 2011
Subasi (10.1016/j.procs.2021.09.084_bib00023) 2010; 37
Rabcan (10.1016/j.procs.2021.09.084_bib00020) 2020; 8
Xu (10.1016/j.procs.2021.09.084_bib00027) 2013; 59
References_xml – volume: 10
  start-page: 207
  year: 2009
  end-page: 244
  ident: bib00026
  article-title: Distance metric learning for large margin nearest neighbor classification
  publication-title: Journal of Machine Learning Research
– volume: 374
  start-page: 20150202
  year: 2016
  ident: bib00012
  article-title: Principal component analysis: a review and recent developments
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
– reference: Yi, X., Park, D., Chen, Y., Caramanis, C., 2016. Fast algorithms for robust pca via gradient descent, in: Proceedings of the 30th International Conference on Neural Information Processing Systems, Curran Associates Inc., Red Hook, NY, USA. p. 4159–4167.
– start-page: 49
  year: 2019
  end-page: 62
  ident: bib0002
  article-title: Classification of Alzheimer’s disease from structural magnetic resonance imaging using particle-Bernstein polynomials algorithm
  publication-title: Intelligent Decision Technologies
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: bib00019
  article-title: Induction of decision trees
  publication-title: Machine Learning
– volume: 6
  start-page: 61457
  year: 2018
  end-page: 61461
  ident: bib00011
  article-title: Clinical decision support system for alcoholism detection using the analysis of EEG signals
  publication-title: IEEE Access
– start-page: 58
  year: 2011
  ident: bib0004
  article-title: Robust principal component analysis?
  publication-title: J. ACM
– volume: 13
  start-page: e0193607
  year: 2018
  ident: bib0009
  article-title: Diagnosis of Alzheimer’s disease with electroencephalography in a differential framework
  publication-title: PloS one
– reference: Rish, I., et al., 2001. An empirical study of the naive bayes classifier, in: IJCAI 2001 workshop on empirical methods in artificial intelligence, pp. 41–46.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0005
  article-title: Support-vector networks
  publication-title: Machine Learning
– year: 1984
  ident: bib0003
  publication-title: Classification and Regression Trees
– volume: 7
  start-page: 92630
  year: 2019
  end-page: 92641
  ident: bib00018
  article-title: Multivariate pattern analysis of EEG-based functional connectivity: A study on the identification of depression
  publication-title: IEEE Access
– volume: 82
  start-page: 391
  year: 1992
  end-page: 393
  ident: bib00014
  article-title: A simple format for exchange of digitized polygraphic recordings
  publication-title: Electroen-cephalography and clinical neurophysiology
– reference: Rahmani, M., Li, P., 2019. Outlier detection and robust PCA using a convex measure of innovation., in: NeurIPS, pp. 14200–14210.
– volume: 14
  start-page: 367
  year: 2018
  end-page: 429
  ident: bib0001
  article-title: Alzheimer’s Association report, 2018 Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s & Dementia
– year: 1997
  ident: bib00017
  publication-title: Machine learning
– volume: 17
  start-page: 1569
  year: 2004
  end-page: 1576
  ident: bib00028
  article-title: Two-dimensional linear discriminant analysis
  publication-title: Advances in neural information processing systems
– volume: 29
  start-page: 103
  year: 1997
  end-page: 130
  ident: bib0006
  article-title: On the optimality of the simple Bayesian classifier under zero-one loss
  publication-title: Machine learning
– volume: 28
  start-page: 1109
  year: 2013
  end-page: 1124
  ident: bib00024
  article-title: Survival in dementia and predictors of mortality: A review
  publication-title: International journal of geriatric psychiatry
– volume: 7
  start-page: 263
  year: 2011
  end-page: 269
  ident: bib00016
  article-title: The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimer’s & Dementia
– volume: 2
  start-page: 17
  year: 2013
  ident: bib0008
  article-title: Association between caregiver quality of life and the care provided to persons with Alzheimer’s disease: protocol for a systematic review
  publication-title: Systematic Reviews
– volume: 19
  start-page: 3101
  year: 2018
  end-page: 3139
  ident: bib00030
  article-title: Robust PCA by manifold optimization
  publication-title: The Journal of Machine Learning Research
– year: 2002
  ident: bib00013
  article-title: European data format (EDF): current availability and additional applications
  publication-title: Journal of Sleep Research
– reference: Fiscon, G., Weitschek, E., Felici, G., Bertolazzi, P., De Salvo, S., Bramanti, P., De Cola, M.C., 2014. Alzheimer’s disease patients classification through EEG signals processing, in: 2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM), pp. 105–112.
– reference: Langley, P., Iba, W., Thompson, K., et al., 1992. An analysis of Bayesian classifiers, in: Proceedings of the Tenth National Conference on Artificial Intelligence (AAAI-92), Citeseer. AAAI Press, San Jose, CA, USA. pp. 223–228.
– reference: . Accessed: 15-Nov-2020.
– volume: 37
  start-page: 8659
  year: 2010
  end-page: 8666
  ident: bib00023
  article-title: EEG signal classification using PCA, ICA, LDA and support vector machines
  publication-title: Expert Systems with Applications
– volume: 20
  start-page: 1728
  year: 2004
  end-page: 1736
  ident: bib00010
  article-title: Robust PCA and classification in biosciences
  publication-title: Bioinformatics
– volume: 59
  start-page: 546
  year: 2013
  end-page: 572
  ident: bib00027
  article-title: Outlier-robust PCA: The high-dimensional case
  publication-title: IEEE Transactions on Information Theory
– reference: United Nations,. World Population Prospects – Population Division. [Online]. Available:
– volume: 8
  start-page: 189720
  year: 2020
  end-page: 189734
  ident: bib00020
  article-title: Review of methods for EEG signal classification and development of new fuzzy classification-based approach
  publication-title: IEEE Access
– volume: 13
  start-page: e0193607
  year: 2018
  ident: 10.1016/j.procs.2021.09.084_bib0009
  article-title: Diagnosis of Alzheimer’s disease with electroencephalography in a differential framework
  publication-title: PloS one
  doi: 10.1371/journal.pone.0193607
– volume: 1
  start-page: 81
  year: 1986
  ident: 10.1016/j.procs.2021.09.084_bib00019
  article-title: Induction of decision trees
  publication-title: Machine Learning
  doi: 10.1007/BF00116251
– year: 1997
  ident: 10.1016/j.procs.2021.09.084_bib00017
– volume: 17
  start-page: 1569
  year: 2004
  ident: 10.1016/j.procs.2021.09.084_bib00028
  article-title: Two-dimensional linear discriminant analysis
  publication-title: Advances in neural information processing systems
– volume: 8
  start-page: 189720
  year: 2020
  ident: 10.1016/j.procs.2021.09.084_bib00020
  article-title: Review of methods for EEG signal classification and development of new fuzzy classification-based approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3031447
– year: 1984
  ident: 10.1016/j.procs.2021.09.084_bib0003
– volume: 7
  start-page: 92630
  year: 2019
  ident: 10.1016/j.procs.2021.09.084_bib00018
  article-title: Multivariate pattern analysis of EEG-based functional connectivity: A study on the identification of depression
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2927121
– volume: 28
  start-page: 1109
  year: 2013
  ident: 10.1016/j.procs.2021.09.084_bib00024
  article-title: Survival in dementia and predictors of mortality: A review
  publication-title: International journal of geriatric psychiatry
  doi: 10.1002/gps.3946
– start-page: 58
  year: 2011
  ident: 10.1016/j.procs.2021.09.084_bib0004
  article-title: Robust principal component analysis?
  publication-title: J. ACM
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.procs.2021.09.084_bib0005
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– volume: 2
  start-page: 17
  year: 2013
  ident: 10.1016/j.procs.2021.09.084_bib0008
  article-title: Association between caregiver quality of life and the care provided to persons with Alzheimer’s disease: protocol for a systematic review
  publication-title: Systematic Reviews
  doi: 10.1186/2046-4053-2-17
– ident: 10.1016/j.procs.2021.09.084_bib00021
– ident: 10.1016/j.procs.2021.09.084_bib00025
– ident: 10.1016/j.procs.2021.09.084_bib0007
  doi: 10.1109/CIDM.2014.7008655
– volume: 20
  start-page: 1728
  year: 2004
  ident: 10.1016/j.procs.2021.09.084_bib00010
  article-title: Robust PCA and classification in biosciences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth158
– volume: 7
  start-page: 263
  year: 2011
  ident: 10.1016/j.procs.2021.09.084_bib00016
  article-title: The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2011.03.005
– ident: 10.1016/j.procs.2021.09.084_bib00029
– volume: 10
  start-page: 207
  year: 2009
  ident: 10.1016/j.procs.2021.09.084_bib00026
  article-title: Distance metric learning for large margin nearest neighbor classification
  publication-title: Journal of Machine Learning Research
– volume: 6
  start-page: 61457
  year: 2018
  ident: 10.1016/j.procs.2021.09.084_bib00011
  article-title: Clinical decision support system for alcoholism detection using the analysis of EEG signals
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2876135
– start-page: 49
  year: 2019
  ident: 10.1016/j.procs.2021.09.084_bib0002
  article-title: Classification of Alzheimer’s disease from structural magnetic resonance imaging using particle-Bernstein polynomials algorithm
– year: 2002
  ident: 10.1016/j.procs.2021.09.084_bib00013
  article-title: European data format (EDF): current availability and additional applications
  publication-title: Journal of Sleep Research
– volume: 59
  start-page: 546
  year: 2013
  ident: 10.1016/j.procs.2021.09.084_bib00027
  article-title: Outlier-robust PCA: The high-dimensional case
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.2012.2212415
– volume: 14
  start-page: 367
  year: 2018
  ident: 10.1016/j.procs.2021.09.084_bib0001
  article-title: Alzheimer’s Association report, 2018 Alzheimer’s disease facts and figures
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2018.02.001
– ident: 10.1016/j.procs.2021.09.084_bib00015
– volume: 374
  start-page: 20150202
  year: 2016
  ident: 10.1016/j.procs.2021.09.084_bib00012
  article-title: Principal component analysis: a review and recent developments
  publication-title: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
  doi: 10.1098/rsta.2015.0202
– volume: 82
  start-page: 391
  year: 1992
  ident: 10.1016/j.procs.2021.09.084_bib00014
  article-title: A simple format for exchange of digitized polygraphic recordings
  publication-title: Electroen-cephalography and clinical neurophysiology
  doi: 10.1016/0013-4694(92)90009-7
– volume: 37
  start-page: 8659
  year: 2010
  ident: 10.1016/j.procs.2021.09.084_bib00023
  article-title: EEG signal classification using PCA, ICA, LDA and support vector machines
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2010.06.065
– volume: 29
  start-page: 103
  year: 1997
  ident: 10.1016/j.procs.2021.09.084_bib0006
  article-title: On the optimality of the simple Bayesian classifier under zero-one loss
  publication-title: Machine learning
  doi: 10.1023/A:1007413511361
– ident: 10.1016/j.procs.2021.09.084_bib00022
– volume: 19
  start-page: 3101
  year: 2018
  ident: 10.1016/j.procs.2021.09.084_bib00030
  article-title: Robust PCA by manifold optimization
  publication-title: The Journal of Machine Learning Research
SSID ssj0000388917
Score 2.4028997
Snippet The encephalographic (EEG) signal is an electrical signal that measures the brain activity. Due to its noninvasive acquisition process, it is often used to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 3114
SubjectTerms Alzheimer’s disease
classification
EEG
Machine learning
robust-PCA
Title Classification of Alzheimer’s Disease from EEG Signal Using Robust-PCA Feature Extraction
URI https://dx.doi.org/10.1016/j.procs.2021.09.084
Volume 192
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT4NAEN40evHi21gfzR48SgoLBfaIldrYaExrYxMPBPahmNo2lCbGk3_Dv-cvcWeBRhPTg0fIDoGPZWZ2me8bhM6Ea5LY9hLl_bg0VP7PDD8m3JAydhzhqxBnAt_55tbtDp3rUWtUQ-2KCwNllaXvL3y69tblmWaJZnOWps2B5XseqJcQEJ0iupk1sEqBxDe6WO6zgNoJ1Y13YbwBBpX4kC7zgjgBst3E0nqnvvN3gPoRdDrbaLPMFnFQ3NAOqonJLtqqOjHg8sPcQ4-6tyVU_Wig8VTiYPz-LNJXkX19fM7xZfEfBgObBIfhFR6kT3BlXTGA-9NkMc-Nu3aAISVcZAKHb3lWcB720bAT3re7Rtk2wWDq-XODyoTYzBWm8qkM5MMs6dsW94VKrazYlJQLh3uUMsdlTOUraolKEwIqMo5L1ArMPkBrk-lEHCIsncTzeBy3uFq8JtSjknvEZzKJWwp2JuqIVFhFrNQUh9YW46gqHnuJNMARAByZNFIA19H50mhWSGqsHu5WLyH6NTMi5fRXGR791_AYbcBRsdFygtbybCFOVeqRJw20HvT6D72GnmPf7ZjZag
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8JAEN0QPOjFb-O3e_BoQ7td2u4REQQFYgQSEg-bdrurGAUCJTGe_Bv-PX-JO9uWaGI4eG07TfO6nXmznXmD0Ln0bBK6fqS9X6wszf-FFYQktpQKKZWBDnE29Du3O16jT28G5UEBVfNeGCirzHx_6tONt86OlDI0S5PhsNR1At8H9RIColMEhlmvaDbggYB-c3C52GgBuRNmJu-CgQUWufqQqfOCQAG63cQxgqcB_TtC_Yg69U20ntFFXEmfaAsV5GgbbeSjGHD2Ze6gBzPcEsp-DNJ4rHDl5f1JDl_l9Ovjc4av0h8xGNpJcK12jbvDR7izKRnA9-NoPkusu2oFAyecTyWuvSXTtOlhF_XrtV61YWVzEyzh0iCxmIqIKzxpa6cqQD_MUYHrxIHU3MoJbcViSWOfMUE9ITRh0TkqiwjIyFCP6BTM3UPF0Xgk9xFWNPL9OAzLsc5eI-YzFfskECoKyxp3IQ8QybHiIhMVh9kWLzyvHnvmBmAOAHObcQ3wAbpYGE1STY3ll3v5S-C_lgbXXn-Z4eF_Dc_QaqPXbvFWs3N7hNbgTLrrcoyKyXQuTzQPSaJTs86-ARgm2us
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+of+Alzheimer%E2%80%99s+Disease+from+EEG+Signal+Using+Robust-PCA+Feature+Extraction&rft.jtitle=Procedia+computer+science&rft.au=Biagetti%2C+Giorgio&rft.au=Crippa%2C+Paolo&rft.au=Falaschetti%2C+Laura&rft.au=Luzzi%2C+Simona&rft.date=2021&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=192&rft.spage=3114&rft.epage=3122&rft_id=info:doi/10.1016%2Fj.procs.2021.09.084&rft.externalDocID=S1877050921018214
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon