Detecting tiny objects in aerial images: A normalized Wasserstein distance and a new benchmark

Tiny object detection (TOD) in aerial images is challenging since a tiny object only contains a few pixels. State-of-the-art object detectors do not provide satisfactory results on tiny objects due to the lack of supervision from discriminative features. Our key observation is that the Intersection...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 190; pp. 79 - 93
Main Authors Xu, Chang, Wang, Jinwang, Yang, Wen, Yu, Huai, Yu, Lei, Xia, Gui-Song
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2022
Subjects
Online AccessGet full text
ISSN0924-2716
1872-8235
DOI10.1016/j.isprsjprs.2022.06.002

Cover

Loading…
Abstract Tiny object detection (TOD) in aerial images is challenging since a tiny object only contains a few pixels. State-of-the-art object detectors do not provide satisfactory results on tiny objects due to the lack of supervision from discriminative features. Our key observation is that the Intersection over Union (IoU) metric and its extensions are very sensitive to the location deviation of the tiny objects, which drastically deteriorates the quality of label assignment when used in anchor-based detectors. To tackle this problem, we propose a new evaluation metric dubbed Normalized Wasserstein Distance (NWD) and a new RanKing-based Assigning (RKA) strategy for tiny object detection. The proposed NWD-RKA strategy can be easily embedded into all kinds of anchor-based detectors to replace the standard IoU threshold-based one, significantly improving label assignment and providing sufficient supervision information for network training. Tested on four datasets, NWD-RKA can consistently improve tiny object detection performance by a large margin. Besides, observing prominent noisy labels in the Tiny Object Detection in Aerial Images (AI-TOD) dataset, we are motivated to meticulously relabel it and release AI-TOD-v2 and its corresponding benchmark. In AI-TOD-v2, the missing annotation and location error problems are considerably mitigated, facilitating more reliable training and validation processes. Embedding NWD-RKA into DetectoRS, the detection performance achieves 4.3 AP points improvement over state-of-the-art competitors on AI-TOD-v2. Datasets, codes, and more visualizations are available at: https://chasel-tsui.github.io/AI-TOD-v2/.
AbstractList Tiny object detection (TOD) in aerial images is challenging since a tiny object only contains a few pixels. State-of-the-art object detectors do not provide satisfactory results on tiny objects due to the lack of supervision from discriminative features. Our key observation is that the Intersection over Union (IoU) metric and its extensions are very sensitive to the location deviation of the tiny objects, which drastically deteriorates the quality of label assignment when used in anchor-based detectors. To tackle this problem, we propose a new evaluation metric dubbed Normalized Wasserstein Distance (NWD) and a new RanKing-based Assigning (RKA) strategy for tiny object detection. The proposed NWD-RKA strategy can be easily embedded into all kinds of anchor-based detectors to replace the standard IoU threshold-based one, significantly improving label assignment and providing sufficient supervision information for network training. Tested on four datasets, NWD-RKA can consistently improve tiny object detection performance by a large margin. Besides, observing prominent noisy labels in the Tiny Object Detection in Aerial Images (AI-TOD) dataset, we are motivated to meticulously relabel it and release AI-TOD-v2 and its corresponding benchmark. In AI-TOD-v2, the missing annotation and location error problems are considerably mitigated, facilitating more reliable training and validation processes. Embedding NWD-RKA into DetectoRS, the detection performance achieves 4.3 AP points improvement over state-of-the-art competitors on AI-TOD-v2. Datasets, codes, and more visualizations are available at: https://chasel-tsui.github.io/AI-TOD-v2/.
Author Xu, Chang
Yu, Huai
Yang, Wen
Wang, Jinwang
Xia, Gui-Song
Yu, Lei
Author_xml – sequence: 1
  givenname: Chang
  surname: Xu
  fullname: Xu, Chang
  email: xuchangeis@whu.edu.cn
  organization: School of Electronic Information, Wuhan University, Wuhan 430072, China
– sequence: 2
  givenname: Jinwang
  surname: Wang
  fullname: Wang, Jinwang
  email: jwwangchn@whu.edu.cn
  organization: School of Electronic Information, Wuhan University, Wuhan 430072, China
– sequence: 3
  givenname: Wen
  surname: Yang
  fullname: Yang, Wen
  email: yangwen@whu.edu.cn
  organization: School of Electronic Information, Wuhan University, Wuhan 430072, China
– sequence: 4
  givenname: Huai
  surname: Yu
  fullname: Yu, Huai
  email: yuhuai@whu.edu.cn
  organization: School of Electronic Information, Wuhan University, Wuhan 430072, China
– sequence: 5
  givenname: Lei
  surname: Yu
  fullname: Yu, Lei
  email: ly.wd@whu.edu.cn
  organization: School of Electronic Information, Wuhan University, Wuhan 430072, China
– sequence: 6
  givenname: Gui-Song
  surname: Xia
  fullname: Xia, Gui-Song
  email: guisong.xia@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan 430072, China
BookMark eNqNkM1LxDAQxYMouH78DebopTXNbttU8LD4DYIXxZthmkw1tZuumajoX29kxYMXPcwMA-89eL8ttu5Hj4ztFSIvRFEd9LmjZaA-TS6FlLmociHkGpsUqpaZktNynU1EI2eZrItqk20R9UKIoqzUhN2fYEQTnX_gab3zse3TS9x5DhgcDNwt4AHpkM-5H8MCBveBlt8BEQaKmHTWUQRvkIO3HLjHN96iN48LCE87bKODgXD3-26z27PTm-OL7Or6_PJ4fpWZ6UzFrDHQ1EpKWUow2FjbolAKsLAzK6Atp2UHQtam7WZ1J6vOgDG2VE1XV03ZKjXdZvur3GUYn1-Qol44MjgM4HF8IZ2aK6kqJcskrVdSE0aigJ1ehtQxvOtC6C-iutc_RPUXUS0qnYgm59Evp3ERoht9DOCGf_jnKz8mEq8OgybjEim0LiTo2o7uz4xPYJqcwQ
CitedBy_id crossref_primary_10_1109_TGRS_2024_3486751
crossref_primary_10_3788_LOP241506
crossref_primary_10_1109_TPAMI_2023_3290594
crossref_primary_10_1109_TGRS_2023_3299636
crossref_primary_10_1109_TMM_2023_3305120
crossref_primary_10_1109_TGRS_2024_3510948
crossref_primary_10_3390_app13169438
crossref_primary_10_1109_TGRS_2024_3452175
crossref_primary_10_1016_j_dsp_2024_104957
crossref_primary_10_1109_ACCESS_2024_3401397
crossref_primary_10_1117_1_JRS_18_034521
crossref_primary_10_1016_j_isprsjprs_2024_01_005
crossref_primary_10_11834_jig_221202
crossref_primary_10_1109_TGRS_2024_3382099
crossref_primary_10_1109_TGRS_2025_3525720
crossref_primary_10_1111_phor_12446
crossref_primary_10_3390_electronics13245014
crossref_primary_10_1109_TGRS_2024_3386735
crossref_primary_10_1016_j_imavis_2024_105262
crossref_primary_10_1007_s00530_025_01738_0
crossref_primary_10_1109_TIM_2023_3334348
crossref_primary_10_1109_TCSVT_2024_3485548
crossref_primary_10_1016_j_isprsjprs_2024_09_027
crossref_primary_10_1109_ACCESS_2024_3498057
crossref_primary_10_3390_smartcities7040086
crossref_primary_10_1038_s41598_024_79132_5
crossref_primary_10_1109_ACCESS_2024_3444900
crossref_primary_10_3934_mbe_2023842
crossref_primary_10_1016_j_isprsjprs_2023_04_009
crossref_primary_10_1016_j_isprsjprs_2023_02_006
crossref_primary_10_1016_j_dsp_2024_104615
crossref_primary_10_1016_j_energy_2024_131357
crossref_primary_10_1109_JSTARS_2023_3241969
crossref_primary_10_1109_LGRS_2025_3527712
crossref_primary_10_3390_s23187806
crossref_primary_10_3390_rs15164017
crossref_primary_10_1007_s00371_024_03284_8
crossref_primary_10_1109_TGRS_2025_3526799
crossref_primary_10_1109_ACCESS_2024_3403716
crossref_primary_10_1109_TII_2024_3378841
crossref_primary_10_1109_TIM_2024_3370962
crossref_primary_10_1016_j_cja_2023_04_022
crossref_primary_10_3390_electronics13224470
crossref_primary_10_1007_s11042_024_18866_w
crossref_primary_10_1016_j_jag_2024_104019
crossref_primary_10_1016_j_patcog_2025_111425
crossref_primary_10_1109_TGRS_2024_3430071
crossref_primary_10_3390_drones9010057
crossref_primary_10_1109_TIM_2023_3251414
crossref_primary_10_1016_j_patcog_2024_110976
crossref_primary_10_3390_electronics12234886
crossref_primary_10_3390_rs16010025
crossref_primary_10_1109_TGRS_2022_3215543
crossref_primary_10_1109_TGRS_2024_3482358
crossref_primary_10_1109_LGRS_2025_3531970
crossref_primary_10_1016_j_asoc_2025_112775
crossref_primary_10_1109_LGRS_2024_3374418
crossref_primary_10_1109_TGRS_2024_3381774
crossref_primary_10_1109_LGRS_2024_3406345
crossref_primary_10_1109_TIM_2025_3545522
crossref_primary_10_1016_j_ipm_2024_103858
crossref_primary_10_1016_j_neucom_2023_126285
crossref_primary_10_1016_j_compag_2024_108639
crossref_primary_10_1109_TITS_2024_3386928
crossref_primary_10_1109_TGRS_2024_3452010
crossref_primary_10_3390_rs16224175
crossref_primary_10_1109_TGRS_2024_3396489
crossref_primary_10_1109_TGRS_2024_3373621
crossref_primary_10_1109_TGRS_2024_3477575
crossref_primary_10_1007_s40747_024_01652_4
crossref_primary_10_1109_LGRS_2024_3507209
crossref_primary_10_3390_s25020306
crossref_primary_10_1109_JSEN_2024_3425156
crossref_primary_10_1007_s13721_023_00438_x
crossref_primary_10_1109_TITS_2023_3334873
crossref_primary_10_1109_TGRS_2024_3395483
crossref_primary_10_12677_orf_2024_144371
crossref_primary_10_1002_eng2_13117
crossref_primary_10_1016_j_isprsjprs_2025_01_037
crossref_primary_10_3390_rs16091641
crossref_primary_10_3390_rs15061659
crossref_primary_10_3390_w17030430
crossref_primary_10_1007_s10462_025_11150_9
crossref_primary_10_1109_TGRS_2024_3470900
crossref_primary_10_3389_fnbot_2023_1273251
crossref_primary_10_32604_cmc_2024_056824
crossref_primary_10_1016_j_engappai_2024_109609
crossref_primary_10_1038_s41598_025_85630_x
crossref_primary_10_3390_rs15112928
crossref_primary_10_1007_s10278_025_01460_3
crossref_primary_10_1016_j_jvcir_2024_104349
crossref_primary_10_1109_TGRS_2023_3298852
crossref_primary_10_3390_rs15123027
crossref_primary_10_1016_j_isprsjprs_2023_08_016
crossref_primary_10_1109_TGRS_2023_3278075
crossref_primary_10_1142_S0218001423540241
crossref_primary_10_1109_TGRS_2024_3363614
crossref_primary_10_1109_JSTARS_2024_3518753
crossref_primary_10_1109_TIM_2025_3545998
crossref_primary_10_1016_j_knosys_2024_112353
crossref_primary_10_1109_MGRS_2023_3312347
crossref_primary_10_3390_app15052749
crossref_primary_10_3390_bioengineering11100993
Cites_doi 10.1109/ICCV.2015.169
10.1109/ICCV.2019.00982
10.3390/rs10010132
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2016.89
10.3390/rs12091432
10.1109/TPAMI.2020.2981890
10.1109/CVPRW53098.2021.00130
10.1109/ICCV.2017.324
10.1016/j.imavis.2020.103910
10.1109/CVPR.2016.90
10.1109/CVPR.2017.211
10.1016/j.isprsjprs.2014.10.002
10.1109/CVPRW.2019.00184
10.1109/CVPR.2016.314
10.5121/csit.2019.91713
10.1609/aaai.v34i07.6999
10.1007/s11263-014-0733-5
10.1109/TIP.2020.3002345
10.1109/CVPR.2018.00442
10.1109/CVPR46437.2021.00037
10.1109/CVPR.2017.106
10.1109/LGRS.2016.2565705
10.1109/CVPR.2019.00754
10.1007/978-3-030-01261-8_13
10.1016/j.jvcir.2015.11.002
10.1109/CVPR.2018.00377
10.1561/2200000073
10.3390/rs12193152
10.1109/CVPR.2018.00378
10.1109/CVPR.2019.00356
10.1007/978-3-319-10602-1_48
10.1109/TGRS.2019.2899955
10.1007/s10489-020-01949-0
10.1109/TPAMI.2021.3117983
10.1109/CVPR.2019.00519
10.1109/WACV45572.2020.9093394
10.1109/ICCV.2015.135
10.3390/app8050813
10.1109/CVPR.2019.00584
10.1109/ICPR48806.2021.9413340
10.1109/CVPR.2018.00418
10.1109/ICCV.2019.00972
10.3390/rs12152501
10.1109/ICCV.2019.00615
10.1109/ICCV.2017.30
10.3390/rs9020173
10.1109/TGRS.2020.3010051
10.1016/j.isprsjprs.2020.04.019
10.1007/978-3-030-58595-2_22
10.1109/CVPR.2019.00537
10.1609/aaai.v33i01.33019259
10.1016/j.isprsjprs.2019.11.023
10.1109/CVPR42600.2020.00978
10.1016/j.isprsjprs.2021.12.004
10.3390/rs13091854
10.1016/j.isprsjprs.2018.04.003
10.1109/CVPR.2018.00644
10.1109/CVPR.2019.00075
10.1109/CVPR46437.2021.01008
10.1109/CVPR42600.2020.01060
10.1109/ICCV.2019.00975
10.1007/978-3-030-01228-1_20
ContentType Journal Article
Copyright 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2022.06.002
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 93
ExternalDocumentID 10_1016_j_isprsjprs_2022_06_002
S0924271622001599
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c348t-9ca97822252ace9ddbe088ae1d4d0ab535fa027cbf47f26fcaccd589f7695b883
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Thu Sep 04 18:53:47 EDT 2025
Tue Jul 01 03:46:48 EDT 2025
Thu Apr 24 23:13:14 EDT 2025
Fri Feb 23 02:40:46 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Tiny object detection
Benchmark dataset
Aerial images
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-9ca97822252ace9ddbe088ae1d4d0ab535fa027cbf47f26fcaccd589f7695b883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2718286825
PQPubID 24069
PageCount 15
ParticipantIDs proquest_miscellaneous_2718286825
crossref_primary_10_1016_j_isprsjprs_2022_06_002
crossref_citationtrail_10_1016_j_isprsjprs_2022_06_002
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2022_06_002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sun, K., Xiao, B., Liu, D., Wang, J., 2019. Deep high-resolution representation learning for human pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5693–5703.
Sun, X., Wang, P., Yan, Z., Xu, F., Wang, R., Diao, W., Chen, J., Li, J., Feng, Y., Xu, T. et al., 2021b. Fair1m: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery. arXiv preprint arXiv:2103.05569.
Ge, Z., Liu, S., Li, Z., Yoshie, O., Sun, J., 2021. Ota: Optimal transport assignment for object detection. IEEE Conference on Computer Vision and Pattern Recognition.
Pang, Li, Shi, Xu, Feng (b0190) 2019; 57
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L., 2014. Microsoft coco: Common objects in context. In: European Conference on Computer Vision, Springer, pp. 740–755.
Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S., 2019. Reppoints: Point set representation for object detection. In: IEEE International Conference on Computer Vision, pp. 9657–9666.
Girshick, R., 2015. Fast R-CNN. In: IEEE International Conference on Computer Vision, pp. 1440–1448.
Cai, Z., Vas., N., 2018. Cascade r-cnn: Delving into high quality object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162.
Lam, D., Kuzma, R., McGee, K., Dooley, S., Laielli, M., Klaric, M., Bulatov, Y., McCord, B., 2018. xview: Objects in context in overhead imagery. arXiv preprint arXiv:1802.07856.
Oksuz, Cam, Kalkan, Akbas (b0185) 2021; 43
Noh, J., Bae, W., Lee, W., Seo, J., Kim, G., 2019. Better to follow, follow to be better: Towards precise supervision of feature super-resolution for small object detection. In: IEEE International Conference on Computer Vision, pp. 9725–9734.
Tong, Wu, Zhou (b0290) 2020; 97
Zheng, Zhong, Ma, Han, Zhao, Liu, Zhang (b0365) 2020; 166
Ding, J., Xue, N., Xia, G.-S., Bai, X., Yang, W., Yang, M.Y., Belongie, S., Luo, J., Datcu, M., Pelillo, M. et al., 2021. Object detection in aerial images: A large-scale benchmark and challenges. IEEE Trans. Pattern Anal. Machine Intell. p. in press.
Yang, X., Yan, J., Ming, Q., Wang, W., Zhang, X., Tian, Q., 2021. Rethinking rotated object detection with gaussian wasserstein distance loss. In: International Conference on Machine Learning, vol. 139, pp. 11830–11841.
Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., Li, S.Z., 2017. S3fd: Single shot scale-invariant face detector. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 192–201.
Ming, X., Wei, F., Zhang, T., Chen, D., Wen, F., 2019. Group sampling for scale invariant face detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3446–3456.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C., 2016a. SSD: Single shot multibox detector. In: European Conference on Computer Vision, Springer, pp. 21–37.
Lu, X., Li, B., Yue, Y., Li, Q., Yan, J., 2019. Grid r-cnn. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7363–7372.
Cheng, Han, Zhou, Guo (b0035) 2014; 98
Du, D., Zhu, P., Wen, L., et al., 2019. Visdrone-det2019: The vision meets drone object detection in image challenge results. In: IEEE International Conference on Computer Vision Workshops, pp. 213–226.
Yu, Li, Zhang, Huang, Du, Tian, Sebe (b0330) 2019
Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P., 2017b. Focal loss for dense object detection. In: IEEE International Conference on Computer Vision, pp. 2980–2988.
Redmon, J., Farhadi, A., 2018. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
Paszke, A., Gross, S., Massa, F., Lerer, A. et al., 2019. Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035.
Airbus, 2018. Airbus ship detection challenge.
Pham, Courtrai, Friguet, Lefèvre, Baussard (b0210) 2020; 12
.
Kim, K., Lee, H.S., 2020. Probabilistic anchor assignment with iou prediction for object detection. In: European Conference on Computer Vision, Springer, pp. 355–371.
Kim, Y., Kang, B.-N., Kim, D., 2018. San: Learning relationship between convolutional features for multi-scale object detection. In: European Conference on Computer Vision, Springer, pp. 316–331.
Bai, Y., Zhang, Y., Ding, M., Ghanem, B., 2018. Sod-mtgan: Small object detection via multi-task generative adversarial network. In: European Conference on Computer Vision, Springer, pp. 206–221.
Goldman, E., Herzig, R., Eisenschtat, A., Goldberger, J., Hassner, T., 2019. Precise detection in densely packed scenes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5227–5236.
Razakarivony, Jurie (b0225) 2016; 34
Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., Zhang, L., 2018. DOTA: A large-scale dataset for object detection in aerial images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3974–3983.
Bell, S., Zitnick, C.L., Bala, K., Girshick, R.B., 2016. Inside-Outside Net: Detecting objects in context with skip pooling and recurrent neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2874–2883.
Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y., 2018. Relation networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3588–3597.
Qiao, S., Chen, L.-C., Yuille, A., 2021. Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution. In: IEEE Conference on Computer Vision and Pattern Recognition.
Peyré, Cuturi (b0205) 2019; 11
Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster R-CNN: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99.
Wang, J., Yang, W., Guo, H., Zhang, R., Xia, G.-S., 2021a. Tiny object detection in aerial images. In: International Conference on Pattern Recognition, pp. 3791–3798.
Shermeyer, J., Van Etten, A., 2019. The effects of super-resolution on object detection performance in satellite imagery. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 0–0.
Everingham, Eslami, Van Gool, Williams, Winn, Zisserman (b0060) 2015; 111
Ren, Zhu, Xiao (b0240) 2018; 8
Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., Yan, S., 2017. Perceptual generative adversarial networks for small object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1222–1230.
Kisantal, M., Wojna, Z., Murawski, J., Naruniec, J., Cho, K., 2019. Augmentation for small object detection. arXiv preprint arXiv:1902.07296.
Yu, X., Gong, Y., Jiang, N., Ye, Q., Han, Z., 2020. Scale match for tiny person detection. In: IEEE Workshops on Applications of Computer Vision, pp. 1257–1265.
Sun, Ai, Wang, Zhang (b0270) 2021; 51
Zhou, X., Wang, D., Krähenbühl, P., 2019. Objects as points. arXiv preprint arXiv:1904.07850.
Bashir, Wang (b0015) 2021; 13
Singh, B., Najibi, M., Davis, L.S., 2018. Sniper: Efficient multi-scale training. In: Advances in Neural Information Processing Systems, pp. 9310–9320.
Yang, Sun, Fu, Yang, Sun, Yan, Guo (b0315) 2018; 10
Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017a. Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125.
Zhao, Q., Sheng, T., Wang, Y., Tang, Z., Chen, Y., Cai, L., Ling, H., 2019. M2det: A single-shot object detector based on multi-level feature pyramid network. In: AAAI Conference on Artificial Intelligence, pp. 9259–9266.
Li, Y., Chen, Y., Wang, N., Zhang, Z., 2019b. Scale-aware trident networks for object detection. In: IEEE International Conference on Computer Vision, pp. 6054–6063.
Singh, B., Davis, L.S., 2018. An analysis of scale invariance in object detection snip. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3578–3587.
Wang, Yang, Li, Zhang, Xia (b0300) 2021; 59
Courtrai, Pham, Lefèvre (b0040) 2020; 12
Shrivastava, A., Gupta, A., Girshick, R., 2016. Training region-based object detectors with online hard example mining. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 761–769.
Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z., 2018. Single-shot refinement neural network for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4203–4212.
Deng, Sun, Zhou, Zhao, Lei, Zou (b0045) 2018; 145
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778.
Li, H., Wu, Z., Zhu, C., Xiong, C., Socher, R., Davis, L.S., 2020a. Learning from noisy anchors for one-stage object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 10588–10597.
Li, J., Wong, Y., Zhao, Q., Kankanhalli, M.S., 2019a. Learning to learn from noisy labeled data. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5051–5059.
Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z., 2020. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9759–9768.
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S., 2019. Generalized intersection over union: A metric and a loss for bounding box regression. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 658–666.
Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D., 2020a. Distance-iou loss: Faster and better learning for bounding box regression. In: AAAI Conference on Artificial Intelligence, Vol. 34number 07, pp. 12993–13000.
Li, Wan, Cheng, Meng, Han (b0135) 2020; 159
Liu, Wang, Weng, Yang (b0165) 2016; 13
Xu, C., Wang, J., Yang, W., Yu, L., 2021. Dot distance for tiny object detection in aerial images. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1192–1201.
Zhu, P., Wen, L., Du, D., Bian, X., Ling, H., Hu, Q., Nie, Q., Cheng, H., Liu, C., Liu, X. et al., 2018. Visdrone-det2
Peyré (10.1016/j.isprsjprs.2022.06.002_b0205) 2019; 11
10.1016/j.isprsjprs.2022.06.002_b0080
Yu (10.1016/j.isprsjprs.2022.06.002_b0330) 2019
10.1016/j.isprsjprs.2022.06.002_b0280
10.1016/j.isprsjprs.2022.06.002_b0120
10.1016/j.isprsjprs.2022.06.002_b0285
10.1016/j.isprsjprs.2022.06.002_b0320
10.1016/j.isprsjprs.2022.06.002_b0160
Zheng (10.1016/j.isprsjprs.2022.06.002_b0365) 2020; 166
Cheng (10.1016/j.isprsjprs.2022.06.002_b0035) 2014; 98
10.1016/j.isprsjprs.2022.06.002_b0085
Kong (10.1016/j.isprsjprs.2022.06.002_b0110) 2020; 29
10.1016/j.isprsjprs.2022.06.002_b0360
10.1016/j.isprsjprs.2022.06.002_b0355
10.1016/j.isprsjprs.2022.06.002_b0235
10.1016/j.isprsjprs.2022.06.002_b0115
Wang (10.1016/j.isprsjprs.2022.06.002_b0300) 2021; 59
Pang (10.1016/j.isprsjprs.2022.06.002_b0190) 2019; 57
10.1016/j.isprsjprs.2022.06.002_b0090
Pelletier (10.1016/j.isprsjprs.2022.06.002_b0200) 2017; 9
10.1016/j.isprsjprs.2022.06.002_b0170
10.1016/j.isprsjprs.2022.06.002_b0010
10.1016/j.isprsjprs.2022.06.002_b0175
10.1016/j.isprsjprs.2022.06.002_b0055
Ren (10.1016/j.isprsjprs.2022.06.002_b0240) 2018; 8
10.1016/j.isprsjprs.2022.06.002_b0375
10.1016/j.isprsjprs.2022.06.002_b0255
10.1016/j.isprsjprs.2022.06.002_b0050
10.1016/j.isprsjprs.2022.06.002_b0095
10.1016/j.isprsjprs.2022.06.002_b0370
10.1016/j.isprsjprs.2022.06.002_b0250
10.1016/j.isprsjprs.2022.06.002_b0130
10.1016/j.isprsjprs.2022.06.002_b0295
Li (10.1016/j.isprsjprs.2022.06.002_b0135) 2020; 159
Pham (10.1016/j.isprsjprs.2022.06.002_b0210) 2020; 12
10.1016/j.isprsjprs.2022.06.002_b0245
10.1016/j.isprsjprs.2022.06.002_b0125
10.1016/j.isprsjprs.2022.06.002_b0005
Liu (10.1016/j.isprsjprs.2022.06.002_b0165) 2016; 13
10.1016/j.isprsjprs.2022.06.002_b0325
Sun (10.1016/j.isprsjprs.2022.06.002_b0270) 2021; 51
Oksuz (10.1016/j.isprsjprs.2022.06.002_b0185) 2021; 43
Bashir (10.1016/j.isprsjprs.2022.06.002_b0015) 2021; 13
10.1016/j.isprsjprs.2022.06.002_b0180
Rabbi (10.1016/j.isprsjprs.2022.06.002_b0220) 2020; 12
10.1016/j.isprsjprs.2022.06.002_b0065
10.1016/j.isprsjprs.2022.06.002_b0340
10.1016/j.isprsjprs.2022.06.002_b0100
10.1016/j.isprsjprs.2022.06.002_b0265
Tong (10.1016/j.isprsjprs.2022.06.002_b0290) 2020; 97
10.1016/j.isprsjprs.2022.06.002_b0145
Yang (10.1016/j.isprsjprs.2022.06.002_b0315) 2018; 10
10.1016/j.isprsjprs.2022.06.002_b0260
Deng (10.1016/j.isprsjprs.2022.06.002_b0045) 2018; 145
10.1016/j.isprsjprs.2022.06.002_b0140
10.1016/j.isprsjprs.2022.06.002_b0020
Courtrai (10.1016/j.isprsjprs.2022.06.002_b0040) 2020; 12
10.1016/j.isprsjprs.2022.06.002_b0335
10.1016/j.isprsjprs.2022.06.002_b0215
Everingham (10.1016/j.isprsjprs.2022.06.002_b0060) 2015; 111
10.1016/j.isprsjprs.2022.06.002_b0070
Razakarivony (10.1016/j.isprsjprs.2022.06.002_b0225) 2016; 34
10.1016/j.isprsjprs.2022.06.002_b0230
10.1016/j.isprsjprs.2022.06.002_b0275
10.1016/j.isprsjprs.2022.06.002_b0155
10.1016/j.isprsjprs.2022.06.002_b0310
10.1016/j.isprsjprs.2022.06.002_b0150
10.1016/j.isprsjprs.2022.06.002_b0030
10.1016/j.isprsjprs.2022.06.002_b0195
10.1016/j.isprsjprs.2022.06.002_b0075
10.1016/j.isprsjprs.2022.06.002_b0350
10.1016/j.isprsjprs.2022.06.002_b0305
10.1016/j.isprsjprs.2022.06.002_b0025
10.1016/j.isprsjprs.2022.06.002_b0345
10.1016/j.isprsjprs.2022.06.002_b0105
References_xml – reference: Zhao, Q., Sheng, T., Wang, Y., Tang, Z., Chen, Y., Cai, L., Ling, H., 2019. M2det: A single-shot object detector based on multi-level feature pyramid network. In: AAAI Conference on Artificial Intelligence, pp. 9259–9266.
– reference: Gidaris, S., Komodakis, N., 2015. Object detection via a multi-region and semantic segmentation-aware cnn model. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1134–1142.
– reference: Noh, J., Bae, W., Lee, W., Seo, J., Kim, G., 2019. Better to follow, follow to be better: Towards precise supervision of feature super-resolution for small object detection. In: IEEE International Conference on Computer Vision, pp. 9725–9734.
– reference: Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S., 2019. Generalized intersection over union: A metric and a loss for bounding box regression. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 658–666.
– reference: Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z., 2018. Single-shot refinement neural network for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4203–4212.
– reference: Cao, G., Xie, X., Yang, W., Liao, Q., Shi, G., Wu, J., 2018. Feature-fused ssd: Fast detection for small objects. In: Ninth International Conference on Graphic and Image Processing (ICGIP 2017), Vol. 10615, International Society for Optics and Photonics, p. 106151E.
– volume: 13
  start-page: 1074
  year: 2016
  end-page: 1078
  ident: b0165
  article-title: Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z., 2020. Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9759–9768.
– reference: Singh, B., Davis, L.S., 2018. An analysis of scale invariance in object detection snip. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3578–3587.
– reference: Yang, Z., Liu, S., Hu, H., Wang, L., Lin, S., 2019. Reppoints: Point set representation for object detection. In: IEEE International Conference on Computer Vision, pp. 9657–9666.
– reference: Girshick, R., 2015. Fast R-CNN. In: IEEE International Conference on Computer Vision, pp. 1440–1448.
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778.
– reference: Tian, Z., Shen, C., Chen, H., He, T., 2019. FCOS: Fully convolutional one-stage object detection. In: IEEE International Conference on Computer Vision, pp. 9627–9636.
– volume: 9
  start-page: 173
  year: 2017
  ident: b0200
  article-title: Effect of training class label noise on classification performances for land cover mapping with satellite image time series
  publication-title: Remote Sensing
– volume: 159
  start-page: 296
  year: 2020
  end-page: 307
  ident: b0135
  article-title: Object detection in optical remote sensing images: A survey and a new benchmark
  publication-title: ISPRS J. Photogramm. Remote Sensing
– volume: 29
  start-page: 7389
  year: 2020
  end-page: 7398
  ident: b0110
  article-title: Foveabox: Beyound anchor-based object detection
  publication-title: IEEE Trans. Image Process.
– reference: Kisantal, M., Wojna, Z., Murawski, J., Naruniec, J., Cho, K., 2019. Augmentation for small object detection. arXiv preprint arXiv:1902.07296.
– reference: Sun, K., Xiao, B., Liu, D., Wang, J., 2019. Deep high-resolution representation learning for human pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5693–5703.
– volume: 51
  start-page: 3311
  year: 2021
  end-page: 3322
  ident: b0270
  article-title: Mask-guided ssd for small-object detection
  publication-title: Appl. Intell.
– reference: Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P., Zitnick, C.L., 2014. Microsoft coco: Common objects in context. In: European Conference on Computer Vision, Springer, pp. 740–755.
– reference: Cai, Z., Vas., N., 2018. Cascade r-cnn: Delving into high quality object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6154–6162.
– volume: 11
  start-page: 355
  year: 2019
  end-page: 607
  ident: b0205
  article-title: Computational optimal transport: With applications to data science
  publication-title: Found. Trends Machine Learn.
– reference: Ding, J., Xue, N., Xia, G.-S., Bai, X., Yang, W., Yang, M.Y., Belongie, S., Luo, J., Datcu, M., Pelillo, M. et al., 2021. Object detection in aerial images: A large-scale benchmark and challenges. IEEE Trans. Pattern Anal. Machine Intell. p. in press.
– reference: Du, D., Zhu, P., Wen, L., et al., 2019. Visdrone-det2019: The vision meets drone object detection in image challenge results. In: IEEE International Conference on Computer Vision Workshops, pp. 213–226.
– reference: Lu, X., Li, B., Yue, Y., Li, Q., Yan, J., 2019. Grid r-cnn. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7363–7372.
– reference: Li, Y., Chen, Y., Wang, N., Zhang, Z., 2019b. Scale-aware trident networks for object detection. In: IEEE International Conference on Computer Vision, pp. 6054–6063.
– reference: Paszke, A., Gross, S., Massa, F., Lerer, A. et al., 2019. Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, pp. 8024–8035.
– reference: Xu, C., Wang, J., Yang, W., Yu, L., 2021. Dot distance for tiny object detection in aerial images. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1192–1201.
– reference: Li, J., Wong, Y., Zhao, Q., Kankanhalli, M.S., 2019a. Learning to learn from noisy labeled data. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5051–5059.
– reference: Lam, D., Kuzma, R., McGee, K., Dooley, S., Laielli, M., Klaric, M., Bulatov, Y., McCord, B., 2018. xview: Objects in context in overhead imagery. arXiv preprint arXiv:1802.07856.
– reference: Li, J., Liang, X., Wei, Y., Xu, T., Feng, J., Yan, S., 2017. Perceptual generative adversarial networks for small object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1222–1230.
– reference: Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C., 2016a. SSD: Single shot multibox detector. In: European Conference on Computer Vision, Springer, pp. 21–37.
– volume: 12
  start-page: 1432
  year: 2020
  ident: b0220
  article-title: Small-object detection in remote sensing images with end-to-end edge-enhanced gan and object detector network
  publication-title: Remote Sensing
– reference: Xia, G.-S., Bai, X., Ding, J., Zhu, Z., Belongie, S., Luo, J., Datcu, M., Pelillo, M., Zhang, L., 2018. DOTA: A large-scale dataset for object detection in aerial images. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3974–3983.
– reference: Zhang, S., Zhu, X., Lei, Z., Shi, H., Wang, X., Li, S.Z., 2017. S3fd: Single shot scale-invariant face detector. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 192–201.
– reference: Shrivastava, A., Gupta, A., Girshick, R., 2016. Training region-based object detectors with online hard example mining. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 761–769.
– volume: 145
  start-page: 3
  year: 2018
  end-page: 22
  ident: b0045
  article-title: Multi-scale object detection in remote sensing imagery with convolutional neural networks
  publication-title: ISPRS J. Photogramm. Remote Sensing
– volume: 34
  start-page: 187
  year: 2016
  end-page: 203
  ident: b0225
  article-title: Vehicle detection in aerial imagery: A small target detection benchmark
  publication-title: J. Vis. Commun. Image Represent.
– reference: Ge, Z., Liu, S., Li, Z., Yoshie, O., Sun, J., 2021. Ota: Optimal transport assignment for object detection. IEEE Conference on Computer Vision and Pattern Recognition.
– reference: Yu, X., Gong, Y., Jiang, N., Ye, Q., Han, Z., 2020. Scale match for tiny person detection. In: IEEE Workshops on Applications of Computer Vision, pp. 1257–1265.
– volume: 57
  start-page: 5512
  year: 2019
  end-page: 5524
  ident: b0190
  article-title: -CNN: Fast tiny object detection in large-scale remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y., 2018. Relation networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3588–3597.
– volume: 12
  start-page: 2501
  year: 2020
  ident: b0210
  article-title: Yolo-fine: One-stage detector of small objects under various backgrounds in remote sensing images
  publication-title: Remote Sensing
– reference: Airbus, 2018. Airbus ship detection challenge.
– reference: Zhou, X., Wang, D., Krähenbühl, P., 2019. Objects as points. arXiv preprint arXiv:1904.07850.
– reference: Qiao, S., Chen, L.-C., Yuille, A., 2021. Detectors: Detecting objects with recursive feature pyramid and switchable atrous convolution. In: IEEE Conference on Computer Vision and Pattern Recognition.
– volume: 166
  start-page: 1
  year: 2020
  end-page: 14
  ident: b0365
  article-title: Hynet: Hyper-scale object detection network framework for multiple spatial resolution remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sensing
– reference: Zhu, P., Wen, L., Du, D., Bian, X., Ling, H., Hu, Q., Nie, Q., Cheng, H., Liu, C., Liu, X. et al., 2018. Visdrone-det2018: The vision meets drone object detection in image challenge results. In: European Conference on Computer Vision Workshops, Springer, pp. 437–468.
– reference: Bai, Y., Zhang, Y., Ding, M., Ghanem, B., 2018. Sod-mtgan: Small object detection via multi-task generative adversarial network. In: European Conference on Computer Vision, Springer, pp. 206–221.
– reference: Goldman, E., Herzig, R., Eisenschtat, A., Goldberger, J., Hassner, T., 2019. Precise detection in densely packed scenes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5227–5236.
– reference: Kim, Y., Kang, B.-N., Kim, D., 2018. San: Learning relationship between convolutional features for multi-scale object detection. In: European Conference on Computer Vision, Springer, pp. 316–331.
– volume: 8
  start-page: 813
  year: 2018
  ident: b0240
  article-title: Small object detection in optical remote sensing images via modified faster r-cnn
  publication-title: Appl. Sci.
– reference: Sun, X., Wang, P., Yan, Z., Xu, F., Wang, R., Diao, W., Chen, J., Li, J., Feng, Y., Xu, T. et al., 2021b. Fair1m: A benchmark dataset for fine-grained object recognition in high-resolution remote sensing imagery. arXiv preprint arXiv:2103.05569.
– reference: Redmon, J., Farhadi, A., 2018. Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
– reference: Li, H., Wu, Z., Zhu, C., Xiong, C., Socher, R., Davis, L.S., 2020a. Learning from noisy anchors for one-stage object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 10588–10597.
– volume: 98
  start-page: 119
  year: 2014
  end-page: 132
  ident: b0035
  article-title: Multi-class geospatial object detection and geographic image classification based on collection of part detectors
  publication-title: ISPRS J. Photogramm. Remote Sensing
– reference: Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P., 2017b. Focal loss for dense object detection. In: IEEE International Conference on Computer Vision, pp. 2980–2988.
– reference: Bell, S., Zitnick, C.L., Bala, K., Girshick, R.B., 2016. Inside-Outside Net: Detecting objects in context with skip pooling and recurrent neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2874–2883.
– reference: Wang, J., Yang, W., Guo, H., Zhang, R., Xia, G.-S., 2021a. Tiny object detection in aerial images. In: International Conference on Pattern Recognition, pp. 3791–3798.
– volume: 43
  start-page: 3388
  year: 2021
  end-page: 3415
  ident: b0185
  article-title: Imbalance problems in object detection: A review
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: .
– start-page: 1
  year: 2019
  end-page: 19
  ident: b0330
  article-title: The unmanned aerial vehicle benchmark: Object detection, tracking and baseline
  publication-title: Int. J. Comput. Vision
– volume: 111
  start-page: 98
  year: 2015
  end-page: 136
  ident: b0060
  article-title: The pascal visual object classes challenge: A retrospective
  publication-title: Int. J. Comput. Vision
– volume: 12
  start-page: 3152
  year: 2020
  ident: b0040
  article-title: Small object detection in remote sensing images based on super-resolution with auxiliary generative adversarial networks
  publication-title: Remote Sensing
– reference: Kim, K., Lee, H.S., 2020. Probabilistic anchor assignment with iou prediction for object detection. In: European Conference on Computer Vision, Springer, pp. 355–371.
– reference: Ren, S., He, K., Girshick, R., Sun, J., 2015. Faster R-CNN: Towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99.
– reference: Shermeyer, J., Van Etten, A., 2019. The effects of super-resolution on object detection performance in satellite imagery. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 0–0.
– volume: 10
  start-page: 132
  year: 2018
  ident: b0315
  article-title: Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks
  publication-title: Remote Sensing
– volume: 13
  start-page: 1854
  year: 2021
  ident: b0015
  article-title: Small object detection in remote sensing images with residual feature aggregation-based super-resolution and object detector network
  publication-title: Remote Sensing
– reference: Lin, T.-Y., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S., 2017a. Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125.
– reference: Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D., 2020a. Distance-iou loss: Faster and better learning for bounding box regression. In: AAAI Conference on Artificial Intelligence, Vol. 34number 07, pp. 12993–13000.
– reference: Singh, B., Najibi, M., Davis, L.S., 2018. Sniper: Efficient multi-scale training. In: Advances in Neural Information Processing Systems, pp. 9310–9320.
– volume: 59
  start-page: 4307
  year: 2021
  end-page: 4323
  ident: b0300
  article-title: Learning center probability map for detecting objects in aerial images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Ming, X., Wei, F., Zhang, T., Chen, D., Wen, F., 2019. Group sampling for scale invariant face detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3446–3456.
– reference: Yang, X., Yan, J., Ming, Q., Wang, W., Zhang, X., Tian, Q., 2021. Rethinking rotated object detection with gaussian wasserstein distance loss. In: International Conference on Machine Learning, vol. 139, pp. 11830–11841.
– volume: 97
  start-page: 103910
  year: 2020
  ident: b0290
  article-title: Recent advances in small object detection based on deep learning: A review
  publication-title: Image Vis. Comput.
– ident: 10.1016/j.isprsjprs.2022.06.002_b0375
– ident: 10.1016/j.isprsjprs.2022.06.002_b0115
– ident: 10.1016/j.isprsjprs.2022.06.002_b0075
  doi: 10.1109/ICCV.2015.169
– ident: 10.1016/j.isprsjprs.2022.06.002_b0180
  doi: 10.1109/ICCV.2019.00982
– volume: 10
  start-page: 132
  issue: 1
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.06.002_b0315
  article-title: Automatic ship detection in remote sensing images from google earth of complex scenes based on multiscale rotation dense feature pyramid networks
  publication-title: Remote Sensing
  doi: 10.3390/rs10010132
– ident: 10.1016/j.isprsjprs.2022.06.002_b0160
  doi: 10.1007/978-3-319-46448-0_2
– ident: 10.1016/j.isprsjprs.2022.06.002_b0255
  doi: 10.1109/CVPR.2016.89
– volume: 12
  start-page: 1432
  issue: 9
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.06.002_b0220
  article-title: Small-object detection in remote sensing images with end-to-end edge-enhanced gan and object detector network
  publication-title: Remote Sensing
  doi: 10.3390/rs12091432
– ident: 10.1016/j.isprsjprs.2022.06.002_b0195
– volume: 43
  start-page: 3388
  issue: 10
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.06.002_b0185
  article-title: Imbalance problems in object detection: A review
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2981890
– ident: 10.1016/j.isprsjprs.2022.06.002_b0310
  doi: 10.1109/CVPRW53098.2021.00130
– ident: 10.1016/j.isprsjprs.2022.06.002_b0150
  doi: 10.1109/ICCV.2017.324
– volume: 97
  start-page: 103910
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.06.002_b0290
  article-title: Recent advances in small object detection based on deep learning: A review
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2020.103910
– ident: 10.1016/j.isprsjprs.2022.06.002_b0085
  doi: 10.1109/CVPR.2016.90
– ident: 10.1016/j.isprsjprs.2022.06.002_b0125
  doi: 10.1109/CVPR.2017.211
– ident: 10.1016/j.isprsjprs.2022.06.002_b0055
– volume: 98
  start-page: 119
  year: 2014
  ident: 10.1016/j.isprsjprs.2022.06.002_b0035
  article-title: Multi-class geospatial object detection and geographic image classification based on collection of part detectors
  publication-title: ISPRS J. Photogramm. Remote Sensing
  doi: 10.1016/j.isprsjprs.2014.10.002
– ident: 10.1016/j.isprsjprs.2022.06.002_b0250
  doi: 10.1109/CVPRW.2019.00184
– ident: 10.1016/j.isprsjprs.2022.06.002_b0020
  doi: 10.1109/CVPR.2016.314
– ident: 10.1016/j.isprsjprs.2022.06.002_b0105
  doi: 10.5121/csit.2019.91713
– ident: 10.1016/j.isprsjprs.2022.06.002_b0360
  doi: 10.1609/aaai.v34i07.6999
– ident: 10.1016/j.isprsjprs.2022.06.002_b0030
– volume: 111
  start-page: 98
  issue: 1
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.06.002_b0060
  article-title: The pascal visual object classes challenge: A retrospective
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-014-0733-5
– volume: 29
  start-page: 7389
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.06.002_b0110
  article-title: Foveabox: Beyound anchor-based object detection
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3002345
– ident: 10.1016/j.isprsjprs.2022.06.002_b0345
  doi: 10.1109/CVPR.2018.00442
– ident: 10.1016/j.isprsjprs.2022.06.002_b0065
  doi: 10.1109/CVPR46437.2021.00037
– ident: 10.1016/j.isprsjprs.2022.06.002_b0145
  doi: 10.1109/CVPR.2017.106
– volume: 13
  start-page: 1074
  issue: 8
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.06.002_b0165
  article-title: Ship rotated bounding box space for ship extraction from high-resolution optical satellite images with complex backgrounds
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2016.2565705
– ident: 10.1016/j.isprsjprs.2022.06.002_b0170
  doi: 10.1109/CVPR.2019.00754
– ident: 10.1016/j.isprsjprs.2022.06.002_b0010
  doi: 10.1007/978-3-030-01261-8_13
– volume: 34
  start-page: 187
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.06.002_b0225
  article-title: Vehicle detection in aerial imagery: A small target detection benchmark
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2015.11.002
– ident: 10.1016/j.isprsjprs.2022.06.002_b0260
  doi: 10.1109/CVPR.2018.00377
– ident: 10.1016/j.isprsjprs.2022.06.002_b0320
– volume: 11
  start-page: 355
  issue: 5–6
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.06.002_b0205
  article-title: Computational optimal transport: With applications to data science
  publication-title: Found. Trends Machine Learn.
  doi: 10.1561/2200000073
– volume: 12
  start-page: 3152
  issue: 19
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.06.002_b0040
  article-title: Small object detection in remote sensing images based on super-resolution with auxiliary generative adversarial networks
  publication-title: Remote Sensing
  doi: 10.3390/rs12193152
– ident: 10.1016/j.isprsjprs.2022.06.002_b0090
  doi: 10.1109/CVPR.2018.00378
– ident: 10.1016/j.isprsjprs.2022.06.002_b0175
  doi: 10.1109/CVPR.2019.00356
– ident: 10.1016/j.isprsjprs.2022.06.002_b0155
  doi: 10.1007/978-3-319-10602-1_48
– start-page: 1
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.06.002_b0330
  article-title: The unmanned aerial vehicle benchmark: Object detection, tracking and baseline
  publication-title: Int. J. Comput. Vision
– volume: 57
  start-page: 5512
  issue: 8
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.06.002_b0190
  article-title: R2-CNN: Fast tiny object detection in large-scale remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2899955
– volume: 51
  start-page: 3311
  issue: 6
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.06.002_b0270
  article-title: Mask-guided ssd for small-object detection
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-020-01949-0
– ident: 10.1016/j.isprsjprs.2022.06.002_b0050
  doi: 10.1109/TPAMI.2021.3117983
– ident: 10.1016/j.isprsjprs.2022.06.002_b0130
  doi: 10.1109/CVPR.2019.00519
– ident: 10.1016/j.isprsjprs.2022.06.002_b0335
  doi: 10.1109/WACV45572.2020.9093394
– ident: 10.1016/j.isprsjprs.2022.06.002_b0070
  doi: 10.1109/ICCV.2015.135
– volume: 8
  start-page: 813
  issue: 5
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.06.002_b0240
  article-title: Small object detection in optical remote sensing images via modified faster r-cnn
  publication-title: Appl. Sci.
  doi: 10.3390/app8050813
– ident: 10.1016/j.isprsjprs.2022.06.002_b0275
  doi: 10.1109/CVPR.2019.00584
– ident: 10.1016/j.isprsjprs.2022.06.002_b0295
  doi: 10.1109/ICPR48806.2021.9413340
– ident: 10.1016/j.isprsjprs.2022.06.002_b0305
  doi: 10.1109/CVPR.2018.00418
– ident: 10.1016/j.isprsjprs.2022.06.002_b0235
– ident: 10.1016/j.isprsjprs.2022.06.002_b0285
  doi: 10.1109/ICCV.2019.00972
– volume: 12
  start-page: 2501
  issue: 15
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.06.002_b0210
  article-title: Yolo-fine: One-stage detector of small objects under various backgrounds in remote sensing images
  publication-title: Remote Sensing
  doi: 10.3390/rs12152501
– ident: 10.1016/j.isprsjprs.2022.06.002_b0140
  doi: 10.1109/ICCV.2019.00615
– ident: 10.1016/j.isprsjprs.2022.06.002_b0350
  doi: 10.1109/ICCV.2017.30
– volume: 9
  start-page: 173
  issue: 2
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.06.002_b0200
  article-title: Effect of training class label noise on classification performances for land cover mapping with satellite image time series
  publication-title: Remote Sensing
  doi: 10.3390/rs9020173
– ident: 10.1016/j.isprsjprs.2022.06.002_b0265
– volume: 59
  start-page: 4307
  issue: 5
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.06.002_b0300
  article-title: Learning center probability map for detecting objects in aerial images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3010051
– volume: 166
  start-page: 1
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.06.002_b0365
  article-title: Hynet: Hyper-scale object detection network framework for multiple spatial resolution remote sensing imagery
  publication-title: ISPRS J. Photogramm. Remote Sensing
  doi: 10.1016/j.isprsjprs.2020.04.019
– ident: 10.1016/j.isprsjprs.2022.06.002_b0005
– ident: 10.1016/j.isprsjprs.2022.06.002_b0095
  doi: 10.1007/978-3-030-58595-2_22
– ident: 10.1016/j.isprsjprs.2022.06.002_b0080
  doi: 10.1109/CVPR.2019.00537
– ident: 10.1016/j.isprsjprs.2022.06.002_b0355
  doi: 10.1609/aaai.v33i01.33019259
– volume: 159
  start-page: 296
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.06.002_b0135
  article-title: Object detection in optical remote sensing images: A survey and a new benchmark
  publication-title: ISPRS J. Photogramm. Remote Sensing
  doi: 10.1016/j.isprsjprs.2019.11.023
– ident: 10.1016/j.isprsjprs.2022.06.002_b0340
  doi: 10.1109/CVPR42600.2020.00978
– ident: 10.1016/j.isprsjprs.2022.06.002_b0280
  doi: 10.1016/j.isprsjprs.2021.12.004
– ident: 10.1016/j.isprsjprs.2022.06.002_b0370
– volume: 13
  start-page: 1854
  issue: 9
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.06.002_b0015
  article-title: Small object detection in remote sensing images with residual feature aggregation-based super-resolution and object detector network
  publication-title: Remote Sensing
  doi: 10.3390/rs13091854
– volume: 145
  start-page: 3
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.06.002_b0045
  article-title: Multi-scale object detection in remote sensing imagery with convolutional neural networks
  publication-title: ISPRS J. Photogramm. Remote Sensing
  doi: 10.1016/j.isprsjprs.2018.04.003
– ident: 10.1016/j.isprsjprs.2022.06.002_b0025
  doi: 10.1109/CVPR.2018.00644
– ident: 10.1016/j.isprsjprs.2022.06.002_b0245
  doi: 10.1109/CVPR.2019.00075
– ident: 10.1016/j.isprsjprs.2022.06.002_b0215
  doi: 10.1109/CVPR46437.2021.01008
– ident: 10.1016/j.isprsjprs.2022.06.002_b0120
  doi: 10.1109/CVPR42600.2020.01060
– ident: 10.1016/j.isprsjprs.2022.06.002_b0325
  doi: 10.1109/ICCV.2019.00975
– ident: 10.1016/j.isprsjprs.2022.06.002_b0100
  doi: 10.1007/978-3-030-01228-1_20
– ident: 10.1016/j.isprsjprs.2022.06.002_b0230
SSID ssj0001568
Score 2.6577902
Snippet Tiny object detection (TOD) in aerial images is challenging since a tiny object only contains a few pixels. State-of-the-art object detectors do not provide...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 79
SubjectTerms Aerial images
aerial photography
Benchmark dataset
data collection
detectors
information networks
photogrammetry
product labeling
remote sensing
testing
Tiny object detection
Title Detecting tiny objects in aerial images: A normalized Wasserstein distance and a new benchmark
URI https://dx.doi.org/10.1016/j.isprsjprs.2022.06.002
https://www.proquest.com/docview/2718286825
Volume 190
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T-QwELYQVwDF6XgJOEBGog2bh504dCse2gOJBhBURONHRHhkV7tLAQW_nRkn4XE6ieKKRElkK9HYmfnG_maGsd0YZCkgiQItsyQQkbOBoqvcZKAQUITgPMv3LB1cipNreT3DDrpYGKJVtrq_0eleW7dPeq00e6Oq6p2H6DrElACJaEEypyA-ITLKn7_3-kHziJpwOGocUOsvHK9qMhpP7vBARzGOfSLPdn3lHxbqL13tDdDxL_azRY6833zcIptx9RJb-JRPcInNtSXNb5-X2c2ho_0BfM7x9MyHmlZcJryqOfhZx6tH1CWTfd7nNQHXh-rFWX4FPv6SamByS9gSBcKhthw4AnCuUUC3jzC-X2GXx0cXB4OgLaYQmESoKQofco8GZAzG5dZqhwoGXGSFDUHLRJaALqrRpcjKOC0NGGOlyssszaVWKllls_WwdmuMhxZhW5pmeW5LkSRS0easibS0YBQ6aOss7QRYmDbTOBW8eCg6Stld8S75giRfeHJdvM7C946jJtnG9132uxEqvsybAk3C9513ujEt8K-irRKo3fAJG6HJjlWK7vPG_7zgN5unu4YwuMlmp-Mnt4UgZqq3_SzdZj_6f04HZ2-TpfO7
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROFAOqKWtyqOtK_UabV5ObG4rKFoK3UtBcKo1fkSEQna1uxzg1zNOnFVBlTj0kChyPHI0nsx8Y49nAL6lyKscsyTSvMyiPHE2Ev5JmhIFAYoYXRvlOy5G5_mPS365Agf9WRgfVhl0f6fTW20dWgaBm4NpXQ9-xeQ6pD4Bkg8L4lK-gjWfnYqEfW14fDIaLxVy0p2I8_0jT_AkzKueT2fza7rIV0zTNpdnWGL5h5F6pq5bG3T0BjYDeGTD7vvewoprtmDjr5SCW7Aeqppf3b-D34fObxFQO6PbPZtov-gyZ3XDsBU8Vt-SOpnvsyFrPHa9qR-cZRfYHsH0ZTCZ9fCSeMKwsQwZYXCmiUdXtzj78x7Oj76fHYyiUE8hMlkuFsR_lC0g4CkaJ63VjnQMusTmNkbNM14healGV3lZpUVl0BjLhazKQnItRPYBVptJ4z4Ciy0ht6IopbRVnmVc-P1Zk2hu0Qjy0bah6BmoTEg27mte3Kg-quxaLTmvPOdVG1-XbkO8JJx2-TZeJtnvZ0g9ER1FVuFl4q_9nCr6sfxuCTZuckedyGqnoiAPeud_BvgC66Ozn6fq9Hh8sguv_ZsufnAPVhezO_eJMM1Cfw4y-wjnL_Zs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Detecting+tiny+objects+in+aerial+images%3A+A+normalized+Wasserstein+distance+and+a+new+benchmark&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Xu%2C+Chang&rft.au=Wang%2C+Jinwang&rft.au=Yang%2C+Wen&rft.au=Yu%2C+Huai&rft.date=2022-08-01&rft.issn=0924-2716&rft.volume=190+p.79-93&rft.spage=79&rft.epage=93&rft_id=info:doi/10.1016%2Fj.isprsjprs.2022.06.002&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon