Water body classification from high-resolution optical remote sensing imagery: Achievements and perspectives

Water body classification from high-resolution optical remote sensing (RS) images, aiming at classifying whether each pixel of the image is water or not, has become a hot issue in the area of RS and has extensive practical applications in a variety of fields. Numerous existing methods have drawn bro...

Full description

Saved in:
Bibliographic Details
Published inISPRS journal of photogrammetry and remote sensing Vol. 187; pp. 306 - 327
Main Authors Li, Yansheng, Dang, Bo, Zhang, Yongjun, Du, Zhenhong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Water body classification from high-resolution optical remote sensing (RS) images, aiming at classifying whether each pixel of the image is water or not, has become a hot issue in the area of RS and has extensive practical applications in a variety of fields. Numerous existing methods have drawn broad attention and achieved remarkable advancements, meanwhile, serious challenges and potential opportunities also exist, which deserves in thinking and discussing deeply. By taking into account the comprehensive survey is still lacking, through the compilation of approximately 200 papers, this paper summarizes and analyzes the achievements, and discusses the perspectives of future research directions. Specifically, we first analyze 5 challenges according to the characteristics of water bodies in high-resolution optical RS imagery, and 5 corresponding significant opportunities combined with advanced deep learning techniques are discussed to respond mentioned challenges. Then, we divide the existing methods into several groups in light of their core ideas and introduce them chiefly. In addition, some practical applications and publicly open benchmarks are listed intuitively. 10 and 9 representative methods are implemented on two widely used datasets to assess their performance, respectively. To facilitate the qualitative and quantitative comparison in the research avenue, the two benchmarks employed in the comparative experiments and links to other relevant datasets and open-source codes will be summarized and released in https://github.com/Jack-bo1220/Benchmarks-for-Water-Body-Extraction-from-HRORS-Imagery. Finally, we discuss a range of promising research directions to provide some references and inspiration for the following research. The studies of our paper, including the existing methods, challenges, opportunities, derived applications, and future research directions, provide a fuller understanding of water body classification from high-resolution optical remote sensing imagery.
AbstractList Water body classification from high-resolution optical remote sensing (RS) images, aiming at classifying whether each pixel of the image is water or not, has become a hot issue in the area of RS and has extensive practical applications in a variety of fields. Numerous existing methods have drawn broad attention and achieved remarkable advancements, meanwhile, serious challenges and potential opportunities also exist, which deserves in thinking and discussing deeply. By taking into account the comprehensive survey is still lacking, through the compilation of approximately 200 papers, this paper summarizes and analyzes the achievements, and discusses the perspectives of future research directions. Specifically, we first analyze 5 challenges according to the characteristics of water bodies in high-resolution optical RS imagery, and 5 corresponding significant opportunities combined with advanced deep learning techniques are discussed to respond mentioned challenges. Then, we divide the existing methods into several groups in light of their core ideas and introduce them chiefly. In addition, some practical applications and publicly open benchmarks are listed intuitively. 10 and 9 representative methods are implemented on two widely used datasets to assess their performance, respectively. To facilitate the qualitative and quantitative comparison in the research avenue, the two benchmarks employed in the comparative experiments and links to other relevant datasets and open-source codes will be summarized and released in https://github.com/Jack-bo1220/Benchmarks-for-Water-Body-Extraction-from-HRORS-Imagery. Finally, we discuss a range of promising research directions to provide some references and inspiration for the following research. The studies of our paper, including the existing methods, challenges, opportunities, derived applications, and future research directions, provide a fuller understanding of water body classification from high-resolution optical remote sensing imagery.
Author Du, Zhenhong
Li, Yansheng
Zhang, Yongjun
Dang, Bo
Author_xml – sequence: 1
  givenname: Yansheng
  surname: Li
  fullname: Li, Yansheng
  email: yansheng.li@whu.edu.cn
  organization: School of Remote Sensing and Information Engineering, Wuhan University, China
– sequence: 2
  givenname: Bo
  surname: Dang
  fullname: Dang, Bo
  email: bodang@whu.edu.cn
  organization: School of Remote Sensing and Information Engineering, Wuhan University, China
– sequence: 3
  givenname: Yongjun
  surname: Zhang
  fullname: Zhang, Yongjun
  email: zhangyj@whu.edu.cn
  organization: School of Remote Sensing and Information Engineering, Wuhan University, China
– sequence: 4
  givenname: Zhenhong
  surname: Du
  fullname: Du, Zhenhong
  email: duzhenhong@zju.edu.cn
  organization: School of Earth Sciences, Zhejiang University, China
BookMark eNqNkE9r3DAQxUVJoZu0n6E69mJXf2yvXMhhCUlaCPTS0qOQ5dGuFltyNNqF_fZVdksPvaSHYWDee8PM75pchRiAkI-c1Zzx7vO-9rgk3JeqBROiZrJmXL4hK67WolJCtldkxXrRVGLNu3fkGnHPGONtp1Zk-mUyJDrE8UTtZBC989ZkHwN1Kc5057e7KgHG6XAexiUXfaIJ5piBIgT0YUv9bLaQTl_oxu48HGGGkJGaMNIFEi5gsz8CvidvnZkQPvzpN-Tnw_2Pu6_V0_fHb3ebp8rKRuWqV51qTG-UK_cOXDmnJDOiNa7tRysdG8UgrVTj0Dshh3ZgsjUdb8ZeFr1x8oZ8uuxdUnw-AGY9e7QwTSZAPKAWXaPUmkvRFevtxWpTREzgtPX5_H9Oxk-aM_1CWe_1X8r6hbJmUhfKJb_-J7-kAiOd_iO5uSShkDh6SBqth2Bh9Knw0mP0r-74Dd_Ror4
CitedBy_id crossref_primary_10_3390_rs15174325
crossref_primary_10_3390_rs14133001
crossref_primary_10_1016_j_isprsjprs_2022_12_024
crossref_primary_10_3390_app14010178
crossref_primary_10_1109_ACCESS_2024_3487413
crossref_primary_10_1109_JSTARS_2024_3391881
crossref_primary_10_1109_JSTARS_2024_3459916
crossref_primary_10_1016_j_asr_2024_06_011
crossref_primary_10_1360_TB_2023_1323
crossref_primary_10_3390_rs14163864
crossref_primary_10_3390_rs17060980
crossref_primary_10_1109_JSTARS_2023_3348488
crossref_primary_10_1109_LGRS_2023_3234306
crossref_primary_10_1109_TGRS_2024_3407200
crossref_primary_10_3390_rs16020419
crossref_primary_10_3390_rs16101703
crossref_primary_10_3390_w15050866
crossref_primary_10_1016_j_jhydrol_2024_130936
crossref_primary_10_1016_j_ecoenv_2023_114843
crossref_primary_10_1109_JSTARS_2024_3509712
crossref_primary_10_1007_s00500_024_09951_1
crossref_primary_10_3389_fenvs_2024_1351872
crossref_primary_10_3390_w16223287
crossref_primary_10_1016_j_isprsjprs_2023_11_006
crossref_primary_10_1109_TGRS_2024_3511622
crossref_primary_10_1109_JSTARS_2025_3538662
crossref_primary_10_3390_geohazards5020025
crossref_primary_10_3390_w16182704
crossref_primary_10_1016_j_isprsjprs_2023_09_024
crossref_primary_10_1016_j_isprsjprs_2022_05_007
crossref_primary_10_3390_rs14215567
crossref_primary_10_1109_JSTARS_2025_3527213
crossref_primary_10_1016_j_jag_2022_103103
crossref_primary_10_1038_s41597_025_04794_3
crossref_primary_10_1088_1742_6596_2863_1_012004
crossref_primary_10_1016_j_rse_2024_114373
crossref_primary_10_3390_w15081446
crossref_primary_10_3390_rs16020378
crossref_primary_10_1007_s10980_024_01850_y
crossref_primary_10_3390_rs15194865
crossref_primary_10_1007_s00477_024_02740_0
crossref_primary_10_1080_01431161_2024_2379518
crossref_primary_10_3390_rs14184667
crossref_primary_10_1016_j_rsase_2025_101455
crossref_primary_10_1016_j_scitotenv_2024_174329
crossref_primary_10_1109_TGRS_2024_3504571
crossref_primary_10_3390_w17050729
crossref_primary_10_3390_ijgi13100369
crossref_primary_10_3390_su152115444
crossref_primary_10_1016_j_jag_2024_103878
crossref_primary_10_3390_s24165177
crossref_primary_10_1109_JSTARS_2024_3361025
crossref_primary_10_1016_j_isprsjprs_2023_05_032
crossref_primary_10_1080_17538947_2022_2159552
crossref_primary_10_3390_w15010020
crossref_primary_10_3390_rs17071138
crossref_primary_10_1016_j_rsase_2024_101205
crossref_primary_10_1109_TGRS_2023_3301648
crossref_primary_10_1109_TGRS_2024_3458009
Cites_doi 10.1109/JPROC.2016.2598228
10.3390/rs12071195
10.1016/j.jag.2021.102472
10.1109/ICCV48922.2021.00716
10.5194/isprs-annals-IV-1-5-2018
10.3390/su13147547
10.1109/CVPR42600.2020.00871
10.1109/TGRS.2021.3108781
10.3390/ijgi9040256
10.1109/JSTARS.2021.3106941
10.1109/JSTARS.2016.2609804
10.1109/IGARSS.2019.8898367
10.3390/w10050585
10.1109/TGRS.2020.3047447
10.1109/CVPR.2018.00745
10.1016/j.isprsjprs.2021.05.016
10.1109/CVPR.2019.00531
10.1109/CVPR.2017.634
10.1080/01431160600589179
10.1117/1.JRS.7.073564
10.1088/1755-1315/34/1/012010
10.1016/j.proenv.2011.09.407
10.1016/j.rse.2015.12.055
10.1109/ICCV48922.2021.00986
10.1109/TPAMI.2017.2699184
10.1109/TPAMI.2020.2983686
10.3389/fmars.2019.00232
10.1109/ICIP.2016.7533183
10.1016/j.rse.2020.112045
10.1109/IGARSS47720.2021.9553270
10.1016/j.rse.2013.03.013
10.1109/CVPR46437.2021.01225
10.1109/JSTARS.2020.3040176
10.3390/rs11070879
10.3390/rs13010119
10.1007/s11069-007-9197-z
10.1109/ICPR.1990.118221
10.1109/CVPR46437.2021.01043
10.1109/JSTARS.2021.3051873
10.3390/rs13101912
10.1109/LGRS.2018.2794545
10.1016/j.gloplacha.2013.04.001
10.1016/j.isprsjprs.2019.09.018
10.3390/rs10060964
10.4236/ars.2015.43016
10.5194/hess-19-3755-2015
10.1016/j.jenvman.2020.111676
10.1109/ICCV.2019.00533
10.1016/S0034-4257(97)00049-7
10.3390/rs10010144
10.1088/1742-6596/1453/1/012129
10.3390/w9020144
10.3390/rs13050865
10.3390/rs10121970
10.1109/CVPR46437.2021.00584
10.1016/j.isprsjprs.2020.02.008
10.1016/j.rse.2014.02.009
10.1080/01431169608948714
10.3390/rs11070779
10.1080/01431161.2020.1842544
10.1088/1755-1315/17/1/012123
10.1109/ICCVW54120.2021.00301
10.1016/j.isprsjprs.2021.08.001
10.3390/rs10111704
10.1109/CVPR.2017.660
10.5194/hess-21-3879-2017
10.1109/IGARSS39084.2020.9547211
10.3390/rs13173465
10.1109/TGRS.2017.2760909
10.1016/j.isprsjprs.2013.08.001
10.3390/rs10050743
10.3390/drones4040077
10.1109/TGRS.2014.2317499
10.1109/LGRS.2019.2926412
10.1007/978-3-030-58568-6_46
10.3390/s19071486
10.1007/s40899-020-00425-4
10.1109/IJCNN48605.2020.9207291
10.3390/smartcities4030065
10.1109/IGARSS.2012.6352587
10.1109/ACCESS.2021.3084358
10.1109/WACV45572.2020.9093264
10.3390/rs9111110
10.1016/j.isprsjprs.2017.11.011
10.1109/CISP.2012.6469675
10.1109/TCYB.2020.2989241
10.1109/JSTARS.2020.3005403
10.1109/TNNLS.2018.2886017
10.1109/CVPRW53098.2021.00121
10.1109/LGRS.2018.2879492
10.1109/CVPRW.2018.00045
10.1109/TGRS.2020.2999405
10.3390/w12061543
10.1016/j.isprsjprs.2022.02.013
10.1109/TPAMI.2015.2389824
10.1029/2018RG000598
10.5194/isprs-annals-IV-2-W7-153-2019
10.1109/TIP.2020.3042084
10.1109/JSTARS.2021.3098678
10.3390/rs61211791
10.1109/CVPR46437.2021.01549
10.1126/science.289.5477.284
10.1007/978-3-030-01234-2_49
10.1109/CVPR.2015.7298965
10.1109/CVPR42600.2020.00406
10.1109/JSTARS.2019.2954130
10.3390/rs13163165
10.1109/CVPRW.2018.00031
10.1109/JSTARS.2021.3076035
10.3390/rs12244140
10.1109/CVPR42600.2020.01299
10.1109/TGRS.2020.2964675
10.1109/JSTARS.2019.2961634
10.3390/rs70912336
10.1016/j.knosys.2022.108469
10.3390/rs10122067
10.3390/s18082580
10.1109/JSTARS.2015.2420713
10.1109/CVPR.2016.90
10.3390/rs11161925
10.1109/CVPR.2019.00913
10.3390/rs13163122
10.1109/CVPR42600.2020.00779
10.1016/S0031-3203(02)00060-2
10.3390/rs71014055
10.1002/ppp.1779
10.3390/app9050909
10.1109/MGRS.2020.2970124
10.1016/j.isprsjprs.2016.03.014
10.1016/j.jag.2021.102568
10.1016/j.jhydrol.2020.125092
10.1038/s41558-020-0855-4
10.3390/rs70810347
10.1016/j.rse.2019.111582
10.1109/CVPR42600.2020.00891
10.1016/j.isprsjprs.2016.07.004
10.3390/s20020397
10.1109/TGRS.2016.2523563
10.1016/j.advwatres.2012.09.001
10.3390/app112110062
10.1007/978-3-030-58539-6_11
10.1016/j.gloplacha.2015.05.013
10.1109/LGRS.2019.2953261
10.1016/j.jag.2021.102499
10.3390/rs12020207
10.1007/978-3-030-22808-8_38
10.1016/j.isprsjprs.2021.02.009
10.1109/IGARSS.2012.6352234
10.1080/17538947.2016.1170215
10.1109/JSTARS.2021.3060769
10.1109/CVPRW.2017.200
10.1109/CVPR.2019.00770
10.1007/s12518-013-0120-x
10.1109/ICCV.2017.244
10.1016/j.rse.2013.08.029
10.1109/TGRS.2020.3011209
10.1016/j.inffus.2020.10.008
10.3390/rs71114853
10.3390/ijgi9100560
10.1038/nature20584
10.3390/w10050608
10.1109/CVPRW.2015.7301377
10.1109/TGRS.2020.2999962
10.1038/nclimate3111
10.1109/ICCV48922.2021.00041
10.1007/s11430-012-4445-9
10.1109/JSTARS.2017.2666787
10.1109/CVPR.2019.00766
10.1016/j.isprsjprs.2018.09.014
10.1109/TGRS.2018.2858817
10.1109/JSTARS.2020.3021098
10.3390/rs13040692
10.14358/PERS.80.10.939
10.3390/s16071075
10.1109/TPAMI.2021.3124934
10.3390/rs11030245
10.3390/ijgi9040189
10.1080/01431161.2010.489064
10.1109/IGARSS.2019.8900625
10.1109/TGRS.2022.3168697
10.3390/w7041437
10.1109/LGRS.2018.2886422
10.1109/ACCESS.2019.2949635
10.1016/j.isprsjprs.2020.09.012
10.1016/j.aqpro.2015.02.018
10.1007/s41095-019-0149-9
10.1109/ICCV.2017.153
ContentType Journal Article
Copyright 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
Copyright_xml – notice: 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS)
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.isprsjprs.2022.03.013
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 1872-8235
EndPage 327
ExternalDocumentID 10_1016_j_isprsjprs_2022_03_013
S0924271622000867
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABQEM
ABQYD
ABXDB
ABYKQ
ACDAQ
ACGFS
ACLVX
ACNNM
ACRLP
ACSBN
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HMA
HVGLF
HZ~
H~9
IHE
IMUCA
J1W
KOM
LY3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SEP
SES
SEW
SPC
SPCBC
SSE
SSV
SSZ
T5K
T9H
WUQ
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
L.6
ID FETCH-LOGICAL-c348t-98684a9a8f716b18ff830a25af59dc3f0d2b3c38db9f23b5b035a614d939dc4f3
IEDL.DBID .~1
ISSN 0924-2716
IngestDate Thu Jul 10 18:35:28 EDT 2025
Thu Apr 24 22:57:09 EDT 2025
Tue Jul 01 03:46:47 EDT 2025
Fri Feb 23 02:41:04 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords High-resolution
Deep learning (DL)
Water body classification
Optical remote sensing (RS) image
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c348t-98684a9a8f716b18ff830a25af59dc3f0d2b3c38db9f23b5b035a614d939dc4f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2648871326
PQPubID 24069
PageCount 22
ParticipantIDs proquest_miscellaneous_2648871326
crossref_citationtrail_10_1016_j_isprsjprs_2022_03_013
crossref_primary_10_1016_j_isprsjprs_2022_03_013
elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2022_03_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationTitle ISPRS journal of photogrammetry and remote sensing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Yan, Fan, Xiang, Pan (b0965) 2021
Zhu, J.Y., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp. 2223–2232.
Jung, H., Choi, H.S., Kang, M., 2021. Boundary enhancement semantic segmentation for building extraction from remote sensed image. IEEE Trans. Geosci. Remote Sens.
Pan, Gao, Marinoni, Zhang, Yang, Gamba (b0710) 2018; 10
Zheng, Q., Qiao, X., Cao, Y., Lau, R.W., 2019. Distraction-aware shadow detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5167–5176.
Ma, C., Rao, Y., Cheng, Y., Chen, C., Lu, J., Zhou, J., 2020. Structure-preserving super resolution with gradient guidance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7769–7778.
Zhao, K., Kang, J., Jung, J., Sohn, G., 2018. Building extraction from satellite images using mask r-cnn with building boundary regularization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 247–251.
Chen, X., Qi, D., Shen, J., 2019b. Boundary-aware network for fast and high-accuracy portrait segmentation. arXiv preprint arXiv:1901.03814.
Kokelj, Jorgenson (b0435) 2013; 24
Li, Zhou, Zhang, Zhong, Wang, Chen (b0560) 2022; 186
Zhou, M., Niu, Z., Wang, L., Zhang, Q., Hua, G., 2020. Adversarial ranking attack and defense. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16, Springer. pp. 781–799.
Borji, Cheng, Hou, Jiang, Li (b0065) 2019; 5
Liu, Xi, Ji, Ma (b0585) 2019; 78
Xie, Huang, Zeng, Fang (b0930) 2016; 9
Zhang, Yao, Xie, Wang, Yang (b1025) 2015; 131
Schmitt, Hughes, Qiu, Zhu (b0760) 2019; 42
Kim, M., Byun, H., 2020. Learning texture invariant representation for domain adaptation of semantic segmentation. in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12975–12984.
Chen, Fan, Yang, Wang, Latif (b0125) 2018; 10
Ji, Wei, Lu (b0390) 2018; 57
Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J., Lakshminarayanan, B., Snoek, J., 2019. Can you trust your model’s uncertainty? evaluating predictive uncertainty under dataset shift. Adv. Neural Inform. Process. Syst. 32.
Schmarje, L., Santarossa, M., Schröder, S.M., Koch, R., 2020. A survey on semi-, self-and unsupervised techniques in image classification. arXiv preprint arXiv:2002.08721.
Li, Zhang, Zhu (b0555) 2021; 51
Pekel, Cottam, Gorelick, Belward (b0725) 2016; 540
Li, Wang, Zhang, Hu, Meng (b0575) 2019; 7
Chen, Tang, Kan, Bilal, Li (b0130) 2020; 588
Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132–7141.
Huang, Chen, Zhang, Wu (b0345) 2018; 56
Jawak, Luis (b0375) 2015; 4
He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778.
Chen, W., Jiang, Z., Wang, Z., Cui, K., Qian, X., 2019a. Collaborative global-local networks for memory-efficient segmentation of ultra-high resolution images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8924–8933.
Li, Shi, Zhang, Chen, Wang, Li (b0545) 2021; 175
Dong, S., Pang, L., Zhuang, Y., Liu, W., Yang, Z., Long, T., 2019. Optical remote sensing water-land segmentation representation based on proposed sns-cnn network. In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE. pp. 3895–3898.
Lee, D.H., et al., 2013. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on challenges in representation learning, ICML, p. 896.
Cui, Jing, Huang, Li, Lu (b0180) 2020; 14
Munawar, Ullah, Qayyum, Heravi (b0665) 2021; 4
Li, Kong, Zhang, Tan, Chen (b0530) 2021; 179
Bao, Lv, Yao (b0035) 2021; 13
Huang, Liu, Jiang, Zhang (b0350) 2018; 10
Gao, H., Wang, L., Jing, L., Xu, J., 2016. An effective modified water extraction method for landsat-8 oli imagery of mountainous plateau regions. In: IOP conference series: earth and environmental science, IOP Publishing. p. 012010.
Nong, Su, Liu, Zhan, Yuan (b0695) 2021
Tuia, Marcos, Camps-Valls (b0855) 2016; 120
Chen, L.C., Papandreou, G., Schroff, F., Adam, H., 2017b. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587.
Friedl, Brodley (b0270) 1997; 61
Cheng, Han (b0145) 2016; 117
Yu, Yao, Guan, Li, Liu, Wang, Yu, Xiao, Wang, Chang (b0995) 2021; 42
Vörösmarty, C.J., Green, P., Salisbury, J., Lammers, R.B., 2000. Global water resources: vulnerability from climate change and population growth. science 289, 284–288.
Ticehurst, Guerschman, Chen (b0845) 2014; 6
Pappas, Anantrasirichai, Achim, Adams (b0715) 2020; 59
Zhang, Liu, Zhang, Ling, Huang (b1060) 2018; 16
Miao, Fu, Sun, Sun, Yan (b0650) 2018; 15
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (b0720) 2019; 32
Cheng, H.K., Chung, J., Tai, Y.W., Tang, C.K., 2020b. Cascadepsp: toward class-agnostic and very high-resolution segmentation via global and local refinement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8890–8899.
Zhang, Li, Gong, Wang, Sun (b1055) 2020; 12
Feyisa, Meilby, Fensholt, Proud (b0255) 2014; 140
Volpi, M., Ferrari, V., 2015. Semantic segmentation of urban scenes by learning local class interactions. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–9.
Yang, J., Zhu, Q., Lv, J., Guan, Q., 2021. Ucwater: Unsupervised content-adaptive water-body extraction framework for high-resolution satellite imagery. In: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, IEEE. pp. 2767–2770.
Zhou, Y., Luo, J., Shen, Z., Cheng, X., Hu, X., 2012. Adaptive extraction of water in urban areas based on local iteration using high-resolution multi-spectral image. In: 2012 IEEE International Geoscience and Remote Sensing Symposium, Ieee. pp. 6024–6027.
Chen, X., He, K., 2021. Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758.
Yuan, Y., Chen, X., Wang, J., 2020b. Object-contextual representations for semantic segmentation. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16, Springer. pp. 173–190.
Duan, Hu (b0230) 2019; 17
Wang, H., Wu, X., Huang, Z., Xing, E.P., 2020a. High-frequency component helps explain the generalization of convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8684–8694.
Yang, Guo, Tan, Wang (b0970) 2017; 9
Wang, X., Xie, H., 2018. A review on applications of remote sensing and geographic information systems (gis) in water resources and flood risk management.
Komodakis, N., Gidaris, S., 2018. Unsupervised representation learning by predicting image rotations. in: International Conference on Learning Representations (ICLR).
Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller, J., Manmatha, R., et al., 2020a. Resnest: Split-attention networks. arXiv preprint arXiv:2004.08955.
Chen, Z., Zhou, H., Xie, X., Lai, J., 2019d. Contour loss: Boundary-aware learning for salient object segmentation. arXiv preprint arXiv:1908.01975.
Klemenjak, S., Waske, B., Valero, S., Chanussot, J., 2012. Unsupervised river detection in rapideye data. in: 2012 IEEE International Geoscience and Remote Sensing Symposium, IEEE. pp. 6860–6863.
Kang, Guan, Peng, Chen (b0405) 2021; 103
Shugar, Burr, Haritashya, Kargel, Watson, Kennedy, Bevington, Betts, Harrison, Strattman (b0795) 2020; 10
Shao, Yang, Zhou (b0775) 2018; 10
Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018a. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV), pp. 801–818.
Chen, Tang, Yang, Fan, Bilal, Li (b0135) 2019; 13
Luo, Tong, Hu (b0605) 2021; 103
Melas-Kyriazi, L., Manrai, A.K., 2021. Pixmatch: Unsupervised domain adaptation via pixelwise consistency training. in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12435–12445.
Takikawa, T., Acuna, D., Jampani, V., Fidler, S., 2019. Gated-scnn: Gated shape cnns for semantic segmentation. in: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5229–5238.
Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K., 2017b. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1492–1500.
Sun, Wang, Yan, Diao, Lu, Yang, Zhang, Xiang, Yan, Guo (b0820) 2021; 14
Song, Liu, Liu, Feng, Han, Yao, Du (b0805) 2020; 20
Morrow, Fu, Ardhuin, Benkiran, Chapron, Cosme, d’Ovidio, Farrar, Gille, Lapeyre (b0660) 2019; 6
Chi, Plaza, Benediktsson, Sun, Shen, Zhu (b0165) 2016; 104
Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., Ayed, I.B., 2019. Boundary loss for highly unbalanced segmentation. in: International conference on medical imaging with deep learning, PMLR. pp. 285–296.
Shao, Zhou, Deng, Zhang, Cheng (b0780) 2020; 13
Zeng, Bird, Luce, Wang (b1020) 2015; 7
Yuan, J., Deng, Z., Wang, S., Luo, Z., 2020a. Multi receptive field network for semantic segmentation. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE. pp. 1883–1892.
Tong, X.Y., Xia, G.S., Lu, Q., Shen, H., Li, S., You, S., Zhang, L., 2018. Learning transferable deep models for land-use classification with high-resolution remote sensing images. arXiv preprint arXiv:1807.05713.
Cheng, Han, Guo, Qian, Zhou, Yao, Hu (b0150) 2013; 85
Dhara, Dang, Parial, Lu (b0195) 2020; 12
Lamovec, Velkanovski, Mikos, Osir (b0465) 2013; 7
Liu, Z., Lin, Y., Cao
Li (10.1016/j.isprsjprs.2022.03.013_b0520) 2021; 13
Tian (10.1016/j.isprsjprs.2022.03.013_b0840) 2017; 10
Wang (10.1016/j.isprsjprs.2022.03.013_b0880) 2020; 43
Hashemi-Beni (10.1016/j.isprsjprs.2022.03.013_b0315) 2021; 14
Ward (10.1016/j.isprsjprs.2022.03.013_b0910) 2014; 147
Yokoya (10.1016/j.isprsjprs.2022.03.013_b0990) 2020; 8
Yao (10.1016/j.isprsjprs.2022.03.013_b0985) 2016; 54
10.1016/j.isprsjprs.2022.03.013_b0215
Isikdogan (10.1016/j.isprsjprs.2022.03.013_b0370) 2019; 17
Kokelj (10.1016/j.isprsjprs.2022.03.013_b0435) 2013; 24
10.1016/j.isprsjprs.2022.03.013_b0340
10.1016/j.isprsjprs.2022.03.013_b0460
10.1016/j.isprsjprs.2022.03.013_b0100
10.1016/j.isprsjprs.2022.03.013_b0220
Grimaldi (10.1016/j.isprsjprs.2022.03.013_b0300) 2020; 237
Song (10.1016/j.isprsjprs.2022.03.013_b0805) 2020; 20
Acharya (10.1016/j.isprsjprs.2022.03.013_b0015) 2016; 16
Jawak (10.1016/j.isprsjprs.2022.03.013_b0385) 2014; 80
Feyisa (10.1016/j.isprsjprs.2022.03.013_b0255) 2014; 140
Ticehurst (10.1016/j.isprsjprs.2022.03.013_b0845) 2014; 6
Schmitt (10.1016/j.isprsjprs.2022.03.013_b0760) 2019; 42
Friedl (10.1016/j.isprsjprs.2022.03.013_b0270) 1997; 61
Cheng (10.1016/j.isprsjprs.2022.03.013_b0150) 2013; 85
Zhang (10.1016/j.isprsjprs.2022.03.013_b1040) 2020; 59
10.1016/j.isprsjprs.2022.03.013_b0335
Li (10.1016/j.isprsjprs.2022.03.013_b0480) 2021; 11
Wei (10.1016/j.isprsjprs.2022.03.013_b0915) 2021
Xu (10.1016/j.isprsjprs.2022.03.013_b0960) 2018; 10
10.1016/j.isprsjprs.2022.03.013_b0330
10.1016/j.isprsjprs.2022.03.013_b0690
Mahdianpari (10.1016/j.isprsjprs.2022.03.013_b0620) 2021; 280
Pan (10.1016/j.isprsjprs.2022.03.013_b0710) 2018; 10
Malinowski (10.1016/j.isprsjprs.2022.03.013_b0625) 2015; 7
He (10.1016/j.isprsjprs.2022.03.013_b0325) 2015; 37
Chen (10.1016/j.isprsjprs.2022.03.013_b0095) 2017; 40
Liu (10.1016/j.isprsjprs.2022.03.013_b0585) 2019; 78
Nath (10.1016/j.isprsjprs.2022.03.013_b0680) 2010; 3
Li (10.1016/j.isprsjprs.2022.03.013_b0560) 2022; 186
10.1016/j.isprsjprs.2022.03.013_b0200
Jin (10.1016/j.isprsjprs.2022.03.013_b0395) 2021; 13
Miao (10.1016/j.isprsjprs.2022.03.013_b0650) 2018; 15
10.1016/j.isprsjprs.2022.03.013_b0320
10.1016/j.isprsjprs.2022.03.013_b0440
Luo (10.1016/j.isprsjprs.2022.03.013_b0605) 2021; 103
10.1016/j.isprsjprs.2022.03.013_b1095
10.1016/j.isprsjprs.2022.03.013_b1090
Weng (10.1016/j.isprsjprs.2022.03.013_b0920) 2020; 9
Li (10.1016/j.isprsjprs.2022.03.013_b0525) 2020; 250
10.1016/j.isprsjprs.2022.03.013_b0425
Zhang (10.1016/j.isprsjprs.2022.03.013_b1070) 2021; 13
Thomas (10.1016/j.isprsjprs.2022.03.013_b0835) 2011; 32
Zhang (10.1016/j.isprsjprs.2022.03.013_b1050) 2020; 162
Pekel (10.1016/j.isprsjprs.2022.03.013_b0725) 2016; 540
10.1016/j.isprsjprs.2022.03.013_b0790
10.1016/j.isprsjprs.2022.03.013_b0430
10.1016/j.isprsjprs.2022.03.013_b1085
10.1016/j.isprsjprs.2022.03.013_b1080
Chi (10.1016/j.isprsjprs.2022.03.013_b0165) 2016; 104
Sun (10.1016/j.isprsjprs.2022.03.013_b0820) 2021; 14
Wang (10.1016/j.isprsjprs.2022.03.013_b0905) 2020; 12
Shugar (10.1016/j.isprsjprs.2022.03.013_b0795) 2020; 10
10.1016/j.isprsjprs.2022.03.013_b0415
10.1016/j.isprsjprs.2022.03.013_b0420
Likas (10.1016/j.isprsjprs.2022.03.013_b0580) 2003; 36
Fisher (10.1016/j.isprsjprs.2022.03.013_b0260) 2016; 175
Feng (10.1016/j.isprsjprs.2022.03.013_b0245) 2018; 16
10.1016/j.isprsjprs.2022.03.013_b1075
Munawar (10.1016/j.isprsjprs.2022.03.013_b0665) 2021; 4
Song (10.1016/j.isprsjprs.2022.03.013_b0800) 2013; 135
Le (10.1016/j.isprsjprs.2022.03.013_b0470) 2021
Dhara (10.1016/j.isprsjprs.2022.03.013_b0195) 2020; 12
Benoudjit (10.1016/j.isprsjprs.2022.03.013_b0040) 2019; 11
Govender (10.1016/j.isprsjprs.2022.03.013_b0295) 2007; 33
Li (10.1016/j.isprsjprs.2022.03.013_b0535) 2021; 67
Xu (10.1016/j.isprsjprs.2022.03.013_b0955) 2020; 59
10.1016/j.isprsjprs.2022.03.013_b0765
10.1016/j.isprsjprs.2022.03.013_b0410
Krähenbühl (10.1016/j.isprsjprs.2022.03.013_b0450) 2011; 24
Munawar (10.1016/j.isprsjprs.2022.03.013_b0670) 2021; 13
10.1016/j.isprsjprs.2022.03.013_b1065
Huang (10.1016/j.isprsjprs.2022.03.013_b0355) 2008; 47
Li (10.1016/j.isprsjprs.2022.03.013_b0500) 2021; 14
Mergili (10.1016/j.isprsjprs.2022.03.013_b0645) 2013; 107
Li (10.1016/j.isprsjprs.2022.03.013_b0515) 2021
Yuan (10.1016/j.isprsjprs.2022.03.013_b1005) 2021; 14
McCabe (10.1016/j.isprsjprs.2022.03.013_b0630) 2017; 21
Zeng (10.1016/j.isprsjprs.2022.03.013_b1020) 2015; 7
Guo (10.1016/j.isprsjprs.2022.03.013_b0305) 2020; 9
10.1016/j.isprsjprs.2022.03.013_b0755
Qayyum (10.1016/j.isprsjprs.2022.03.013_b0730) 2020; 9
10.1016/j.isprsjprs.2022.03.013_b0875
Byun (10.1016/j.isprsjprs.2022.03.013_b0075) 2015; 7
10.1016/j.isprsjprs.2022.03.013_b0640
10.1016/j.isprsjprs.2022.03.013_b0885
10.1016/j.isprsjprs.2022.03.013_b0400
Li (10.1016/j.isprsjprs.2022.03.013_b0530) 2021; 179
Huang (10.1016/j.isprsjprs.2022.03.013_b0360) 2015; 8
10.1016/j.isprsjprs.2022.03.013_b0085
Wang (10.1016/j.isprsjprs.2022.03.013_b0895) 2021
Li (10.1016/j.isprsjprs.2022.03.013_b0550) 2018; 146
Zhang (10.1016/j.isprsjprs.2022.03.013_b1025) 2015; 131
Du (10.1016/j.isprsjprs.2022.03.013_b0225) 2019; 158
Jawak (10.1016/j.isprsjprs.2022.03.013_b0380) 2015; 4
Xie (10.1016/j.isprsjprs.2022.03.013_b0930) 2016; 9
Zhang (10.1016/j.isprsjprs.2022.03.013_b1055) 2020; 12
Fletcher (10.1016/j.isprsjprs.2022.03.013_b0265) 2013; 51
10.1016/j.isprsjprs.2022.03.013_b0505
Ouyang (10.1016/j.isprsjprs.2022.03.013_b0700) 2021; 13
10.1016/j.isprsjprs.2022.03.013_b0865
Feng (10.1016/j.isprsjprs.2022.03.013_b0240) 2015; 7
10.1016/j.isprsjprs.2022.03.013_b0750
10.1016/j.isprsjprs.2022.03.013_b0510
Huang (10.1016/j.isprsjprs.2022.03.013_b0350) 2018; 10
Shao (10.1016/j.isprsjprs.2022.03.013_b0775) 2018; 10
10.1016/j.isprsjprs.2022.03.013_b0870
Shen (10.1016/j.isprsjprs.2022.03.013_b0785) 2019; 11
Yang (10.1016/j.isprsjprs.2022.03.013_b0970) 2017; 9
Duan (10.1016/j.isprsjprs.2022.03.013_b0230) 2019; 17
10.1016/j.isprsjprs.2022.03.013_b0070
10.1016/j.isprsjprs.2022.03.013_b0190
Paszke (10.1016/j.isprsjprs.2022.03.013_b0720) 2019; 32
Pappas (10.1016/j.isprsjprs.2022.03.013_b0715) 2020; 59
Yao (10.1016/j.isprsjprs.2022.03.013_b0980) 2015; 7
Chen (10.1016/j.isprsjprs.2022.03.013_b0090) 2021; 178
Morrow (10.1016/j.isprsjprs.2022.03.013_b0660) 2019; 6
Li (10.1016/j.isprsjprs.2022.03.013_b0540) 2022; 243
10.1016/j.isprsjprs.2022.03.013_b0615
Lamovec (10.1016/j.isprsjprs.2022.03.013_b0465) 2013; 7
10.1016/j.isprsjprs.2022.03.013_b0975
Ji (10.1016/j.isprsjprs.2022.03.013_b0390) 2018; 57
10.1016/j.isprsjprs.2022.03.013_b0740
Li (10.1016/j.isprsjprs.2022.03.013_b0570) 2019; 11
Ding (10.1016/j.isprsjprs.2022.03.013_b0205) 2020; 58
Li (10.1016/j.isprsjprs.2022.03.013_b0495) 2021; 13
10.1016/j.isprsjprs.2022.03.013_b1035
Chen (10.1016/j.isprsjprs.2022.03.013_b0130) 2020; 588
Jawak (10.1016/j.isprsjprs.2022.03.013_b0375) 2015; 4
Cheng (10.1016/j.isprsjprs.2022.03.013_b0145) 2016; 117
Li (10.1016/j.isprsjprs.2022.03.013_b0545) 2021; 175
10.1016/j.isprsjprs.2022.03.013_b0060
Chen (10.1016/j.isprsjprs.2022.03.013_b0125) 2018; 10
10.1016/j.isprsjprs.2022.03.013_b0600
Li (10.1016/j.isprsjprs.2022.03.013_b0555) 2021; 51
10.1016/j.isprsjprs.2022.03.013_b0850
Zhang (10.1016/j.isprsjprs.2022.03.013_b1045) 2020; 30
10.1016/j.isprsjprs.2022.03.013_b0610
Li (10.1016/j.isprsjprs.2022.03.013_b0575) 2019; 7
Borji (10.1016/j.isprsjprs.2022.03.013_b0065) 2019; 5
10.1016/j.isprsjprs.2022.03.013_b0175
10.1016/j.isprsjprs.2022.03.013_b0055
10.1016/j.isprsjprs.2022.03.013_b0170
Cheng (10.1016/j.isprsjprs.2022.03.013_b0155) 2020; 13
Ferreira (10.1016/j.isprsjprs.2022.03.013_b0250) 2016
Dang (10.1016/j.isprsjprs.2022.03.013_b0185) 2021; 13
Li (10.1016/j.isprsjprs.2022.03.013_b0490) 2012; 55
Qi (10.1016/j.isprsjprs.2022.03.013_b0735) 2019; 11
Sui (10.1016/j.isprsjprs.2022.03.013_b0810) 2013; 7
10.1016/j.isprsjprs.2022.03.013_b1015
10.1016/j.isprsjprs.2022.03.013_b0285
10.1016/j.isprsjprs.2022.03.013_b0045
Huang (10.1016/j.isprsjprs.2022.03.013_b0345) 2018; 56
Shao (10.1016/j.isprsjprs.2022.03.013_b0780) 2020; 13
10.1016/j.isprsjprs.2022.03.013_b0160
10.1016/j.isprsjprs.2022.03.013_b0280
Tuia (10.1016/j.isprsjprs.2022.03.013_b0855) 2016; 120
Sghaier (10.1016/j.isprsjprs.2022.03.013_b0770) 2016; 10
Koutalakis (10.1016/j.isprsjprs.2022.03.013_b0445) 2020; 4
10.1016/j.isprsjprs.2022.03.013_b0825
10.1016/j.isprsjprs.2022.03.013_b0705
10.1016/j.isprsjprs.2022.03.013_b0830
Kang (10.1016/j.isprsjprs.2022.03.013_b0405) 2021; 103
10.1016/j.isprsjprs.2022.03.013_b1000
Nex (10.1016/j.isprsjprs.2022.03.013_b0685) 2014; 6
Li (10.1016/j.isprsjprs.2022.03.013_b0565) 2021; 59
10.1016/j.isprsjprs.2022.03.013_b0935
Bijeesh (10.1016/j.isprsjprs.2022.03.013_b0050) 2020; 6
Abdollahi (10.1016/j.isprsjprs.2022.03.013_b0005) 2021
10.1016/j.isprsjprs.2022.03.013_b0940
Cui (10.1016/j.isprsjprs.2022.03.013_b0180) 2020; 14
Haibo (10.1016/j.isprsjprs.2022.03.013_b0310) 2011; 10
10.1016/j.isprsjprs.2022.03.013_b1110
10.1016/j.isprsjprs.2022.03.013_b0140
Tuia (10.1016/j.isprsjprs.2022.03.013_b0860) 2014; 52
Yu (10.1016/j.isprsjprs.2022.03.013_b0995) 2021; 42
Acharya (10.1016/j.isprsjprs.2022.03.013_b0020) 2018; 18
Audebert (10.1016/j.isprsjprs.2022.03.013_b0030) 2018; 140
Gebrehiwot (10.1016/j.isprsjprs.2022.03.013_b0290) 2019; 19
Qiu (10.1016/j.isprsjprs.2022.03.013_b0745) 2019; 9
Sun (10.1016/j.isprsjprs.2022.03.013_b0815) 2020; 13
10.1016/j.isprsjprs.2022.03.013_b1105
Abid (10.1016/j.isprsjprs.2022.03.013_b0010) 2021; 105
Wang (10.1016/j.isprsjprs.2022.03.013_b0890) 2020; 12
10.1016/j.isprsjprs.2022.03.013_b1100
Xu (10.1016/j.isprsjprs.2022.03.013_b0950) 2010; 8
Zhang (10.1016/j.isprsjprs.2022.03.013_b1030) 2018
Krizhevsky (10.1016/j.isprsjprs.2022.03.013_b0455) 2012; 25
Chen (10.1016/j.isprsjprs.2022.03.013_b0135) 2019; 13
Xu (10.1016/j.isprsjprs.2022.03.013_b0945) 2006; 27
Adão (10.1016/j.isprsjprs.2022.03.013_b0025) 2017; 9
10.1016/j.isprsjprs.2022.03.013_b0120
McFeeters (10.1016/j.isprsjprs.2022.03.013_b0635) 1996; 17
Mitkari (10.1016/j.isprsjprs.2022.03.013_b0655) 2017; 10
Zhang (10.1016/j.isprsjprs.2022.03.013_b1060) 2018; 16
Musa (10.1016/j.isprsjprs.2022.03.013_b0675) 2015; 19
10.1016/j.isprsjprs.2022.03.013_b0485
Bao (10.1016/j.isprsjprs.2022.03.013_b0035) 2021; 13
Fu (10.1016/j.isprsjprs.2022.03.013_b0275) 2018; 10
Yan
References_xml – volume: 14
  start-page: 2127
  year: 2021
  end-page: 2135
  ident: b0315
  article-title: Flood extent mapping: an integrated method using deep learning and region growing using uav optical data
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– volume: 11
  start-page: 1925
  year: 2019
  ident: b0570
  article-title: Thick cloud removal in high-resolution satellite images using stepwise radiometric adjustment and residual correction
  publication-title: Remote Sens.
– reference: Zhou, M., Niu, Z., Wang, L., Zhang, Q., Hua, G., 2020. Adversarial ranking attack and defense. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16, Springer. pp. 781–799.
– volume: 16
  start-page: 618
  year: 2018
  end-page: 622
  ident: b0245
  article-title: Water body extraction from very high-resolution remote sensing imagery using deep u-net and a superpixel-based conditional random field model
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 10
  start-page: 2067
  year: 2018
  ident: b0350
  article-title: Automatic mapping of thermokarst landforms from remote sensing images using deep learning: A case study in the northeastern tibetan plateau
  publication-title: Remote Sens.
– volume: 9
  start-page: 144
  year: 2017
  ident: b0970
  article-title: Automated extraction of urban water bodies from zy-3 multi-spectral imagery
  publication-title: Water
– reference: Zhao, C., 2020. A survey on image style transfer approaches using deep learning, in: Journal of Physics: Conference Series, IOP Publishing. p. 012129.
– volume: 179
  start-page: 145
  year: 2021
  end-page: 158
  ident: b0530
  article-title: Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification
  publication-title: ISPRS J. Photogram. Remote Sens.
– reference: Cheng, H.K., Chung, J., Tai, Y.W., Tang, C.K., 2020b. Cascadepsp: toward class-agnostic and very high-resolution segmentation via global and local refinement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8890–8899.
– volume: 47
  start-page: 65
  year: 2008
  end-page: 73
  ident: b0355
  article-title: Flood hazard in hunan province of china: an economic loss analysis
  publication-title: Nat. Hazards
– volume: 186
  start-page: 170
  year: 2022
  end-page: 189
  ident: b0560
  article-title: Dkdfn: Domain knowledge-guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification
  publication-title: ISPRS J. Photogram. Remote Sens.
– volume: 7
  start-page: 12336
  year: 2015
  end-page: 12355
  ident: b0980
  article-title: High-resolution mapping of urban surface water using zy-3 multi-spectral imagery
  publication-title: Remote Sens.
– volume: 24
  start-page: 109
  year: 2011
  end-page: 117
  ident: b0450
  article-title: Efficient inference in fully connected crfs with gaussian edge potentials
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 147
  start-page: 43
  year: 2014
  end-page: 55
  ident: b0910
  article-title: Floodplain inundation and vegetation dynamics in the alligator rivers region (kakadu) of northern Australia assessed using optical and radar remote sensing
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 5275
  year: 2017
  end-page: 5283
  ident: b0655
  article-title: Extraction of glacial lakes in gangotri glacier using object-based image analysis
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– volume: 13
  start-page: 143
  year: 2019
  end-page: 153
  ident: b0135
  article-title: Thick clouds removal from multitemporal zy-3 satellite images using deep learning
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– reference: Yang, J., Zhu, Q., Lv, J., Guan, Q., 2021. Ucwater: Unsupervised content-adaptive water-body extraction framework for high-resolution satellite imagery. In: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, IEEE. pp. 2767–2770.
– volume: 30
  start-page: 1305
  year: 2020
  end-page: 1317
  ident: b1045
  article-title: Dense attention fluid network for salient object detection in optical remote sensing images
  publication-title: IEEE Trans. Image Process.
– reference: Melas-Kyriazi, L., Manrai, A.K., 2021. Pixmatch: Unsupervised domain adaptation via pixelwise consistency training. in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12435–12445.
– volume: 80
  start-page: 939
  year: 2014
  end-page: 952
  ident: b0385
  article-title: A semiautomatic extraction of antarctic lake features using worldview-2 imagery
  publication-title: Photogram. Eng. Remote Sens.
– volume: 140
  start-page: 20
  year: 2018
  end-page: 32
  ident: b0030
  article-title: Beyond rgb: Very high resolution urban remote sensing with multimodal deep networks
  publication-title: ISPRS J. Photogram. Remote Sens.
– volume: 16
  start-page: 1075
  year: 2016
  ident: b0015
  article-title: Identification of water bodies in a landsat 8 oli image using a j48 decision tree
  publication-title: Sensors
– volume: 59
  start-page: 3942
  year: 2020
  end-page: 3955
  ident: b0715
  article-title: River planform extraction from high-resolution sar images via generalized gamma distribution superpixel classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 27
  start-page: 3025
  year: 2006
  end-page: 3033
  ident: b0945
  article-title: Modification of normalised difference water index (ndwi) to enhance open water features in remotely sensed imagery
  publication-title: Int. J. Remote Sens.
– reference: Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J., Lakshminarayanan, B., Snoek, J., 2019. Can you trust your model’s uncertainty? evaluating predictive uncertainty under dataset shift. Adv. Neural Inform. Process. Syst. 32.
– volume: 9
  start-page: 909
  year: 2019
  ident: b0745
  article-title: Review of artificial intelligence adversarial attack and defense technologies
  publication-title: Appl. Sci.
– reference: Chen, W., Jiang, Z., Wang, Z., Cui, K., Qian, X., 2019a. Collaborative global-local networks for memory-efficient segmentation of ultra-high resolution images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8924–8933.
– reference: Li, B., Zhang, H., Xu, F., 2014. Water extraction in high resolution remote sensing image based on hierarchical spectrum and shape features. In: IOP Conference Series: Earth and Environmental Science, IOP Publishing. p. 012123.
– reference: Sherrah, J., 2016. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. arXiv preprint arXiv:1606.02585.
– reference: Nicholas, P., Stacey, S., Tom, H., Dronedeploy segmentation benchmark. https://github.com/dronedeploy/dd-ml-segmentation-benchmark.
– volume: 78
  start-page: 465
  year: 2019
  end-page: 470
  ident: b0585
  article-title: Advanced deep learning techniques for image style transfer: A survey
  publication-title: Signal Process.: Image Commun.
– volume: 17
  start-page: 1662
  year: 2019
  end-page: 1666
  ident: b0370
  article-title: Seeing through the clouds with deepwatermap
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: b0455
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 59
  start-page: 316
  year: 2020
  end-page: 332
  ident: b1040
  article-title: Water body detection in high-resolution sar images with cascaded fully-convolutional network and variable focal loss
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 51
  start-page: 261
  year: 2013
  end-page: 279
  ident: b0265
  article-title: Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art
  publication-title: Adv. Water Resour.
– reference: Robinson, C., Malkin, K., Hu, L., Dilkina, B., Jojic, N., 2020. Weakly supervised semantic segmentation in the 2020 ieee grss data fusion contest. In: IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, IEEE. pp. 7046–7049.
– reference: Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018a. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV), pp. 801–818.
– volume: 158
  start-page: 63
  year: 2019
  end-page: 75
  ident: b0225
  article-title: Multi-modal deep learning for landform recognition
  publication-title: ISPRS J. Photogram. Remote Sens.
– volume: 7
  start-page: 073564
  year: 2013
  ident: b0465
  article-title: Detecting flooded areas with machine learning techniques: case study of the selška sora river flash flood in september 2007
  publication-title: J. Appl. Remote Sens.
– volume: 7
  start-page: 1437
  year: 2015
  end-page: 1455
  ident: b0240
  article-title: Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier–a case of yuyao, china
  publication-title: Water
– volume: 10
  start-page: 1025
  year: 2016
  end-page: 1038
  ident: b0770
  article-title: River extraction from high-resolution sar images combining a structural feature set and mathematical morphology
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– volume: 11
  start-page: 879
  year: 2019
  ident: b0785
  article-title: Inundation extent mapping by synthetic aperture radar: A review
  publication-title: Remote Sens.
– volume: 4
  start-page: 196
  year: 2015
  ident: b0380
  article-title: A review on extraction of lakes from remotely sensed optical satellite data with a special focus on cryospheric lakes
  publication-title: Adv. Remote Sens.
– volume: 103
  start-page: 102499
  year: 2021
  ident: b0405
  article-title: Multi-scale context extractor network for water-body extraction from high-resolution optical remotely sensed images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 250
  start-page: 112045
  year: 2020
  ident: b0525
  article-title: Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning
  publication-title: Remote Sens. Environ.
– volume: 10
  start-page: 939
  year: 2020
  end-page: 945
  ident: b0795
  article-title: Rapid worldwide growth of glacial lakes since 1990
  publication-title: Nat. Clim. Change
– volume: 117
  start-page: 11
  year: 2016
  end-page: 28
  ident: b0145
  article-title: A survey on object detection in optical remote sensing images
  publication-title: ISPRS J. Photogram. Remote Sens.
– volume: 14
  start-page: 116
  year: 2020
  end-page: 126
  ident: b0180
  article-title: Sanet: A sea–land segmentation network via adaptive multiscale feature learning
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– reference: He, J., Deng, Z., Zhou, L., Wang, Y., Qiao, Y., 2019. Adaptive pyramid context network for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7519–7528.
– volume: 14
  start-page: 3120
  year: 2021
  end-page: 3132
  ident: b0500
  article-title: A deep learning method of water body extraction from high resolution remote sensing images with multisensors
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– volume: 59
  start-page: 10590
  year: 2021
  end-page: 10603
  ident: b0565
  article-title: Learning deep cross-modal embedding networks for zero-shot remote sensing image scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 9
  start-page: 560
  year: 2020
  ident: b0730
  article-title: Glacial lakes mapping using multi satellite planetscope imagery and deep learning
  publication-title: ISPRS Int. J. Geo-Inform.
– volume: 13
  start-page: 1912
  year: 2021
  ident: b1070
  article-title: Rich cnn features for water-body segmentation from very high resolution aerial and satellite imagery
  publication-title: Remote Sens.
– volume: 5
  start-page: 117
  year: 2019
  end-page: 150
  ident: b0065
  article-title: Salient object detection: A survey
  publication-title: Comput. Visual Media
– volume: 8
  start-page: 154
  year: 2020
  end-page: 157
  ident: b0990
  article-title: 2020 ieee grss data fusion contest: Global land cover mapping with weak supervision [technical committees]
  publication-title: IEEE Geosci. Remote Sens. Magaz.
– volume: 19
  start-page: 3755
  year: 2015
  end-page: 3769
  ident: b0675
  article-title: A review of applications of satellite sar, optical, altimetry and dem data for surface water modelling, mapping and parameter estimation
  publication-title: Hydrol. Earth Syst. Sci.
– volume: 4
  start-page: 77
  year: 2020
  ident: b0445
  article-title: Using uav to capture and record torrent bed and banks, flood debris, and riparian areas
  publication-title: Drones
– volume: 11
  start-page: 245
  year: 2019
  ident: b0735
  article-title: Fusion feature multi-scale pooling for water body extraction from optical panchromatic images
  publication-title: Remote Sens.
– reference: Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
– reference: Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881–2890.
– reference: Fu, L., Zhou, C., Guo, Q., Juefei-Xu, F., Yu, H., Feng, W., Liu, Y., Wang, S., 2021. Auto-exposure fusion for single-image shadow removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10571–10580.
– volume: 10
  start-page: 964
  year: 2018
  ident: b0775
  article-title: Performance evaluation of single-label and multi-label remote sensing image retrieval using a dense labeling dataset
  publication-title: Remote Sens.
– volume: 243
  start-page: 108469
  year: 2022
  ident: b0540
  article-title: Combining deep learning and ontology reasoning for remote sensing image semantic segmentation
  publication-title: Knowl.-Based Syst.
– volume: 61
  start-page: 399
  year: 1997
  end-page: 409
  ident: b0270
  article-title: Decision tree classification of land cover from remotely sensed data
  publication-title: Remote Sens. Environ.
– reference: Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K., 2017b. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1492–1500.
– volume: 67
  start-page: 94
  year: 2021
  end-page: 115
  ident: b0535
  article-title: Image retrieval from remote sensing big data: A survey
  publication-title: Inform. Fusion
– volume: 17
  start-page: 1425
  year: 1996
  end-page: 1432
  ident: b0635
  article-title: The use of the normalized difference water index (ndwi) in the delineation of open water features
  publication-title: Int. J. Remote Sens.
– volume: 10
  start-page: 585
  year: 2018
  ident: b0125
  article-title: Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning
  publication-title: Water
– volume: 42
  start-page: 1801
  year: 2021
  end-page: 1822
  ident: b0995
  article-title: A self-attention capsule feature pyramid network for water body extraction from remote sensing imagery
  publication-title: Int. J. Remote Sens.
– volume: 280
  start-page: 111676
  year: 2021
  ident: b0620
  article-title: Smart solutions for smart cities: Urban wetland mapping using very-high resolution satellite imagery and airborne lidar data in the city of st. john’s, nl, canada
  publication-title: J. Environ. Manage.
– year: 2021
  ident: b0895
  article-title: Salient object detection in the deep learning era: An in-depth survey
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., Ayed, I.B., 2019. Boundary loss for highly unbalanced segmentation. in: International conference on medical imaging with deep learning, PMLR. pp. 285–296.
– volume: 9
  start-page: 189
  year: 2020
  ident: b0305
  article-title: A multi-scale water extraction convolutional neural network (mwen) method for gaofen-1 remote sensing images
  publication-title: ISPRS Int. J. Geo-Inform.
– volume: 12
  start-page: 207
  year: 2020
  ident: b0890
  article-title: Weakly supervised deep learning for segmentation of remote sensing imagery
  publication-title: Remote Sens.
– reference: Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132–7141.
– reference: Bermudez, J., Happ, P., Oliveira, D., Feitosa, R., 2018. Sar to optical image synthesis for cloud removal with generative adversarial networks. ISPRS Annals Photogram., Remote Sens. Spatial Inform. Sci., 4.
– volume: 13
  start-page: 7547
  year: 2021
  ident: b0670
  article-title: Uavs in disaster management: Application of integrated aerial imagery and convolutional neural network for flood detection
  publication-title: Sustainability
– volume: 56
  start-page: 1144
  year: 2017
  end-page: 1158
  ident: b0080
  article-title: Multilabel remote sensing image retrieval using a semisupervised graph-theoretic method
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 4
  start-page: 1220
  year: 2021
  end-page: 1242
  ident: b0665
  article-title: Application of deep learning on uav-based aerial images for flood detection
  publication-title: Smart Cities
– reference: Chen, C.F., Fan, Q., Panda, R., 2021a. Crossvit: Cross-attention multi-scale vision transformer for image classification. arXiv preprint arXiv:2103.14899.
– volume: 169
  start-page: 166
  year: 2020
  end-page: 179
  ident: b0365
  article-title: A deep learning framework for matching of sar and optical imagery
  publication-title: ISPRS J. Photogram. Remote Sens.
– reference: Zhu, F., Zhu, Y., Zhang, L., Wu, C., Fu, Y., Li, M., 2021. A unified efficient pyramid transformer for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2667–2677.
– volume: 20
  start-page: 397
  year: 2020
  ident: b0805
  article-title: Intelligent object recognition of urban water bodies based on deep learning for multi-source and multi-temporal high spatial resolution remote sensing imagery
  publication-title: Sensors
– year: 2021
  ident: b0965
  article-title: Cmt: Cross mean teacher unsupervised domain adaptation for vhr image semantic segmentation
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: Zhu, J.Y., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp. 2223–2232.
– volume: 55
  start-page: 1043
  year: 2012
  end-page: 1051
  ident: b0490
  article-title: Current issues in high-resolution earth observation technology
  publication-title: Sci. China Earth Sci.
– volume: 6
  start-page: 11791
  year: 2014
  end-page: 11809
  ident: b0845
  article-title: The strengths and limitations in using the daily modis open water likelihood algorithm for identifying flood events
  publication-title: Remote Sens.
– reference: Zhang, Y., Liu, Z., Zhang, J., Yan, H., 2010. Water extraction from high resolution satellite image based on the fast matching level set method. In: International Conference on Geo-spatial Solutions for Emergency Management, Citeseer. p. C4.
– volume: 36
  start-page: 451
  year: 2003
  end-page: 461
  ident: b0580
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recogn.
– volume: 540
  start-page: 418
  year: 2016
  end-page: 422
  ident: b0725
  article-title: High-resolution mapping of global surface water and its long-term changes
  publication-title: Nature
– reference: Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D., Raskar, R., 2018. Deepglobe 2018: A challenge to parse the earth through satellite images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 172–181.
– reference: Ding, L., Lin, D., Lin, S., Zhang, J., Cui, X., Wang, Y., Tang, H., Bruzzone, L., 2021. Looking outside the window: Wide-context transformer for the semantic segmentation of high-resolution remote sensing images. arXiv preprint arXiv:2106.15754.
– reference: Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M., 2019. Basnet: Boundary-aware salient object detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7479–7489.
– reference: Tarvainen, A., Valpola, H., 2017. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. arXiv preprint arXiv:1703.01780.
– volume: 131
  start-page: 148
  year: 2015
  end-page: 157
  ident: b1025
  article-title: An inventory of glacial lakes in the third pole region and their changes in response to global warming
  publication-title: Global Planet. Change
– volume: 10
  start-page: 2619
  year: 2011
  end-page: 2624
  ident: b0310
  article-title: Water body extraction methods study based on rs and gis
  publication-title: Proc. Environ. Sci.
– volume: 105
  start-page: 102568
  year: 2021
  ident: b0010
  article-title: Ucl: Unsupervised curriculum learning for water body classification from remote sensing imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– reference: Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A., 2017a. Adversarial examples for semantic segmentation and object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1369–1378.
– volume: 9
  start-page: 925
  year: 2016
  end-page: 941
  ident: b0930
  article-title: A novel water index for urban high-resolution eight-band worldview-2 imagery
  publication-title: Int. J. Digital Earth
– reference: Wang, H., Wu, X., Huang, Z., Xing, E.P., 2020a. High-frequency component helps explain the generalization of convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8684–8694.
– volume: 13
  start-page: 3465
  year: 2021
  ident: b0035
  article-title: Water extraction in sar images using features analysis and dual-threshold graph cut model
  publication-title: Remote Sens.
– reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778.
– reference: Komodakis, N., Gidaris, S., 2018. Unsupervised representation learning by predicting image rotations. in: International Conference on Learning Representations (ICLR).
– volume: 146
  start-page: 182
  year: 2018
  end-page: 196
  ident: b0550
  article-title: Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images
  publication-title: ISPRS J. Photogram. Remote Sens.
– volume: 15
  start-page: 602
  year: 2018
  end-page: 606
  ident: b0650
  article-title: Automatic water-body segmentation from high-resolution satellite images via deep networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 18
  start-page: 2580
  year: 2018
  ident: b0020
  article-title: Evaluation of water indices for surface water extraction in a landsat 8 scene of Nepal
  publication-title: Sensors
– reference: Tong, X.Y., Xia, G.S., Lu, Q., Shen, H., Li, S., You, S., Zhang, L., 2018. Learning transferable deep models for land-use classification with high-resolution remote sensing images. arXiv preprint arXiv:1807.05713.
– reference: Gao, H., Wang, L., Jing, L., Xu, J., 2016. An effective modified water extraction method for landsat-8 oli imagery of mountainous plateau regions. In: IOP conference series: earth and environmental science, IOP Publishing. p. 012010.
– volume: 13
  start-page: 3122
  year: 2021
  ident: b0185
  article-title: Msresnet: Multiscale residual network via self-supervised learning for water-body detection in remote sensing imagery
  publication-title: Remote Sens.
– volume: 13
  start-page: 318
  year: 2020
  end-page: 328
  ident: b0780
  article-title: Multilabel remote sensing image retrieval based on fully convolutional network
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– reference: Yuan, J., Deng, Z., Wang, S., Luo, Z., 2020a. Multi receptive field network for semantic segmentation. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE. pp. 1883–1892.
– reference: Borse, S., Wang, Y., Zhang, Y., Porikli, F., 2021. Inverseform: A loss function for structured boundary-aware segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5901–5911.
– reference: Jung, H., Choi, H.S., Kang, M., 2021. Boundary enhancement semantic segmentation for building extraction from remote sensed image. IEEE Trans. Geosci. Remote Sens.
– reference: Schmitt, M., Prexl, J., Ebel, P., Liebel, L., Zhu, X.X., 2020. Weakly supervised semantic segmentation of satellite images for land cover mapping–challenges and opportunities. arXiv preprint arXiv:2002.08254.
– volume: 6
  start-page: 232
  year: 2019
  ident: b0660
  article-title: Global observations of fine-scale ocean surface topography with the surface water and ocean topography (swot) mission
  publication-title: Front. Mar. Sci.
– volume: 237
  start-page: 111582
  year: 2020
  ident: b0300
  article-title: Flood mapping under vegetation using single sar acquisitions
  publication-title: Remote Sens. Environ.
– volume: 56
  start-page: 333
  year: 2018
  end-page: 360
  ident: b0345
  article-title: Detecting, extracting, and monitoring surface water from space using optical sensors: A review
  publication-title: Rev. Geophys.
– reference: Chen, Z., Zhou, H., Xie, X., Lai, J., 2019d. Contour loss: Boundary-aware learning for salient object segmentation. arXiv preprint arXiv:1908.01975.
– volume: 6
  start-page: 1
  year: 2014
  end-page: 15
  ident: b0685
  article-title: Uav for 3d mapping applications: a review
  publication-title: Appl. Geomat.
– reference: Khurshid, M.H., Khan, M.F., 2012. River extraction from high resolution satellite images. in: 2012 5th International Congress on Image and Signal Processing, IEEE. pp. 697–700.
– volume: 24
  start-page: 108
  year: 2013
  end-page: 119
  ident: b0435
  article-title: Advances in thermokarst research
  publication-title: Permafrost Periglac. Process.
– volume: 103
  start-page: 102472
  year: 2021
  ident: b0605
  article-title: An applicable and automatic method for earth surface water mapping based on multispectral images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 12
  start-page: 1195
  year: 2020
  ident: b1055
  article-title: An improved boundary-aware perceptual loss for building extraction from vhr images
  publication-title: Remote Sens.
– volume: 140
  start-page: 23
  year: 2014
  end-page: 35
  ident: b0255
  article-title: Automated water extraction index: A new technique for surface water mapping using landsat imagery
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 14853
  year: 2015
  end-page: 14875
  ident: b0625
  article-title: Detection and delineation of localized flooding from worldview-2 multispectral data
  publication-title: Remote Sens.
– volume: 52
  start-page: 7708
  year: 2014
  end-page: 7720
  ident: b0860
  article-title: Semisupervised manifold alignment of multimodal remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2021
  ident: b0515
  article-title: Geographical knowledge-driven representation learning for remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2018
  ident: b1030
  article-title: mixup: Beyond empirical risk minimization
  publication-title: International Conference on Learning Representations
– reference: Zhao, K., Kang, J., Jung, J., Sohn, G., 2018. Building extraction from satellite images using mask r-cnn with building boundary regularization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 247–251.
– reference: Lv, W., Yu, Q., Yu, W., 2010. Water extraction in sar images using glcm and support vector machine. In: IEEE 10th international conference on signal processing proceedings.
– volume: 14
  start-page: 8922
  year: 2021
  end-page: 8940
  ident: b0820
  article-title: Automated high-resolution earth observation image interpretation: Outcome of the 2020 gaofen challenge
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– reference: Bokhovkin, A., Burnaev, E., 2019. Boundary loss for remote sensing imagery semantic segmentation. In: International Symposium on Neural Networks, Springer. pp. 388–401.
– reference: Yuan, Y., Chen, X., Wang, J., 2020b. Object-contextual representations for semantic segmentation. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16, Springer. pp. 173–190.
– reference: Li, S., Wang, S., Zheng, Z., Wan, D., Feng, J., 2016. A new algorithm for water information extraction from high resolution remote sensing imagery. In: 2016 IEEE International Conference on Image Processing (ICIP), IEEE. pp. 4359–4363.
– reference: Kim, M., Byun, H., 2020. Learning texture invariant representation for domain adaptation of semantic segmentation. in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12975–12984.
– reference: Chen, X., Qi, D., Shen, J., 2019b. Boundary-aware network for fast and high-accuracy portrait segmentation. arXiv preprint arXiv:1901.03814.
– reference: Wang, J., Zheng, Z., Ma, A., Lu, X., Zhong, Y., 2021a. LoveDA: A remote sensing land-cover dataset for domain adaptive semantic segmentation. In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2). URL https://openreview.net/forum?id=bLBIbVaGDu.
– volume: 11
  start-page: 779
  year: 2019
  ident: b0040
  article-title: A novel fully automated mapping of the flood extent on sar images using a supervised classifier
  publication-title: Remote Sens.
– volume: 13
  start-page: 5398
  year: 2020
  end-page: 5413
  ident: b0815
  article-title: BasΘ{4} net: Boundary-aware semi-supervised semantic segmentation network for very high resolution remote sensing images
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– reference: Takikawa, T., Acuna, D., Jampani, V., Fidler, S., 2019. Gated-scnn: Gated shape cnns for semantic segmentation. in: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5229–5238.
– reference: Li, Q., Yang, W., Liu, W., Yu, Y., He, S., 2021d. From contexts to locality: Ultra-high resolution image segmentation via locality-aware contextual correlation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7252–7261.
– volume: 10
  start-page: 1687
  year: 2017
  end-page: 1700
  ident: b0840
  article-title: Mapping thermokarst lakes on the qinghai–tibet plateau using nonlocal active contours in chinese gaofen-2 multispectral imagery
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– volume: 14
  start-page: 7422
  year: 2021
  end-page: 7434
  ident: b1005
  article-title: Deep-learning-based multispectral satellite image segmentation for water body detection
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– volume: 57
  start-page: 574
  year: 2018
  end-page: 586
  ident: b0390
  article-title: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 4
  start-page: 125
  year: 2015
  end-page: 132
  ident: b0375
  article-title: A rapid extraction of water body features from antarctic coastal oasis using very high-resolution satellite remote sensing data
  publication-title: Aquatic Proc.
– volume: 7
  start-page: 155787
  year: 2019
  end-page: 155804
  ident: b0575
  article-title: Multiscale features supported deeplabv3+ optimization scheme for accurate water semantic segmentation
  publication-title: IEEE Access
– volume: 32
  start-page: 8026
  year: 2019
  end-page: 8037
  ident: b0720
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inform. Process. Syst.
– reference: Volpi, M., Ferrari, V., 2015. Semantic segmentation of urban scenes by learning local class interactions. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–9.
– volume: 162
  start-page: 148
  year: 2020
  end-page: 160
  ident: b1050
  article-title: Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning
  publication-title: ISPRS J. Photogram. Remote Sens.
– volume: 178
  start-page: 345
  year: 2021
  end-page: 365
  ident: b0090
  article-title: Urban road mapping based on an end-to-end road vectorization mapping network framework
  publication-title: ISPRS J. Photogram. Remote Sens.
– volume: 13
  start-page: 3735
  year: 2020
  end-page: 3756
  ident: b0155
  article-title: Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– reference: Liu, Y., Piramanayagam, S., Monteiro, S.T., Saber, E., 2017. Dense semantic labeling of very-high-resolution aerial imagery and lidar with fully-convolutional neural networks and higher-order crfs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 76–85.
– volume: 51
  start-page: 1756
  year: 2021
  end-page: 1768
  ident: b0555
  article-title: Error-tolerant deep learning for remote sensing image scene classification
  publication-title: IEEE Trans. Cybernet.
– volume: 8
  start-page: 64
  year: 2010
  end-page: 66
  ident: b0950
  article-title: Extraction techniques of urban water bodies based on object-oriented
  publication-title: Geospatial Inform.
– volume: 85
  start-page: 32
  year: 2013
  end-page: 43
  ident: b0150
  article-title: Object detection in remote sensing imagery using a discriminatively trained mixture model
  publication-title: ISPRS J. Photogram. Remote Sens.
– volume: 6
  start-page: 810
  year: 2016
  end-page: 813
  ident: b0210
  article-title: Earth’s surface water change over the past 30 years
  publication-title: Nat. Clim. Change
– volume: 175
  start-page: 20
  year: 2021
  end-page: 33
  ident: b0545
  article-title: Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation
  publication-title: ISPRS J. Photogram. Remote Sens.
– volume: 32
  start-page: 4545
  year: 2011
  end-page: 4569
  ident: b0835
  article-title: Landsat mapping of annual inundation (1979–2006) of the macquarie marshes in semi-arid australia
  publication-title: Int. J. Remote Sens.
– volume: 40
  start-page: 834
  year: 2017
  end-page: 848
  ident: b0095
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Ma, C., Rao, Y., Cheng, Y., Chen, C., Lu, J., Zhou, J., 2020. Structure-preserving super resolution with gradient guidance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7769–7778.
– volume: 10
  start-page: 144
  year: 2018
  ident: b0960
  article-title: Building extraction in very high resolution remote sensing imagery using deep learning and guided filters
  publication-title: Remote Sens.
– year: 2021
  ident: b0695
  article-title: Boundary-aware dual stream network for vhr remote sensing images semantic segmentation
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– reference: Dong, S., Pang, L., Zhuang, Y., Liu, W., Yang, Z., Long, T., 2019. Optical remote sensing water-land segmentation representation based on proposed sns-cnn network. In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE. pp. 3895–3898.
– volume: 175
  start-page: 167
  year: 2016
  end-page: 182
  ident: b0260
  article-title: Comparing landsat water index methods for automated water classification in eastern australia
  publication-title: Remote Sens. Environ.
– volume: 12
  start-page: 1543
  year: 2020
  ident: b0195
  article-title: Accounting for uncertainty and reconstruction of flooding patterns based on multi-satellite imagery and support vector machine technique: A case study of can tho city, Vietnam
  publication-title: Water
– volume: 11
  start-page: 10062
  year: 2021
  ident: b0480
  article-title: Comparative analysis of machine learning algorithms in automatic identification and extraction of water boundaries
  publication-title: Appl. Sci.
– volume: 13
  start-page: 3165
  year: 2021
  ident: b0520
  article-title: Urban water extraction with uav high-resolution remote sensing data based on an improved u-net model
  publication-title: Remote Sens.
– volume: 13
  start-page: 865
  year: 2021
  ident: b0495
  article-title: Multitemporal water extraction of dongting lake and poyang lake based on an automatic water extraction and dynamic monitoring framework
  publication-title: Remote Sens.
– volume: 21
  start-page: 3879
  year: 2017
  end-page: 3914
  ident: b0630
  article-title: The future of earth observation in hydrology
  publication-title: Hydrol. Earth Syst. Sci.
– reference: Chu, Z., Tian, T., Feng, R., Wang, L., 2019. Sea-land segmentation with res-unet and fully connected crf. In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE. pp. 3840–3843.
– reference: Lee, D.H., et al., 2013. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on challenges in representation learning, ICML, p. 896.
– reference: Boguszewski, A., Batorski, D., Ziemba-Jankowska, N., Dziedzic, T., Zambrzycka, A., 2021. Landcover. ai: Dataset for automatic mapping of buildings, woodlands, water and roads from aerial imagery. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1102–1110.
– volume: 37
  start-page: 1904
  year: 2015
  end-page: 1916
  ident: b0325
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: Chen, L.C., Papandreou, G., Schroff, F., Adam, H., 2017b. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587.
– reference: Schmarje, L., Santarossa, M., Schröder, S.M., Koch, R., 2020. A survey on semi-, self-and unsupervised techniques in image classification. arXiv preprint arXiv:2002.08721.
– volume: 7
  start-page: 10347
  year: 2015
  end-page: 10363
  ident: b0075
  article-title: Image fusion-based change detection for flood extent extraction using bi-temporal very high-resolution satellite images
  publication-title: Remote Sens.
– reference: Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440.
– reference: Cho, S., Jun, T.J., Oh, B., Kim, D., 2020. Dapas: Denoising autoencoder to prevent adversarial attack in semantic segmentation. In: 2020 International Joint Conference on Neural Networks (IJCNN), IEEE. pp. 1–8.
– volume: 588
  start-page: 125092
  year: 2020
  ident: b0130
  article-title: A novel water body extraction neural network (wbe-nn) for optical high-resolution multispectral imagery
  publication-title: J. Hydrol.
– volume: 13
  start-page: 119
  year: 2021
  ident: b0700
  article-title: Combining deep semantic segmentation network and graph convolutional neural network for semantic segmentation of remote sensing imagery
  publication-title: Remote Sens.
– volume: 13
  start-page: 692
  year: 2021
  ident: b0395
  article-title: Boundary-aware refined network for automatic building extraction in very high-resolution urban aerial images
  publication-title: Remote Sens.
– volume: 9
  start-page: 1110
  year: 2017
  ident: b0025
  article-title: Hyperspectral imaging: A review on uav-based sensors, data processing and applications for agriculture and forestry
  publication-title: Remote Sens.
– volume: 58
  start-page: 5367
  year: 2020
  end-page: 5376
  ident: b0205
  article-title: Semantic segmentation of large-size vhr remote sensing images using a two-stage multiscale training architecture
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2021
  ident: b0915
  article-title: Graph convolutional networks for the automated production of building vector maps from aerial images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 7
  start-page: 14055
  year: 2015
  end-page: 14078
  ident: b1020
  article-title: A natural-rule-based-connection (nrbc) method for river network extraction from high-resolution imagery
  publication-title: Remote Sens.
– volume: 12
  start-page: 4140
  year: 2020
  ident: b0905
  article-title: Mslwenet: A novel deep learning network for lake water body extraction of google remote sensing images
  publication-title: Remote Sens.
– volume: 3
  start-page: 265
  year: 2010
  end-page: 384
  ident: b0680
  article-title: Water-body area extraction from high resolution satellite images-an introduction, review, and comparison
  publication-title: Int. J. Image Process. (IJIP)
– reference: Wang, X., Xie, H., 2018. A review on applications of remote sensing and geographic information systems (gis) in water resources and flood risk management.
– start-page: 1
  year: 2021
  end-page: 24
  ident: b0005
  article-title: Roadvecnet: a new approach for simultaneous road network segmentation and vectorization from aerial and google earth imagery in a complex urban set-up
  publication-title: GIScience Remote Sens.
– volume: 54
  start-page: 3660
  year: 2016
  end-page: 3671
  ident: b0985
  article-title: Semantic annotation of high-resolution satellite images via weakly supervised learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 135
  start-page: 25
  year: 2013
  end-page: 35
  ident: b0800
  article-title: Modeling and analysis of lake water storage changes on the tibetan plateau using multi-mission satellite data
  publication-title: Remote Sens. Environ.
– year: 2021
  ident: b0470
  article-title: Physics-based shadow image decomposition for shadow removal
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 59
  start-page: 1604
  year: 2020
  end-page: 1617
  ident: b0955
  article-title: Assessing the threat of adversarial examples on deep neural networks for remote sensing scene classification: Attacks and defenses
  publication-title: IEEE Trans. Geosci. Remote Sens.
– reference: Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B., 2021. Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022.
– volume: 8
  start-page: 2097
  year: 2015
  end-page: 2110
  ident: b0360
  article-title: Combining pixel-and object-based machine learning for identification of water-body types from urban high-resolution remote-sensing imagery
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– volume: 9
  start-page: 256
  year: 2020
  ident: b0920
  article-title: Water areas segmentation from remote sensing images using a separable residual segnet network
  publication-title: ISPRS Int. J. Geo-Inform.
– reference: Hou, Q., Zhang, L., Cheng, M.M., Feng, J., 2020. Strip pooling: Rethinking spatial pooling for scene parsing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4003–4012.
– reference: Chen, X., He, K., 2021. Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758.
– volume: 16
  start-page: 927
  year: 2018
  end-page: 931
  ident: b1060
  article-title: Automatic and unsupervised water body extraction based on spectral-spatial features using gf-1 satellite imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 104
  start-page: 2207
  year: 2016
  end-page: 2219
  ident: b0165
  article-title: Big data for remote sensing: Challenges and opportunities
  publication-title: Proc. IEEE
– reference: Zheng, Q., Qiao, X., Cao, Y., Lau, R.W., 2019. Distraction-aware shadow detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5167–5176.
– reference: Lafferty, J., McCallum, A., Pereira, F.C., 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data.
– volume: 19
  start-page: 1486
  year: 2019
  ident: b0290
  article-title: Deep convolutional neural network for flood extent mapping using unmanned aerial vehicles data
  publication-title: Sensors
– volume: 10
  start-page: 743
  year: 2018
  ident: b0710
  article-title: Semantic labeling of high resolution aerial imagery and lidar data with fine segmentation network
  publication-title: Remote Sens.
– reference: Dubes, R.C., Jain, A.K., Nadabar, S.G., Chen, C.C., 1990. Mrf model-based algorithms for image segmentation. In: [1990] Proceedings. 10th International Conference on Pattern Recognition, IEEE. pp. 808–814.
– reference: Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller, J., Manmatha, R., et al., 2020a. Resnest: Split-attention networks. arXiv preprint arXiv:2004.08955.
– volume: 30
  start-page: 2805
  year: 2019
  end-page: 2824
  ident: b1010
  article-title: Adversarial examples: Attacks and defenses for deep learning
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 107
  start-page: 13
  year: 2013
  end-page: 24
  ident: b0645
  article-title: Spatio-temporal development of high-mountain lakes in the headwaters of the amu darya river (central asia)
  publication-title: Global Planet. Change
– volume: 10
  start-page: 1970
  year: 2018
  ident: b0275
  article-title: Wsf-net: Weakly supervised feature-fusion network for binary segmentation in remote sensing image
  publication-title: Remote Sens.
– volume: 7
  start-page: W2
  year: 2013
  ident: b0810
  article-title: An automatic integrated image segmentation, registration and change detection method for water-body extraction using hsr images and gis data
  publication-title: Int. Arch. Photogram., Remote Sens. Spatial Inform. Sci.
– volume: 33
  start-page: 145
  year: 2007
  end-page: 151
  ident: b0295
  article-title: A review of hyperspectral remote sensing and its application in vegetation and water resource studies
  publication-title: Water Sa
– reference: Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al., 2020. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.
– volume: 120
  start-page: 1
  year: 2016
  end-page: 12
  ident: b0855
  article-title: Multi-temporal and multi-source remote sensing image classification by nonlinear relative normalization
  publication-title: ISPRS J. Photogram. Remote Sens.
– reference: Klemenjak, S., Waske, B., Valero, S., Chanussot, J., 2012. Unsupervised river detection in rapideye data. in: 2012 IEEE International Geoscience and Remote Sensing Symposium, IEEE. pp. 6860–6863.
– reference: Vörösmarty, C.J., Green, P., Salisbury, J., Lammers, R.B., 2000. Global water resources: vulnerability from climate change and population growth. science 289, 284–288.
– start-page: 416
  year: 2016
  end-page: 423
  ident: b0250
  article-title: A boosting-based approach for remote sensing multimodal image classification
  publication-title: 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI)
– volume: 6
  start-page: 1
  year: 2020
  end-page: 23
  ident: b0050
  article-title: Surface water detection and delineation using remote sensing images: A review of methods and algorithms
  publication-title: Sustain. Water Resour. Manage.
– volume: 43
  start-page: 3349
  year: 2020
  end-page: 3364
  ident: b0880
  article-title: Deep high-resolution representation learning for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 17
  start-page: 686
  year: 2019
  end-page: 690
  ident: b0230
  article-title: Multiscale refinement network for water-body segmentation in high-resolution satellite imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 42
  start-page: 153
  year: 2019
  end-page: 160
  ident: b0760
  article-title: Sen12ms-a curated dataset of georeferenced multi-spectral sentinel-1/2 imagery for deep learning and data fusion
  publication-title: ISPRS Annals Photogram., Remote Sens. Spatial Inform. Sci.
– volume: 10
  start-page: 1704
  year: 2018
  ident: b0925
  article-title: Two-step urban water index (tsuwi): A new technique for high-resolution mapping of urban surface water
  publication-title: Remote Sens.
– reference: Zhou, Y., Luo, J., Shen, Z., Cheng, X., Hu, X., 2012. Adaptive extraction of water in urban areas based on local iteration using high-resolution multi-spectral image. In: 2012 IEEE International Geoscience and Remote Sensing Symposium, Ieee. pp. 6024–6027.
– volume: 104
  start-page: 2207
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.03.013_b0165
  article-title: Big data for remote sensing: Challenges and opportunities
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2016.2598228
– volume: 12
  start-page: 1195
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b1055
  article-title: An improved boundary-aware perceptual loss for building extraction from vhr images
  publication-title: Remote Sens.
  doi: 10.3390/rs12071195
– volume: 103
  start-page: 102472
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0605
  article-title: An applicable and automatic method for earth surface water mapping based on multispectral images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2021.102472
– ident: 10.1016/j.isprsjprs.2022.03.013_b0505
  doi: 10.1109/ICCV48922.2021.00716
– ident: 10.1016/j.isprsjprs.2022.03.013_b0045
  doi: 10.5194/isprs-annals-IV-1-5-2018
– volume: 13
  start-page: 7547
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0670
  article-title: Uavs in disaster management: Application of integrated aerial imagery and convolutional neural network for flood detection
  publication-title: Sustainability
  doi: 10.3390/su13147547
– ident: 10.1016/j.isprsjprs.2022.03.013_b0875
  doi: 10.1109/CVPR42600.2020.00871
– year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0895
  article-title: Salient object detection in the deep learning era: An in-depth survey
– ident: 10.1016/j.isprsjprs.2022.03.013_b0400
  doi: 10.1109/TGRS.2021.3108781
– volume: 9
  start-page: 256
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0920
  article-title: Water areas segmentation from remote sensing images using a separable residual segnet network
  publication-title: ISPRS Int. J. Geo-Inform.
  doi: 10.3390/ijgi9040256
– volume: 10
  start-page: 5275
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.03.013_b0655
  article-title: Extraction of glacial lakes in gangotri glacier using object-based image analysis
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
– ident: 10.1016/j.isprsjprs.2022.03.013_b1065
– volume: 14
  start-page: 8922
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0820
  article-title: Automated high-resolution earth observation image interpretation: Outcome of the 2020 gaofen challenge
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2021.3106941
– volume: 10
  start-page: 1025
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.03.013_b0770
  article-title: River extraction from high-resolution sar images combining a structural feature set and mathematical morphology
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2016.2609804
– ident: 10.1016/j.isprsjprs.2022.03.013_b0610
– ident: 10.1016/j.isprsjprs.2022.03.013_b0765
– ident: 10.1016/j.isprsjprs.2022.03.013_b0215
  doi: 10.1109/IGARSS.2019.8898367
– year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0965
  article-title: Cmt: Cross mean teacher unsupervised domain adaptation for vhr image semantic segmentation
– volume: 10
  start-page: 585
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.03.013_b0125
  article-title: Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning
  publication-title: Water
  doi: 10.3390/w10050585
– volume: 59
  start-page: 10590
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0565
  article-title: Learning deep cross-modal embedding networks for zero-shot remote sensing image scene classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3047447
– ident: 10.1016/j.isprsjprs.2022.03.013_b0140
– ident: 10.1016/j.isprsjprs.2022.03.013_b0340
  doi: 10.1109/CVPR.2018.00745
– volume: 178
  start-page: 345
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0090
  article-title: Urban road mapping based on an end-to-end road vectorization mapping network framework
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.05.016
– ident: 10.1016/j.isprsjprs.2022.03.013_b1090
  doi: 10.1109/CVPR.2019.00531
– ident: 10.1016/j.isprsjprs.2022.03.013_b0940
  doi: 10.1109/CVPR.2017.634
– volume: 27
  start-page: 3025
  year: 2006
  ident: 10.1016/j.isprsjprs.2022.03.013_b0945
  article-title: Modification of normalised difference water index (ndwi) to enhance open water features in remotely sensed imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600589179
– volume: 7
  start-page: 073564
  year: 2013
  ident: 10.1016/j.isprsjprs.2022.03.013_b0465
  article-title: Detecting flooded areas with machine learning techniques: case study of the selška sora river flash flood in september 2007
  publication-title: J. Appl. Remote Sens.
  doi: 10.1117/1.JRS.7.073564
– ident: 10.1016/j.isprsjprs.2022.03.013_b0885
– start-page: 416
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.03.013_b0250
  article-title: A boosting-based approach for remote sensing multimodal image classification
– ident: 10.1016/j.isprsjprs.2022.03.013_b0285
  doi: 10.1088/1755-1315/34/1/012010
– volume: 10
  start-page: 2619
  year: 2011
  ident: 10.1016/j.isprsjprs.2022.03.013_b0310
  article-title: Water body extraction methods study based on rs and gis
  publication-title: Proc. Environ. Sci.
  doi: 10.1016/j.proenv.2011.09.407
– ident: 10.1016/j.isprsjprs.2022.03.013_b1035
– volume: 175
  start-page: 167
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.03.013_b0260
  article-title: Comparing landsat water index methods for automated water classification in eastern australia
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.12.055
– ident: 10.1016/j.isprsjprs.2022.03.013_b0595
  doi: 10.1109/ICCV48922.2021.00986
– volume: 40
  start-page: 834
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.03.013_b0095
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– volume: 43
  start-page: 3349
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0880
  article-title: Deep high-resolution representation learning for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2983686
– volume: 6
  start-page: 232
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.03.013_b0660
  article-title: Global observations of fine-scale ocean surface topography with the surface water and ocean topography (swot) mission
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2019.00232
– ident: 10.1016/j.isprsjprs.2022.03.013_b0510
  doi: 10.1109/ICIP.2016.7533183
– volume: 250
  start-page: 112045
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0525
  article-title: Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112045
– ident: 10.1016/j.isprsjprs.2022.03.013_b0975
  doi: 10.1109/IGARSS47720.2021.9553270
– volume: 135
  start-page: 25
  year: 2013
  ident: 10.1016/j.isprsjprs.2022.03.013_b0800
  article-title: Modeling and analysis of lake water storage changes on the tibetan plateau using multi-mission satellite data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.03.013
– ident: 10.1016/j.isprsjprs.2022.03.013_b0410
– ident: 10.1016/j.isprsjprs.2022.03.013_b0640
  doi: 10.1109/CVPR46437.2021.01225
– volume: 14
  start-page: 116
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0180
  article-title: Sanet: A sea–land segmentation network via adaptive multiscale feature learning
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2020.3040176
– volume: 11
  start-page: 879
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.03.013_b0785
  article-title: Inundation extent mapping by synthetic aperture radar: A review
  publication-title: Remote Sens.
  doi: 10.3390/rs11070879
– volume: 8
  start-page: 64
  year: 2010
  ident: 10.1016/j.isprsjprs.2022.03.013_b0950
  article-title: Extraction techniques of urban water bodies based on object-oriented
  publication-title: Geospatial Inform.
– volume: 13
  start-page: 119
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0700
  article-title: Combining deep semantic segmentation network and graph convolutional neural network for semantic segmentation of remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs13010119
– volume: 47
  start-page: 65
  year: 2008
  ident: 10.1016/j.isprsjprs.2022.03.013_b0355
  article-title: Flood hazard in hunan province of china: an economic loss analysis
  publication-title: Nat. Hazards
  doi: 10.1007/s11069-007-9197-z
– ident: 10.1016/j.isprsjprs.2022.03.013_b0235
  doi: 10.1109/ICPR.1990.118221
– ident: 10.1016/j.isprsjprs.2022.03.013_b0280
  doi: 10.1109/CVPR46437.2021.01043
– volume: 14
  start-page: 2127
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0315
  article-title: Flood extent mapping: an integrated method using deep learning and region growing using uav optical data
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2021.3051873
– volume: 13
  start-page: 1912
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b1070
  article-title: Rich cnn features for water-body segmentation from very high resolution aerial and satellite imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs13101912
– volume: 15
  start-page: 602
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.03.013_b0650
  article-title: Automatic water-body segmentation from high-resolution satellite images via deep networks
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2794545
– volume: 107
  start-page: 13
  year: 2013
  ident: 10.1016/j.isprsjprs.2022.03.013_b0645
  article-title: Spatio-temporal development of high-mountain lakes in the headwaters of the amu darya river (central asia)
  publication-title: Global Planet. Change
  doi: 10.1016/j.gloplacha.2013.04.001
– volume: 158
  start-page: 63
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.03.013_b0225
  article-title: Multi-modal deep learning for landform recognition
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.09.018
– volume: 10
  start-page: 964
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.03.013_b0775
  article-title: Performance evaluation of single-label and multi-label remote sensing image retrieval using a dense labeling dataset
  publication-title: Remote Sens.
  doi: 10.3390/rs10060964
– volume: 4
  start-page: 196
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.03.013_b0380
  article-title: A review on extraction of lakes from remotely sensed optical satellite data with a special focus on cryospheric lakes
  publication-title: Adv. Remote Sens.
  doi: 10.4236/ars.2015.43016
– volume: 19
  start-page: 3755
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.03.013_b0675
  article-title: A review of applications of satellite sar, optical, altimetry and dem data for surface water modelling, mapping and parameter estimation
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-19-3755-2015
– volume: 280
  start-page: 111676
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0620
  article-title: Smart solutions for smart cities: Urban wetland mapping using very-high resolution satellite imagery and airborne lidar data in the city of st. john’s, nl, canada
  publication-title: J. Environ. Manage.
  doi: 10.1016/j.jenvman.2020.111676
– ident: 10.1016/j.isprsjprs.2022.03.013_b0825
  doi: 10.1109/ICCV.2019.00533
– ident: 10.1016/j.isprsjprs.2022.03.013_b0220
– volume: 61
  start-page: 399
  year: 1997
  ident: 10.1016/j.isprsjprs.2022.03.013_b0270
  article-title: Decision tree classification of land cover from remotely sensed data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(97)00049-7
– volume: 10
  start-page: 144
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.03.013_b0960
  article-title: Building extraction in very high resolution remote sensing imagery using deep learning and guided filters
  publication-title: Remote Sens.
  doi: 10.3390/rs10010144
– ident: 10.1016/j.isprsjprs.2022.03.013_b1075
  doi: 10.1088/1742-6596/1453/1/012129
– volume: 9
  start-page: 144
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.03.013_b0970
  article-title: Automated extraction of urban water bodies from zy-3 multi-spectral imagery
  publication-title: Water
  doi: 10.3390/w9020144
– volume: 13
  start-page: 865
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0495
  article-title: Multitemporal water extraction of dongting lake and poyang lake based on an automatic water extraction and dynamic monitoring framework
  publication-title: Remote Sens.
  doi: 10.3390/rs13050865
– volume: 10
  start-page: 1970
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.03.013_b0275
  article-title: Wsf-net: Weakly supervised feature-fusion network for binary segmentation in remote sensing image
  publication-title: Remote Sens.
  doi: 10.3390/rs10121970
– ident: 10.1016/j.isprsjprs.2022.03.013_b0070
  doi: 10.1109/CVPR46437.2021.00584
– volume: 162
  start-page: 148
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b1050
  article-title: Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.02.008
– volume: 3
  start-page: 265
  year: 2010
  ident: 10.1016/j.isprsjprs.2022.03.013_b0680
  article-title: Water-body area extraction from high resolution satellite images-an introduction, review, and comparison
  publication-title: Int. J. Image Process. (IJIP)
– volume: 147
  start-page: 43
  year: 2014
  ident: 10.1016/j.isprsjprs.2022.03.013_b0910
  article-title: Floodplain inundation and vegetation dynamics in the alligator rivers region (kakadu) of northern Australia assessed using optical and radar remote sensing
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.02.009
– volume: 17
  start-page: 1425
  year: 1996
  ident: 10.1016/j.isprsjprs.2022.03.013_b0635
  article-title: The use of the normalized difference water index (ndwi) in the delineation of open water features
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169608948714
– volume: 11
  start-page: 779
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.03.013_b0040
  article-title: A novel fully automated mapping of the flood extent on sar images using a supervised classifier
  publication-title: Remote Sens.
  doi: 10.3390/rs11070779
– ident: 10.1016/j.isprsjprs.2022.03.013_b0460
– ident: 10.1016/j.isprsjprs.2022.03.013_b0705
– volume: 42
  start-page: 1801
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0995
  article-title: A self-attention capsule feature pyramid network for water body extraction from remote sensing imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2020.1842544
– ident: 10.1016/j.isprsjprs.2022.03.013_b0485
  doi: 10.1088/1755-1315/17/1/012123
– start-page: 1
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0005
  article-title: Roadvecnet: a new approach for simultaneous road network segmentation and vectorization from aerial and google earth imagery in a complex urban set-up
  publication-title: GIScience Remote Sens.
– ident: 10.1016/j.isprsjprs.2022.03.013_b1105
  doi: 10.1109/ICCVW54120.2021.00301
– volume: 179
  start-page: 145
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0530
  article-title: Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.08.001
– volume: 10
  start-page: 1704
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.03.013_b0925
  article-title: Two-step urban water index (tsuwi): A new technique for high-resolution mapping of urban surface water
  publication-title: Remote Sens.
  doi: 10.3390/rs10111704
– ident: 10.1016/j.isprsjprs.2022.03.013_b1080
  doi: 10.1109/CVPR.2017.660
– volume: 21
  start-page: 3879
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.03.013_b0630
  article-title: The future of earth observation in hydrology
  publication-title: Hydrol. Earth Syst. Sci.
  doi: 10.5194/hess-21-3879-2017
– ident: 10.1016/j.isprsjprs.2022.03.013_b0750
  doi: 10.1109/IGARSS39084.2020.9547211
– volume: 13
  start-page: 3465
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0035
  article-title: Water extraction in sar images using features analysis and dual-threshold graph cut model
  publication-title: Remote Sens.
  doi: 10.3390/rs13173465
– volume: 7
  start-page: W2
  year: 2013
  ident: 10.1016/j.isprsjprs.2022.03.013_b0810
  article-title: An automatic integrated image segmentation, registration and change detection method for water-body extraction using hsr images and gis data
  publication-title: Int. Arch. Photogram., Remote Sens. Spatial Inform. Sci.
– volume: 56
  start-page: 1144
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.03.013_b0080
  article-title: Multilabel remote sensing image retrieval using a semisupervised graph-theoretic method
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2760909
– volume: 85
  start-page: 32
  year: 2013
  ident: 10.1016/j.isprsjprs.2022.03.013_b0150
  article-title: Object detection in remote sensing imagery using a discriminatively trained mixture model
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.08.001
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.isprsjprs.2022.03.013_b0455
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 10
  start-page: 743
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.03.013_b0710
  article-title: Semantic labeling of high resolution aerial imagery and lidar data with fine segmentation network
  publication-title: Remote Sens.
  doi: 10.3390/rs10050743
– volume: 4
  start-page: 77
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0445
  article-title: Using uav to capture and record torrent bed and banks, flood debris, and riparian areas
  publication-title: Drones
  doi: 10.3390/drones4040077
– year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0515
  article-title: Geographical knowledge-driven representation learning for remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 52
  start-page: 7708
  year: 2014
  ident: 10.1016/j.isprsjprs.2022.03.013_b0860
  article-title: Semisupervised manifold alignment of multimodal remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2014.2317499
– volume: 17
  start-page: 686
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.03.013_b0230
  article-title: Multiscale refinement network for water-body segmentation in high-resolution satellite imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2926412
– ident: 10.1016/j.isprsjprs.2022.03.013_b0690
– year: 2018
  ident: 10.1016/j.isprsjprs.2022.03.013_b1030
  article-title: mixup: Beyond empirical risk minimization
– year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0915
  article-title: Graph convolutional networks for the automated production of building vector maps from aerial images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– ident: 10.1016/j.isprsjprs.2022.03.013_b1095
  doi: 10.1007/978-3-030-58568-6_46
– volume: 19
  start-page: 1486
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.03.013_b0290
  article-title: Deep convolutional neural network for flood extent mapping using unmanned aerial vehicles data
  publication-title: Sensors
  doi: 10.3390/s19071486
– volume: 6
  start-page: 1
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0050
  article-title: Surface water detection and delineation using remote sensing images: A review of methods and algorithms
  publication-title: Sustain. Water Resour. Manage.
  doi: 10.1007/s40899-020-00425-4
– ident: 10.1016/j.isprsjprs.2022.03.013_b0170
  doi: 10.1109/IJCNN48605.2020.9207291
– volume: 4
  start-page: 1220
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0665
  article-title: Application of deep learning on uav-based aerial images for flood detection
  publication-title: Smart Cities
  doi: 10.3390/smartcities4030065
– ident: 10.1016/j.isprsjprs.2022.03.013_b0850
– ident: 10.1016/j.isprsjprs.2022.03.013_b0430
  doi: 10.1109/IGARSS.2012.6352587
– ident: 10.1016/j.isprsjprs.2022.03.013_b0755
  doi: 10.1109/ACCESS.2021.3084358
– ident: 10.1016/j.isprsjprs.2022.03.013_b1000
  doi: 10.1109/WACV45572.2020.9093264
– volume: 9
  start-page: 1110
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.03.013_b0025
  article-title: Hyperspectral imaging: A review on uav-based sensors, data processing and applications for agriculture and forestry
  publication-title: Remote Sens.
  doi: 10.3390/rs9111110
– volume: 140
  start-page: 20
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.03.013_b0030
  article-title: Beyond rgb: Very high resolution urban remote sensing with multimodal deep networks
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.11.011
– ident: 10.1016/j.isprsjprs.2022.03.013_b0790
– ident: 10.1016/j.isprsjprs.2022.03.013_b0100
– ident: 10.1016/j.isprsjprs.2022.03.013_b0415
  doi: 10.1109/CISP.2012.6469675
– ident: 10.1016/j.isprsjprs.2022.03.013_b0425
– volume: 51
  start-page: 1756
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0555
  article-title: Error-tolerant deep learning for remote sensing image scene classification
  publication-title: IEEE Trans. Cybernet.
  doi: 10.1109/TCYB.2020.2989241
– volume: 13
  start-page: 3735
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0155
  article-title: Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2020.3005403
– volume: 30
  start-page: 2805
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.03.013_b1010
  article-title: Adversarial examples: Attacks and defenses for deep learning
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2018.2886017
– ident: 10.1016/j.isprsjprs.2022.03.013_b0055
  doi: 10.1109/CVPRW53098.2021.00121
– volume: 16
  start-page: 618
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.03.013_b0245
  article-title: Water body extraction from very high-resolution remote sensing imagery using deep u-net and a superpixel-based conditional random field model
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2879492
– ident: 10.1016/j.isprsjprs.2022.03.013_b1085
  doi: 10.1109/CVPRW.2018.00045
– volume: 59
  start-page: 316
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b1040
  article-title: Water body detection in high-resolution sar images with cascaded fully-convolutional network and variable focal loss
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2999405
– volume: 12
  start-page: 1543
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0195
  article-title: Accounting for uncertainty and reconstruction of flooding patterns based on multi-satellite imagery and support vector machine technique: A case study of can tho city, Vietnam
  publication-title: Water
  doi: 10.3390/w12061543
– volume: 186
  start-page: 170
  year: 2022
  ident: 10.1016/j.isprsjprs.2022.03.013_b0560
  article-title: Dkdfn: Domain knowledge-guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.02.013
– volume: 37
  start-page: 1904
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.03.013_b0325
  article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2015.2389824
– volume: 56
  start-page: 333
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.03.013_b0345
  article-title: Detecting, extracting, and monitoring surface water from space using optical sensors: A review
  publication-title: Rev. Geophys.
  doi: 10.1029/2018RG000598
– volume: 42
  start-page: 153
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.03.013_b0760
  article-title: Sen12ms-a curated dataset of georeferenced multi-spectral sentinel-1/2 imagery for deep learning and data fusion
  publication-title: ISPRS Annals Photogram., Remote Sens. Spatial Inform. Sci.
  doi: 10.5194/isprs-annals-IV-2-W7-153-2019
– volume: 30
  start-page: 1305
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b1045
  article-title: Dense attention fluid network for salient object detection in optical remote sensing images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3042084
– ident: 10.1016/j.isprsjprs.2022.03.013_b0120
– volume: 14
  start-page: 7422
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b1005
  article-title: Deep-learning-based multispectral satellite image segmentation for water body detection
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2021.3098678
– volume: 6
  start-page: 11791
  year: 2014
  ident: 10.1016/j.isprsjprs.2022.03.013_b0845
  article-title: The strengths and limitations in using the daily modis open water likelihood algorithm for identifying flood events
  publication-title: Remote Sens.
  doi: 10.3390/rs61211791
– ident: 10.1016/j.isprsjprs.2022.03.013_b0115
  doi: 10.1109/CVPR46437.2021.01549
– ident: 10.1016/j.isprsjprs.2022.03.013_b0870
  doi: 10.1126/science.289.5477.284
– ident: 10.1016/j.isprsjprs.2022.03.013_b0105
  doi: 10.1007/978-3-030-01234-2_49
– volume: 78
  start-page: 465
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.03.013_b0585
  article-title: Advanced deep learning techniques for image style transfer: A survey
  publication-title: Signal Process.: Image Commun.
– ident: 10.1016/j.isprsjprs.2022.03.013_b0600
  doi: 10.1109/CVPR.2015.7298965
– ident: 10.1016/j.isprsjprs.2022.03.013_b0335
  doi: 10.1109/CVPR42600.2020.00406
– volume: 13
  start-page: 143
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.03.013_b0135
  article-title: Thick clouds removal from multitemporal zy-3 satellite images using deep learning
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2019.2954130
– volume: 13
  start-page: 3165
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0520
  article-title: Urban water extraction with uav high-resolution remote sensing data based on an improved u-net model
  publication-title: Remote Sens.
  doi: 10.3390/rs13163165
– ident: 10.1016/j.isprsjprs.2022.03.013_b0190
  doi: 10.1109/CVPRW.2018.00031
– year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0695
  article-title: Boundary-aware dual stream network for vhr remote sensing images semantic segmentation
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2021.3076035
– ident: 10.1016/j.isprsjprs.2022.03.013_b0475
– volume: 12
  start-page: 4140
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0905
  article-title: Mslwenet: A novel deep learning network for lake water body extraction of google remote sensing images
  publication-title: Remote Sens.
  doi: 10.3390/rs12244140
– ident: 10.1016/j.isprsjprs.2022.03.013_b0420
  doi: 10.1109/CVPR42600.2020.01299
– volume: 58
  start-page: 5367
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0205
  article-title: Semantic segmentation of large-size vhr remote sensing images using a two-stage multiscale training architecture
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2964675
– volume: 13
  start-page: 318
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0780
  article-title: Multilabel remote sensing image retrieval based on fully convolutional network
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2019.2961634
– volume: 7
  start-page: 12336
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.03.013_b0980
  article-title: High-resolution mapping of urban surface water using zy-3 multi-spectral imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs70912336
– volume: 243
  start-page: 108469
  year: 2022
  ident: 10.1016/j.isprsjprs.2022.03.013_b0540
  article-title: Combining deep learning and ontology reasoning for remote sensing image semantic segmentation
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108469
– volume: 10
  start-page: 2067
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.03.013_b0350
  article-title: Automatic mapping of thermokarst landforms from remote sensing images using deep learning: A case study in the northeastern tibetan plateau
  publication-title: Remote Sens.
  doi: 10.3390/rs10122067
– volume: 18
  start-page: 2580
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.03.013_b0020
  article-title: Evaluation of water indices for surface water extraction in a landsat 8 scene of Nepal
  publication-title: Sensors
  doi: 10.3390/s18082580
– volume: 8
  start-page: 2097
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.03.013_b0360
  article-title: Combining pixel-and object-based machine learning for identification of water-body types from urban high-resolution remote-sensing imagery
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2015.2420713
– ident: 10.1016/j.isprsjprs.2022.03.013_b0330
  doi: 10.1109/CVPR.2016.90
– volume: 11
  start-page: 1925
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.03.013_b0570
  article-title: Thick cloud removal in high-resolution satellite images using stepwise radiometric adjustment and residual correction
  publication-title: Remote Sens.
  doi: 10.3390/rs11161925
– ident: 10.1016/j.isprsjprs.2022.03.013_b0110
  doi: 10.1109/CVPR.2019.00913
– volume: 13
  start-page: 3122
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0185
  article-title: Msresnet: Multiscale residual network via self-supervised learning for water-body detection in remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs13163122
– ident: 10.1016/j.isprsjprs.2022.03.013_b0615
  doi: 10.1109/CVPR42600.2020.00779
– volume: 36
  start-page: 451
  year: 2003
  ident: 10.1016/j.isprsjprs.2022.03.013_b0580
  article-title: The global k-means clustering algorithm
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(02)00060-2
– volume: 7
  start-page: 14055
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.03.013_b1020
  article-title: A natural-rule-based-connection (nrbc) method for river network extraction from high-resolution imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs71014055
– volume: 24
  start-page: 108
  year: 2013
  ident: 10.1016/j.isprsjprs.2022.03.013_b0435
  article-title: Advances in thermokarst research
  publication-title: Permafrost Periglac. Process.
  doi: 10.1002/ppp.1779
– volume: 9
  start-page: 909
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.03.013_b0745
  article-title: Review of artificial intelligence adversarial attack and defense technologies
  publication-title: Appl. Sci.
  doi: 10.3390/app9050909
– volume: 8
  start-page: 154
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0990
  article-title: 2020 ieee grss data fusion contest: Global land cover mapping with weak supervision [technical committees]
  publication-title: IEEE Geosci. Remote Sens. Magaz.
  doi: 10.1109/MGRS.2020.2970124
– volume: 117
  start-page: 11
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.03.013_b0145
  article-title: A survey on object detection in optical remote sensing images
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.03.014
– volume: 105
  start-page: 102568
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0010
  article-title: Ucl: Unsupervised curriculum learning for water body classification from remote sensing imagery
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2021.102568
– volume: 588
  start-page: 125092
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0130
  article-title: A novel water body extraction neural network (wbe-nn) for optical high-resolution multispectral imagery
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2020.125092
– volume: 10
  start-page: 939
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0795
  article-title: Rapid worldwide growth of glacial lakes since 1990
  publication-title: Nat. Clim. Change
  doi: 10.1038/s41558-020-0855-4
– volume: 7
  start-page: 10347
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.03.013_b0075
  article-title: Image fusion-based change detection for flood extent extraction using bi-temporal very high-resolution satellite images
  publication-title: Remote Sens.
  doi: 10.3390/rs70810347
– volume: 237
  start-page: 111582
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0300
  article-title: Flood mapping under vegetation using single sar acquisitions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111582
– ident: 10.1016/j.isprsjprs.2022.03.013_b0160
  doi: 10.1109/CVPR42600.2020.00891
– volume: 120
  start-page: 1
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.03.013_b0855
  article-title: Multi-temporal and multi-source remote sensing image classification by nonlinear relative normalization
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.07.004
– volume: 20
  start-page: 397
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0805
  article-title: Intelligent object recognition of urban water bodies based on deep learning for multi-source and multi-temporal high spatial resolution remote sensing imagery
  publication-title: Sensors
  doi: 10.3390/s20020397
– volume: 54
  start-page: 3660
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.03.013_b0985
  article-title: Semantic annotation of high-resolution satellite images via weakly supervised learning
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2016.2523563
– volume: 51
  start-page: 261
  year: 2013
  ident: 10.1016/j.isprsjprs.2022.03.013_b0265
  article-title: Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2012.09.001
– volume: 11
  start-page: 10062
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0480
  article-title: Comparative analysis of machine learning algorithms in automatic identification and extraction of water boundaries
  publication-title: Appl. Sci.
  doi: 10.3390/app112110062
– ident: 10.1016/j.isprsjprs.2022.03.013_b1015
  doi: 10.1007/978-3-030-58539-6_11
– volume: 131
  start-page: 148
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.03.013_b1025
  article-title: An inventory of glacial lakes in the third pole region and their changes in response to global warming
  publication-title: Global Planet. Change
  doi: 10.1016/j.gloplacha.2015.05.013
– volume: 17
  start-page: 1662
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.03.013_b0370
  article-title: Seeing through the clouds with deepwatermap
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2953261
– volume: 103
  start-page: 102499
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0405
  article-title: Multi-scale context extractor network for water-body extraction from high-resolution optical remotely sensed images
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
  doi: 10.1016/j.jag.2021.102499
– volume: 33
  start-page: 145
  year: 2007
  ident: 10.1016/j.isprsjprs.2022.03.013_b0295
  article-title: A review of hyperspectral remote sensing and its application in vegetation and water resource studies
  publication-title: Water Sa
– volume: 12
  start-page: 207
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0890
  article-title: Weakly supervised deep learning for segmentation of remote sensing imagery
  publication-title: Remote Sens.
  doi: 10.3390/rs12020207
– ident: 10.1016/j.isprsjprs.2022.03.013_b0060
  doi: 10.1007/978-3-030-22808-8_38
– volume: 175
  start-page: 20
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0545
  article-title: Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.02.009
– ident: 10.1016/j.isprsjprs.2022.03.013_b1100
  doi: 10.1109/IGARSS.2012.6352234
– volume: 32
  start-page: 8026
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.03.013_b0720
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 9
  start-page: 925
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.03.013_b0930
  article-title: A novel water index for urban high-resolution eight-band worldview-2 imagery
  publication-title: Int. J. Digital Earth
  doi: 10.1080/17538947.2016.1170215
– volume: 14
  start-page: 3120
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0500
  article-title: A deep learning method of water body extraction from high resolution remote sensing images with multisensors
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2021.3060769
– ident: 10.1016/j.isprsjprs.2022.03.013_b0440
– ident: 10.1016/j.isprsjprs.2022.03.013_b0590
  doi: 10.1109/CVPRW.2017.200
– ident: 10.1016/j.isprsjprs.2022.03.013_b0320
  doi: 10.1109/CVPR.2019.00770
– volume: 6
  start-page: 1
  year: 2014
  ident: 10.1016/j.isprsjprs.2022.03.013_b0685
  article-title: Uav for 3d mapping applications: a review
  publication-title: Appl. Geomat.
  doi: 10.1007/s12518-013-0120-x
– ident: 10.1016/j.isprsjprs.2022.03.013_b1110
  doi: 10.1109/ICCV.2017.244
– volume: 140
  start-page: 23
  year: 2014
  ident: 10.1016/j.isprsjprs.2022.03.013_b0255
  article-title: Automated water extraction index: A new technique for surface water mapping using landsat imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.08.029
– volume: 59
  start-page: 3942
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0715
  article-title: River planform extraction from high-resolution sar images via generalized gamma distribution superpixel classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.3011209
– volume: 67
  start-page: 94
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0535
  article-title: Image retrieval from remote sensing big data: A survey
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2020.10.008
– volume: 7
  start-page: 14853
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.03.013_b0625
  article-title: Detection and delineation of localized flooding from worldview-2 multispectral data
  publication-title: Remote Sens.
  doi: 10.3390/rs71114853
– volume: 9
  start-page: 560
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0730
  article-title: Glacial lakes mapping using multi satellite planetscope imagery and deep learning
  publication-title: ISPRS Int. J. Geo-Inform.
  doi: 10.3390/ijgi9100560
– volume: 540
  start-page: 418
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.03.013_b0725
  article-title: High-resolution mapping of global surface water and its long-term changes
  publication-title: Nature
  doi: 10.1038/nature20584
– ident: 10.1016/j.isprsjprs.2022.03.013_b0900
  doi: 10.3390/w10050608
– ident: 10.1016/j.isprsjprs.2022.03.013_b0865
  doi: 10.1109/CVPRW.2015.7301377
– volume: 59
  start-page: 1604
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0955
  article-title: Assessing the threat of adversarial examples on deep neural networks for remote sensing scene classification: Attacks and defenses
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2999962
– volume: 6
  start-page: 810
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.03.013_b0210
  article-title: Earth’s surface water change over the past 30 years
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate3111
– ident: 10.1016/j.isprsjprs.2022.03.013_b0085
  doi: 10.1109/ICCV48922.2021.00041
– volume: 24
  start-page: 109
  year: 2011
  ident: 10.1016/j.isprsjprs.2022.03.013_b0450
  article-title: Efficient inference in fully connected crfs with gaussian edge potentials
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 55
  start-page: 1043
  year: 2012
  ident: 10.1016/j.isprsjprs.2022.03.013_b0490
  article-title: Current issues in high-resolution earth observation technology
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-012-4445-9
– volume: 10
  start-page: 1687
  year: 2017
  ident: 10.1016/j.isprsjprs.2022.03.013_b0840
  article-title: Mapping thermokarst lakes on the qinghai–tibet plateau using nonlocal active contours in chinese gaofen-2 multispectral imagery
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2017.2666787
– ident: 10.1016/j.isprsjprs.2022.03.013_b0740
  doi: 10.1109/CVPR.2019.00766
– volume: 146
  start-page: 182
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.03.013_b0550
  article-title: Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.09.014
– volume: 57
  start-page: 574
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.03.013_b0390
  article-title: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2858817
– volume: 13
  start-page: 5398
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0815
  article-title: BasΘ{4} net: Boundary-aware semi-supervised semantic segmentation network for very high resolution remote sensing images
  publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2020.3021098
– volume: 13
  start-page: 692
  year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0395
  article-title: Boundary-aware refined network for automatic building extraction in very high-resolution urban aerial images
  publication-title: Remote Sens.
  doi: 10.3390/rs13040692
– volume: 80
  start-page: 939
  year: 2014
  ident: 10.1016/j.isprsjprs.2022.03.013_b0385
  article-title: A semiautomatic extraction of antarctic lake features using worldview-2 imagery
  publication-title: Photogram. Eng. Remote Sens.
  doi: 10.14358/PERS.80.10.939
– volume: 16
  start-page: 1075
  year: 2016
  ident: 10.1016/j.isprsjprs.2022.03.013_b0015
  article-title: Identification of water bodies in a landsat 8 oli image using a j48 decision tree
  publication-title: Sensors
  doi: 10.3390/s16071075
– year: 2021
  ident: 10.1016/j.isprsjprs.2022.03.013_b0470
  article-title: Physics-based shadow image decomposition for shadow removal
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3124934
– volume: 11
  start-page: 245
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.03.013_b0735
  article-title: Fusion feature multi-scale pooling for water body extraction from optical panchromatic images
  publication-title: Remote Sens.
  doi: 10.3390/rs11030245
– volume: 9
  start-page: 189
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0305
  article-title: A multi-scale water extraction convolutional neural network (mwen) method for gaofen-1 remote sensing images
  publication-title: ISPRS Int. J. Geo-Inform.
  doi: 10.3390/ijgi9040189
– ident: 10.1016/j.isprsjprs.2022.03.013_b0830
– volume: 32
  start-page: 4545
  year: 2011
  ident: 10.1016/j.isprsjprs.2022.03.013_b0835
  article-title: Landsat mapping of annual inundation (1979–2006) of the macquarie marshes in semi-arid australia
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2010.489064
– ident: 10.1016/j.isprsjprs.2022.03.013_b0175
  doi: 10.1109/IGARSS.2019.8900625
– ident: 10.1016/j.isprsjprs.2022.03.013_b0200
  doi: 10.1109/TGRS.2022.3168697
– volume: 7
  start-page: 1437
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.03.013_b0240
  article-title: Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier–a case of yuyao, china
  publication-title: Water
  doi: 10.3390/w7041437
– volume: 16
  start-page: 927
  year: 2018
  ident: 10.1016/j.isprsjprs.2022.03.013_b1060
  article-title: Automatic and unsupervised water body extraction based on spectral-spatial features using gf-1 satellite imagery
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2886422
– volume: 7
  start-page: 155787
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.03.013_b0575
  article-title: Multiscale features supported deeplabv3+ optimization scheme for accurate water semantic segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2949635
– volume: 169
  start-page: 166
  year: 2020
  ident: 10.1016/j.isprsjprs.2022.03.013_b0365
  article-title: A deep learning framework for matching of sar and optical imagery
  publication-title: ISPRS J. Photogram. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.09.012
– volume: 4
  start-page: 125
  year: 2015
  ident: 10.1016/j.isprsjprs.2022.03.013_b0375
  article-title: A rapid extraction of water body features from antarctic coastal oasis using very high-resolution satellite remote sensing data
  publication-title: Aquatic Proc.
  doi: 10.1016/j.aqpro.2015.02.018
– volume: 5
  start-page: 117
  year: 2019
  ident: 10.1016/j.isprsjprs.2022.03.013_b0065
  article-title: Salient object detection: A survey
  publication-title: Comput. Visual Media
  doi: 10.1007/s41095-019-0149-9
– ident: 10.1016/j.isprsjprs.2022.03.013_b0935
  doi: 10.1109/ICCV.2017.153
SSID ssj0001568
Score 2.6080296
SecondaryResourceType review_article
Snippet Water body classification from high-resolution optical remote sensing (RS) images, aiming at classifying whether each pixel of the image is water or not, has...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 306
SubjectTerms data collection
Deep learning (DL)
High-resolution
Optical remote sensing (RS) image
photogrammetry
surface water
surveys
Water body classification
Title Water body classification from high-resolution optical remote sensing imagery: Achievements and perspectives
URI https://dx.doi.org/10.1016/j.isprsjprs.2022.03.013
https://www.proquest.com/docview/2648871326
Volume 187
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T-QwELYQFHAF4nU6joeMdK3ZxHaCQ7dCoAUEDYegs_yIjyAuG22WYht-OzN58JIQBUWKJLYSeSbziOf7hpA_4OK5kDxmeeIDk7FxzETBMYV7SImHoPwAwckXl-noWp7dJrdz5KjHwmBZZWf7W5veWOvuyqBbzUFVFIOrCFIHjgRIvAnMEVEu5QFq-f7Ta5lH3MLhcDDD0e9qvIq6mtT3cECiyHnDdhqLzzzUB1vdOKCTFbLcRY502L7cKpnLyzXy4w2f4BpZ7Fqa383WycMNRJETasd-Rh2GyFgT1IiBIqSEIk8xg1y7Uz06rpq_2nSSg_ByWmNhe_mPFv-R5GJ2SIfursgbcvFpTU3pafUK06w3yPXJ8d-jEetaKzAnpJqyTKVKmsyoAEtiYxWCEpHhiQlJ5p0IkedWOKG8zQIXNrGRSAx4cp8JuC-D-Enmy3GZ_yLUSxsiiQBblUoXewsRlhWpATfnsJv6Jkn75dSu4x3H9hcPui8wu9cvctAoBx0JDXLYJNHLxKql3vh6ymEvL_1OizQ4iK8n7_US1vCN4caJKfPxIwxKwcxBNs_T3995wBZZwrO2XHKbzE8nj_kOhDRTu9vo7C5ZGJ6ejy6fAYmo-c8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTxUxEJ8gHpCDUdQIitbEa327bXfpciME8lTgIkRuTT-2sgT2bd4-Du_C3-7MfoCYGA4e9rJts5v-2vloZ34D8BlVvJBKpLzMQuQqtZ7bJHqu6Q4pC2iU71By8vFJPj1T386z8xXYH3NhKKxykP29TO-k9fBmMszmpKmqyY8EXQdBBEiiM8x3nsBThduXyhh8ub2P80j7fDjqzan7gyCvqm3m7SU-6CkK0dGdpvJfKuovYd1poMMX8HwwHdle_3cvYaWsN2D9D0LBDVgbappfLF_B1U80I-fMzcKSebKRKSiow4FRTgkjomKOzvaw9tis6Y612bxE9ErWUmR7_YtV18Rysdxle_6iKjt28UXLbB1Yc5-n2b6Gs8OD0_0pH2orcC-VXvBC51rZwuqIU-JSHaOWiRWZjVkRvIxJEE56qYMropAuc4nMLKryUEhsV1G-gdV6VpdvgQXlYqIow1bnyqfBoYnlZG5Rz3kqp74J-Tidxg_E41T_4sqMEWaX5g4HQziYRBrEYROSu4FNz73x-JDdES_zYBkZ1BCPD_40Imxwk9HNia3L2Q12ylHOoTsv8q3_-cBHWJueHh-Zo68n39_BM2rpYyffw-piflNuo32zcB-69fsbNS37XQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+body+classification+from+high-resolution+optical+remote+sensing+imagery%3A+Achievements+and+perspectives&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Li%2C+Yansheng&rft.au=Dang%2C+Bo&rft.au=Zhang%2C+Yongjun&rft.au=Du%2C+Zhenhong&rft.date=2022-05-01&rft.issn=0924-2716&rft.volume=187&rft.spage=306&rft.epage=327&rft_id=info:doi/10.1016%2Fj.isprsjprs.2022.03.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isprsjprs_2022_03_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon