Water body classification from high-resolution optical remote sensing imagery: Achievements and perspectives
Water body classification from high-resolution optical remote sensing (RS) images, aiming at classifying whether each pixel of the image is water or not, has become a hot issue in the area of RS and has extensive practical applications in a variety of fields. Numerous existing methods have drawn bro...
Saved in:
Published in | ISPRS journal of photogrammetry and remote sensing Vol. 187; pp. 306 - 327 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Water body classification from high-resolution optical remote sensing (RS) images, aiming at classifying whether each pixel of the image is water or not, has become a hot issue in the area of RS and has extensive practical applications in a variety of fields. Numerous existing methods have drawn broad attention and achieved remarkable advancements, meanwhile, serious challenges and potential opportunities also exist, which deserves in thinking and discussing deeply. By taking into account the comprehensive survey is still lacking, through the compilation of approximately 200 papers, this paper summarizes and analyzes the achievements, and discusses the perspectives of future research directions. Specifically, we first analyze 5 challenges according to the characteristics of water bodies in high-resolution optical RS imagery, and 5 corresponding significant opportunities combined with advanced deep learning techniques are discussed to respond mentioned challenges. Then, we divide the existing methods into several groups in light of their core ideas and introduce them chiefly. In addition, some practical applications and publicly open benchmarks are listed intuitively. 10 and 9 representative methods are implemented on two widely used datasets to assess their performance, respectively. To facilitate the qualitative and quantitative comparison in the research avenue, the two benchmarks employed in the comparative experiments and links to other relevant datasets and open-source codes will be summarized and released in https://github.com/Jack-bo1220/Benchmarks-for-Water-Body-Extraction-from-HRORS-Imagery. Finally, we discuss a range of promising research directions to provide some references and inspiration for the following research. The studies of our paper, including the existing methods, challenges, opportunities, derived applications, and future research directions, provide a fuller understanding of water body classification from high-resolution optical remote sensing imagery. |
---|---|
AbstractList | Water body classification from high-resolution optical remote sensing (RS) images, aiming at classifying whether each pixel of the image is water or not, has become a hot issue in the area of RS and has extensive practical applications in a variety of fields. Numerous existing methods have drawn broad attention and achieved remarkable advancements, meanwhile, serious challenges and potential opportunities also exist, which deserves in thinking and discussing deeply. By taking into account the comprehensive survey is still lacking, through the compilation of approximately 200 papers, this paper summarizes and analyzes the achievements, and discusses the perspectives of future research directions. Specifically, we first analyze 5 challenges according to the characteristics of water bodies in high-resolution optical RS imagery, and 5 corresponding significant opportunities combined with advanced deep learning techniques are discussed to respond mentioned challenges. Then, we divide the existing methods into several groups in light of their core ideas and introduce them chiefly. In addition, some practical applications and publicly open benchmarks are listed intuitively. 10 and 9 representative methods are implemented on two widely used datasets to assess their performance, respectively. To facilitate the qualitative and quantitative comparison in the research avenue, the two benchmarks employed in the comparative experiments and links to other relevant datasets and open-source codes will be summarized and released in https://github.com/Jack-bo1220/Benchmarks-for-Water-Body-Extraction-from-HRORS-Imagery. Finally, we discuss a range of promising research directions to provide some references and inspiration for the following research. The studies of our paper, including the existing methods, challenges, opportunities, derived applications, and future research directions, provide a fuller understanding of water body classification from high-resolution optical remote sensing imagery. |
Author | Du, Zhenhong Li, Yansheng Zhang, Yongjun Dang, Bo |
Author_xml | – sequence: 1 givenname: Yansheng surname: Li fullname: Li, Yansheng email: yansheng.li@whu.edu.cn organization: School of Remote Sensing and Information Engineering, Wuhan University, China – sequence: 2 givenname: Bo surname: Dang fullname: Dang, Bo email: bodang@whu.edu.cn organization: School of Remote Sensing and Information Engineering, Wuhan University, China – sequence: 3 givenname: Yongjun surname: Zhang fullname: Zhang, Yongjun email: zhangyj@whu.edu.cn organization: School of Remote Sensing and Information Engineering, Wuhan University, China – sequence: 4 givenname: Zhenhong surname: Du fullname: Du, Zhenhong email: duzhenhong@zju.edu.cn organization: School of Earth Sciences, Zhejiang University, China |
BookMark | eNqNkE9r3DAQxUVJoZu0n6E69mJXf2yvXMhhCUlaCPTS0qOQ5dGuFltyNNqF_fZVdksPvaSHYWDee8PM75pchRiAkI-c1Zzx7vO-9rgk3JeqBROiZrJmXL4hK67WolJCtldkxXrRVGLNu3fkGnHPGONtp1Zk-mUyJDrE8UTtZBC989ZkHwN1Kc5057e7KgHG6XAexiUXfaIJ5piBIgT0YUv9bLaQTl_oxu48HGGGkJGaMNIFEi5gsz8CvidvnZkQPvzpN-Tnw_2Pu6_V0_fHb3ebp8rKRuWqV51qTG-UK_cOXDmnJDOiNa7tRysdG8UgrVTj0Dshh3ZgsjUdb8ZeFr1x8oZ8uuxdUnw-AGY9e7QwTSZAPKAWXaPUmkvRFevtxWpTREzgtPX5_H9Oxk-aM_1CWe_1X8r6hbJmUhfKJb_-J7-kAiOd_iO5uSShkDh6SBqth2Bh9Knw0mP0r-74Dd_Ror4 |
CitedBy_id | crossref_primary_10_3390_rs15174325 crossref_primary_10_3390_rs14133001 crossref_primary_10_1016_j_isprsjprs_2022_12_024 crossref_primary_10_3390_app14010178 crossref_primary_10_1109_ACCESS_2024_3487413 crossref_primary_10_1109_JSTARS_2024_3391881 crossref_primary_10_1109_JSTARS_2024_3459916 crossref_primary_10_1016_j_asr_2024_06_011 crossref_primary_10_1360_TB_2023_1323 crossref_primary_10_3390_rs14163864 crossref_primary_10_3390_rs17060980 crossref_primary_10_1109_JSTARS_2023_3348488 crossref_primary_10_1109_LGRS_2023_3234306 crossref_primary_10_1109_TGRS_2024_3407200 crossref_primary_10_3390_rs16020419 crossref_primary_10_3390_rs16101703 crossref_primary_10_3390_w15050866 crossref_primary_10_1016_j_jhydrol_2024_130936 crossref_primary_10_1016_j_ecoenv_2023_114843 crossref_primary_10_1109_JSTARS_2024_3509712 crossref_primary_10_1007_s00500_024_09951_1 crossref_primary_10_3389_fenvs_2024_1351872 crossref_primary_10_3390_w16223287 crossref_primary_10_1016_j_isprsjprs_2023_11_006 crossref_primary_10_1109_TGRS_2024_3511622 crossref_primary_10_1109_JSTARS_2025_3538662 crossref_primary_10_3390_geohazards5020025 crossref_primary_10_3390_w16182704 crossref_primary_10_1016_j_isprsjprs_2023_09_024 crossref_primary_10_1016_j_isprsjprs_2022_05_007 crossref_primary_10_3390_rs14215567 crossref_primary_10_1109_JSTARS_2025_3527213 crossref_primary_10_1016_j_jag_2022_103103 crossref_primary_10_1038_s41597_025_04794_3 crossref_primary_10_1088_1742_6596_2863_1_012004 crossref_primary_10_1016_j_rse_2024_114373 crossref_primary_10_3390_w15081446 crossref_primary_10_3390_rs16020378 crossref_primary_10_1007_s10980_024_01850_y crossref_primary_10_3390_rs15194865 crossref_primary_10_1007_s00477_024_02740_0 crossref_primary_10_1080_01431161_2024_2379518 crossref_primary_10_3390_rs14184667 crossref_primary_10_1016_j_rsase_2025_101455 crossref_primary_10_1016_j_scitotenv_2024_174329 crossref_primary_10_1109_TGRS_2024_3504571 crossref_primary_10_3390_w17050729 crossref_primary_10_3390_ijgi13100369 crossref_primary_10_3390_su152115444 crossref_primary_10_1016_j_jag_2024_103878 crossref_primary_10_3390_s24165177 crossref_primary_10_1109_JSTARS_2024_3361025 crossref_primary_10_1016_j_isprsjprs_2023_05_032 crossref_primary_10_1080_17538947_2022_2159552 crossref_primary_10_3390_w15010020 crossref_primary_10_3390_rs17071138 crossref_primary_10_1016_j_rsase_2024_101205 crossref_primary_10_1109_TGRS_2023_3301648 crossref_primary_10_1109_TGRS_2024_3458009 |
Cites_doi | 10.1109/JPROC.2016.2598228 10.3390/rs12071195 10.1016/j.jag.2021.102472 10.1109/ICCV48922.2021.00716 10.5194/isprs-annals-IV-1-5-2018 10.3390/su13147547 10.1109/CVPR42600.2020.00871 10.1109/TGRS.2021.3108781 10.3390/ijgi9040256 10.1109/JSTARS.2021.3106941 10.1109/JSTARS.2016.2609804 10.1109/IGARSS.2019.8898367 10.3390/w10050585 10.1109/TGRS.2020.3047447 10.1109/CVPR.2018.00745 10.1016/j.isprsjprs.2021.05.016 10.1109/CVPR.2019.00531 10.1109/CVPR.2017.634 10.1080/01431160600589179 10.1117/1.JRS.7.073564 10.1088/1755-1315/34/1/012010 10.1016/j.proenv.2011.09.407 10.1016/j.rse.2015.12.055 10.1109/ICCV48922.2021.00986 10.1109/TPAMI.2017.2699184 10.1109/TPAMI.2020.2983686 10.3389/fmars.2019.00232 10.1109/ICIP.2016.7533183 10.1016/j.rse.2020.112045 10.1109/IGARSS47720.2021.9553270 10.1016/j.rse.2013.03.013 10.1109/CVPR46437.2021.01225 10.1109/JSTARS.2020.3040176 10.3390/rs11070879 10.3390/rs13010119 10.1007/s11069-007-9197-z 10.1109/ICPR.1990.118221 10.1109/CVPR46437.2021.01043 10.1109/JSTARS.2021.3051873 10.3390/rs13101912 10.1109/LGRS.2018.2794545 10.1016/j.gloplacha.2013.04.001 10.1016/j.isprsjprs.2019.09.018 10.3390/rs10060964 10.4236/ars.2015.43016 10.5194/hess-19-3755-2015 10.1016/j.jenvman.2020.111676 10.1109/ICCV.2019.00533 10.1016/S0034-4257(97)00049-7 10.3390/rs10010144 10.1088/1742-6596/1453/1/012129 10.3390/w9020144 10.3390/rs13050865 10.3390/rs10121970 10.1109/CVPR46437.2021.00584 10.1016/j.isprsjprs.2020.02.008 10.1016/j.rse.2014.02.009 10.1080/01431169608948714 10.3390/rs11070779 10.1080/01431161.2020.1842544 10.1088/1755-1315/17/1/012123 10.1109/ICCVW54120.2021.00301 10.1016/j.isprsjprs.2021.08.001 10.3390/rs10111704 10.1109/CVPR.2017.660 10.5194/hess-21-3879-2017 10.1109/IGARSS39084.2020.9547211 10.3390/rs13173465 10.1109/TGRS.2017.2760909 10.1016/j.isprsjprs.2013.08.001 10.3390/rs10050743 10.3390/drones4040077 10.1109/TGRS.2014.2317499 10.1109/LGRS.2019.2926412 10.1007/978-3-030-58568-6_46 10.3390/s19071486 10.1007/s40899-020-00425-4 10.1109/IJCNN48605.2020.9207291 10.3390/smartcities4030065 10.1109/IGARSS.2012.6352587 10.1109/ACCESS.2021.3084358 10.1109/WACV45572.2020.9093264 10.3390/rs9111110 10.1016/j.isprsjprs.2017.11.011 10.1109/CISP.2012.6469675 10.1109/TCYB.2020.2989241 10.1109/JSTARS.2020.3005403 10.1109/TNNLS.2018.2886017 10.1109/CVPRW53098.2021.00121 10.1109/LGRS.2018.2879492 10.1109/CVPRW.2018.00045 10.1109/TGRS.2020.2999405 10.3390/w12061543 10.1016/j.isprsjprs.2022.02.013 10.1109/TPAMI.2015.2389824 10.1029/2018RG000598 10.5194/isprs-annals-IV-2-W7-153-2019 10.1109/TIP.2020.3042084 10.1109/JSTARS.2021.3098678 10.3390/rs61211791 10.1109/CVPR46437.2021.01549 10.1126/science.289.5477.284 10.1007/978-3-030-01234-2_49 10.1109/CVPR.2015.7298965 10.1109/CVPR42600.2020.00406 10.1109/JSTARS.2019.2954130 10.3390/rs13163165 10.1109/CVPRW.2018.00031 10.1109/JSTARS.2021.3076035 10.3390/rs12244140 10.1109/CVPR42600.2020.01299 10.1109/TGRS.2020.2964675 10.1109/JSTARS.2019.2961634 10.3390/rs70912336 10.1016/j.knosys.2022.108469 10.3390/rs10122067 10.3390/s18082580 10.1109/JSTARS.2015.2420713 10.1109/CVPR.2016.90 10.3390/rs11161925 10.1109/CVPR.2019.00913 10.3390/rs13163122 10.1109/CVPR42600.2020.00779 10.1016/S0031-3203(02)00060-2 10.3390/rs71014055 10.1002/ppp.1779 10.3390/app9050909 10.1109/MGRS.2020.2970124 10.1016/j.isprsjprs.2016.03.014 10.1016/j.jag.2021.102568 10.1016/j.jhydrol.2020.125092 10.1038/s41558-020-0855-4 10.3390/rs70810347 10.1016/j.rse.2019.111582 10.1109/CVPR42600.2020.00891 10.1016/j.isprsjprs.2016.07.004 10.3390/s20020397 10.1109/TGRS.2016.2523563 10.1016/j.advwatres.2012.09.001 10.3390/app112110062 10.1007/978-3-030-58539-6_11 10.1016/j.gloplacha.2015.05.013 10.1109/LGRS.2019.2953261 10.1016/j.jag.2021.102499 10.3390/rs12020207 10.1007/978-3-030-22808-8_38 10.1016/j.isprsjprs.2021.02.009 10.1109/IGARSS.2012.6352234 10.1080/17538947.2016.1170215 10.1109/JSTARS.2021.3060769 10.1109/CVPRW.2017.200 10.1109/CVPR.2019.00770 10.1007/s12518-013-0120-x 10.1109/ICCV.2017.244 10.1016/j.rse.2013.08.029 10.1109/TGRS.2020.3011209 10.1016/j.inffus.2020.10.008 10.3390/rs71114853 10.3390/ijgi9100560 10.1038/nature20584 10.3390/w10050608 10.1109/CVPRW.2015.7301377 10.1109/TGRS.2020.2999962 10.1038/nclimate3111 10.1109/ICCV48922.2021.00041 10.1007/s11430-012-4445-9 10.1109/JSTARS.2017.2666787 10.1109/CVPR.2019.00766 10.1016/j.isprsjprs.2018.09.014 10.1109/TGRS.2018.2858817 10.1109/JSTARS.2020.3021098 10.3390/rs13040692 10.14358/PERS.80.10.939 10.3390/s16071075 10.1109/TPAMI.2021.3124934 10.3390/rs11030245 10.3390/ijgi9040189 10.1080/01431161.2010.489064 10.1109/IGARSS.2019.8900625 10.1109/TGRS.2022.3168697 10.3390/w7041437 10.1109/LGRS.2018.2886422 10.1109/ACCESS.2019.2949635 10.1016/j.isprsjprs.2020.09.012 10.1016/j.aqpro.2015.02.018 10.1007/s41095-019-0149-9 10.1109/ICCV.2017.153 |
ContentType | Journal Article |
Copyright | 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
Copyright_xml | – notice: 2022 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.isprsjprs.2022.03.013 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Engineering |
EISSN | 1872-8235 |
EndPage | 327 |
ExternalDocumentID | 10_1016_j_isprsjprs_2022_03_013 S0924271622000867 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABQEM ABQYD ABXDB ABYKQ ACDAQ ACGFS ACLVX ACNNM ACRLP ACSBN ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HMA HVGLF HZ~ H~9 IHE IMUCA J1W KOM LY3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SEP SES SEW SPC SPCBC SSE SSV SSZ T5K T9H WUQ ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 L.6 |
ID | FETCH-LOGICAL-c348t-98684a9a8f716b18ff830a25af59dc3f0d2b3c38db9f23b5b035a614d939dc4f3 |
IEDL.DBID | .~1 |
ISSN | 0924-2716 |
IngestDate | Thu Jul 10 18:35:28 EDT 2025 Thu Apr 24 22:57:09 EDT 2025 Tue Jul 01 03:46:47 EDT 2025 Fri Feb 23 02:41:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | High-resolution Deep learning (DL) Water body classification Optical remote sensing (RS) image |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c348t-98684a9a8f716b18ff830a25af59dc3f0d2b3c38db9f23b5b035a614d939dc4f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2648871326 |
PQPubID | 24069 |
PageCount | 22 |
ParticipantIDs | proquest_miscellaneous_2648871326 crossref_citationtrail_10_1016_j_isprsjprs_2022_03_013 crossref_primary_10_1016_j_isprsjprs_2022_03_013 elsevier_sciencedirect_doi_10_1016_j_isprsjprs_2022_03_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2022 2022-05-00 20220501 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
PublicationDecade | 2020 |
PublicationTitle | ISPRS journal of photogrammetry and remote sensing |
PublicationYear | 2022 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Yan, Fan, Xiang, Pan (b0965) 2021 Zhu, J.Y., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp. 2223–2232. Jung, H., Choi, H.S., Kang, M., 2021. Boundary enhancement semantic segmentation for building extraction from remote sensed image. IEEE Trans. Geosci. Remote Sens. Pan, Gao, Marinoni, Zhang, Yang, Gamba (b0710) 2018; 10 Zheng, Q., Qiao, X., Cao, Y., Lau, R.W., 2019. Distraction-aware shadow detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5167–5176. Ma, C., Rao, Y., Cheng, Y., Chen, C., Lu, J., Zhou, J., 2020. Structure-preserving super resolution with gradient guidance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7769–7778. Zhao, K., Kang, J., Jung, J., Sohn, G., 2018. Building extraction from satellite images using mask r-cnn with building boundary regularization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 247–251. Chen, X., Qi, D., Shen, J., 2019b. Boundary-aware network for fast and high-accuracy portrait segmentation. arXiv preprint arXiv:1901.03814. Kokelj, Jorgenson (b0435) 2013; 24 Li, Zhou, Zhang, Zhong, Wang, Chen (b0560) 2022; 186 Zhou, M., Niu, Z., Wang, L., Zhang, Q., Hua, G., 2020. Adversarial ranking attack and defense. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16, Springer. pp. 781–799. Borji, Cheng, Hou, Jiang, Li (b0065) 2019; 5 Liu, Xi, Ji, Ma (b0585) 2019; 78 Xie, Huang, Zeng, Fang (b0930) 2016; 9 Zhang, Yao, Xie, Wang, Yang (b1025) 2015; 131 Schmitt, Hughes, Qiu, Zhu (b0760) 2019; 42 Kim, M., Byun, H., 2020. Learning texture invariant representation for domain adaptation of semantic segmentation. in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12975–12984. Chen, Fan, Yang, Wang, Latif (b0125) 2018; 10 Ji, Wei, Lu (b0390) 2018; 57 Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J., Lakshminarayanan, B., Snoek, J., 2019. Can you trust your model’s uncertainty? evaluating predictive uncertainty under dataset shift. Adv. Neural Inform. Process. Syst. 32. Schmarje, L., Santarossa, M., Schröder, S.M., Koch, R., 2020. A survey on semi-, self-and unsupervised techniques in image classification. arXiv preprint arXiv:2002.08721. Li, Zhang, Zhu (b0555) 2021; 51 Pekel, Cottam, Gorelick, Belward (b0725) 2016; 540 Li, Wang, Zhang, Hu, Meng (b0575) 2019; 7 Chen, Tang, Kan, Bilal, Li (b0130) 2020; 588 Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132–7141. Huang, Chen, Zhang, Wu (b0345) 2018; 56 Jawak, Luis (b0375) 2015; 4 He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778. Chen, W., Jiang, Z., Wang, Z., Cui, K., Qian, X., 2019a. Collaborative global-local networks for memory-efficient segmentation of ultra-high resolution images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8924–8933. Li, Shi, Zhang, Chen, Wang, Li (b0545) 2021; 175 Dong, S., Pang, L., Zhuang, Y., Liu, W., Yang, Z., Long, T., 2019. Optical remote sensing water-land segmentation representation based on proposed sns-cnn network. In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE. pp. 3895–3898. Lee, D.H., et al., 2013. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on challenges in representation learning, ICML, p. 896. Cui, Jing, Huang, Li, Lu (b0180) 2020; 14 Munawar, Ullah, Qayyum, Heravi (b0665) 2021; 4 Li, Kong, Zhang, Tan, Chen (b0530) 2021; 179 Bao, Lv, Yao (b0035) 2021; 13 Huang, Liu, Jiang, Zhang (b0350) 2018; 10 Gao, H., Wang, L., Jing, L., Xu, J., 2016. An effective modified water extraction method for landsat-8 oli imagery of mountainous plateau regions. In: IOP conference series: earth and environmental science, IOP Publishing. p. 012010. Nong, Su, Liu, Zhan, Yuan (b0695) 2021 Tuia, Marcos, Camps-Valls (b0855) 2016; 120 Chen, L.C., Papandreou, G., Schroff, F., Adam, H., 2017b. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587. Friedl, Brodley (b0270) 1997; 61 Cheng, Han (b0145) 2016; 117 Yu, Yao, Guan, Li, Liu, Wang, Yu, Xiao, Wang, Chang (b0995) 2021; 42 Vörösmarty, C.J., Green, P., Salisbury, J., Lammers, R.B., 2000. Global water resources: vulnerability from climate change and population growth. science 289, 284–288. Ticehurst, Guerschman, Chen (b0845) 2014; 6 Pappas, Anantrasirichai, Achim, Adams (b0715) 2020; 59 Zhang, Liu, Zhang, Ling, Huang (b1060) 2018; 16 Miao, Fu, Sun, Sun, Yan (b0650) 2018; 15 Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (b0720) 2019; 32 Cheng, H.K., Chung, J., Tai, Y.W., Tang, C.K., 2020b. Cascadepsp: toward class-agnostic and very high-resolution segmentation via global and local refinement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8890–8899. Zhang, Li, Gong, Wang, Sun (b1055) 2020; 12 Feyisa, Meilby, Fensholt, Proud (b0255) 2014; 140 Volpi, M., Ferrari, V., 2015. Semantic segmentation of urban scenes by learning local class interactions. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–9. Yang, J., Zhu, Q., Lv, J., Guan, Q., 2021. Ucwater: Unsupervised content-adaptive water-body extraction framework for high-resolution satellite imagery. In: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, IEEE. pp. 2767–2770. Zhou, Y., Luo, J., Shen, Z., Cheng, X., Hu, X., 2012. Adaptive extraction of water in urban areas based on local iteration using high-resolution multi-spectral image. In: 2012 IEEE International Geoscience and Remote Sensing Symposium, Ieee. pp. 6024–6027. Chen, X., He, K., 2021. Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758. Yuan, Y., Chen, X., Wang, J., 2020b. Object-contextual representations for semantic segmentation. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16, Springer. pp. 173–190. Duan, Hu (b0230) 2019; 17 Wang, H., Wu, X., Huang, Z., Xing, E.P., 2020a. High-frequency component helps explain the generalization of convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8684–8694. Yang, Guo, Tan, Wang (b0970) 2017; 9 Wang, X., Xie, H., 2018. A review on applications of remote sensing and geographic information systems (gis) in water resources and flood risk management. Komodakis, N., Gidaris, S., 2018. Unsupervised representation learning by predicting image rotations. in: International Conference on Learning Representations (ICLR). Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller, J., Manmatha, R., et al., 2020a. Resnest: Split-attention networks. arXiv preprint arXiv:2004.08955. Chen, Z., Zhou, H., Xie, X., Lai, J., 2019d. Contour loss: Boundary-aware learning for salient object segmentation. arXiv preprint arXiv:1908.01975. Klemenjak, S., Waske, B., Valero, S., Chanussot, J., 2012. Unsupervised river detection in rapideye data. in: 2012 IEEE International Geoscience and Remote Sensing Symposium, IEEE. pp. 6860–6863. Kang, Guan, Peng, Chen (b0405) 2021; 103 Shugar, Burr, Haritashya, Kargel, Watson, Kennedy, Bevington, Betts, Harrison, Strattman (b0795) 2020; 10 Shao, Yang, Zhou (b0775) 2018; 10 Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018a. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV), pp. 801–818. Chen, Tang, Yang, Fan, Bilal, Li (b0135) 2019; 13 Luo, Tong, Hu (b0605) 2021; 103 Melas-Kyriazi, L., Manrai, A.K., 2021. Pixmatch: Unsupervised domain adaptation via pixelwise consistency training. in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12435–12445. Takikawa, T., Acuna, D., Jampani, V., Fidler, S., 2019. Gated-scnn: Gated shape cnns for semantic segmentation. in: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5229–5238. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K., 2017b. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1492–1500. Sun, Wang, Yan, Diao, Lu, Yang, Zhang, Xiang, Yan, Guo (b0820) 2021; 14 Song, Liu, Liu, Feng, Han, Yao, Du (b0805) 2020; 20 Morrow, Fu, Ardhuin, Benkiran, Chapron, Cosme, d’Ovidio, Farrar, Gille, Lapeyre (b0660) 2019; 6 Chi, Plaza, Benediktsson, Sun, Shen, Zhu (b0165) 2016; 104 Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., Ayed, I.B., 2019. Boundary loss for highly unbalanced segmentation. in: International conference on medical imaging with deep learning, PMLR. pp. 285–296. Shao, Zhou, Deng, Zhang, Cheng (b0780) 2020; 13 Zeng, Bird, Luce, Wang (b1020) 2015; 7 Yuan, J., Deng, Z., Wang, S., Luo, Z., 2020a. Multi receptive field network for semantic segmentation. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE. pp. 1883–1892. Tong, X.Y., Xia, G.S., Lu, Q., Shen, H., Li, S., You, S., Zhang, L., 2018. Learning transferable deep models for land-use classification with high-resolution remote sensing images. arXiv preprint arXiv:1807.05713. Cheng, Han, Guo, Qian, Zhou, Yao, Hu (b0150) 2013; 85 Dhara, Dang, Parial, Lu (b0195) 2020; 12 Lamovec, Velkanovski, Mikos, Osir (b0465) 2013; 7 Liu, Z., Lin, Y., Cao Li (10.1016/j.isprsjprs.2022.03.013_b0520) 2021; 13 Tian (10.1016/j.isprsjprs.2022.03.013_b0840) 2017; 10 Wang (10.1016/j.isprsjprs.2022.03.013_b0880) 2020; 43 Hashemi-Beni (10.1016/j.isprsjprs.2022.03.013_b0315) 2021; 14 Ward (10.1016/j.isprsjprs.2022.03.013_b0910) 2014; 147 Yokoya (10.1016/j.isprsjprs.2022.03.013_b0990) 2020; 8 Yao (10.1016/j.isprsjprs.2022.03.013_b0985) 2016; 54 10.1016/j.isprsjprs.2022.03.013_b0215 Isikdogan (10.1016/j.isprsjprs.2022.03.013_b0370) 2019; 17 Kokelj (10.1016/j.isprsjprs.2022.03.013_b0435) 2013; 24 10.1016/j.isprsjprs.2022.03.013_b0340 10.1016/j.isprsjprs.2022.03.013_b0460 10.1016/j.isprsjprs.2022.03.013_b0100 10.1016/j.isprsjprs.2022.03.013_b0220 Grimaldi (10.1016/j.isprsjprs.2022.03.013_b0300) 2020; 237 Song (10.1016/j.isprsjprs.2022.03.013_b0805) 2020; 20 Acharya (10.1016/j.isprsjprs.2022.03.013_b0015) 2016; 16 Jawak (10.1016/j.isprsjprs.2022.03.013_b0385) 2014; 80 Feyisa (10.1016/j.isprsjprs.2022.03.013_b0255) 2014; 140 Ticehurst (10.1016/j.isprsjprs.2022.03.013_b0845) 2014; 6 Schmitt (10.1016/j.isprsjprs.2022.03.013_b0760) 2019; 42 Friedl (10.1016/j.isprsjprs.2022.03.013_b0270) 1997; 61 Cheng (10.1016/j.isprsjprs.2022.03.013_b0150) 2013; 85 Zhang (10.1016/j.isprsjprs.2022.03.013_b1040) 2020; 59 10.1016/j.isprsjprs.2022.03.013_b0335 Li (10.1016/j.isprsjprs.2022.03.013_b0480) 2021; 11 Wei (10.1016/j.isprsjprs.2022.03.013_b0915) 2021 Xu (10.1016/j.isprsjprs.2022.03.013_b0960) 2018; 10 10.1016/j.isprsjprs.2022.03.013_b0330 10.1016/j.isprsjprs.2022.03.013_b0690 Mahdianpari (10.1016/j.isprsjprs.2022.03.013_b0620) 2021; 280 Pan (10.1016/j.isprsjprs.2022.03.013_b0710) 2018; 10 Malinowski (10.1016/j.isprsjprs.2022.03.013_b0625) 2015; 7 He (10.1016/j.isprsjprs.2022.03.013_b0325) 2015; 37 Chen (10.1016/j.isprsjprs.2022.03.013_b0095) 2017; 40 Liu (10.1016/j.isprsjprs.2022.03.013_b0585) 2019; 78 Nath (10.1016/j.isprsjprs.2022.03.013_b0680) 2010; 3 Li (10.1016/j.isprsjprs.2022.03.013_b0560) 2022; 186 10.1016/j.isprsjprs.2022.03.013_b0200 Jin (10.1016/j.isprsjprs.2022.03.013_b0395) 2021; 13 Miao (10.1016/j.isprsjprs.2022.03.013_b0650) 2018; 15 10.1016/j.isprsjprs.2022.03.013_b0320 10.1016/j.isprsjprs.2022.03.013_b0440 Luo (10.1016/j.isprsjprs.2022.03.013_b0605) 2021; 103 10.1016/j.isprsjprs.2022.03.013_b1095 10.1016/j.isprsjprs.2022.03.013_b1090 Weng (10.1016/j.isprsjprs.2022.03.013_b0920) 2020; 9 Li (10.1016/j.isprsjprs.2022.03.013_b0525) 2020; 250 10.1016/j.isprsjprs.2022.03.013_b0425 Zhang (10.1016/j.isprsjprs.2022.03.013_b1070) 2021; 13 Thomas (10.1016/j.isprsjprs.2022.03.013_b0835) 2011; 32 Zhang (10.1016/j.isprsjprs.2022.03.013_b1050) 2020; 162 Pekel (10.1016/j.isprsjprs.2022.03.013_b0725) 2016; 540 10.1016/j.isprsjprs.2022.03.013_b0790 10.1016/j.isprsjprs.2022.03.013_b0430 10.1016/j.isprsjprs.2022.03.013_b1085 10.1016/j.isprsjprs.2022.03.013_b1080 Chi (10.1016/j.isprsjprs.2022.03.013_b0165) 2016; 104 Sun (10.1016/j.isprsjprs.2022.03.013_b0820) 2021; 14 Wang (10.1016/j.isprsjprs.2022.03.013_b0905) 2020; 12 Shugar (10.1016/j.isprsjprs.2022.03.013_b0795) 2020; 10 10.1016/j.isprsjprs.2022.03.013_b0415 10.1016/j.isprsjprs.2022.03.013_b0420 Likas (10.1016/j.isprsjprs.2022.03.013_b0580) 2003; 36 Fisher (10.1016/j.isprsjprs.2022.03.013_b0260) 2016; 175 Feng (10.1016/j.isprsjprs.2022.03.013_b0245) 2018; 16 10.1016/j.isprsjprs.2022.03.013_b1075 Munawar (10.1016/j.isprsjprs.2022.03.013_b0665) 2021; 4 Song (10.1016/j.isprsjprs.2022.03.013_b0800) 2013; 135 Le (10.1016/j.isprsjprs.2022.03.013_b0470) 2021 Dhara (10.1016/j.isprsjprs.2022.03.013_b0195) 2020; 12 Benoudjit (10.1016/j.isprsjprs.2022.03.013_b0040) 2019; 11 Govender (10.1016/j.isprsjprs.2022.03.013_b0295) 2007; 33 Li (10.1016/j.isprsjprs.2022.03.013_b0535) 2021; 67 Xu (10.1016/j.isprsjprs.2022.03.013_b0955) 2020; 59 10.1016/j.isprsjprs.2022.03.013_b0765 10.1016/j.isprsjprs.2022.03.013_b0410 Krähenbühl (10.1016/j.isprsjprs.2022.03.013_b0450) 2011; 24 Munawar (10.1016/j.isprsjprs.2022.03.013_b0670) 2021; 13 10.1016/j.isprsjprs.2022.03.013_b1065 Huang (10.1016/j.isprsjprs.2022.03.013_b0355) 2008; 47 Li (10.1016/j.isprsjprs.2022.03.013_b0500) 2021; 14 Mergili (10.1016/j.isprsjprs.2022.03.013_b0645) 2013; 107 Li (10.1016/j.isprsjprs.2022.03.013_b0515) 2021 Yuan (10.1016/j.isprsjprs.2022.03.013_b1005) 2021; 14 McCabe (10.1016/j.isprsjprs.2022.03.013_b0630) 2017; 21 Zeng (10.1016/j.isprsjprs.2022.03.013_b1020) 2015; 7 Guo (10.1016/j.isprsjprs.2022.03.013_b0305) 2020; 9 10.1016/j.isprsjprs.2022.03.013_b0755 Qayyum (10.1016/j.isprsjprs.2022.03.013_b0730) 2020; 9 10.1016/j.isprsjprs.2022.03.013_b0875 Byun (10.1016/j.isprsjprs.2022.03.013_b0075) 2015; 7 10.1016/j.isprsjprs.2022.03.013_b0640 10.1016/j.isprsjprs.2022.03.013_b0885 10.1016/j.isprsjprs.2022.03.013_b0400 Li (10.1016/j.isprsjprs.2022.03.013_b0530) 2021; 179 Huang (10.1016/j.isprsjprs.2022.03.013_b0360) 2015; 8 10.1016/j.isprsjprs.2022.03.013_b0085 Wang (10.1016/j.isprsjprs.2022.03.013_b0895) 2021 Li (10.1016/j.isprsjprs.2022.03.013_b0550) 2018; 146 Zhang (10.1016/j.isprsjprs.2022.03.013_b1025) 2015; 131 Du (10.1016/j.isprsjprs.2022.03.013_b0225) 2019; 158 Jawak (10.1016/j.isprsjprs.2022.03.013_b0380) 2015; 4 Xie (10.1016/j.isprsjprs.2022.03.013_b0930) 2016; 9 Zhang (10.1016/j.isprsjprs.2022.03.013_b1055) 2020; 12 Fletcher (10.1016/j.isprsjprs.2022.03.013_b0265) 2013; 51 10.1016/j.isprsjprs.2022.03.013_b0505 Ouyang (10.1016/j.isprsjprs.2022.03.013_b0700) 2021; 13 10.1016/j.isprsjprs.2022.03.013_b0865 Feng (10.1016/j.isprsjprs.2022.03.013_b0240) 2015; 7 10.1016/j.isprsjprs.2022.03.013_b0750 10.1016/j.isprsjprs.2022.03.013_b0510 Huang (10.1016/j.isprsjprs.2022.03.013_b0350) 2018; 10 Shao (10.1016/j.isprsjprs.2022.03.013_b0775) 2018; 10 10.1016/j.isprsjprs.2022.03.013_b0870 Shen (10.1016/j.isprsjprs.2022.03.013_b0785) 2019; 11 Yang (10.1016/j.isprsjprs.2022.03.013_b0970) 2017; 9 Duan (10.1016/j.isprsjprs.2022.03.013_b0230) 2019; 17 10.1016/j.isprsjprs.2022.03.013_b0070 10.1016/j.isprsjprs.2022.03.013_b0190 Paszke (10.1016/j.isprsjprs.2022.03.013_b0720) 2019; 32 Pappas (10.1016/j.isprsjprs.2022.03.013_b0715) 2020; 59 Yao (10.1016/j.isprsjprs.2022.03.013_b0980) 2015; 7 Chen (10.1016/j.isprsjprs.2022.03.013_b0090) 2021; 178 Morrow (10.1016/j.isprsjprs.2022.03.013_b0660) 2019; 6 Li (10.1016/j.isprsjprs.2022.03.013_b0540) 2022; 243 10.1016/j.isprsjprs.2022.03.013_b0615 Lamovec (10.1016/j.isprsjprs.2022.03.013_b0465) 2013; 7 10.1016/j.isprsjprs.2022.03.013_b0975 Ji (10.1016/j.isprsjprs.2022.03.013_b0390) 2018; 57 10.1016/j.isprsjprs.2022.03.013_b0740 Li (10.1016/j.isprsjprs.2022.03.013_b0570) 2019; 11 Ding (10.1016/j.isprsjprs.2022.03.013_b0205) 2020; 58 Li (10.1016/j.isprsjprs.2022.03.013_b0495) 2021; 13 10.1016/j.isprsjprs.2022.03.013_b1035 Chen (10.1016/j.isprsjprs.2022.03.013_b0130) 2020; 588 Jawak (10.1016/j.isprsjprs.2022.03.013_b0375) 2015; 4 Cheng (10.1016/j.isprsjprs.2022.03.013_b0145) 2016; 117 Li (10.1016/j.isprsjprs.2022.03.013_b0545) 2021; 175 10.1016/j.isprsjprs.2022.03.013_b0060 Chen (10.1016/j.isprsjprs.2022.03.013_b0125) 2018; 10 10.1016/j.isprsjprs.2022.03.013_b0600 Li (10.1016/j.isprsjprs.2022.03.013_b0555) 2021; 51 10.1016/j.isprsjprs.2022.03.013_b0850 Zhang (10.1016/j.isprsjprs.2022.03.013_b1045) 2020; 30 10.1016/j.isprsjprs.2022.03.013_b0610 Li (10.1016/j.isprsjprs.2022.03.013_b0575) 2019; 7 Borji (10.1016/j.isprsjprs.2022.03.013_b0065) 2019; 5 10.1016/j.isprsjprs.2022.03.013_b0175 10.1016/j.isprsjprs.2022.03.013_b0055 10.1016/j.isprsjprs.2022.03.013_b0170 Cheng (10.1016/j.isprsjprs.2022.03.013_b0155) 2020; 13 Ferreira (10.1016/j.isprsjprs.2022.03.013_b0250) 2016 Dang (10.1016/j.isprsjprs.2022.03.013_b0185) 2021; 13 Li (10.1016/j.isprsjprs.2022.03.013_b0490) 2012; 55 Qi (10.1016/j.isprsjprs.2022.03.013_b0735) 2019; 11 Sui (10.1016/j.isprsjprs.2022.03.013_b0810) 2013; 7 10.1016/j.isprsjprs.2022.03.013_b1015 10.1016/j.isprsjprs.2022.03.013_b0285 10.1016/j.isprsjprs.2022.03.013_b0045 Huang (10.1016/j.isprsjprs.2022.03.013_b0345) 2018; 56 Shao (10.1016/j.isprsjprs.2022.03.013_b0780) 2020; 13 10.1016/j.isprsjprs.2022.03.013_b0160 10.1016/j.isprsjprs.2022.03.013_b0280 Tuia (10.1016/j.isprsjprs.2022.03.013_b0855) 2016; 120 Sghaier (10.1016/j.isprsjprs.2022.03.013_b0770) 2016; 10 Koutalakis (10.1016/j.isprsjprs.2022.03.013_b0445) 2020; 4 10.1016/j.isprsjprs.2022.03.013_b0825 10.1016/j.isprsjprs.2022.03.013_b0705 10.1016/j.isprsjprs.2022.03.013_b0830 Kang (10.1016/j.isprsjprs.2022.03.013_b0405) 2021; 103 10.1016/j.isprsjprs.2022.03.013_b1000 Nex (10.1016/j.isprsjprs.2022.03.013_b0685) 2014; 6 Li (10.1016/j.isprsjprs.2022.03.013_b0565) 2021; 59 10.1016/j.isprsjprs.2022.03.013_b0935 Bijeesh (10.1016/j.isprsjprs.2022.03.013_b0050) 2020; 6 Abdollahi (10.1016/j.isprsjprs.2022.03.013_b0005) 2021 10.1016/j.isprsjprs.2022.03.013_b0940 Cui (10.1016/j.isprsjprs.2022.03.013_b0180) 2020; 14 Haibo (10.1016/j.isprsjprs.2022.03.013_b0310) 2011; 10 10.1016/j.isprsjprs.2022.03.013_b1110 10.1016/j.isprsjprs.2022.03.013_b0140 Tuia (10.1016/j.isprsjprs.2022.03.013_b0860) 2014; 52 Yu (10.1016/j.isprsjprs.2022.03.013_b0995) 2021; 42 Acharya (10.1016/j.isprsjprs.2022.03.013_b0020) 2018; 18 Audebert (10.1016/j.isprsjprs.2022.03.013_b0030) 2018; 140 Gebrehiwot (10.1016/j.isprsjprs.2022.03.013_b0290) 2019; 19 Qiu (10.1016/j.isprsjprs.2022.03.013_b0745) 2019; 9 Sun (10.1016/j.isprsjprs.2022.03.013_b0815) 2020; 13 10.1016/j.isprsjprs.2022.03.013_b1105 Abid (10.1016/j.isprsjprs.2022.03.013_b0010) 2021; 105 Wang (10.1016/j.isprsjprs.2022.03.013_b0890) 2020; 12 10.1016/j.isprsjprs.2022.03.013_b1100 Xu (10.1016/j.isprsjprs.2022.03.013_b0950) 2010; 8 Zhang (10.1016/j.isprsjprs.2022.03.013_b1030) 2018 Krizhevsky (10.1016/j.isprsjprs.2022.03.013_b0455) 2012; 25 Chen (10.1016/j.isprsjprs.2022.03.013_b0135) 2019; 13 Xu (10.1016/j.isprsjprs.2022.03.013_b0945) 2006; 27 Adão (10.1016/j.isprsjprs.2022.03.013_b0025) 2017; 9 10.1016/j.isprsjprs.2022.03.013_b0120 McFeeters (10.1016/j.isprsjprs.2022.03.013_b0635) 1996; 17 Mitkari (10.1016/j.isprsjprs.2022.03.013_b0655) 2017; 10 Zhang (10.1016/j.isprsjprs.2022.03.013_b1060) 2018; 16 Musa (10.1016/j.isprsjprs.2022.03.013_b0675) 2015; 19 10.1016/j.isprsjprs.2022.03.013_b0485 Bao (10.1016/j.isprsjprs.2022.03.013_b0035) 2021; 13 Fu (10.1016/j.isprsjprs.2022.03.013_b0275) 2018; 10 Yan |
References_xml | – volume: 14 start-page: 2127 year: 2021 end-page: 2135 ident: b0315 article-title: Flood extent mapping: an integrated method using deep learning and region growing using uav optical data publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – volume: 11 start-page: 1925 year: 2019 ident: b0570 article-title: Thick cloud removal in high-resolution satellite images using stepwise radiometric adjustment and residual correction publication-title: Remote Sens. – reference: Zhou, M., Niu, Z., Wang, L., Zhang, Q., Hua, G., 2020. Adversarial ranking attack and defense. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XIV 16, Springer. pp. 781–799. – volume: 16 start-page: 618 year: 2018 end-page: 622 ident: b0245 article-title: Water body extraction from very high-resolution remote sensing imagery using deep u-net and a superpixel-based conditional random field model publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 10 start-page: 2067 year: 2018 ident: b0350 article-title: Automatic mapping of thermokarst landforms from remote sensing images using deep learning: A case study in the northeastern tibetan plateau publication-title: Remote Sens. – volume: 9 start-page: 144 year: 2017 ident: b0970 article-title: Automated extraction of urban water bodies from zy-3 multi-spectral imagery publication-title: Water – reference: Zhao, C., 2020. A survey on image style transfer approaches using deep learning, in: Journal of Physics: Conference Series, IOP Publishing. p. 012129. – volume: 179 start-page: 145 year: 2021 end-page: 158 ident: b0530 article-title: Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification publication-title: ISPRS J. Photogram. Remote Sens. – reference: Cheng, H.K., Chung, J., Tai, Y.W., Tang, C.K., 2020b. Cascadepsp: toward class-agnostic and very high-resolution segmentation via global and local refinement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8890–8899. – volume: 47 start-page: 65 year: 2008 end-page: 73 ident: b0355 article-title: Flood hazard in hunan province of china: an economic loss analysis publication-title: Nat. Hazards – volume: 186 start-page: 170 year: 2022 end-page: 189 ident: b0560 article-title: Dkdfn: Domain knowledge-guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification publication-title: ISPRS J. Photogram. Remote Sens. – volume: 7 start-page: 12336 year: 2015 end-page: 12355 ident: b0980 article-title: High-resolution mapping of urban surface water using zy-3 multi-spectral imagery publication-title: Remote Sens. – volume: 24 start-page: 109 year: 2011 end-page: 117 ident: b0450 article-title: Efficient inference in fully connected crfs with gaussian edge potentials publication-title: Adv. Neural Inform. Process. Syst. – volume: 147 start-page: 43 year: 2014 end-page: 55 ident: b0910 article-title: Floodplain inundation and vegetation dynamics in the alligator rivers region (kakadu) of northern Australia assessed using optical and radar remote sensing publication-title: Remote Sens. Environ. – volume: 10 start-page: 5275 year: 2017 end-page: 5283 ident: b0655 article-title: Extraction of glacial lakes in gangotri glacier using object-based image analysis publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – volume: 13 start-page: 143 year: 2019 end-page: 153 ident: b0135 article-title: Thick clouds removal from multitemporal zy-3 satellite images using deep learning publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – reference: Yang, J., Zhu, Q., Lv, J., Guan, Q., 2021. Ucwater: Unsupervised content-adaptive water-body extraction framework for high-resolution satellite imagery. In: 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, IEEE. pp. 2767–2770. – volume: 30 start-page: 1305 year: 2020 end-page: 1317 ident: b1045 article-title: Dense attention fluid network for salient object detection in optical remote sensing images publication-title: IEEE Trans. Image Process. – reference: Melas-Kyriazi, L., Manrai, A.K., 2021. Pixmatch: Unsupervised domain adaptation via pixelwise consistency training. in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12435–12445. – volume: 80 start-page: 939 year: 2014 end-page: 952 ident: b0385 article-title: A semiautomatic extraction of antarctic lake features using worldview-2 imagery publication-title: Photogram. Eng. Remote Sens. – volume: 140 start-page: 20 year: 2018 end-page: 32 ident: b0030 article-title: Beyond rgb: Very high resolution urban remote sensing with multimodal deep networks publication-title: ISPRS J. Photogram. Remote Sens. – volume: 16 start-page: 1075 year: 2016 ident: b0015 article-title: Identification of water bodies in a landsat 8 oli image using a j48 decision tree publication-title: Sensors – volume: 59 start-page: 3942 year: 2020 end-page: 3955 ident: b0715 article-title: River planform extraction from high-resolution sar images via generalized gamma distribution superpixel classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 27 start-page: 3025 year: 2006 end-page: 3033 ident: b0945 article-title: Modification of normalised difference water index (ndwi) to enhance open water features in remotely sensed imagery publication-title: Int. J. Remote Sens. – reference: Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D., Nowozin, S., Dillon, J., Lakshminarayanan, B., Snoek, J., 2019. Can you trust your model’s uncertainty? evaluating predictive uncertainty under dataset shift. Adv. Neural Inform. Process. Syst. 32. – volume: 9 start-page: 909 year: 2019 ident: b0745 article-title: Review of artificial intelligence adversarial attack and defense technologies publication-title: Appl. Sci. – reference: Chen, W., Jiang, Z., Wang, Z., Cui, K., Qian, X., 2019a. Collaborative global-local networks for memory-efficient segmentation of ultra-high resolution images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8924–8933. – reference: Li, B., Zhang, H., Xu, F., 2014. Water extraction in high resolution remote sensing image based on hierarchical spectrum and shape features. In: IOP Conference Series: Earth and Environmental Science, IOP Publishing. p. 012123. – reference: Sherrah, J., 2016. Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. arXiv preprint arXiv:1606.02585. – reference: Nicholas, P., Stacey, S., Tom, H., Dronedeploy segmentation benchmark. https://github.com/dronedeploy/dd-ml-segmentation-benchmark. – volume: 78 start-page: 465 year: 2019 end-page: 470 ident: b0585 article-title: Advanced deep learning techniques for image style transfer: A survey publication-title: Signal Process.: Image Commun. – volume: 17 start-page: 1662 year: 2019 end-page: 1666 ident: b0370 article-title: Seeing through the clouds with deepwatermap publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: b0455 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inform. Process. Syst. – volume: 59 start-page: 316 year: 2020 end-page: 332 ident: b1040 article-title: Water body detection in high-resolution sar images with cascaded fully-convolutional network and variable focal loss publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 51 start-page: 261 year: 2013 end-page: 279 ident: b0265 article-title: Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art publication-title: Adv. Water Resour. – reference: Robinson, C., Malkin, K., Hu, L., Dilkina, B., Jojic, N., 2020. Weakly supervised semantic segmentation in the 2020 ieee grss data fusion contest. In: IGARSS 2020-2020 IEEE International Geoscience and Remote Sensing Symposium, IEEE. pp. 7046–7049. – reference: Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H., 2018a. Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European conference on computer vision (ECCV), pp. 801–818. – volume: 158 start-page: 63 year: 2019 end-page: 75 ident: b0225 article-title: Multi-modal deep learning for landform recognition publication-title: ISPRS J. Photogram. Remote Sens. – volume: 7 start-page: 073564 year: 2013 ident: b0465 article-title: Detecting flooded areas with machine learning techniques: case study of the selška sora river flash flood in september 2007 publication-title: J. Appl. Remote Sens. – volume: 7 start-page: 1437 year: 2015 end-page: 1455 ident: b0240 article-title: Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier–a case of yuyao, china publication-title: Water – volume: 10 start-page: 1025 year: 2016 end-page: 1038 ident: b0770 article-title: River extraction from high-resolution sar images combining a structural feature set and mathematical morphology publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – volume: 11 start-page: 879 year: 2019 ident: b0785 article-title: Inundation extent mapping by synthetic aperture radar: A review publication-title: Remote Sens. – volume: 4 start-page: 196 year: 2015 ident: b0380 article-title: A review on extraction of lakes from remotely sensed optical satellite data with a special focus on cryospheric lakes publication-title: Adv. Remote Sens. – volume: 103 start-page: 102499 year: 2021 ident: b0405 article-title: Multi-scale context extractor network for water-body extraction from high-resolution optical remotely sensed images publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 250 start-page: 112045 year: 2020 ident: b0525 article-title: Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning publication-title: Remote Sens. Environ. – volume: 10 start-page: 939 year: 2020 end-page: 945 ident: b0795 article-title: Rapid worldwide growth of glacial lakes since 1990 publication-title: Nat. Clim. Change – volume: 117 start-page: 11 year: 2016 end-page: 28 ident: b0145 article-title: A survey on object detection in optical remote sensing images publication-title: ISPRS J. Photogram. Remote Sens. – volume: 14 start-page: 116 year: 2020 end-page: 126 ident: b0180 article-title: Sanet: A sea–land segmentation network via adaptive multiscale feature learning publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – reference: He, J., Deng, Z., Zhou, L., Wang, Y., Qiao, Y., 2019. Adaptive pyramid context network for semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7519–7528. – volume: 14 start-page: 3120 year: 2021 end-page: 3132 ident: b0500 article-title: A deep learning method of water body extraction from high resolution remote sensing images with multisensors publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – volume: 59 start-page: 10590 year: 2021 end-page: 10603 ident: b0565 article-title: Learning deep cross-modal embedding networks for zero-shot remote sensing image scene classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 9 start-page: 560 year: 2020 ident: b0730 article-title: Glacial lakes mapping using multi satellite planetscope imagery and deep learning publication-title: ISPRS Int. J. Geo-Inform. – volume: 13 start-page: 1912 year: 2021 ident: b1070 article-title: Rich cnn features for water-body segmentation from very high resolution aerial and satellite imagery publication-title: Remote Sens. – volume: 5 start-page: 117 year: 2019 end-page: 150 ident: b0065 article-title: Salient object detection: A survey publication-title: Comput. Visual Media – volume: 8 start-page: 154 year: 2020 end-page: 157 ident: b0990 article-title: 2020 ieee grss data fusion contest: Global land cover mapping with weak supervision [technical committees] publication-title: IEEE Geosci. Remote Sens. Magaz. – volume: 19 start-page: 3755 year: 2015 end-page: 3769 ident: b0675 article-title: A review of applications of satellite sar, optical, altimetry and dem data for surface water modelling, mapping and parameter estimation publication-title: Hydrol. Earth Syst. Sci. – volume: 4 start-page: 77 year: 2020 ident: b0445 article-title: Using uav to capture and record torrent bed and banks, flood debris, and riparian areas publication-title: Drones – volume: 11 start-page: 245 year: 2019 ident: b0735 article-title: Fusion feature multi-scale pooling for water body extraction from optical panchromatic images publication-title: Remote Sens. – reference: Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. – reference: Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J., 2017. Pyramid scene parsing network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881–2890. – reference: Fu, L., Zhou, C., Guo, Q., Juefei-Xu, F., Yu, H., Feng, W., Liu, Y., Wang, S., 2021. Auto-exposure fusion for single-image shadow removal. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10571–10580. – volume: 10 start-page: 964 year: 2018 ident: b0775 article-title: Performance evaluation of single-label and multi-label remote sensing image retrieval using a dense labeling dataset publication-title: Remote Sens. – volume: 243 start-page: 108469 year: 2022 ident: b0540 article-title: Combining deep learning and ontology reasoning for remote sensing image semantic segmentation publication-title: Knowl.-Based Syst. – volume: 61 start-page: 399 year: 1997 end-page: 409 ident: b0270 article-title: Decision tree classification of land cover from remotely sensed data publication-title: Remote Sens. Environ. – reference: Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K., 2017b. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1492–1500. – volume: 67 start-page: 94 year: 2021 end-page: 115 ident: b0535 article-title: Image retrieval from remote sensing big data: A survey publication-title: Inform. Fusion – volume: 17 start-page: 1425 year: 1996 end-page: 1432 ident: b0635 article-title: The use of the normalized difference water index (ndwi) in the delineation of open water features publication-title: Int. J. Remote Sens. – volume: 10 start-page: 585 year: 2018 ident: b0125 article-title: Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning publication-title: Water – volume: 42 start-page: 1801 year: 2021 end-page: 1822 ident: b0995 article-title: A self-attention capsule feature pyramid network for water body extraction from remote sensing imagery publication-title: Int. J. Remote Sens. – volume: 280 start-page: 111676 year: 2021 ident: b0620 article-title: Smart solutions for smart cities: Urban wetland mapping using very-high resolution satellite imagery and airborne lidar data in the city of st. john’s, nl, canada publication-title: J. Environ. Manage. – year: 2021 ident: b0895 article-title: Salient object detection in the deep learning era: An in-depth survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., Ayed, I.B., 2019. Boundary loss for highly unbalanced segmentation. in: International conference on medical imaging with deep learning, PMLR. pp. 285–296. – volume: 9 start-page: 189 year: 2020 ident: b0305 article-title: A multi-scale water extraction convolutional neural network (mwen) method for gaofen-1 remote sensing images publication-title: ISPRS Int. J. Geo-Inform. – volume: 12 start-page: 207 year: 2020 ident: b0890 article-title: Weakly supervised deep learning for segmentation of remote sensing imagery publication-title: Remote Sens. – reference: Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 7132–7141. – reference: Bermudez, J., Happ, P., Oliveira, D., Feitosa, R., 2018. Sar to optical image synthesis for cloud removal with generative adversarial networks. ISPRS Annals Photogram., Remote Sens. Spatial Inform. Sci., 4. – volume: 13 start-page: 7547 year: 2021 ident: b0670 article-title: Uavs in disaster management: Application of integrated aerial imagery and convolutional neural network for flood detection publication-title: Sustainability – volume: 56 start-page: 1144 year: 2017 end-page: 1158 ident: b0080 article-title: Multilabel remote sensing image retrieval using a semisupervised graph-theoretic method publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 4 start-page: 1220 year: 2021 end-page: 1242 ident: b0665 article-title: Application of deep learning on uav-based aerial images for flood detection publication-title: Smart Cities – reference: Chen, C.F., Fan, Q., Panda, R., 2021a. Crossvit: Cross-attention multi-scale vision transformer for image classification. arXiv preprint arXiv:2103.14899. – volume: 169 start-page: 166 year: 2020 end-page: 179 ident: b0365 article-title: A deep learning framework for matching of sar and optical imagery publication-title: ISPRS J. Photogram. Remote Sens. – reference: Zhu, F., Zhu, Y., Zhang, L., Wu, C., Fu, Y., Li, M., 2021. A unified efficient pyramid transformer for semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2667–2677. – volume: 20 start-page: 397 year: 2020 ident: b0805 article-title: Intelligent object recognition of urban water bodies based on deep learning for multi-source and multi-temporal high spatial resolution remote sensing imagery publication-title: Sensors – year: 2021 ident: b0965 article-title: Cmt: Cross mean teacher unsupervised domain adaptation for vhr image semantic segmentation publication-title: IEEE Geosci. Remote Sens. Lett. – reference: Zhu, J.Y., Park, T., Isola, P., Efros, A.A., 2017. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision, pp. 2223–2232. – volume: 55 start-page: 1043 year: 2012 end-page: 1051 ident: b0490 article-title: Current issues in high-resolution earth observation technology publication-title: Sci. China Earth Sci. – volume: 6 start-page: 11791 year: 2014 end-page: 11809 ident: b0845 article-title: The strengths and limitations in using the daily modis open water likelihood algorithm for identifying flood events publication-title: Remote Sens. – reference: Zhang, Y., Liu, Z., Zhang, J., Yan, H., 2010. Water extraction from high resolution satellite image based on the fast matching level set method. In: International Conference on Geo-spatial Solutions for Emergency Management, Citeseer. p. C4. – volume: 36 start-page: 451 year: 2003 end-page: 461 ident: b0580 article-title: The global k-means clustering algorithm publication-title: Pattern Recogn. – volume: 540 start-page: 418 year: 2016 end-page: 422 ident: b0725 article-title: High-resolution mapping of global surface water and its long-term changes publication-title: Nature – reference: Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D., Raskar, R., 2018. Deepglobe 2018: A challenge to parse the earth through satellite images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 172–181. – reference: Ding, L., Lin, D., Lin, S., Zhang, J., Cui, X., Wang, Y., Tang, H., Bruzzone, L., 2021. Looking outside the window: Wide-context transformer for the semantic segmentation of high-resolution remote sensing images. arXiv preprint arXiv:2106.15754. – reference: Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M., 2019. Basnet: Boundary-aware salient object detection, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7479–7489. – reference: Tarvainen, A., Valpola, H., 2017. Mean teachers are better role models: Weight-averaged consistency targets improve semi-supervised deep learning results. arXiv preprint arXiv:1703.01780. – volume: 131 start-page: 148 year: 2015 end-page: 157 ident: b1025 article-title: An inventory of glacial lakes in the third pole region and their changes in response to global warming publication-title: Global Planet. Change – volume: 10 start-page: 2619 year: 2011 end-page: 2624 ident: b0310 article-title: Water body extraction methods study based on rs and gis publication-title: Proc. Environ. Sci. – volume: 105 start-page: 102568 year: 2021 ident: b0010 article-title: Ucl: Unsupervised curriculum learning for water body classification from remote sensing imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. – reference: Xie, C., Wang, J., Zhang, Z., Zhou, Y., Xie, L., Yuille, A., 2017a. Adversarial examples for semantic segmentation and object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1369–1378. – volume: 9 start-page: 925 year: 2016 end-page: 941 ident: b0930 article-title: A novel water index for urban high-resolution eight-band worldview-2 imagery publication-title: Int. J. Digital Earth – reference: Wang, H., Wu, X., Huang, Z., Xing, E.P., 2020a. High-frequency component helps explain the generalization of convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8684–8694. – volume: 13 start-page: 3465 year: 2021 ident: b0035 article-title: Water extraction in sar images using features analysis and dual-threshold graph cut model publication-title: Remote Sens. – reference: He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778. – reference: Komodakis, N., Gidaris, S., 2018. Unsupervised representation learning by predicting image rotations. in: International Conference on Learning Representations (ICLR). – volume: 146 start-page: 182 year: 2018 end-page: 196 ident: b0550 article-title: Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images publication-title: ISPRS J. Photogram. Remote Sens. – volume: 15 start-page: 602 year: 2018 end-page: 606 ident: b0650 article-title: Automatic water-body segmentation from high-resolution satellite images via deep networks publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 18 start-page: 2580 year: 2018 ident: b0020 article-title: Evaluation of water indices for surface water extraction in a landsat 8 scene of Nepal publication-title: Sensors – reference: Tong, X.Y., Xia, G.S., Lu, Q., Shen, H., Li, S., You, S., Zhang, L., 2018. Learning transferable deep models for land-use classification with high-resolution remote sensing images. arXiv preprint arXiv:1807.05713. – reference: Gao, H., Wang, L., Jing, L., Xu, J., 2016. An effective modified water extraction method for landsat-8 oli imagery of mountainous plateau regions. In: IOP conference series: earth and environmental science, IOP Publishing. p. 012010. – volume: 13 start-page: 3122 year: 2021 ident: b0185 article-title: Msresnet: Multiscale residual network via self-supervised learning for water-body detection in remote sensing imagery publication-title: Remote Sens. – volume: 13 start-page: 318 year: 2020 end-page: 328 ident: b0780 article-title: Multilabel remote sensing image retrieval based on fully convolutional network publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – reference: Yuan, J., Deng, Z., Wang, S., Luo, Z., 2020a. Multi receptive field network for semantic segmentation. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE. pp. 1883–1892. – reference: Borse, S., Wang, Y., Zhang, Y., Porikli, F., 2021. Inverseform: A loss function for structured boundary-aware segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5901–5911. – reference: Jung, H., Choi, H.S., Kang, M., 2021. Boundary enhancement semantic segmentation for building extraction from remote sensed image. IEEE Trans. Geosci. Remote Sens. – reference: Schmitt, M., Prexl, J., Ebel, P., Liebel, L., Zhu, X.X., 2020. Weakly supervised semantic segmentation of satellite images for land cover mapping–challenges and opportunities. arXiv preprint arXiv:2002.08254. – volume: 6 start-page: 232 year: 2019 ident: b0660 article-title: Global observations of fine-scale ocean surface topography with the surface water and ocean topography (swot) mission publication-title: Front. Mar. Sci. – volume: 237 start-page: 111582 year: 2020 ident: b0300 article-title: Flood mapping under vegetation using single sar acquisitions publication-title: Remote Sens. Environ. – volume: 56 start-page: 333 year: 2018 end-page: 360 ident: b0345 article-title: Detecting, extracting, and monitoring surface water from space using optical sensors: A review publication-title: Rev. Geophys. – reference: Chen, Z., Zhou, H., Xie, X., Lai, J., 2019d. Contour loss: Boundary-aware learning for salient object segmentation. arXiv preprint arXiv:1908.01975. – volume: 6 start-page: 1 year: 2014 end-page: 15 ident: b0685 article-title: Uav for 3d mapping applications: a review publication-title: Appl. Geomat. – reference: Khurshid, M.H., Khan, M.F., 2012. River extraction from high resolution satellite images. in: 2012 5th International Congress on Image and Signal Processing, IEEE. pp. 697–700. – volume: 24 start-page: 108 year: 2013 end-page: 119 ident: b0435 article-title: Advances in thermokarst research publication-title: Permafrost Periglac. Process. – volume: 103 start-page: 102472 year: 2021 ident: b0605 article-title: An applicable and automatic method for earth surface water mapping based on multispectral images publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 12 start-page: 1195 year: 2020 ident: b1055 article-title: An improved boundary-aware perceptual loss for building extraction from vhr images publication-title: Remote Sens. – volume: 140 start-page: 23 year: 2014 end-page: 35 ident: b0255 article-title: Automated water extraction index: A new technique for surface water mapping using landsat imagery publication-title: Remote Sens. Environ. – volume: 7 start-page: 14853 year: 2015 end-page: 14875 ident: b0625 article-title: Detection and delineation of localized flooding from worldview-2 multispectral data publication-title: Remote Sens. – volume: 52 start-page: 7708 year: 2014 end-page: 7720 ident: b0860 article-title: Semisupervised manifold alignment of multimodal remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2021 ident: b0515 article-title: Geographical knowledge-driven representation learning for remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2018 ident: b1030 article-title: mixup: Beyond empirical risk minimization publication-title: International Conference on Learning Representations – reference: Zhao, K., Kang, J., Jung, J., Sohn, G., 2018. Building extraction from satellite images using mask r-cnn with building boundary regularization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 247–251. – reference: Lv, W., Yu, Q., Yu, W., 2010. Water extraction in sar images using glcm and support vector machine. In: IEEE 10th international conference on signal processing proceedings. – volume: 14 start-page: 8922 year: 2021 end-page: 8940 ident: b0820 article-title: Automated high-resolution earth observation image interpretation: Outcome of the 2020 gaofen challenge publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – reference: Bokhovkin, A., Burnaev, E., 2019. Boundary loss for remote sensing imagery semantic segmentation. In: International Symposium on Neural Networks, Springer. pp. 388–401. – reference: Yuan, Y., Chen, X., Wang, J., 2020b. Object-contextual representations for semantic segmentation. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VI 16, Springer. pp. 173–190. – reference: Li, S., Wang, S., Zheng, Z., Wan, D., Feng, J., 2016. A new algorithm for water information extraction from high resolution remote sensing imagery. In: 2016 IEEE International Conference on Image Processing (ICIP), IEEE. pp. 4359–4363. – reference: Kim, M., Byun, H., 2020. Learning texture invariant representation for domain adaptation of semantic segmentation. in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12975–12984. – reference: Chen, X., Qi, D., Shen, J., 2019b. Boundary-aware network for fast and high-accuracy portrait segmentation. arXiv preprint arXiv:1901.03814. – reference: Wang, J., Zheng, Z., Ma, A., Lu, X., Zhong, Y., 2021a. LoveDA: A remote sensing land-cover dataset for domain adaptive semantic segmentation. In: Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2). URL https://openreview.net/forum?id=bLBIbVaGDu. – volume: 11 start-page: 779 year: 2019 ident: b0040 article-title: A novel fully automated mapping of the flood extent on sar images using a supervised classifier publication-title: Remote Sens. – volume: 13 start-page: 5398 year: 2020 end-page: 5413 ident: b0815 article-title: BasΘ{4} net: Boundary-aware semi-supervised semantic segmentation network for very high resolution remote sensing images publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – reference: Takikawa, T., Acuna, D., Jampani, V., Fidler, S., 2019. Gated-scnn: Gated shape cnns for semantic segmentation. in: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5229–5238. – reference: Li, Q., Yang, W., Liu, W., Yu, Y., He, S., 2021d. From contexts to locality: Ultra-high resolution image segmentation via locality-aware contextual correlation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7252–7261. – volume: 10 start-page: 1687 year: 2017 end-page: 1700 ident: b0840 article-title: Mapping thermokarst lakes on the qinghai–tibet plateau using nonlocal active contours in chinese gaofen-2 multispectral imagery publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – volume: 14 start-page: 7422 year: 2021 end-page: 7434 ident: b1005 article-title: Deep-learning-based multispectral satellite image segmentation for water body detection publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – volume: 57 start-page: 574 year: 2018 end-page: 586 ident: b0390 article-title: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 4 start-page: 125 year: 2015 end-page: 132 ident: b0375 article-title: A rapid extraction of water body features from antarctic coastal oasis using very high-resolution satellite remote sensing data publication-title: Aquatic Proc. – volume: 7 start-page: 155787 year: 2019 end-page: 155804 ident: b0575 article-title: Multiscale features supported deeplabv3+ optimization scheme for accurate water semantic segmentation publication-title: IEEE Access – volume: 32 start-page: 8026 year: 2019 end-page: 8037 ident: b0720 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inform. Process. Syst. – reference: Volpi, M., Ferrari, V., 2015. Semantic segmentation of urban scenes by learning local class interactions. in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 1–9. – volume: 162 start-page: 148 year: 2020 end-page: 160 ident: b1050 article-title: Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning publication-title: ISPRS J. Photogram. Remote Sens. – volume: 178 start-page: 345 year: 2021 end-page: 365 ident: b0090 article-title: Urban road mapping based on an end-to-end road vectorization mapping network framework publication-title: ISPRS J. Photogram. Remote Sens. – volume: 13 start-page: 3735 year: 2020 end-page: 3756 ident: b0155 article-title: Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – reference: Liu, Y., Piramanayagam, S., Monteiro, S.T., Saber, E., 2017. Dense semantic labeling of very-high-resolution aerial imagery and lidar with fully-convolutional neural networks and higher-order crfs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 76–85. – volume: 51 start-page: 1756 year: 2021 end-page: 1768 ident: b0555 article-title: Error-tolerant deep learning for remote sensing image scene classification publication-title: IEEE Trans. Cybernet. – volume: 8 start-page: 64 year: 2010 end-page: 66 ident: b0950 article-title: Extraction techniques of urban water bodies based on object-oriented publication-title: Geospatial Inform. – volume: 85 start-page: 32 year: 2013 end-page: 43 ident: b0150 article-title: Object detection in remote sensing imagery using a discriminatively trained mixture model publication-title: ISPRS J. Photogram. Remote Sens. – volume: 6 start-page: 810 year: 2016 end-page: 813 ident: b0210 article-title: Earth’s surface water change over the past 30 years publication-title: Nat. Clim. Change – volume: 175 start-page: 20 year: 2021 end-page: 33 ident: b0545 article-title: Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation publication-title: ISPRS J. Photogram. Remote Sens. – volume: 32 start-page: 4545 year: 2011 end-page: 4569 ident: b0835 article-title: Landsat mapping of annual inundation (1979–2006) of the macquarie marshes in semi-arid australia publication-title: Int. J. Remote Sens. – volume: 40 start-page: 834 year: 2017 end-page: 848 ident: b0095 article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Ma, C., Rao, Y., Cheng, Y., Chen, C., Lu, J., Zhou, J., 2020. Structure-preserving super resolution with gradient guidance. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7769–7778. – volume: 10 start-page: 144 year: 2018 ident: b0960 article-title: Building extraction in very high resolution remote sensing imagery using deep learning and guided filters publication-title: Remote Sens. – year: 2021 ident: b0695 article-title: Boundary-aware dual stream network for vhr remote sensing images semantic segmentation publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – reference: Dong, S., Pang, L., Zhuang, Y., Liu, W., Yang, Z., Long, T., 2019. Optical remote sensing water-land segmentation representation based on proposed sns-cnn network. In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE. pp. 3895–3898. – volume: 175 start-page: 167 year: 2016 end-page: 182 ident: b0260 article-title: Comparing landsat water index methods for automated water classification in eastern australia publication-title: Remote Sens. Environ. – volume: 12 start-page: 1543 year: 2020 ident: b0195 article-title: Accounting for uncertainty and reconstruction of flooding patterns based on multi-satellite imagery and support vector machine technique: A case study of can tho city, Vietnam publication-title: Water – volume: 11 start-page: 10062 year: 2021 ident: b0480 article-title: Comparative analysis of machine learning algorithms in automatic identification and extraction of water boundaries publication-title: Appl. Sci. – volume: 13 start-page: 3165 year: 2021 ident: b0520 article-title: Urban water extraction with uav high-resolution remote sensing data based on an improved u-net model publication-title: Remote Sens. – volume: 13 start-page: 865 year: 2021 ident: b0495 article-title: Multitemporal water extraction of dongting lake and poyang lake based on an automatic water extraction and dynamic monitoring framework publication-title: Remote Sens. – volume: 21 start-page: 3879 year: 2017 end-page: 3914 ident: b0630 article-title: The future of earth observation in hydrology publication-title: Hydrol. Earth Syst. Sci. – reference: Chu, Z., Tian, T., Feng, R., Wang, L., 2019. Sea-land segmentation with res-unet and fully connected crf. In: IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium, IEEE. pp. 3840–3843. – reference: Lee, D.H., et al., 2013. Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on challenges in representation learning, ICML, p. 896. – reference: Boguszewski, A., Batorski, D., Ziemba-Jankowska, N., Dziedzic, T., Zambrzycka, A., 2021. Landcover. ai: Dataset for automatic mapping of buildings, woodlands, water and roads from aerial imagery. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1102–1110. – volume: 37 start-page: 1904 year: 2015 end-page: 1916 ident: b0325 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – reference: Chen, L.C., Papandreou, G., Schroff, F., Adam, H., 2017b. Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587. – reference: Schmarje, L., Santarossa, M., Schröder, S.M., Koch, R., 2020. A survey on semi-, self-and unsupervised techniques in image classification. arXiv preprint arXiv:2002.08721. – volume: 7 start-page: 10347 year: 2015 end-page: 10363 ident: b0075 article-title: Image fusion-based change detection for flood extent extraction using bi-temporal very high-resolution satellite images publication-title: Remote Sens. – reference: Long, J., Shelhamer, E., Darrell, T., 2015. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 3431–3440. – reference: Cho, S., Jun, T.J., Oh, B., Kim, D., 2020. Dapas: Denoising autoencoder to prevent adversarial attack in semantic segmentation. In: 2020 International Joint Conference on Neural Networks (IJCNN), IEEE. pp. 1–8. – volume: 588 start-page: 125092 year: 2020 ident: b0130 article-title: A novel water body extraction neural network (wbe-nn) for optical high-resolution multispectral imagery publication-title: J. Hydrol. – volume: 13 start-page: 119 year: 2021 ident: b0700 article-title: Combining deep semantic segmentation network and graph convolutional neural network for semantic segmentation of remote sensing imagery publication-title: Remote Sens. – volume: 13 start-page: 692 year: 2021 ident: b0395 article-title: Boundary-aware refined network for automatic building extraction in very high-resolution urban aerial images publication-title: Remote Sens. – volume: 9 start-page: 1110 year: 2017 ident: b0025 article-title: Hyperspectral imaging: A review on uav-based sensors, data processing and applications for agriculture and forestry publication-title: Remote Sens. – volume: 58 start-page: 5367 year: 2020 end-page: 5376 ident: b0205 article-title: Semantic segmentation of large-size vhr remote sensing images using a two-stage multiscale training architecture publication-title: IEEE Trans. Geosci. Remote Sens. – year: 2021 ident: b0915 article-title: Graph convolutional networks for the automated production of building vector maps from aerial images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 7 start-page: 14055 year: 2015 end-page: 14078 ident: b1020 article-title: A natural-rule-based-connection (nrbc) method for river network extraction from high-resolution imagery publication-title: Remote Sens. – volume: 12 start-page: 4140 year: 2020 ident: b0905 article-title: Mslwenet: A novel deep learning network for lake water body extraction of google remote sensing images publication-title: Remote Sens. – volume: 3 start-page: 265 year: 2010 end-page: 384 ident: b0680 article-title: Water-body area extraction from high resolution satellite images-an introduction, review, and comparison publication-title: Int. J. Image Process. (IJIP) – reference: Wang, X., Xie, H., 2018. A review on applications of remote sensing and geographic information systems (gis) in water resources and flood risk management. – start-page: 1 year: 2021 end-page: 24 ident: b0005 article-title: Roadvecnet: a new approach for simultaneous road network segmentation and vectorization from aerial and google earth imagery in a complex urban set-up publication-title: GIScience Remote Sens. – volume: 54 start-page: 3660 year: 2016 end-page: 3671 ident: b0985 article-title: Semantic annotation of high-resolution satellite images via weakly supervised learning publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 135 start-page: 25 year: 2013 end-page: 35 ident: b0800 article-title: Modeling and analysis of lake water storage changes on the tibetan plateau using multi-mission satellite data publication-title: Remote Sens. Environ. – year: 2021 ident: b0470 article-title: Physics-based shadow image decomposition for shadow removal publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 59 start-page: 1604 year: 2020 end-page: 1617 ident: b0955 article-title: Assessing the threat of adversarial examples on deep neural networks for remote sensing scene classification: Attacks and defenses publication-title: IEEE Trans. Geosci. Remote Sens. – reference: Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B., 2021. Swin transformer: Hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022. – volume: 8 start-page: 2097 year: 2015 end-page: 2110 ident: b0360 article-title: Combining pixel-and object-based machine learning for identification of water-body types from urban high-resolution remote-sensing imagery publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – volume: 9 start-page: 256 year: 2020 ident: b0920 article-title: Water areas segmentation from remote sensing images using a separable residual segnet network publication-title: ISPRS Int. J. Geo-Inform. – reference: Hou, Q., Zhang, L., Cheng, M.M., Feng, J., 2020. Strip pooling: Rethinking spatial pooling for scene parsing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4003–4012. – reference: Chen, X., He, K., 2021. Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758. – volume: 16 start-page: 927 year: 2018 end-page: 931 ident: b1060 article-title: Automatic and unsupervised water body extraction based on spectral-spatial features using gf-1 satellite imagery publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 104 start-page: 2207 year: 2016 end-page: 2219 ident: b0165 article-title: Big data for remote sensing: Challenges and opportunities publication-title: Proc. IEEE – reference: Zheng, Q., Qiao, X., Cao, Y., Lau, R.W., 2019. Distraction-aware shadow detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5167–5176. – reference: Lafferty, J., McCallum, A., Pereira, F.C., 2001. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. – volume: 19 start-page: 1486 year: 2019 ident: b0290 article-title: Deep convolutional neural network for flood extent mapping using unmanned aerial vehicles data publication-title: Sensors – volume: 10 start-page: 743 year: 2018 ident: b0710 article-title: Semantic labeling of high resolution aerial imagery and lidar data with fine segmentation network publication-title: Remote Sens. – reference: Dubes, R.C., Jain, A.K., Nadabar, S.G., Chen, C.C., 1990. Mrf model-based algorithms for image segmentation. In: [1990] Proceedings. 10th International Conference on Pattern Recognition, IEEE. pp. 808–814. – reference: Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z., Sun, Y., He, T., Mueller, J., Manmatha, R., et al., 2020a. Resnest: Split-attention networks. arXiv preprint arXiv:2004.08955. – volume: 30 start-page: 2805 year: 2019 end-page: 2824 ident: b1010 article-title: Adversarial examples: Attacks and defenses for deep learning publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 107 start-page: 13 year: 2013 end-page: 24 ident: b0645 article-title: Spatio-temporal development of high-mountain lakes in the headwaters of the amu darya river (central asia) publication-title: Global Planet. Change – volume: 10 start-page: 1970 year: 2018 ident: b0275 article-title: Wsf-net: Weakly supervised feature-fusion network for binary segmentation in remote sensing image publication-title: Remote Sens. – volume: 7 start-page: W2 year: 2013 ident: b0810 article-title: An automatic integrated image segmentation, registration and change detection method for water-body extraction using hsr images and gis data publication-title: Int. Arch. Photogram., Remote Sens. Spatial Inform. Sci. – volume: 33 start-page: 145 year: 2007 end-page: 151 ident: b0295 article-title: A review of hyperspectral remote sensing and its application in vegetation and water resource studies publication-title: Water Sa – reference: Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al., 2020. An image is worth 16 × 16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929. – volume: 120 start-page: 1 year: 2016 end-page: 12 ident: b0855 article-title: Multi-temporal and multi-source remote sensing image classification by nonlinear relative normalization publication-title: ISPRS J. Photogram. Remote Sens. – reference: Klemenjak, S., Waske, B., Valero, S., Chanussot, J., 2012. Unsupervised river detection in rapideye data. in: 2012 IEEE International Geoscience and Remote Sensing Symposium, IEEE. pp. 6860–6863. – reference: Vörösmarty, C.J., Green, P., Salisbury, J., Lammers, R.B., 2000. Global water resources: vulnerability from climate change and population growth. science 289, 284–288. – start-page: 416 year: 2016 end-page: 423 ident: b0250 article-title: A boosting-based approach for remote sensing multimodal image classification publication-title: 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI) – volume: 6 start-page: 1 year: 2020 end-page: 23 ident: b0050 article-title: Surface water detection and delineation using remote sensing images: A review of methods and algorithms publication-title: Sustain. Water Resour. Manage. – volume: 43 start-page: 3349 year: 2020 end-page: 3364 ident: b0880 article-title: Deep high-resolution representation learning for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 17 start-page: 686 year: 2019 end-page: 690 ident: b0230 article-title: Multiscale refinement network for water-body segmentation in high-resolution satellite imagery publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 42 start-page: 153 year: 2019 end-page: 160 ident: b0760 article-title: Sen12ms-a curated dataset of georeferenced multi-spectral sentinel-1/2 imagery for deep learning and data fusion publication-title: ISPRS Annals Photogram., Remote Sens. Spatial Inform. Sci. – volume: 10 start-page: 1704 year: 2018 ident: b0925 article-title: Two-step urban water index (tsuwi): A new technique for high-resolution mapping of urban surface water publication-title: Remote Sens. – reference: Zhou, Y., Luo, J., Shen, Z., Cheng, X., Hu, X., 2012. Adaptive extraction of water in urban areas based on local iteration using high-resolution multi-spectral image. In: 2012 IEEE International Geoscience and Remote Sensing Symposium, Ieee. pp. 6024–6027. – volume: 104 start-page: 2207 year: 2016 ident: 10.1016/j.isprsjprs.2022.03.013_b0165 article-title: Big data for remote sensing: Challenges and opportunities publication-title: Proc. IEEE doi: 10.1109/JPROC.2016.2598228 – volume: 12 start-page: 1195 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b1055 article-title: An improved boundary-aware perceptual loss for building extraction from vhr images publication-title: Remote Sens. doi: 10.3390/rs12071195 – volume: 103 start-page: 102472 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0605 article-title: An applicable and automatic method for earth surface water mapping based on multispectral images publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2021.102472 – ident: 10.1016/j.isprsjprs.2022.03.013_b0505 doi: 10.1109/ICCV48922.2021.00716 – ident: 10.1016/j.isprsjprs.2022.03.013_b0045 doi: 10.5194/isprs-annals-IV-1-5-2018 – volume: 13 start-page: 7547 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0670 article-title: Uavs in disaster management: Application of integrated aerial imagery and convolutional neural network for flood detection publication-title: Sustainability doi: 10.3390/su13147547 – ident: 10.1016/j.isprsjprs.2022.03.013_b0875 doi: 10.1109/CVPR42600.2020.00871 – year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0895 article-title: Salient object detection in the deep learning era: An in-depth survey – ident: 10.1016/j.isprsjprs.2022.03.013_b0400 doi: 10.1109/TGRS.2021.3108781 – volume: 9 start-page: 256 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0920 article-title: Water areas segmentation from remote sensing images using a separable residual segnet network publication-title: ISPRS Int. J. Geo-Inform. doi: 10.3390/ijgi9040256 – volume: 10 start-page: 5275 year: 2017 ident: 10.1016/j.isprsjprs.2022.03.013_b0655 article-title: Extraction of glacial lakes in gangotri glacier using object-based image analysis publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. – ident: 10.1016/j.isprsjprs.2022.03.013_b1065 – volume: 14 start-page: 8922 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0820 article-title: Automated high-resolution earth observation image interpretation: Outcome of the 2020 gaofen challenge publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2021.3106941 – volume: 10 start-page: 1025 year: 2016 ident: 10.1016/j.isprsjprs.2022.03.013_b0770 article-title: River extraction from high-resolution sar images combining a structural feature set and mathematical morphology publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2016.2609804 – ident: 10.1016/j.isprsjprs.2022.03.013_b0610 – ident: 10.1016/j.isprsjprs.2022.03.013_b0765 – ident: 10.1016/j.isprsjprs.2022.03.013_b0215 doi: 10.1109/IGARSS.2019.8898367 – year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0965 article-title: Cmt: Cross mean teacher unsupervised domain adaptation for vhr image semantic segmentation – volume: 10 start-page: 585 year: 2018 ident: 10.1016/j.isprsjprs.2022.03.013_b0125 article-title: Extraction of urban water bodies from high-resolution remote-sensing imagery using deep learning publication-title: Water doi: 10.3390/w10050585 – volume: 59 start-page: 10590 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0565 article-title: Learning deep cross-modal embedding networks for zero-shot remote sensing image scene classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3047447 – ident: 10.1016/j.isprsjprs.2022.03.013_b0140 – ident: 10.1016/j.isprsjprs.2022.03.013_b0340 doi: 10.1109/CVPR.2018.00745 – volume: 178 start-page: 345 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0090 article-title: Urban road mapping based on an end-to-end road vectorization mapping network framework publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2021.05.016 – ident: 10.1016/j.isprsjprs.2022.03.013_b1090 doi: 10.1109/CVPR.2019.00531 – ident: 10.1016/j.isprsjprs.2022.03.013_b0940 doi: 10.1109/CVPR.2017.634 – volume: 27 start-page: 3025 year: 2006 ident: 10.1016/j.isprsjprs.2022.03.013_b0945 article-title: Modification of normalised difference water index (ndwi) to enhance open water features in remotely sensed imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600589179 – volume: 7 start-page: 073564 year: 2013 ident: 10.1016/j.isprsjprs.2022.03.013_b0465 article-title: Detecting flooded areas with machine learning techniques: case study of the selška sora river flash flood in september 2007 publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.7.073564 – ident: 10.1016/j.isprsjprs.2022.03.013_b0885 – start-page: 416 year: 2016 ident: 10.1016/j.isprsjprs.2022.03.013_b0250 article-title: A boosting-based approach for remote sensing multimodal image classification – ident: 10.1016/j.isprsjprs.2022.03.013_b0285 doi: 10.1088/1755-1315/34/1/012010 – volume: 10 start-page: 2619 year: 2011 ident: 10.1016/j.isprsjprs.2022.03.013_b0310 article-title: Water body extraction methods study based on rs and gis publication-title: Proc. Environ. Sci. doi: 10.1016/j.proenv.2011.09.407 – ident: 10.1016/j.isprsjprs.2022.03.013_b1035 – volume: 175 start-page: 167 year: 2016 ident: 10.1016/j.isprsjprs.2022.03.013_b0260 article-title: Comparing landsat water index methods for automated water classification in eastern australia publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.12.055 – ident: 10.1016/j.isprsjprs.2022.03.013_b0595 doi: 10.1109/ICCV48922.2021.00986 – volume: 40 start-page: 834 year: 2017 ident: 10.1016/j.isprsjprs.2022.03.013_b0095 article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – volume: 43 start-page: 3349 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0880 article-title: Deep high-resolution representation learning for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2020.2983686 – volume: 6 start-page: 232 year: 2019 ident: 10.1016/j.isprsjprs.2022.03.013_b0660 article-title: Global observations of fine-scale ocean surface topography with the surface water and ocean topography (swot) mission publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2019.00232 – ident: 10.1016/j.isprsjprs.2022.03.013_b0510 doi: 10.1109/ICIP.2016.7533183 – volume: 250 start-page: 112045 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0525 article-title: Accurate cloud detection in high-resolution remote sensing imagery by weakly supervised deep learning publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112045 – ident: 10.1016/j.isprsjprs.2022.03.013_b0975 doi: 10.1109/IGARSS47720.2021.9553270 – volume: 135 start-page: 25 year: 2013 ident: 10.1016/j.isprsjprs.2022.03.013_b0800 article-title: Modeling and analysis of lake water storage changes on the tibetan plateau using multi-mission satellite data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.03.013 – ident: 10.1016/j.isprsjprs.2022.03.013_b0410 – ident: 10.1016/j.isprsjprs.2022.03.013_b0640 doi: 10.1109/CVPR46437.2021.01225 – volume: 14 start-page: 116 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0180 article-title: Sanet: A sea–land segmentation network via adaptive multiscale feature learning publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2020.3040176 – volume: 11 start-page: 879 year: 2019 ident: 10.1016/j.isprsjprs.2022.03.013_b0785 article-title: Inundation extent mapping by synthetic aperture radar: A review publication-title: Remote Sens. doi: 10.3390/rs11070879 – volume: 8 start-page: 64 year: 2010 ident: 10.1016/j.isprsjprs.2022.03.013_b0950 article-title: Extraction techniques of urban water bodies based on object-oriented publication-title: Geospatial Inform. – volume: 13 start-page: 119 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0700 article-title: Combining deep semantic segmentation network and graph convolutional neural network for semantic segmentation of remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs13010119 – volume: 47 start-page: 65 year: 2008 ident: 10.1016/j.isprsjprs.2022.03.013_b0355 article-title: Flood hazard in hunan province of china: an economic loss analysis publication-title: Nat. Hazards doi: 10.1007/s11069-007-9197-z – ident: 10.1016/j.isprsjprs.2022.03.013_b0235 doi: 10.1109/ICPR.1990.118221 – ident: 10.1016/j.isprsjprs.2022.03.013_b0280 doi: 10.1109/CVPR46437.2021.01043 – volume: 14 start-page: 2127 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0315 article-title: Flood extent mapping: an integrated method using deep learning and region growing using uav optical data publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2021.3051873 – volume: 13 start-page: 1912 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b1070 article-title: Rich cnn features for water-body segmentation from very high resolution aerial and satellite imagery publication-title: Remote Sens. doi: 10.3390/rs13101912 – volume: 15 start-page: 602 year: 2018 ident: 10.1016/j.isprsjprs.2022.03.013_b0650 article-title: Automatic water-body segmentation from high-resolution satellite images via deep networks publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2794545 – volume: 107 start-page: 13 year: 2013 ident: 10.1016/j.isprsjprs.2022.03.013_b0645 article-title: Spatio-temporal development of high-mountain lakes in the headwaters of the amu darya river (central asia) publication-title: Global Planet. Change doi: 10.1016/j.gloplacha.2013.04.001 – volume: 158 start-page: 63 year: 2019 ident: 10.1016/j.isprsjprs.2022.03.013_b0225 article-title: Multi-modal deep learning for landform recognition publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2019.09.018 – volume: 10 start-page: 964 year: 2018 ident: 10.1016/j.isprsjprs.2022.03.013_b0775 article-title: Performance evaluation of single-label and multi-label remote sensing image retrieval using a dense labeling dataset publication-title: Remote Sens. doi: 10.3390/rs10060964 – volume: 4 start-page: 196 year: 2015 ident: 10.1016/j.isprsjprs.2022.03.013_b0380 article-title: A review on extraction of lakes from remotely sensed optical satellite data with a special focus on cryospheric lakes publication-title: Adv. Remote Sens. doi: 10.4236/ars.2015.43016 – volume: 19 start-page: 3755 year: 2015 ident: 10.1016/j.isprsjprs.2022.03.013_b0675 article-title: A review of applications of satellite sar, optical, altimetry and dem data for surface water modelling, mapping and parameter estimation publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-19-3755-2015 – volume: 280 start-page: 111676 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0620 article-title: Smart solutions for smart cities: Urban wetland mapping using very-high resolution satellite imagery and airborne lidar data in the city of st. john’s, nl, canada publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2020.111676 – ident: 10.1016/j.isprsjprs.2022.03.013_b0825 doi: 10.1109/ICCV.2019.00533 – ident: 10.1016/j.isprsjprs.2022.03.013_b0220 – volume: 61 start-page: 399 year: 1997 ident: 10.1016/j.isprsjprs.2022.03.013_b0270 article-title: Decision tree classification of land cover from remotely sensed data publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(97)00049-7 – volume: 10 start-page: 144 year: 2018 ident: 10.1016/j.isprsjprs.2022.03.013_b0960 article-title: Building extraction in very high resolution remote sensing imagery using deep learning and guided filters publication-title: Remote Sens. doi: 10.3390/rs10010144 – ident: 10.1016/j.isprsjprs.2022.03.013_b1075 doi: 10.1088/1742-6596/1453/1/012129 – volume: 9 start-page: 144 year: 2017 ident: 10.1016/j.isprsjprs.2022.03.013_b0970 article-title: Automated extraction of urban water bodies from zy-3 multi-spectral imagery publication-title: Water doi: 10.3390/w9020144 – volume: 13 start-page: 865 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0495 article-title: Multitemporal water extraction of dongting lake and poyang lake based on an automatic water extraction and dynamic monitoring framework publication-title: Remote Sens. doi: 10.3390/rs13050865 – volume: 10 start-page: 1970 year: 2018 ident: 10.1016/j.isprsjprs.2022.03.013_b0275 article-title: Wsf-net: Weakly supervised feature-fusion network for binary segmentation in remote sensing image publication-title: Remote Sens. doi: 10.3390/rs10121970 – ident: 10.1016/j.isprsjprs.2022.03.013_b0070 doi: 10.1109/CVPR46437.2021.00584 – volume: 162 start-page: 148 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b1050 article-title: Thick cloud and cloud shadow removal in multitemporal imagery using progressively spatio-temporal patch group deep learning publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2020.02.008 – volume: 3 start-page: 265 year: 2010 ident: 10.1016/j.isprsjprs.2022.03.013_b0680 article-title: Water-body area extraction from high resolution satellite images-an introduction, review, and comparison publication-title: Int. J. Image Process. (IJIP) – volume: 147 start-page: 43 year: 2014 ident: 10.1016/j.isprsjprs.2022.03.013_b0910 article-title: Floodplain inundation and vegetation dynamics in the alligator rivers region (kakadu) of northern Australia assessed using optical and radar remote sensing publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.02.009 – volume: 17 start-page: 1425 year: 1996 ident: 10.1016/j.isprsjprs.2022.03.013_b0635 article-title: The use of the normalized difference water index (ndwi) in the delineation of open water features publication-title: Int. J. Remote Sens. doi: 10.1080/01431169608948714 – volume: 11 start-page: 779 year: 2019 ident: 10.1016/j.isprsjprs.2022.03.013_b0040 article-title: A novel fully automated mapping of the flood extent on sar images using a supervised classifier publication-title: Remote Sens. doi: 10.3390/rs11070779 – ident: 10.1016/j.isprsjprs.2022.03.013_b0460 – ident: 10.1016/j.isprsjprs.2022.03.013_b0705 – volume: 42 start-page: 1801 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0995 article-title: A self-attention capsule feature pyramid network for water body extraction from remote sensing imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2020.1842544 – ident: 10.1016/j.isprsjprs.2022.03.013_b0485 doi: 10.1088/1755-1315/17/1/012123 – start-page: 1 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0005 article-title: Roadvecnet: a new approach for simultaneous road network segmentation and vectorization from aerial and google earth imagery in a complex urban set-up publication-title: GIScience Remote Sens. – ident: 10.1016/j.isprsjprs.2022.03.013_b1105 doi: 10.1109/ICCVW54120.2021.00301 – volume: 179 start-page: 145 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0530 article-title: Robust deep alignment network with remote sensing knowledge graph for zero-shot and generalized zero-shot remote sensing image scene classification publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2021.08.001 – volume: 10 start-page: 1704 year: 2018 ident: 10.1016/j.isprsjprs.2022.03.013_b0925 article-title: Two-step urban water index (tsuwi): A new technique for high-resolution mapping of urban surface water publication-title: Remote Sens. doi: 10.3390/rs10111704 – ident: 10.1016/j.isprsjprs.2022.03.013_b1080 doi: 10.1109/CVPR.2017.660 – volume: 21 start-page: 3879 year: 2017 ident: 10.1016/j.isprsjprs.2022.03.013_b0630 article-title: The future of earth observation in hydrology publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-21-3879-2017 – ident: 10.1016/j.isprsjprs.2022.03.013_b0750 doi: 10.1109/IGARSS39084.2020.9547211 – volume: 13 start-page: 3465 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0035 article-title: Water extraction in sar images using features analysis and dual-threshold graph cut model publication-title: Remote Sens. doi: 10.3390/rs13173465 – volume: 7 start-page: W2 year: 2013 ident: 10.1016/j.isprsjprs.2022.03.013_b0810 article-title: An automatic integrated image segmentation, registration and change detection method for water-body extraction using hsr images and gis data publication-title: Int. Arch. Photogram., Remote Sens. Spatial Inform. Sci. – volume: 56 start-page: 1144 year: 2017 ident: 10.1016/j.isprsjprs.2022.03.013_b0080 article-title: Multilabel remote sensing image retrieval using a semisupervised graph-theoretic method publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2017.2760909 – volume: 85 start-page: 32 year: 2013 ident: 10.1016/j.isprsjprs.2022.03.013_b0150 article-title: Object detection in remote sensing imagery using a discriminatively trained mixture model publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2013.08.001 – volume: 25 start-page: 1097 year: 2012 ident: 10.1016/j.isprsjprs.2022.03.013_b0455 article-title: Imagenet classification with deep convolutional neural networks publication-title: Adv. Neural Inform. Process. Syst. – volume: 10 start-page: 743 year: 2018 ident: 10.1016/j.isprsjprs.2022.03.013_b0710 article-title: Semantic labeling of high resolution aerial imagery and lidar data with fine segmentation network publication-title: Remote Sens. doi: 10.3390/rs10050743 – volume: 4 start-page: 77 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0445 article-title: Using uav to capture and record torrent bed and banks, flood debris, and riparian areas publication-title: Drones doi: 10.3390/drones4040077 – year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0515 article-title: Geographical knowledge-driven representation learning for remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 52 start-page: 7708 year: 2014 ident: 10.1016/j.isprsjprs.2022.03.013_b0860 article-title: Semisupervised manifold alignment of multimodal remote sensing images publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2014.2317499 – volume: 17 start-page: 686 year: 2019 ident: 10.1016/j.isprsjprs.2022.03.013_b0230 article-title: Multiscale refinement network for water-body segmentation in high-resolution satellite imagery publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2926412 – ident: 10.1016/j.isprsjprs.2022.03.013_b0690 – year: 2018 ident: 10.1016/j.isprsjprs.2022.03.013_b1030 article-title: mixup: Beyond empirical risk minimization – year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0915 article-title: Graph convolutional networks for the automated production of building vector maps from aerial images publication-title: IEEE Trans. Geosci. Remote Sens. – ident: 10.1016/j.isprsjprs.2022.03.013_b1095 doi: 10.1007/978-3-030-58568-6_46 – volume: 19 start-page: 1486 year: 2019 ident: 10.1016/j.isprsjprs.2022.03.013_b0290 article-title: Deep convolutional neural network for flood extent mapping using unmanned aerial vehicles data publication-title: Sensors doi: 10.3390/s19071486 – volume: 6 start-page: 1 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0050 article-title: Surface water detection and delineation using remote sensing images: A review of methods and algorithms publication-title: Sustain. Water Resour. Manage. doi: 10.1007/s40899-020-00425-4 – ident: 10.1016/j.isprsjprs.2022.03.013_b0170 doi: 10.1109/IJCNN48605.2020.9207291 – volume: 4 start-page: 1220 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0665 article-title: Application of deep learning on uav-based aerial images for flood detection publication-title: Smart Cities doi: 10.3390/smartcities4030065 – ident: 10.1016/j.isprsjprs.2022.03.013_b0850 – ident: 10.1016/j.isprsjprs.2022.03.013_b0430 doi: 10.1109/IGARSS.2012.6352587 – ident: 10.1016/j.isprsjprs.2022.03.013_b0755 doi: 10.1109/ACCESS.2021.3084358 – ident: 10.1016/j.isprsjprs.2022.03.013_b1000 doi: 10.1109/WACV45572.2020.9093264 – volume: 9 start-page: 1110 year: 2017 ident: 10.1016/j.isprsjprs.2022.03.013_b0025 article-title: Hyperspectral imaging: A review on uav-based sensors, data processing and applications for agriculture and forestry publication-title: Remote Sens. doi: 10.3390/rs9111110 – volume: 140 start-page: 20 year: 2018 ident: 10.1016/j.isprsjprs.2022.03.013_b0030 article-title: Beyond rgb: Very high resolution urban remote sensing with multimodal deep networks publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2017.11.011 – ident: 10.1016/j.isprsjprs.2022.03.013_b0790 – ident: 10.1016/j.isprsjprs.2022.03.013_b0100 – ident: 10.1016/j.isprsjprs.2022.03.013_b0415 doi: 10.1109/CISP.2012.6469675 – ident: 10.1016/j.isprsjprs.2022.03.013_b0425 – volume: 51 start-page: 1756 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0555 article-title: Error-tolerant deep learning for remote sensing image scene classification publication-title: IEEE Trans. Cybernet. doi: 10.1109/TCYB.2020.2989241 – volume: 13 start-page: 3735 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0155 article-title: Remote sensing image scene classification meets deep learning: Challenges, methods, benchmarks, and opportunities publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2020.3005403 – volume: 30 start-page: 2805 year: 2019 ident: 10.1016/j.isprsjprs.2022.03.013_b1010 article-title: Adversarial examples: Attacks and defenses for deep learning publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2018.2886017 – ident: 10.1016/j.isprsjprs.2022.03.013_b0055 doi: 10.1109/CVPRW53098.2021.00121 – volume: 16 start-page: 618 year: 2018 ident: 10.1016/j.isprsjprs.2022.03.013_b0245 article-title: Water body extraction from very high-resolution remote sensing imagery using deep u-net and a superpixel-based conditional random field model publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2879492 – ident: 10.1016/j.isprsjprs.2022.03.013_b1085 doi: 10.1109/CVPRW.2018.00045 – volume: 59 start-page: 316 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b1040 article-title: Water body detection in high-resolution sar images with cascaded fully-convolutional network and variable focal loss publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2999405 – volume: 12 start-page: 1543 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0195 article-title: Accounting for uncertainty and reconstruction of flooding patterns based on multi-satellite imagery and support vector machine technique: A case study of can tho city, Vietnam publication-title: Water doi: 10.3390/w12061543 – volume: 186 start-page: 170 year: 2022 ident: 10.1016/j.isprsjprs.2022.03.013_b0560 article-title: Dkdfn: Domain knowledge-guided deep collaborative fusion network for multimodal unitemporal remote sensing land cover classification publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2022.02.013 – volume: 37 start-page: 1904 year: 2015 ident: 10.1016/j.isprsjprs.2022.03.013_b0325 article-title: Spatial pyramid pooling in deep convolutional networks for visual recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2389824 – volume: 56 start-page: 333 year: 2018 ident: 10.1016/j.isprsjprs.2022.03.013_b0345 article-title: Detecting, extracting, and monitoring surface water from space using optical sensors: A review publication-title: Rev. Geophys. doi: 10.1029/2018RG000598 – volume: 42 start-page: 153 year: 2019 ident: 10.1016/j.isprsjprs.2022.03.013_b0760 article-title: Sen12ms-a curated dataset of georeferenced multi-spectral sentinel-1/2 imagery for deep learning and data fusion publication-title: ISPRS Annals Photogram., Remote Sens. Spatial Inform. Sci. doi: 10.5194/isprs-annals-IV-2-W7-153-2019 – volume: 30 start-page: 1305 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b1045 article-title: Dense attention fluid network for salient object detection in optical remote sensing images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2020.3042084 – ident: 10.1016/j.isprsjprs.2022.03.013_b0120 – volume: 14 start-page: 7422 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b1005 article-title: Deep-learning-based multispectral satellite image segmentation for water body detection publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2021.3098678 – volume: 6 start-page: 11791 year: 2014 ident: 10.1016/j.isprsjprs.2022.03.013_b0845 article-title: The strengths and limitations in using the daily modis open water likelihood algorithm for identifying flood events publication-title: Remote Sens. doi: 10.3390/rs61211791 – ident: 10.1016/j.isprsjprs.2022.03.013_b0115 doi: 10.1109/CVPR46437.2021.01549 – ident: 10.1016/j.isprsjprs.2022.03.013_b0870 doi: 10.1126/science.289.5477.284 – ident: 10.1016/j.isprsjprs.2022.03.013_b0105 doi: 10.1007/978-3-030-01234-2_49 – volume: 78 start-page: 465 year: 2019 ident: 10.1016/j.isprsjprs.2022.03.013_b0585 article-title: Advanced deep learning techniques for image style transfer: A survey publication-title: Signal Process.: Image Commun. – ident: 10.1016/j.isprsjprs.2022.03.013_b0600 doi: 10.1109/CVPR.2015.7298965 – ident: 10.1016/j.isprsjprs.2022.03.013_b0335 doi: 10.1109/CVPR42600.2020.00406 – volume: 13 start-page: 143 year: 2019 ident: 10.1016/j.isprsjprs.2022.03.013_b0135 article-title: Thick clouds removal from multitemporal zy-3 satellite images using deep learning publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2019.2954130 – volume: 13 start-page: 3165 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0520 article-title: Urban water extraction with uav high-resolution remote sensing data based on an improved u-net model publication-title: Remote Sens. doi: 10.3390/rs13163165 – ident: 10.1016/j.isprsjprs.2022.03.013_b0190 doi: 10.1109/CVPRW.2018.00031 – year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0695 article-title: Boundary-aware dual stream network for vhr remote sensing images semantic segmentation publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2021.3076035 – ident: 10.1016/j.isprsjprs.2022.03.013_b0475 – volume: 12 start-page: 4140 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0905 article-title: Mslwenet: A novel deep learning network for lake water body extraction of google remote sensing images publication-title: Remote Sens. doi: 10.3390/rs12244140 – ident: 10.1016/j.isprsjprs.2022.03.013_b0420 doi: 10.1109/CVPR42600.2020.01299 – volume: 58 start-page: 5367 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0205 article-title: Semantic segmentation of large-size vhr remote sensing images using a two-stage multiscale training architecture publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2964675 – volume: 13 start-page: 318 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0780 article-title: Multilabel remote sensing image retrieval based on fully convolutional network publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2019.2961634 – volume: 7 start-page: 12336 year: 2015 ident: 10.1016/j.isprsjprs.2022.03.013_b0980 article-title: High-resolution mapping of urban surface water using zy-3 multi-spectral imagery publication-title: Remote Sens. doi: 10.3390/rs70912336 – volume: 243 start-page: 108469 year: 2022 ident: 10.1016/j.isprsjprs.2022.03.013_b0540 article-title: Combining deep learning and ontology reasoning for remote sensing image semantic segmentation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108469 – volume: 10 start-page: 2067 year: 2018 ident: 10.1016/j.isprsjprs.2022.03.013_b0350 article-title: Automatic mapping of thermokarst landforms from remote sensing images using deep learning: A case study in the northeastern tibetan plateau publication-title: Remote Sens. doi: 10.3390/rs10122067 – volume: 18 start-page: 2580 year: 2018 ident: 10.1016/j.isprsjprs.2022.03.013_b0020 article-title: Evaluation of water indices for surface water extraction in a landsat 8 scene of Nepal publication-title: Sensors doi: 10.3390/s18082580 – volume: 8 start-page: 2097 year: 2015 ident: 10.1016/j.isprsjprs.2022.03.013_b0360 article-title: Combining pixel-and object-based machine learning for identification of water-body types from urban high-resolution remote-sensing imagery publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2015.2420713 – ident: 10.1016/j.isprsjprs.2022.03.013_b0330 doi: 10.1109/CVPR.2016.90 – volume: 11 start-page: 1925 year: 2019 ident: 10.1016/j.isprsjprs.2022.03.013_b0570 article-title: Thick cloud removal in high-resolution satellite images using stepwise radiometric adjustment and residual correction publication-title: Remote Sens. doi: 10.3390/rs11161925 – ident: 10.1016/j.isprsjprs.2022.03.013_b0110 doi: 10.1109/CVPR.2019.00913 – volume: 13 start-page: 3122 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0185 article-title: Msresnet: Multiscale residual network via self-supervised learning for water-body detection in remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs13163122 – ident: 10.1016/j.isprsjprs.2022.03.013_b0615 doi: 10.1109/CVPR42600.2020.00779 – volume: 36 start-page: 451 year: 2003 ident: 10.1016/j.isprsjprs.2022.03.013_b0580 article-title: The global k-means clustering algorithm publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(02)00060-2 – volume: 7 start-page: 14055 year: 2015 ident: 10.1016/j.isprsjprs.2022.03.013_b1020 article-title: A natural-rule-based-connection (nrbc) method for river network extraction from high-resolution imagery publication-title: Remote Sens. doi: 10.3390/rs71014055 – volume: 24 start-page: 108 year: 2013 ident: 10.1016/j.isprsjprs.2022.03.013_b0435 article-title: Advances in thermokarst research publication-title: Permafrost Periglac. Process. doi: 10.1002/ppp.1779 – volume: 9 start-page: 909 year: 2019 ident: 10.1016/j.isprsjprs.2022.03.013_b0745 article-title: Review of artificial intelligence adversarial attack and defense technologies publication-title: Appl. Sci. doi: 10.3390/app9050909 – volume: 8 start-page: 154 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0990 article-title: 2020 ieee grss data fusion contest: Global land cover mapping with weak supervision [technical committees] publication-title: IEEE Geosci. Remote Sens. Magaz. doi: 10.1109/MGRS.2020.2970124 – volume: 117 start-page: 11 year: 2016 ident: 10.1016/j.isprsjprs.2022.03.013_b0145 article-title: A survey on object detection in optical remote sensing images publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2016.03.014 – volume: 105 start-page: 102568 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0010 article-title: Ucl: Unsupervised curriculum learning for water body classification from remote sensing imagery publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2021.102568 – volume: 588 start-page: 125092 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0130 article-title: A novel water body extraction neural network (wbe-nn) for optical high-resolution multispectral imagery publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2020.125092 – volume: 10 start-page: 939 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0795 article-title: Rapid worldwide growth of glacial lakes since 1990 publication-title: Nat. Clim. Change doi: 10.1038/s41558-020-0855-4 – volume: 7 start-page: 10347 year: 2015 ident: 10.1016/j.isprsjprs.2022.03.013_b0075 article-title: Image fusion-based change detection for flood extent extraction using bi-temporal very high-resolution satellite images publication-title: Remote Sens. doi: 10.3390/rs70810347 – volume: 237 start-page: 111582 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0300 article-title: Flood mapping under vegetation using single sar acquisitions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111582 – ident: 10.1016/j.isprsjprs.2022.03.013_b0160 doi: 10.1109/CVPR42600.2020.00891 – volume: 120 start-page: 1 year: 2016 ident: 10.1016/j.isprsjprs.2022.03.013_b0855 article-title: Multi-temporal and multi-source remote sensing image classification by nonlinear relative normalization publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2016.07.004 – volume: 20 start-page: 397 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0805 article-title: Intelligent object recognition of urban water bodies based on deep learning for multi-source and multi-temporal high spatial resolution remote sensing imagery publication-title: Sensors doi: 10.3390/s20020397 – volume: 54 start-page: 3660 year: 2016 ident: 10.1016/j.isprsjprs.2022.03.013_b0985 article-title: Semantic annotation of high-resolution satellite images via weakly supervised learning publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2016.2523563 – volume: 51 start-page: 261 year: 2013 ident: 10.1016/j.isprsjprs.2022.03.013_b0265 article-title: Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2012.09.001 – volume: 11 start-page: 10062 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0480 article-title: Comparative analysis of machine learning algorithms in automatic identification and extraction of water boundaries publication-title: Appl. Sci. doi: 10.3390/app112110062 – ident: 10.1016/j.isprsjprs.2022.03.013_b1015 doi: 10.1007/978-3-030-58539-6_11 – volume: 131 start-page: 148 year: 2015 ident: 10.1016/j.isprsjprs.2022.03.013_b1025 article-title: An inventory of glacial lakes in the third pole region and their changes in response to global warming publication-title: Global Planet. Change doi: 10.1016/j.gloplacha.2015.05.013 – volume: 17 start-page: 1662 year: 2019 ident: 10.1016/j.isprsjprs.2022.03.013_b0370 article-title: Seeing through the clouds with deepwatermap publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2953261 – volume: 103 start-page: 102499 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0405 article-title: Multi-scale context extractor network for water-body extraction from high-resolution optical remotely sensed images publication-title: Int. J. Appl. Earth Obs. Geoinf. doi: 10.1016/j.jag.2021.102499 – volume: 33 start-page: 145 year: 2007 ident: 10.1016/j.isprsjprs.2022.03.013_b0295 article-title: A review of hyperspectral remote sensing and its application in vegetation and water resource studies publication-title: Water Sa – volume: 12 start-page: 207 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0890 article-title: Weakly supervised deep learning for segmentation of remote sensing imagery publication-title: Remote Sens. doi: 10.3390/rs12020207 – ident: 10.1016/j.isprsjprs.2022.03.013_b0060 doi: 10.1007/978-3-030-22808-8_38 – volume: 175 start-page: 20 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0545 article-title: Learning deep semantic segmentation network under multiple weakly-supervised constraints for cross-domain remote sensing image semantic segmentation publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2021.02.009 – ident: 10.1016/j.isprsjprs.2022.03.013_b1100 doi: 10.1109/IGARSS.2012.6352234 – volume: 32 start-page: 8026 year: 2019 ident: 10.1016/j.isprsjprs.2022.03.013_b0720 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Adv. Neural Inform. Process. Syst. – volume: 9 start-page: 925 year: 2016 ident: 10.1016/j.isprsjprs.2022.03.013_b0930 article-title: A novel water index for urban high-resolution eight-band worldview-2 imagery publication-title: Int. J. Digital Earth doi: 10.1080/17538947.2016.1170215 – volume: 14 start-page: 3120 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0500 article-title: A deep learning method of water body extraction from high resolution remote sensing images with multisensors publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2021.3060769 – ident: 10.1016/j.isprsjprs.2022.03.013_b0440 – ident: 10.1016/j.isprsjprs.2022.03.013_b0590 doi: 10.1109/CVPRW.2017.200 – ident: 10.1016/j.isprsjprs.2022.03.013_b0320 doi: 10.1109/CVPR.2019.00770 – volume: 6 start-page: 1 year: 2014 ident: 10.1016/j.isprsjprs.2022.03.013_b0685 article-title: Uav for 3d mapping applications: a review publication-title: Appl. Geomat. doi: 10.1007/s12518-013-0120-x – ident: 10.1016/j.isprsjprs.2022.03.013_b1110 doi: 10.1109/ICCV.2017.244 – volume: 140 start-page: 23 year: 2014 ident: 10.1016/j.isprsjprs.2022.03.013_b0255 article-title: Automated water extraction index: A new technique for surface water mapping using landsat imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.08.029 – volume: 59 start-page: 3942 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0715 article-title: River planform extraction from high-resolution sar images via generalized gamma distribution superpixel classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.3011209 – volume: 67 start-page: 94 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0535 article-title: Image retrieval from remote sensing big data: A survey publication-title: Inform. Fusion doi: 10.1016/j.inffus.2020.10.008 – volume: 7 start-page: 14853 year: 2015 ident: 10.1016/j.isprsjprs.2022.03.013_b0625 article-title: Detection and delineation of localized flooding from worldview-2 multispectral data publication-title: Remote Sens. doi: 10.3390/rs71114853 – volume: 9 start-page: 560 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0730 article-title: Glacial lakes mapping using multi satellite planetscope imagery and deep learning publication-title: ISPRS Int. J. Geo-Inform. doi: 10.3390/ijgi9100560 – volume: 540 start-page: 418 year: 2016 ident: 10.1016/j.isprsjprs.2022.03.013_b0725 article-title: High-resolution mapping of global surface water and its long-term changes publication-title: Nature doi: 10.1038/nature20584 – ident: 10.1016/j.isprsjprs.2022.03.013_b0900 doi: 10.3390/w10050608 – ident: 10.1016/j.isprsjprs.2022.03.013_b0865 doi: 10.1109/CVPRW.2015.7301377 – volume: 59 start-page: 1604 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0955 article-title: Assessing the threat of adversarial examples on deep neural networks for remote sensing scene classification: Attacks and defenses publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2999962 – volume: 6 start-page: 810 year: 2016 ident: 10.1016/j.isprsjprs.2022.03.013_b0210 article-title: Earth’s surface water change over the past 30 years publication-title: Nat. Clim. Change doi: 10.1038/nclimate3111 – ident: 10.1016/j.isprsjprs.2022.03.013_b0085 doi: 10.1109/ICCV48922.2021.00041 – volume: 24 start-page: 109 year: 2011 ident: 10.1016/j.isprsjprs.2022.03.013_b0450 article-title: Efficient inference in fully connected crfs with gaussian edge potentials publication-title: Adv. Neural Inform. Process. Syst. – volume: 55 start-page: 1043 year: 2012 ident: 10.1016/j.isprsjprs.2022.03.013_b0490 article-title: Current issues in high-resolution earth observation technology publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-012-4445-9 – volume: 10 start-page: 1687 year: 2017 ident: 10.1016/j.isprsjprs.2022.03.013_b0840 article-title: Mapping thermokarst lakes on the qinghai–tibet plateau using nonlocal active contours in chinese gaofen-2 multispectral imagery publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2017.2666787 – ident: 10.1016/j.isprsjprs.2022.03.013_b0740 doi: 10.1109/CVPR.2019.00766 – volume: 146 start-page: 182 year: 2018 ident: 10.1016/j.isprsjprs.2022.03.013_b0550 article-title: Deep networks under scene-level supervision for multi-class geospatial object detection from remote sensing images publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2018.09.014 – volume: 57 start-page: 574 year: 2018 ident: 10.1016/j.isprsjprs.2022.03.013_b0390 article-title: Fully convolutional networks for multisource building extraction from an open aerial and satellite imagery data set publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2858817 – volume: 13 start-page: 5398 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0815 article-title: BasΘ{4} net: Boundary-aware semi-supervised semantic segmentation network for very high resolution remote sensing images publication-title: IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2020.3021098 – volume: 13 start-page: 692 year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0395 article-title: Boundary-aware refined network for automatic building extraction in very high-resolution urban aerial images publication-title: Remote Sens. doi: 10.3390/rs13040692 – volume: 80 start-page: 939 year: 2014 ident: 10.1016/j.isprsjprs.2022.03.013_b0385 article-title: A semiautomatic extraction of antarctic lake features using worldview-2 imagery publication-title: Photogram. Eng. Remote Sens. doi: 10.14358/PERS.80.10.939 – volume: 16 start-page: 1075 year: 2016 ident: 10.1016/j.isprsjprs.2022.03.013_b0015 article-title: Identification of water bodies in a landsat 8 oli image using a j48 decision tree publication-title: Sensors doi: 10.3390/s16071075 – year: 2021 ident: 10.1016/j.isprsjprs.2022.03.013_b0470 article-title: Physics-based shadow image decomposition for shadow removal publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2021.3124934 – volume: 11 start-page: 245 year: 2019 ident: 10.1016/j.isprsjprs.2022.03.013_b0735 article-title: Fusion feature multi-scale pooling for water body extraction from optical panchromatic images publication-title: Remote Sens. doi: 10.3390/rs11030245 – volume: 9 start-page: 189 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0305 article-title: A multi-scale water extraction convolutional neural network (mwen) method for gaofen-1 remote sensing images publication-title: ISPRS Int. J. Geo-Inform. doi: 10.3390/ijgi9040189 – ident: 10.1016/j.isprsjprs.2022.03.013_b0830 – volume: 32 start-page: 4545 year: 2011 ident: 10.1016/j.isprsjprs.2022.03.013_b0835 article-title: Landsat mapping of annual inundation (1979–2006) of the macquarie marshes in semi-arid australia publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2010.489064 – ident: 10.1016/j.isprsjprs.2022.03.013_b0175 doi: 10.1109/IGARSS.2019.8900625 – ident: 10.1016/j.isprsjprs.2022.03.013_b0200 doi: 10.1109/TGRS.2022.3168697 – volume: 7 start-page: 1437 year: 2015 ident: 10.1016/j.isprsjprs.2022.03.013_b0240 article-title: Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier–a case of yuyao, china publication-title: Water doi: 10.3390/w7041437 – volume: 16 start-page: 927 year: 2018 ident: 10.1016/j.isprsjprs.2022.03.013_b1060 article-title: Automatic and unsupervised water body extraction based on spectral-spatial features using gf-1 satellite imagery publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2018.2886422 – volume: 7 start-page: 155787 year: 2019 ident: 10.1016/j.isprsjprs.2022.03.013_b0575 article-title: Multiscale features supported deeplabv3+ optimization scheme for accurate water semantic segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2949635 – volume: 169 start-page: 166 year: 2020 ident: 10.1016/j.isprsjprs.2022.03.013_b0365 article-title: A deep learning framework for matching of sar and optical imagery publication-title: ISPRS J. Photogram. Remote Sens. doi: 10.1016/j.isprsjprs.2020.09.012 – volume: 4 start-page: 125 year: 2015 ident: 10.1016/j.isprsjprs.2022.03.013_b0375 article-title: A rapid extraction of water body features from antarctic coastal oasis using very high-resolution satellite remote sensing data publication-title: Aquatic Proc. doi: 10.1016/j.aqpro.2015.02.018 – volume: 5 start-page: 117 year: 2019 ident: 10.1016/j.isprsjprs.2022.03.013_b0065 article-title: Salient object detection: A survey publication-title: Comput. Visual Media doi: 10.1007/s41095-019-0149-9 – ident: 10.1016/j.isprsjprs.2022.03.013_b0935 doi: 10.1109/ICCV.2017.153 |
SSID | ssj0001568 |
Score | 2.6080296 |
SecondaryResourceType | review_article |
Snippet | Water body classification from high-resolution optical remote sensing (RS) images, aiming at classifying whether each pixel of the image is water or not, has... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 306 |
SubjectTerms | data collection Deep learning (DL) High-resolution Optical remote sensing (RS) image photogrammetry surface water surveys Water body classification |
Title | Water body classification from high-resolution optical remote sensing imagery: Achievements and perspectives |
URI | https://dx.doi.org/10.1016/j.isprsjprs.2022.03.013 https://www.proquest.com/docview/2648871326 |
Volume | 187 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T-QwELYQFHAF4nU6joeMdK3ZxHaCQ7dCoAUEDYegs_yIjyAuG22WYht-OzN58JIQBUWKJLYSeSbziOf7hpA_4OK5kDxmeeIDk7FxzETBMYV7SImHoPwAwckXl-noWp7dJrdz5KjHwmBZZWf7W5veWOvuyqBbzUFVFIOrCFIHjgRIvAnMEVEu5QFq-f7Ta5lH3MLhcDDD0e9qvIq6mtT3cECiyHnDdhqLzzzUB1vdOKCTFbLcRY502L7cKpnLyzXy4w2f4BpZ7Fqa383WycMNRJETasd-Rh2GyFgT1IiBIqSEIk8xg1y7Uz06rpq_2nSSg_ByWmNhe_mPFv-R5GJ2SIfursgbcvFpTU3pafUK06w3yPXJ8d-jEetaKzAnpJqyTKVKmsyoAEtiYxWCEpHhiQlJ5p0IkedWOKG8zQIXNrGRSAx4cp8JuC-D-Enmy3GZ_yLUSxsiiQBblUoXewsRlhWpATfnsJv6Jkn75dSu4x3H9hcPui8wu9cvctAoBx0JDXLYJNHLxKql3vh6ymEvL_1OizQ4iK8n7_US1vCN4caJKfPxIwxKwcxBNs_T3995wBZZwrO2XHKbzE8nj_kOhDRTu9vo7C5ZGJ6ejy6fAYmo-c8 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTxUxEJ8gHpCDUdQIitbEa327bXfpciME8lTgIkRuTT-2sgT2bd4-Du_C3-7MfoCYGA4e9rJts5v-2vloZ34D8BlVvJBKpLzMQuQqtZ7bJHqu6Q4pC2iU71By8vFJPj1T386z8xXYH3NhKKxykP29TO-k9fBmMszmpKmqyY8EXQdBBEiiM8x3nsBThduXyhh8ub2P80j7fDjqzan7gyCvqm3m7SU-6CkK0dGdpvJfKuovYd1poMMX8HwwHdle_3cvYaWsN2D9D0LBDVgbappfLF_B1U80I-fMzcKSebKRKSiow4FRTgkjomKOzvaw9tis6Y612bxE9ErWUmR7_YtV18Rysdxle_6iKjt28UXLbB1Yc5-n2b6Gs8OD0_0pH2orcC-VXvBC51rZwuqIU-JSHaOWiRWZjVkRvIxJEE56qYMropAuc4nMLKryUEhsV1G-gdV6VpdvgQXlYqIow1bnyqfBoYnlZG5Rz3kqp74J-Tidxg_E41T_4sqMEWaX5g4HQziYRBrEYROSu4FNz73x-JDdES_zYBkZ1BCPD_40Imxwk9HNia3L2Q12ylHOoTsv8q3_-cBHWJueHh-Zo68n39_BM2rpYyffw-piflNuo32zcB-69fsbNS37XQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Water+body+classification+from+high-resolution+optical+remote+sensing+imagery%3A+Achievements+and+perspectives&rft.jtitle=ISPRS+journal+of+photogrammetry+and+remote+sensing&rft.au=Li%2C+Yansheng&rft.au=Dang%2C+Bo&rft.au=Zhang%2C+Yongjun&rft.au=Du%2C+Zhenhong&rft.date=2022-05-01&rft.issn=0924-2716&rft.volume=187&rft.spage=306&rft.epage=327&rft_id=info:doi/10.1016%2Fj.isprsjprs.2022.03.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isprsjprs_2022_03_013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-2716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-2716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-2716&client=summon |